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 a b s t r a c t

Cognitive processes lie at the heart of artificial intelligence (AI) research, and the Multi-Granularity Interval-
Intent Fuzzy Concept-Cognitive Learning model (MIFCL-A) presented in this paper offers a novel perspective 
on this domain. MIFCL-A innovatively incorporates multi-level attention mechanism to replicate the intrica-
cies of human cognition, utilizing advanced concept cognitive learning methodologies. This model addresses 
several limitations inherent in existing concept learning frameworks, such as reliance on manual parameter tun-
ing for concept clustering, the generation of pseudo concepts that compromise cognitive consistency, and an 
overreliance on attribute-based concept attention that neglects the centrality of objects. Our model introduces 
a multi-granularity concept structure that captures both global (coarse-granularity) and local (fine-granularity) 
perspectives, integrating global decision concepts with boundary-derived local concepts. It features a hierarchi-
cal attention mechanism that applies global attribute attention at the coarse-granularity level and local concept 
attention at the fine-granularity level. Moreover, an adaptive concept clustering algorithm is incorporated, which 
negates the need for manual parameter tuning and ensures the precision and robustness of concept evolution 
across varying granularities. Comparative evaluations indicate that MIFCL-A outperforms current models in terms 
of classification accuracy and knowledge representation capabilities, establishing its potential as an effective tool 
for knowledge discovery and data mining.

1.  Introduction

Uncertainty plays a crucial role in shaping our understanding and 
processing of information across many fields of scientific research and 
decision-making [1]. Whether in the natural sciences, social systems, or 
machine learning, the inherent unpredictability and variability of data 
demand robust methods to dealing with uncertainty.

Granular computing (GrC) introduces the concept of “granules” - 
clusters of similar objects or data points that can be used to simplify 
complex systems and reduce uncertainty [2]. Granular computing pro-
vides a framework for understanding and organizing information at dif-
ferent levels of abstraction, allowing for more efficient processing and 
decision-making. Currently, numerous granular computing models are 
widely used to address uncertainty across various scenarios, including 
fuzzy sets [3], rough sets [4], three-way decision theory [5], and formal 
concept analysis (FCA) [6], among others. These models provide pow-
erful frameworks for handling complex, uncertain, and imprecise data 
by partitioning the information into manageable granules or clusters.

Concept, as the fundamental units of human cognition in philoso-
phy, effectively describe the relationship between the essence of objects 
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and their objective nature [7]. In 1982, Wille [8] introduced the theory 
of FCA, which analyzes formal concepts from a lattice theory perspec-
tive. Formal concept lattices serve as a mathematical bedrock for struc-
tured knowledge representation, establishing rigorous frameworks and 
formal semantics to enable principled data analysis in real-world ap-
plications. These structures not only crystallize conceptual hierarchies 
but also provide a foundation for systematic knowledge discovery. Ex-
tensive research by scholars has advanced this foundation [9,10]. In-
spired by FCA and cognitive computing [11], concept-cognitive learn-
ing (CCL) has emerged as a growing research focus. CCL treats concepts 
as fundamental informational granules, processing abstract information 
through structured methodologies to uncover latent object-attribute re-
lationships within data. Recent years have witnessed considerable ex-
pansion in CCL theory and models, encompassing various concept such 
as formal concepts [12,13], fuzzy concepts [14–16], three-way concepts 
[17–19], two-way concepts [20,21], incomplete concept [22].

Different concept systems are suited to various scenarios, as they 
are designed to address the specific characteristics and challenges of 
each domain. Zhang et al. [23] established a granular cognitive repre-
sentation based on object/attribute sufficiency and necessity through 
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rigorous mathematical modeling. This dual-perspective approach has 
since been extended to fuzzy-based dynamic concept learning [20], 
classical concept learning with dynamic shifting perspectives [21], and 
competence-based concept learning in the context of skill acquisition 
[24].

In 1965, Zadeh [3] introduced fuzzy sets, providing a refined method 
for data representation via membership functions. Building on this foun-
dation, the integration of fuzzy systems with machine learning has be-
come widespread, exemplified by models such as fuzzy neural networks 
[25] and fuzzy support vector machines [26]. This synergy extends to 
concept cognitive learning (CCL), where integrating fuzzy sets advances 
concept exploration from a fuzzy perspective. Fuzzifying classical for-
mal concepts enables CCL to effectively process continuous numerical 
data. Specifically, fuzzy concepts offer the distinct advantage of extract-
ing valuable information representations while minimizing information 
loss during cognitive processes [27]. Complementing this, Wang et al. 
[28] proposed a novel multi-view fuzzy CCL model that enhances knowl-
edge representation by learning and integrating fuzzy concepts across 
multiple data views. Notably, clustering techniques-central to discover-
ing inherent structures in unlabeled data-find wide application in areas 
such as medical testing [29] and social network analysis [30]. Through 
a fuzzy concept clustering approach, Mi et al. [14] achieved a simplified 
representation of the concept space. Subsequently, numerous concept-
cognitive learning models based on concept clustering emerged. For ex-
ample, Deng et al. [15] considered attribute-derived fuzzy concepts and 
explained the predictive mechanism of incremental concept learning by 
integrating concept clustering spaces with upper and lower approxima-
tion spaces. Guo et al. [31] developed a concept learning model for 
tumor diagnosis in high-dimensional data, based on fuzzy three-way 
concepts and concept fusion. Liu et al. [32] adopted a cross-granularity 
concept clustering strategy to integrate feature information for missing 
multi-label data, effectively enabling label completion. Additionally, at-
tention is a core attribute underlying all human perceptual and cogni-
tive processes [33]. Xu et al. [34] proposed a multi-attention concept-
cognitive learning model that incorporates graph attention mechanisms 
and graph structures for discrete data. Weighting attributes constitutes 
another form of attention mechanism, as demonstrated by Belohlavek 
et al. [35], who selected significant concepts through attribute weight-
ing and differential concept weighting. Further extending this paradigm, 
Zhang et al. [36] constructed weighted fuzzy concepts and implemented 
a progressive dynamic learning framework for such concepts.

Guo et al. [37] conducted a comprehensive and systematic analysis 
of concept-cognitive learning, providing a crucial theoretical framework 
and valuable insights for further advancements in this field. Although 
the effectiveness of concept clustering processes has been widely vali-
dated, and many scholars have extensively considered attribute atten-
tion mechanism to enhance concept learning. The current CCL models 
still exhibit notable limitations, as outlined below:

(1) Neglect of global cognition: While focusing on localized concept 
refinement, existing models largely overlook the global perspective, a 
critical aspect of human decision-making processes.

(2) Absence of multi-level attention mechanism: Existing models typ-
ically prioritize obtaining attribute attention (via weighting) before cal-
culating the corresponding concept attention. In other words, the atten-
tion to the concept is entirely influenced by the attributes within the 
concept’s intent, often neglecting human focus on the object itself (the 
extent of the concept).

(3) Concept clustering process of human intervention: In most CCL 
models that consider concept clustering, the clustering process is deter-
mined by predefined parameters. This reliance on manually set param-
eters results in inefficiency and inflexibility when dealing with complex 
and dynamic data environments.

(4) Pseudo-concepts and interpretability: The clustering process of-
ten generates pseudo-concepts, which lack interpretability and fail to 
adhere to rigorous concept system definitions, resulting in cognitive in-
consistencies between the cognitive processes at different stages.

Human cognition operates on a “global-first”" mechanism, pri-
oritizing the processing of information based on coarse-granularity
details before delving into finer-granularity specifics [38]. As a brain-
inspired learning paradigm, granular-ball computing (GBC) first con-
structs multi-grained representations of data through adaptive granular 
balls - each ball covering a local region while preserving global topolog-
ical structures. Xie et al. [39] proposed a novel method for constructing 
weighted granules, which adopts local iteration as an approximation 
for the calculation of global weights, eliminating the need for param-
eter adjustment during the update process. Xia et al. [40] developed 
an efficient and robust method for clustering granules from a multi-
granularity perspective. Xia et al. [41] established a three-way approxi-
mation framework with granular-ball computing, significantly enhanc-
ing interpretability in multi-granularity feature selection through fuzzy 
entropy fusion. Unlike traditional fine-grained processing that operates 
directly on raw data points, GBC’s coarse-to-fine hierarchy aligns with 
the “global-first” cognition.

Inspired by the GBC’s parameter-free adaptability achieved through 
autonomous ball generation and hierarchical knowledge discovery 
from coarse to fine granularity, this paper proposes a novel CCL 
model-attention-based multi-granularity interval-intent fuzzy concept-
cognitive learning-which closely aligns with human cognitive mecha-
nisms. Its primary contributions are as follows:

(1) A definition of multi-granularity interval-intent fuzzy concepts is 
proposed, which includes two types of concepts learned from different 
granular perspectives: global decision concepts derived from a coarse-
granularity (global) perspective and boundary-derived local concepts 
formed from a fine-granularity (local) perspective.

(2) A multi-level attention mechanism that does not rely solely on 
attributes is proposed. For global decision concepts, global attribute at-
tention is defined by the idea of maximizing the inter-class distance. 
Combining global and local cognitive operators, local concept attention 
(also referred to as concept independence degree) is defined using the 
extent ratio, which quantifies the differentiation of concepts based on 
their decision membership degree.

(3) An adaptive concept clustering process is proposed, fully regu-
lated by local concept attention, eliminating the need for parameter set-
tings to update existing concepts or generate new ones. The framework 
implements alternating learning between concepts of different granu-
larities. By the end of the process, all concepts strictly adhere to formal 
conceptual definitions, ensuring cognitive consistency and maintaining 
conceptual rigor throughout the framework.

To improve the representation of concepts, the definition of basic 
concepts in this paper follows the approach from [42], specifically us-
ing interval-intent fuzzy concepts. The main structure of the paper is 
organized as follows: Section 2 introduces classical fuzzy concepts and 
interval-intent fuzzy concepts, and provides a clear distinction of the 
cognitive operators for the latter across different decisions. Section 3 
presents the core content of the MIFCL-A, including multi-granularity 
concepts, multi-level attention mechanism, adaptive concept cluster-
ing, and concept prediction. The following section presents extensive 
numerical experiments to analyze the effectiveness of attention and 
the model’s classification performance. The final section summarizes 
the content of the paper and provides an analysis of future research
directions.

2.  Related work

This section briefly reviews some notions related to fuzzy formal con-
text, classical fuzzy concept and interval-intent fuzzy concepts. It is im-
portant to note that the interval fuzzy set discussed in this paper differs 
from the interval-valued fuzzy set. Specifically, when determining the 
inclusion relation of two sets, the former (this paper) focuses on the in-
clusion of the interval itself, whereas the latter emphasizes the inclusion 
of fuzziness.
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2.1.  Fuzzy formal context and classical fuzzy concept

A typical two-dimensional numerical data table can often be inter-
preted as a fuzzy formal context. Unlike the classical formal context, it 
provides a more detailed representation of the membership relationships 
between objects and attributes.

A fuzzy formal context is defined as a triplet (𝐺,𝑀, 𝐼), where 𝐺 =
{𝑥1, 𝑥2,⋯ , 𝑥

|𝐺|

} and 𝑀 = {𝑎1, 𝑎2,⋯ , 𝑎
|𝑀|

} represent the object set and 
attribute set, respectively. The term 𝐼 denotes the fuzzy relation be-
tween 𝐺 and 𝑀 , formally expressed as 𝐼 ∶ 𝐺 ×𝑀 → [0, 1]. Here, 𝐼(𝑥, 𝑎)
specifies the degree of membership of an object 𝑥 to an attribute 𝑎.

The classical fuzzy attribute set 𝐵̃𝑠 is represented in the form 
{𝐵̃𝑠(𝑎1), 𝐵̃𝑠(𝑎2),⋯ , 𝐵̃𝑠(𝑎

|𝑀|

)}, where 𝐵̃𝑠(𝑎) denotes the degree to which 
the attribute 𝑎 belongs to the fuzzy attribute set 𝐵̃𝑠. For convenience, 
the set of all crisp object subsets in 𝐺 is denoted by 2𝐺, while the set of 
all fuzzy attribute subsets in 𝑀 is represented as Γ𝑀 .

Given a fuzzy formal context (𝐺,𝑀, 𝐼), for any 𝑋 ∈ 𝐺 and 𝐵̃𝑠 ∈ Γ𝑀 , 
two operators 𝑓 ∶ 2𝐺 → Γ𝑀  and ℎ ∶ Γ𝑀 → 2𝐺 are given as follows [14]:

𝑓 (𝑋) =
{

⋀

𝑥∈𝑋
𝐼(𝑥, 𝑎)|𝑎 ∈ 𝑀

}

,

ℎ(𝐵̃𝑠) = {𝑥 ∈ 𝐺|∀𝑎 ∈ 𝑀, 𝐵̃𝑠(𝑎) ≤ 𝐼(𝑥, 𝑎)}.

The pair (𝑋, 𝐵̃𝑠) is a classical fuzzy concept if 𝑓 (𝑋) = 𝐵̃𝑠 and ℎ(𝐵̃𝑠) =
𝑋, where 𝑋 and 𝐵̃𝑠 are the extent and intent of the classical fuzzy con-
cept.

2.2.  Interval-intent fuzzy concept

In many concept-cognitive learning models, the same cognitive oper-
ators are defined differently across articles, with two common interpre-
tations: full-decision mapping (the whole decision context) and single-
decision mapping (a specific decision context) . This inconsistency in 
definitions can lead to confusion and variations in the model’s applica-
tion. This section distinguishes by defining different cognitive operators.

Let 𝑈 denote the unit closed interval [0,1], and [𝑈 ] represent the set 
of all closed intervals within 𝑈 . For a non-empty attribute set 𝑀 , 𝐵̃ ∶
𝑀 → [𝑈 ] is defined as an interval fuzzy attribute set over 𝑀 . Similarly, 
the set of all interval fuzzy attribute subsets on 𝑀 is denoted as [Γ𝑀 ].

For any 𝐵̃ ∈ [Γ𝑀 ], the interval fuzzy attribute set 𝐵̃ is represented in 
the form {𝐵̃(𝑎1), 𝐵̃(𝑎2),⋯ , 𝐵̃(𝑎

|𝑀|

)}, where 𝐵̃(𝑎) = [𝑎−, 𝑎+] represents the 
membership interval of attribute 𝑎 on 𝐵̃. For convenience, it is denoted 
by [[𝐵̃(𝑎)]]− = 𝑎− and [[𝐵̃(𝑎)]]+ = 𝑎+.

Definition 1. Given a fuzzy formal context (𝐺,𝑀, 𝐼), for any 𝑋 ∈ 𝐺
and 𝐵̃ ∈ [Γ𝑀 ], the two full-decision interval-intent cognitive operators 
𝐹 ∶ 2𝐺 → [Γ𝑀 ] and 𝐻 ∶ [Γ𝑀 ] → 2𝐺 are defined as follows:

𝐹 (𝑋) =

{

[

⋀

𝑥∈𝑋
𝐼(𝑥, 𝑎),

⋁

𝑥∈𝑋
𝐼(𝑥, 𝑎)

]

|𝑎 ∈ 𝑀

}

,

𝐻(𝐵̃) = {𝑥 ∈ 𝐺|∀𝑎 ∈ 𝑀, [[𝐵̃(𝑎)]]− ≤ 𝐼(𝑥, 𝑎) ≤ [[𝐵̃(𝑎)]]+}.

The definition of an interval-intent fuzzy concept is similar to that of 
a classical fuzzy concept, namely, (𝑋, 𝐵̃) is a full-decision interval-intent 
fuzzy concept if 𝐹 (𝑋) = 𝐵̃ and 𝐻(𝐵̃) = 𝑋.

Property 1. Let 𝑋,𝑋1, 𝑋2 ⊆ 𝐺 and 𝐵̃, 𝐵̃1, 𝐵̃2 ⊆ [Γ𝑀 ], then we have:
(1) 𝐹 (𝑋1) ⊆ 𝐹 (𝑋2) if 𝑋1 ⊆ 𝑋2, 𝐻(𝐵̃1) ⊆ 𝐻(𝐵̃2) if 𝐵̃1 ⊆ 𝐵̃2;
(2) 𝑋 ⊆ 𝐻𝐹 (𝑋), 𝐵̃ ⊇ 𝐹𝐻(𝐵̃);
(3) 𝐹 (𝑋) = 𝐹𝐻𝐹 (𝑋) and 𝐻(𝐵̃) = 𝐻𝐹𝐻(𝐵̃).

Proof.  The detailed proof can be found in Ref. [42]. ∎
According to Definition 1, both full-decision interval-intent cognitive 

operators apply to the entire set of objects 𝐺, and the learned concept 
extent may include objects with different decisions. However, in some 
cases, it may be preferable to learn concepts separately for each deci-
sion. The quintuple (𝐺,𝑀, 𝐼,𝐷, 𝐽 ) is known as a fuzzy formal decision 
context, where 𝐼 ∶ 𝐺 ×𝑀 → [0, 1] and 𝐽 ∶ 𝐺 ×𝐷 → {0, 1}.

Definition 2. Let (𝐺,𝑀, 𝐼,𝐷, 𝐽 ) be a fuzzy formal decision context and 
𝐺∕𝐷 = {𝐺𝑑1 , 𝐺𝑑2 ,⋯ , 𝐺𝑑

|𝐷|} be a decision division of object sets 𝐺. For 
any 𝑋 ∈ 𝐺𝑑𝑘  and 𝐵̃ ∈ [Γ𝑀 ], the two single-decision interval-intent cog-
nitive operators 𝐹 𝑑𝑘 ∶ 2𝐺 → [Γ𝑀 ] and 𝐻𝑑𝑘 ∶ [Γ𝑀 ] → 2𝐺 under decision 
𝑑𝑘 are given as follows:

𝐹 𝑑𝑘 (𝑋) =

{

[

⋀

𝑥∈𝑋
𝐼(𝑥, 𝑎),

⋁

𝑥∈𝑋
𝐼(𝑥, 𝑎)

]

|𝑎 ∈ 𝑀

}

,

𝐻𝑑𝑘 (𝐵̃) = {𝑥 ∈ 𝐺𝑑𝑘
|∀𝑎 ∈ 𝑀, [[𝐵̃(𝑎)]]−≤𝐼(𝑥, 𝑎) ≤ [[𝐵̃(𝑎)]]+}.

The single-decision interval-intent cognitive operators defined in 
Definition 2 also adhere to the properties of full-decision interval-intent 
cognitive operators. The concept is defined similarly: (𝑋, 𝐵̃) is a local 
interval-intent fuzzy concept if 𝐹 𝑑𝑘 (𝑋) = 𝐵̃ and 𝐻𝑑𝑘 (𝐵̃) = 𝑋. And Prop-
erty 1 is also applicable to single-decision interval-intent cognitive op-
erators.

Property 2. Let (𝐺,𝑀, 𝐼,𝐷, 𝐽 ) be a fuzzy formal decision context and 
𝐺∕𝐷 = {𝐺𝑑1 , 𝐺𝑑2 ,⋯ , 𝐺𝑑

|𝐷|} be a decision division of object sets 𝐺. For any 
𝑋 ∈ 𝐺𝑑𝑘  and 𝐵̃ ∈ [Γ𝑀 ], (𝐻𝑑𝑘𝐹 𝑑𝑘 (𝑋), 𝐹 𝑑𝑘 (𝑋)) and (𝐻𝑑𝑘 (𝐵̃), 𝐹 𝑑𝑘𝐻𝑑𝑘 (𝐵̃))
are both single-decision interval-intent fuzzy concept.
Proof.  According to Property 1, the proof is straightforward. ∎

Obviously, when the concept learning clue consists of only a single 
object, the upper and lower bounds of the learned concept intent interval 
coincide, reducing it to a fuzzy single-valued form. For any single object 
𝑥, 𝐹 𝑑𝑘 ({𝑥}) = {𝐵̃𝑠(𝑎)|𝑎 ∈ 𝑀} in which 𝐵̃𝑠(𝑎) = [[𝐵̃(𝑎)]]− = [[𝐵̃(𝑎)]]+. And 
if there is no ambiguity, 𝐹 𝑑𝑘 ({𝑥}) can be written as 𝐹 𝑑𝑘 (𝑥). Unless oth-
erwise specified, the concepts mentioned in the following paragraphs 
refer to single-decision interval-intent fuzzy concepts.

3.  MIFCL-A

Human cognition involves a dynamic interplay between global 
and local information processing, with cognitive systems shifting be-
tween these levels. From a global perspective, coarse-grained cogni-
tion facilitates the comprehension of a system’s overall structure and 
consistency, enabling broad understanding of complex environments.
However, when processing heterogeneous information for complex 
decision-making, humans prioritize boundary information through lo-
calized comparisons between entities.

Inspired by this dual cognitive capacity-simultaneously grasping 
holistic contexts while attending to local distinctions-we propose 
an attention-based multi-granularity concept-cognitive learning model 
which introduces global decision concepts (coarse-grained perspective) 
and boundary-derived local concepts (fine-grained perspective). We 
construct a multi-level attention system aligned with these conceptual 
hierarchies. Additionally, we develop an adaptive concept cluster gen-
eration method that dynamically restructures concept clusters through 
alternating coarse-to-fine granularity learning-an iterative mechanism 
that enhances learning performance by progressively refining concep-
tual representations.

3.1.  Multi-granularity interval-intent fuzzy concept

This subsection introduces two single-decision interval-intent fuzzy 
concepts from both global and local perspectives: the global decision 
concept and the boundary-derived local concept. It is important to note 
that the latter is learned based on the existence of the former, aligning 
with the principle of cognitive relevance.

3.1.1.  Global decision concepts
Definition 3. Let (𝐺,𝑀, 𝐼,𝐷, 𝐽 ) be a fuzzy formal decision context and 
𝐺∕𝐷 = {𝐺𝑑1 , 𝐺𝑑2 ,⋯ , 𝐺𝑑

|𝐷|} be a decision division of object sets 𝐺. For 
the set 𝑋 = {𝑥|𝑥 ∈ 𝐺𝑑𝑘}, 𝐶𝑑𝑘

𝑔 = (𝑋𝑑𝑘
𝑔 , 𝐵̃𝑑𝑘

𝑔 ) is called the global decision 
concept under decision 𝑑𝑘, where 𝑋𝑑𝑘

𝑔 = 𝑋 and 𝐵̃𝑑𝑘
𝑔 = 𝐹 𝑑𝑘 (𝑋). 
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According to Properties 1 and 2, it is easy to prove that the global 
decision concept is a single-decision interval-intent fuzzy concept. The 
number of global decision concepts corresponds to the number of de-
cision categories, meaning there is exactly one global decision concept 
for each decision space. The essence of the concept primarily reflects 
the range of attribute values for all objects within the current decision. 
And we call the set of all global decision concepts the global decision 
concept space, represented by 𝐶𝑆𝑔 = {𝐶𝑑𝑘

𝑔 |𝑑𝑘 ∈ 𝐷}.
As a holistic abstraction of the decision space, the global decision 

concept offers a comprehensive and coherent perspective for identifying 
the macroscopic structure of the data system from a coarse-granularity 
viewpoint.

3.1.2.  Boundary-derived local concepts
The real world is inherently complex and unpredictable, with differ-

ent global decision concepts often overlapping. As a result, relying solely 
on coarse-granularity cognition is insufficient for fully distinguishing 
and learning about entities; recognizing boundary information is essen-
tial for a more nuanced understanding.
Definition 4. Given a fuzzy formal sub-context (𝐺𝑑𝑘 ,𝑀, 𝐼), and the 
global decision concept (𝑋𝑑𝑘

𝑔 , 𝐵̃𝑑𝑘
𝑔 ) under the decision 𝑑𝑘, the set 

of boundary objects under decision 𝑑𝑘 is defined as 𝑂𝑑𝑘
𝑔 = {𝑥|∃𝑎 ∈

𝑀,𝐹 𝑑𝑘 (𝑥)(𝑎) ∈ {[[𝐵̃𝑑𝑘
𝑔 (𝑎)]]

−
, [[𝐵̃𝑑𝑘

𝑔 (𝑎)]]
+
}}. 

Definition 5. Given a fuzzy formal sub-context (𝐺𝑑𝑘 ,𝑀, 𝐼) and the 
set of boundary objects 𝑂𝑑𝑘

𝑔  under decision 𝑑𝑘, 𝐶𝑑𝑘
𝑏 = (𝑋𝑑𝑘

𝑏 , 𝐵̃𝑑𝑘
𝑏 ) =

(𝐻𝑑𝑘 (𝐵̃∗
𝑏 ), 𝐹

𝑑𝑘𝐻𝑑𝑘 (𝐵̃∗
𝑏 )) is called the boundary-derived local concept un-

der decision 𝑑𝑘, where 𝐵̃∗
𝑏 = {[𝑙𝑜𝑤(𝑥, 𝑎), 𝑢𝑝(𝑥, 𝑎)]|𝑎 ∈ 𝑀} for ∀𝑥 ∈ 𝑂𝑑𝑘

𝑔 .
The lower bound of the attribute serving as a learning cue can be 

categorized into the following three cases:
(1) Boundary object attribute value: 𝑙𝑜𝑤(𝑥, 𝑎) = 𝐹 𝑑𝑘 (𝑥)(𝑎) if 

𝐹 𝑑𝑘 (𝑥)(𝑎) − [[𝐵̃𝑑𝑘
𝑔 (𝑎)]]

−
> [[𝐵̃𝑑𝑘

𝑔 (𝑎)]]
+
− 𝐹 𝑑𝑘 (𝑥)(𝑎) ≠ 0;

(2) Global concept attribute value: 𝑙𝑜𝑤(𝑥, 𝑎) = [[𝐵̃𝑑𝑘
𝑔 (𝑎)]]

− if 
𝐹 𝑑𝑘 (𝑥)(𝑎) − [[𝐵̃𝑑𝑘

𝑔 (𝑎)]]
−
≤ [[𝐵̃𝑑𝑘

𝑔 (𝑎)]]
+
− 𝐹 𝑑𝑘 (𝑥)(𝑎);

(3) Global upper and lower bound average: 𝑙𝑜𝑤(𝑥, 𝑎) =
1
2
([[𝐵̃𝑑𝑘

𝑔 (𝑎)]]
−
+ [[𝐵̃𝑑𝑘

𝑔 (𝑎)]]
+
) if 𝐹 𝑑𝑘 (𝑥)(𝑎) = [[𝐵̃𝑑𝑘

𝑔 (𝑎)]]
+
.

The upper bound of the attribute serving as a learning cue can be 
categorized into the following three cases:

(1) Global concept attribute value: 𝑢𝑝(𝑥, 𝑎) = [[𝐵̃𝑑𝑘
𝑔 (𝑎)]]

+ if 𝐹 𝑑𝑘 (𝑥)(𝑎) −

[[𝐵̃𝑑𝑘
𝑔 (𝑎)]]

−
> [[𝐵̃𝑑𝑘

𝑔 (𝑎)]]
+
− 𝐹 𝑑𝑘 (𝑥)(𝑎);

(2) Boundary object attribute value: 𝑢𝑝(𝑥, 𝑎) = 𝐹 𝑑𝑘 (𝑥)(𝑎) if 0 ≠
𝐹 𝑑𝑘 (𝑥)(𝑎) − [[𝐵̃𝑑𝑘

𝑔 (𝑎)]]
−
≤ [[𝐵̃𝑑𝑘

𝑔 (𝑎)]]
+
− 𝐹 𝑑𝑘 (𝑥)(𝑎);

(3) Global upper and lower bound average: 𝑢𝑝(𝑥, 𝑎) = 1
2
([[𝐵̃𝑑𝑘

𝑔 (𝑎)]]
−
+

[[𝐵̃𝑑𝑘
𝑔 (𝑎)]]

+
) if 𝐹 𝑑𝑘 (𝑥)(𝑎) = [[𝐵̃𝑑𝑘

𝑔 (𝑎)]]
−
.

As established by Property 2, the boundary-derived local concept 
can be formally demonstrated as a single-decision interval-intent fuzzy 
concept. This concept is constructed through a dual-cue learning mech-
anism: (1) Object cues (Definition 4): Objects constituting the decision 
boundary under each decision class; (2) Attribute cues (Definition 5): 
Synthesized by integrating the attribute values of these boundary ob-
jects with the intent of the global decision concept. Critically, attribute 
cues preserve a hybrid representation of global and local information, 
thereby capturing a novel fine-grained conceptual perspective.

The set of all boundary-derived local concepts under decision 𝑑𝑘
is represented as 𝐶𝑆𝑑𝑘

𝑏 = {𝐶𝑑𝑘
𝑏1
, 𝐶𝑑𝑘

𝑏2
,⋯ , 𝐶𝑑𝑘

𝑏𝑛
} and 𝐶𝑆𝑑𝑘

𝑏  is referred to 
boundary-derived local concept space under decision 𝑑𝑘.
Property 3. For all boundary-derived local concepts under a decision 𝑑𝑘, 
the following property holds:
2 ≤ |𝐶𝑆𝑑𝑘

𝑏 | ≤ |𝑂𝑑𝑘
𝑔 | ≤ |𝐺𝑑𝑘

|,

where | ⋅ | indicates the total number of elements in the set.

Proof.  The above property can be proved in the following three parts:
(1) If an object 𝑥 satisfies 𝐹 𝑑𝑘 (𝑥)(𝑎) < [[𝐵̃𝑑𝑘

𝑔 (𝑎)]]+ or 𝐹 𝑑𝑘 (𝑥)(𝑎) >
[[𝐵̃𝑑𝑘

𝑔 (𝑎)]]−, then |𝑂𝑑𝑘
𝑔 | ≤ |𝐺𝑑𝑘

| follows.
(2) There are numerous factors that can lead to |𝐶𝑆𝑑𝑘

𝑏 | ≤ |𝑂𝑑𝑘
𝑔 |. As 

long as the mappings of attribute clues derived from different boundary 
objects are consistent, the resulting boundary-derived local concept will 
remain the same.

(3) If there exist two objects such that 𝐹 𝑑𝑘 (𝑥1) ∪ 𝐹 𝑑𝑘 (𝑥2) = 𝐵̃𝑑𝑘
𝑔

and for ∀𝑎 ∈ 𝑀 there is no object 𝑥 that makes 𝐹 𝑑𝑘 (𝑥)(𝑎) ∈
{[[𝐵̃𝑑𝑘

𝑔 (𝑎)]]−, [[𝐵̃𝑑𝑘
𝑔 (𝑎)]]+}, then |𝐶𝑆𝑑𝑘

𝑏 | = 2. Otherwise, |𝐶𝑆𝑑𝑘
𝑏 | > 2

holds. ∎
According to this property, the boundary-derived local concept en-

capsulates structured information about global boundaries. Distinctions 
among various decisions can be achieved using fewer boundary-derived 
local concepts. These local concepts delineate the fuzzy transition re-
gions between different decisions or categories, effectively capturing 
the inherent complexity of fuzzy cognition. We refer to global deci-
sion concepts and boundary-derived local concepts collectively as multi-
granularity interval-intent fuzzy concepts (or simply multi-granularity 
concepts). Algorithm 1 outlines the construction process for the concept 
spaces of these multi-granularity concepts.

Algorithm 1: Construction of multi-granularity concept space.
Input: The fuzzy formal decision context (𝐺,𝑀, 𝐼,𝐷, 𝐽 ) and 

the decision division 𝐺∕𝐷 = {𝐺𝑑1 , 𝐺𝑑2 ,⋯ , 𝐺𝑑
|𝐷|}.

Output: The global decision concept space 𝐶𝑆𝑔 and the set of 
all boundary-derived local concept space 𝐶𝑆𝑏.

1 for 𝐺𝑑𝑘 ∈ 𝐺∕𝐷 do
2 𝑋 = 𝐺𝑑𝑘 , 𝑂𝑑𝑘

𝑔 = ∅;
3 𝐶𝑑𝑘

𝑔 = (𝑋𝑑𝑘
𝑔 , 𝐵̃𝑑𝑘

𝑔 ) = (𝑋,𝐹 𝑑𝑘 (𝑋));
4 𝐶𝑆𝑔 ← 𝐶𝑑𝑘

𝑔 ;
5 for each 𝑗 = 1 to |𝐺𝑑𝑘

| do
6 for each 𝑎 ∈ 𝑀 do
7 if 𝐹 𝑑𝑘 (𝑥)(𝑎) ∈ {[[𝐵̃𝑑𝑘

𝑔 (𝑎)]]
−
, [[𝐵̃𝑑𝑘

𝑔 (𝑎)]]
+
} then

8 𝑂𝑑𝑘
𝑔 ← 𝑥𝑗 ;

9 end 
10 end 
11 end 
12 for each 𝑥 ∈ 𝑂𝑑𝑘

𝑔  do
13 Compute 𝐵̃∗

𝑏  by Definition 5;
14 𝐶𝑑𝑘

𝑏 = (𝐻𝑑𝑘 (𝐵̃∗
𝑏 ), 𝐹

𝑑𝑘𝐻𝑑𝑘 (𝐵̃∗
𝑏 ));

15 𝐶𝑆𝑑𝑘
𝑏 ← 𝐶𝑑𝑘

𝑏 ;
16 end 
17 𝐶𝑆𝑏 ← 𝐶𝑆𝑑𝑘

𝑏 ;
18 end 
19 return 𝐶𝑆𝑔 and 𝐶𝑆𝑏

3.2.  Multi-level attention mechanism

Building on the foundation of global decision concepts and 
boundary-derived local concepts established earlier, we propose two at-
tention mechanisms to enhance differentiation between distinct infor-
mation types: global attribute attention and local concept attention.

Global attribute attention aligns with global decision concepts, em-
phasizing the identification of personalized attribute variations across 
different decision spaces. Conversely, local concept attention oper-
ates on all non-global decision concepts-including but not limited to 
boundary-derived local concepts. By using concept intents as guiding 
signals, and through the separate processing of local and global cog-
nitive operators, this approach enables independent concept represen-
tations within distinct decision spaces. The inter-class discriminability 
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of these concepts is quantified via local concept attention as a concept 
independence degree.

3.2.1.  Global attribute attention
To effectively capture attribute-level distinctions across different de-

cision spaces, global attribute attention is introduced as a mechanism to 
prioritize attributes that contribute significantly to decision differentia-
tion.

Definition 6. Let (𝐺,𝑀, 𝐼,𝐷, 𝐽 ) be a fuzzy formal decision 
context (𝐺,𝑀, 𝐼,𝐷, 𝐽 ) and 𝐺∕𝐷 = {𝐺𝑑1 , 𝐺𝑑2 ,⋯ , 𝐺𝑑

|𝐷|} be a 
decision division of object sets 𝐺. The global attribute at-
tention space is defined as 𝐴𝑡𝑡𝑆𝑔 = {𝑎𝑡𝑡(𝑎)|𝑎 ∈ 𝑀}, where 

𝑎𝑡𝑡(𝑎) = 1
|𝐷|

∑

𝑑𝑘∈𝐷
exp

(

𝛾
2 ⋅ |𝐷| − 2

∑

𝑑𝑚≠𝑑𝑘

(

𝑚𝑎𝑥
(

[[𝐵̃𝑑𝑘
𝑔 (𝑎)]]

−
, [[𝐵̃𝑑𝑚

𝑔 (𝑎)]]
−)

−

𝑚𝑖𝑛
(

[[𝐵̃𝑑𝑘
𝑔 (𝑎)]]

+
, [[𝐵̃𝑑𝑚

𝑔 (𝑎)]]
+)

+ 1
)

)

 and 𝛾 (𝛾 ≥ 0) is a global attribute 
attention parameter. 

Global attribute attention operates on the principle of maximizing 
decision boundary differentiation. When decision boundaries for dis-
tinct classes under a given attribute exhibit no overlap, all values in the 
difference term remain positive-resulting in higher attention weights for 
that attribute. Conversely, when decision boundaries intersect or fully 
overlap for the same attribute, the summation within the difference 
term contains negative components, thereby reducing the attribute’s 
attention weight. Attributes receiving stronger global attention exhibit 
greater distinguishability within the decision space.

3.2.2.  Local concept attention
To determine the level of which the concept’s attribute scope is exclu-

sive to the current decision, we define concept independence to repre-
sent this degree of “exclusivity”. And we also can use the independence 
degree of concepts to represent local concept attention below.

Definition 7. Let 𝐶𝑆𝑑𝑘
𝑏  be fuzzy boundary-derived local concept 

space under decision 𝑑𝑘. The concept independence degree for 𝐶𝑑𝑘
𝑏 =

(𝑋𝑑𝑘
𝑏 , 𝐵̃𝑑𝑘

𝑏 ) is defined as follows:

𝑖𝑛𝑑(𝐶𝑑𝑘
𝑏 ) =

|𝑋𝑑𝑘
𝑏 |

|𝐻(𝐵̃𝑑𝑘
𝑏 )|

,

where 𝐻 is full-decision interval-intent cognitive operator and | ⋅ | de-
notes the cardinality. 

The independence degree of a concept reflects its specificity within 
the cognitive process. A higher independence of a concept under de-
cision 𝑑𝑘 signifies that the attribute set 𝐵̃𝑑𝑘

𝑏 , serving as a intent of the 
concept, aligns more closely with the attribute interval of decision 𝑑𝑘.

The purpose of Definition 7 is not only to determine the importance 
of the current concept but also to provide a critical basis for decid-
ing whether subsequent concepts should be updated during the concept 
cluster generation.

Property 4. For all boundary-derived local concepts under a decision 𝑑𝑘, 
the following properties apply:

(1) 0 < 𝑖𝑛𝑑(𝐶𝑑𝑘
𝑏 ) ≤ 1;

(2) If 𝑖𝑛𝑑(𝐶𝑑𝑘
𝑏 ) = 1, then ∀𝑥 ∈ 𝑋𝑑𝑚

𝑏 , 𝐹 𝑑𝑚 (𝑥) ⊈ 𝐵̃𝑑𝑘
𝑏  where 𝑑𝑚 ≠ 𝑑𝑘.

When 𝑖𝑛𝑑(𝐶𝑑𝑘
𝑏 ) = 1, 𝐶𝑑𝑘

𝑏  is called a completely independent concept. 
Property 4 indicates that the attribute value of an object from no other 
decision falls within the intent of the completely independent concept, 
meaning that the completely independent concept can be regarded as 
the exclusive concept for a specific decision. Furthermore, it is evident 
that for any object 𝑥 ∈ 𝐺𝑑𝑘 , concept ({𝑥}, 𝐹 𝑑𝑘 (𝑥)) is also a completely 
independent concept.

3.3.  Adaptive concept clustering

In the preceding discussion, we introduced the boundary-derived 
local concept, emphasizing that the learning process within decision 
spaces remains confined to the local regions near decision boundaries. 
To enhance the universality and adaptability of the cognitive system, 
this section delves into the process of concept clustering. This approach 
aims to achieve a more refined and comprehensive cognition of the de-
cision space, surpassing the granularity offered by the global decision 
concept.

The process of concept clustering, also known as concept cluster gen-
eration, involves re-evaluating all objects that are not involved in the 
formation of the concept and grouping them into existing boundary-
derived local concepts or generating new concept independently. In 
concept-cognitive learning, concept clustering serves as a method to 
compress and efficiently represent the concept space through the cre-
ation of pseudo-concepts. A pseudo-concept’s extent is typically defined 
as the union of the extent of a group concepts, while its intent is repre-
sented by the fuzzy attribute set derived from the weighted average of 
these concepts [14,36]. As a result, pseudo-concepts often deviate from 
the strict definition of a concept, leading to inconsistencies in cognition 
between different stages.

For interval-intent fuzzy concepts, the intent is designed to encom-
pass the attribute information of all object sets within the concept’s ex-
tent. When a new object is introduced, its inclusion requires evaluating 
the relationship between its attribute values and the interval-intent. This 
allows for a selective update of the interval boundary values, thereby 
enabling the extent to be dynamically adjusted. The key advantage of 
this approach lies in its ability to incorporate new samples while en-
suring that the learned concepts continue to adhere to the strict defini-
tion of interval-intent fuzzy concepts. Therefore, the concept clustering 
of interval-intent fuzzy concepts is to re-learn new concepts from new 
clues.

3.3.1.  Cosine similarity measure
Cosine similarity is employed to measure the alignment between 

objects and boundary-derived local concepts, as it effectively captures 
the geometric relationship between attribute distributions in multi-
dimensional spaces. This measure emphasizes the angle between vectors 
rather than their magnitudes, ensuring robustness to scale variations and 
focusing on the structural patterns of attributes.
Definition 8. Given a fuzzy formal sub-context (𝐺𝑑𝑘 ,𝑀, 𝐼) and the 
boundary-derived local concept space 𝐶𝑆𝑑𝑘

𝑏  under decision 𝑑𝑘. For any 
𝑥 ∈ 𝐺𝑑𝑘  and 𝐶𝑑𝑘

𝑏 = (𝑋𝑑𝑘
𝑏 , 𝐵̃𝑑𝑘

𝑏 ) ∈ 𝐶𝑆𝑑𝑘
𝑏 , the cosine similarity between the 

object 𝑥 and the concept 𝐶𝑑𝑘
𝑏  is defined as:

cos(𝑥, 𝐶𝑑𝑘
𝑏 ) =

∑

𝑎∈𝑀
𝐼(𝑥, 𝑎) ⋅ 𝑚𝑖𝑑(𝐵̃𝑑𝑘

𝑏 (𝑎))

√

∑

𝑎∈𝑀
𝐼(𝑥, 𝑎)2 ⋅

√

∑

𝑎∈𝑀
𝑚𝑖𝑑(𝐵̃𝑑𝑘

𝑏 (𝑎))
2
,

where 𝑚𝑖𝑑(𝐵̃𝑑𝑘
𝑏 (𝑎)) = 1

2
([[𝐵̃𝑑𝑘

𝑏 (𝑎)]]
−
+ [[𝐵̃𝑑𝑘

𝑏 (𝑎)]]
+
). 

Definition 8 serves as the foundation for identifying concept cluster 
centers in the subsequent section. At the same time, this definition is 
applicable to all interval-intent fuzzy concepts.

3.3.2.  Concept cluster updating method
A concept cluster is a structure formed by a boundary-derived local 

concept serving as the cluster center, with objects which needs to be 
cognition acting as the cluster nodes.

The process of concept clustering can be viewed as updating the 
boundary-derived local concept space derived from the boundaries by 
learning from objects in the non-boundary range. Simultaneously, new 
concept clusters are adaptively generated. For each decision space, the 
concept cluster generation process can be outlined in the following steps:
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∙ Step 1 Filter objects to be updated: Let 𝑃 𝑑𝑘  denote the set of all 
objects that do not overlap with the extent of any boundary-derived 
local concepts within the given decision 𝑑𝑘. All elements of 𝑃 𝑑𝑘  need to 
participate in cluster generation process. First, we randomly select an 
object 𝑥 ∈ 𝑃 𝑑𝑘 , set 𝐶𝑆𝑑𝑘 = 𝐶𝑆𝑑𝑘

𝑏  and proceed to Step 2.
∙ Step 2 Select concept cluster center: For concept space 𝐶𝑆𝑑𝑘 , cal-

culate the cosine similarity of the object 𝑥 with each concept according 
to Definition 8. The concept 𝐶𝑑𝑘 = (𝑋𝑑𝑘 , 𝐵̃𝑑𝑘 ) with the highest similarity 
is selected as the cluster center.

∙ Step 3 Renewal concept cluster: Let 𝑋′ = 𝑋𝑑𝑘 ∪ {𝑥}. A new con-
cept 𝐶 ′𝑑𝑘 = (𝐻𝑑𝑘𝐹 𝑑𝑘 (𝑋′ ), 𝐹 𝑑𝑘 (𝑋′ )) is generated by learning from the up-
dated object cue 𝑋′ . If the independence of concepts satisfies 𝑖𝑛𝑑(𝐶𝑑𝑘 ) ≤
𝑖𝑛𝑑(𝐶 ′𝑑𝑘 ), the old concept is replaced with the new one, i.e., 𝐶𝑑𝑘 =
(𝐻𝑑𝑘𝐹 𝑑𝑘 (𝑋′ ), 𝐹 𝑑𝑘 (𝑋′ )), and continue to Step 4. Otherwise, return to Step 
2, select the concept with cosine similarity that is sub-optimal compared 
to the previous iteration, and repeat Step 3. If the selected object 𝑥
causes a decrease in the independence of all concepts, then ({𝑥}, 𝐹 𝑑𝑘 (𝑥))
is added to the concept space 𝐶𝑆𝑑𝑘  as a new concept.

∙ Step 4 Update object state: The objects selected in Step 1, along 
with the new objects in set 𝑃 𝑑𝑘  learned in Step 3, are considered as 
having participated in the concept clustering process. These objects are 
then excluded from subsequent random selections. The above steps are 
repeated iteratively until 𝑃 𝑑𝑘 = ∅, at which point the clustering process 
concludes.

During concept clustering, the decision to add an object to a new con-
cept cluster’s extent hinges on whether it significantly alters the cluster’s 
independence degree. The primary objectives are to maintain cluster 
centers with high differentiation and minimize the influence of other 
clustering decisions on the current one. Ultimately, concept clustering 
aims to adaptively identify concepts with the maximally achievable in-
dependence degree (indicating high inter-class discrimination). This en-
sures that different types of concepts can be efficiently distinguished in 
subsequent concept prediction tasks.

Initially, the concept space comprises boundary-derived local con-
cepts. As clustering progresses, nodes within each cluster are incremen-
tally assigned to their respective cluster centers. Concurrently, objects 
that weaken the independence of all existing concept clusters trigger the 
formation of new conceptual clusters. These new clusters then become 
potential targets for other nodes to merge with in later steps. The final 
concept space thus integrates both the updated boundary-derived local 
concepts and the newly formed non-boundary (interior) concepts. We 
term this post-clustering concept space the Concept Cluster Generation 
Space, denoted as 𝐶𝑆 ′𝑑𝑘 . The specifics of the concept clustering process 
are detailed in Algorithm 2.

Fig. 1 provides a comprehensive visualization of the adaptive con-
cept clustering methodology. The clustering process involves three 
distinct scenarios for each sample undergoing learning: (1) Success-
ful Concept Integration: When aggregated with its most similar con-
cept, the concept independence degree remains stable or improves. 
This occurs when: the sample count supporting the current deci-
sion exceeds alternative decisions (for concepts with initial indepen-
dence degree less than 1) or only samples supporting this decision 
are present (for concepts with initial independence degree equal to 
1). This scenario represents successful cognitive learning completion. 
(2) Degraded Concept Independence: Aggregation with the most sim-
ilar concept reduces the concept’s independence, occurring when al-
ternative decisions receive greater sample support than the current 
decision. In such cases, the algorithm proceeds to evaluate the next 
most similar concept. (3) Novel Concept Formation: When aggrega-
tion with all existing concepts degrades their independence, the sam-
ple initiates a new concept, thereby completing its cognitive processing
cycle.

It should be noted that the above three situations are not in a parallel 
relationship. At a certain point in time, a sample can only undergo ex-
actly one of these three possible state transitions. While Fig. 1 schemat-
ically represents all three scenarios, it’s not parallel processing paths.

Algorithm 2: Concept cluster generation.
Input: The fuzzy formal decision context (𝐺,𝑀, 𝐼,𝐷, 𝐽 ), the 

decision division 𝐺∕𝐷 = {𝐺𝑑1 , 𝐺𝑑2 ,⋯ , 𝐺𝑑
|𝐷|}, and the 

set of all boundary-derived local concept space 
𝐶𝑆𝑏 = {𝐶𝑆𝑑1

𝑏 , 𝐶𝑆𝑑2𝐷
𝑏 ,⋯ , 𝐶𝑆

𝑑
|𝐷|

𝑏 }.
Output: Concept cluster generation sapce 𝐶𝑆 ′ .

1 for 𝐺𝑑𝑘 ∈ 𝐺∕𝐷 do
2 𝐶𝑆𝑑𝑘 = 𝐶𝑆𝑑𝑘

𝑏 ;
3 Select the set 𝑃 𝑑𝑘  to be clustered;
4 for a random selected object 𝑥 ∈ 𝑃 𝑑𝑘  do
5 Find the cluster center concept 𝐶𝑑𝑘 ∈ 𝐶𝑆𝑑𝑘 ;
6 𝑋′ = 𝑋𝑑𝑘 ∪ {𝑥};
7 𝐶 ′𝑑𝑘 = (𝐻𝑑𝑘𝐹 𝑑𝑘 (𝑋′ ), 𝐹 𝑑𝑘 (𝑋′ ));
8 if 𝑖𝑛𝑑(𝐶𝑑𝑘 ) ≤ 𝑖𝑛𝑑(𝐶 ′𝑑𝑘 ) then
9 Substitute 𝐶 ′𝑑𝑘  for 𝐶𝑑𝑘 ;
10 Removes objects that have participated in 

clustering from 𝑃 𝑑𝑘 ;
11 end 
12 if 𝑖𝑛𝑑(𝐶𝑑𝑘

𝑏 ) > 𝑖𝑛𝑑(𝐶
′𝑑𝑘
𝑏 ) then

13 Select the sub-optimal cluster center concept and 
back to step 6;

14 end 
15 if no concept update occurred then
16 𝐶𝑆𝑑𝑘 ← ({𝑥}, 𝐹 𝑑𝑘 (𝑥));
17 end 
18 end 
19 𝐶𝑆 ′

← 𝐶𝑆𝑑𝑘 ;
20 end 
21 return 𝐶𝑆 ′

3.4.  Concept prediction

Humans are often influenced by attention when distinguishing be-
tween objects, focusing more on identifying key features. This section 
introduces a concept prediction method based on multi-level attention 
mechanism.

Definition 9. Let 𝑥 represent a new object, and a new concept 𝐶 =
({𝑥}, 𝐹 (𝑥)) will be formed. For any concept 𝐶 ′𝑑𝑘 = (𝑋′𝑑𝑘 , 𝐵̃′𝑑𝑘 ) ∈ 𝐶𝑆 ′𝑑𝑘 , 
we define the attention-based distance between 𝐶 and 𝐶 ′𝑑𝑘  as follows:

𝐷𝑖𝑠(𝐶,𝐶
′𝑑𝑘 )=

∑

𝑎∈𝑀
|𝑎𝑡𝑡(𝑎) ⋅ (𝐹 (𝑥)(𝑎)−𝑚𝑖𝑑(𝐵̃′𝑑𝑘 (𝑎)))|

𝑖𝑛𝑑(𝐶 ′𝑑𝑘 )
,

where 𝑎𝑡𝑡(𝑎) ∈ 𝐴𝑡𝑡𝑆𝑔 , 𝑚𝑖𝑑(𝐵̃′𝑑𝑘 (𝑎)) = 1
2
([[𝐵̃′𝑑𝑘 (𝑎)]]

−
+ [[𝐵̃′𝑑𝑘 (𝑎)]]

+
)and 

𝑖𝑛𝑑(𝐶 ′𝑑𝑘 ) is the local concept attention (concept independence degree) 
of concept 𝐶 ′𝑑𝑘 . 

According to Definition 9, when measuring the distance between 
concepts, global attribute attention is taken into account. Attributes with 
higher attention contribute more to the distance under the same dis-
tance metric. Simultaneously, the distance of the object to be predicted 
is either increase or maintained based on the independence degree of 
the known decision concept (boundary-derived local concept or newly 
formed non-boundary concept). When the independence degree of the 
concept is very low, we prefer to reduce its influence in cases of equal 
distance. Therefore, a concept independence term (local concept atten-
tion) is included in the denominator of the distance formula, which in-
creases the distance measure for concepts with low independence de-
gree. Conversely, when the independence of a known decision concept 
is high, such as 1, the distance measure is almost unaffected.

Humans tend to categorize an object into the class to which it is most 
similar, so the predicted decision of the object aligns with the decision of 
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Fig. 1. Concept clustering process diagram.

the concept that is most similar to it. The detailed procedure for concept 
prediction is delineated in Algorithm 3.

Algorithm 3: Concept prediction.
Input: Concept cluster generation sapce 𝐶𝑆 ′ , global attribute 

attention space 𝐴𝑡𝑡𝑆𝑔 and new object 𝑥.
Output: Prediction label 𝑑∗ of new object 𝑥.

1 Set 𝐷𝑖𝑠_𝑆 = ∅;
2 for 𝐶𝑆𝑑𝑘 ∈ 𝐶𝑆 ′  do
3 for 𝐶 ′𝑑𝑘 = (𝑋′𝑑𝑘 , 𝐵̃′𝑑𝑘 ) ∈ 𝐶𝑆𝑑𝑘  do
4 Construct new concept 𝐶 = ({𝑥}, 𝐹 (𝑥));
5 Calculate the attention-based distance 𝐷𝑖𝑠(𝐶,𝐶 ′𝑑𝑘 )

between two concepts by definition 9;
6 𝐷𝑖𝑠_𝑆 ← 𝐷𝑖𝑠(𝐶,𝐶 ′𝑑𝑘 );
7 end 
8 end 
9 𝐷𝑖𝑠(𝐶,𝐶 ′𝑑𝑚 ) = min(𝐷𝑖𝑠_𝑆);
10 𝑑∗ = 𝑑𝑚;
11 return Prediction label 𝑑∗

3.5.  Overall process and time complexity

The flowchart of this paper is presented in Fig. 2, which outlines the 
following steps:

(1) Initially, the global decision concept is learned from a global 
perspective. Based on the boundaries of this global decision concept, all 
objects contributing to the boundary are identified. These boundary ob-
jects are treated as the first learning clue, from which the corresponding 
attribute value intervals are determined. This leads to the second clue 
for boundary-derived local concepts from the learning boundaries and 
further cognitive processing.

(2) The existing boundary-derived local concepts are treated as clus-
ter centers, and knowledge from non-boundary objects is fused sequen-
tially. Objects that do not meet the clustering criteria will adaptively 

generate new concepts, which can be regarded as updated cluster cen-
ters for subsequent iterative processing.

(3) For new objects, they are treated as independent concepts. Using 
the global decision concept and the boundary-derived local concepts, 
both global and local attention are calculated. The attention-based dis-
tance between the new concepts, the updated old concepts, and the 
newly generated concepts is computed. The label of the new object is 
then determined based on the minimal distance.

For the learning of the global decision concept, only a single traversal 
of the object set and attribute set is required, yielding a time complexity 
of 𝑂(|𝐺||𝑀|). For the boundary-derived local concept, the initial object 
clue learning involves considering the number of boundary concepts, 
denoted as 𝑁 where 𝑁 ≤ |𝐺| according to Property 3. The subsequent 
acquisition of attribute clues is influenced by the global decision con-
cept, with a time complexity of 𝑂(𝑁|𝐺||𝑀|). Considering the overall 
learning of multi-granularity concepts, the combined time complexity 
is 𝑂(𝑁|𝐺||𝑀|). The time complexity of obtaining global attribute atten-
tion and local concept attention is 𝑂(|𝑀||𝐷|) and 𝑂(𝑁|𝐺||𝑀|), respec-
tively. In the process of concept clustering, which effectively constitutes 
a re-learning of the entire data space, the time complexities for updat-
ing concept clusters and generating new concept clusters are 𝑂(|𝐺|

2
|𝑀|)

and 𝑂(𝑁|𝐺|

2
|𝑀|), respectively. Finally, the time complexity of concept 

prediction is 𝑂(|𝐺||𝑀|).

4.  Experiments

In this section, the effectiveness and feasibility of MIFCL-A under a 
fuzzy context are validated through experiments. All experiments are 
conducted on a personal computer equipped with a 12th Gen Intel Core 
i5-12600KF processor (3.7GHz) and 32 GB of RAM.

To evaluate the performance of different models, nine classic classifi-
cation datasets (see https://archive.ics.uci.edu/andhttps://sci2s.ugr.es/
keel) and three high-dimensional tumor datasets (see https://jundongl.
github.io/scikit-feature/datasets.html) are randomly selected for exper-
imentation. The details of these datasets, including the number of ob-
jects, attributes, and decisions, are provided in Table 1. Typically, the 
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Fig. 2. Overall flow chart of MIFCL-A (the selection of boundary objects in process (a) serves as a simplified representation, with the actual acquisition method 
detailed in Definition 4).

Table 1 
Details of the experimental datasets.
 ID  Dataset  Object  Attribute  Class
 1  Wine  178  13  3
 2  Glass  214  9  6
 3  Newthyroid  215  5  3
 4  Balance  625  4  3
 5  Australian  690  14  2
 6  Vehicle  846  18  4
 7  Titanic  2201  3  2
 8  Mushroom  8124  22  2
 9  ESSG  10,000  13  2
 10  GLIOMA  50  4434  4
 11  TOX_171  171  5748  4
 12  Lung  203  3313  4

max-min function is used to transform the attribute values in the dataset 
into fuzzy form, mapping them to the range [0, 1]. The specific formula 
is as follows:

𝐼(𝑥, 𝑎) =
𝑙(𝑥, 𝑎) − 𝑚𝑖𝑛(𝑙(𝑎))

𝑚𝑎𝑥(𝑙(𝑎)) − 𝑚𝑖𝑛(𝑙(𝑎))
,

where the 𝑙(𝑥, 𝑎) denotes the value of object 𝑥 under attribute 𝑎, and 
the 𝑚𝑎𝑥(𝑙(𝑎)) and 𝑚𝑖𝑛(𝑙(𝑎)) are the maximum and minimum values of all 
objects on attribute 𝑎, respectively.

All datasets are randomly divided into two subsets in each experi-
ment: a training set comprising 80% of the data and a test set compris-
ing the remaining 20%. The results of all classification experiments are 
derived from ten independent runs, with the final outcomes representing 
the average of these runs.

4.1.  Performance of attention mechanism

This section evaluates the impact of multi-level attention mechanism 
and concept clustering on classification performance through ablation 
experiments. Additionally, the influence of the sole hyperparameter 𝛾
on the performance of the model is further analyzed.

4.1.1.  Ablation experiments
To take into account various influences, the model is mainly divided 

into three parts for self-comparison analysis. Specifically, it includes 
whether there is a concept clustering process, whether there is global 
attribute attention (if global attribute attention is used, set 𝛾 = 4), and 
whether there is local concept attention. Since local concept attention 
as a clustering indicator cannot be discarded in the concept clustering 
process, only the three contrast models considering the concept cluster-
ing process are adjusted to the prediction formula in Definition 9. They 
are MIFCL-NGA (removing the global attribute attention in the numer-
ator), MIFCL-NLA (removing the local concept attention in the denomi-
nator), and MIFCL-NA (removing both the numerator and denominator 
attentions). On this basis, the boundary-derived local concept spaces 
are exported as the final concept spaces, and the four contrast models of 
the concept clustering process are removed. They are MIFCL-NCA (only 
removing the clustering process, considering both attentions), MIFCL-
NCNGA (removing the clustering process and the global attribute at-
tention in the numerator of Definition 9), MIFCL-NCNLA (removing 
the clustering process and the local concept attention in the denomi-
nator of Definition 9), and MIFCL-NCNA (removing the clustering pro-
cess and both attentions in the numerator and denominator of Defini-
tion 9). To ensure fairness, 10 experiments are conducted on the same 
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Table 2 
Attention ablation experiments on twelve datasets.
 ID  MIFCL-A  MIFCL-NGA  MIFCL-NLA  MIFCL-NA  MIFCL-NCA  MIFCL-NCNGA  MIFCL-NCNLA  MIFCL-NCNA
 1  98.05 ± 2.16  98.05 ± 2.16  96.94 ± 2.90  96.94 ± 2.90  92.78 ± 3.56  92.22 ± 3.23  92.78 ± 3.56  92.22 ± 3.23
 2  75.35 ± 6.25  75.81 ± 6.26  75.34 ± 6.25  75.81 ± 6.26  75.58 ± 6.00  75.58 ± 6.11  75.58 ± 5.23  75.35 ± 5.90
 3  95.58 ± 3.67  95.35 ± 4.88  95.58 ± 3.67  95.35 ± 4.88  90.47 ± 3.36  91.40 ± 2.76  90.70 ± 4.65  91.86 ± 3.92
 4  86.00 ± 1.65  86.00 ± 1.65  70.39 ± 3.89  70.39 ± 3.89  86.00 ± 1.65  86.00 ± 1.65  68.16 ± 3.67  68.16 ± 3.67
 5  85.22 ± 2.61  83.47 ± 2.45  83.57 ± 3.16  81.30 ± 3.26  85.22 ± 2.61  83.47 ± 2.45  83.99 ± 2.49  81.92 ± 3.30
 6  71.00 ± 2.76  70.50 ± 2.12  71.00 ± 2.76  70.50 ± 2.12  68.98 ± 2.98  67.80 ± 2.64  68.98 ± 3.03  67.89 ± 2.60
 7  77.42 ± 1.39  77.42 ± 1.39  33.85 ± 2.17  33.85 ± 2.17  77.42 ± 1.39  77.42 ± 1.39  68.29 ± 2.07  68.29 ± 2.07
 8  100.00 ± 0.00  100.00 ± 0.00  100.00 ± 0.00  100.00 ± 0.00  100.00 ± 0.00  100.00 ± 0.00  100.00 ± 0.00  100.00 ± 0.00
 9  94.75 ± 0.43  94.38 ± 0.46  88.72 ± 0.53  87.44 ± 0.45  93.40 ± 0.35  86.25 ± 0.29  93.23 ± 0.38  86.26 ± 0.30
 10  80.00 ± 9.42  77.00 ± 8.16  80.00 ± 9.42  77.00 ± 8.16  80.00 ± 9.42  77.00 ± 8.16  80.00 ± 9.42  77.00 ± 8.16
 11  85.14 ± 6.10  82.86 ± 6.26  85.14 ± 6.10  82.86 ± 6.26  85.14 ± 6.10  82.86 ± 6.26  85.14 ± 6.10  82.86 ± 6.26
 12  95.12 ± 2.19  95.12 ± 2.19  94.15 ± 1.19  94.15 ± 1.19  95.12 ± 2.19  95.12 ± 2.19  94.15 ± 1.19  94.15 ± 1.19

randomly split training and test sets, and the average accuracy and stan-
dard deviation are presented in Table 2 (optimal values are shown in
bold).

The results show that the model incorporating both types of atten-
tion and concept clustering, MIFCL-A, achieves the best performance 
across eleven datasets. Furthermore, MIFCL-A outperforms (with con-
sistent performance in two datasets) MIFCL-NCNA which removes con-
cept clustering and two types of attention in 10 datasets. It is noted 
that the results of datasets 4, 7, 8 and 12 are the same in the four sub-
experiments (MIFCL-A, MIFCL-NGA, MIFCL-NCA, MIFCL-NCNGA), in-
dicating that the global attribute attention and concept clustering have 
not played a role at this time and the local concept attention in the 
multi-level attention mechanism has a greater impact on the model 
which conforms to the human tendency to pay more attention to local 
details when recognizing things. The model MIFCL-NCA without con-
sidering concept clustering has the same effect as the one considering 
concept clustering in seven datasets. The reason is that the recognized 
boundary concepts cover most of the information, and only a few or no 
new objects have participated in the process of concept clustering. To 
some extent, this demonstrates the effectiveness of boundary-derived 
local concepts. The situation where the accuracy increases when the 
global attention is removed as seen in Dataset 2 is caused by the se-
lection of parameter 𝛾. And global attribute attention is more effective 
for datasets with clearly distinguishable decision boundaries, such as 
datasets 3, 6, 10 and 11. Therefore, even without the global attribute 
attention mechanism, the model (MIFCL-NLA) can still achieve the same 

performance as MIFCL-A. It is worth noting that in the three high-
dimensional tumor datasets 10, 11 and 12, the models with attention 
mechanisms outperformed those without (regardless of whether concept 
clustering is considered or not), which further demonstrates the effec-
tiveness and feasibility of the attention mechanism in high-dimensional
data.

4.1.2.  Parameter analysis of global attribute attention
According to Definition 6, the parameter 𝛾 plays a crucial role in 

influencing global attribute attention. To investigate the impact of at-
tention parameter 𝛾 on classification performance in detail, we set the 
parameter within the range of [0, 9] with a step size of 1 and conducted 
experiments on twelve datasets. When 𝛾 = 0, the attention for each at-
tribute is set to 1, which makes the model equivalent to the MIFCL-NGA 
in ablation experiments. The experimental results are shown in Fig. 3. In 
datasets 1, 2, 3, 5, 6, and 9, the classification performance initially shows 
a consistent upward trend as the attention parameter increases, although 
some may exhibit a decline at later stages. However, for datasets 4, 7, 8 
and 10, global attribute attention has no impact on classification perfor-
mance which is further confirmed in Table 2, as the classification process 
for these datasets relies more heavily on local concept attention. The ac-
curacy of both the high-dimensional tumor datasets 11 and 12 show a 
trend of flat and then decreasing. Overall, global attribute attention pro-
vides the model with improved classification performance. The values 
of each dataset parameter 𝛾 in experiments below are obtained at the 
maximum accuracy in Fig. 3.

Fig. 3. Classification performance of different global attribute attention parameter 𝛾 on twelve datasets.
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Table 3 
Comparison of accuracy (Mean ± Standard Deviation%) among MIFCL-A and eight classic classification algorithms.
 ID  MIFCL-A  KNN  DT  NB  Bagging  AdaBoost  ELM  RBFN  IBK
 1  97.78 ± 1.94  96.11 ± 3.09  90.55 ± 3.33  95.83 ± 2.84  93.89 ± 2.72  93.51 ± 3.81  70.00 ± 6.67  97.22 ± 2.78  95.56 ± 2.55
 2  74.41 ± 7.29  72.56 ± 3.57  71.39 ± 6.16  50.69 ± 6.72  24.18 ± 4.18  41.08 ± 5.59  38.37 ± 6.35  47.21 ± 5.51  67.91 ± 5.68
 3  96.98 ± 2.83  95.11 ± 2.83  94.19 ± 2.60  95.34 ± 2.75  80.69 ± 10.61  79.23 ± 5.21  81.39 ± 5.20  87.44 ± 3.77  94.65 ± 2.09
 4  86.84 ± 3.01  78.32 ± 1.90  77.04 ± 3.47  91.52 ± 1.64  83.75 ± 2.51  90.80 ± 2.41  48.08 ± 3.45  68.88 ± 4.24  82.32 ± 3.22
 5  86.08 ± 3.05  83.11 ± 3.13  81.08 ± 2.11  80.50 ± 3.03  79.20 ± 2.24  85.02 ± 2.51  85.21 ± 2.45  80.87 ± 9.64  83.91 ± 2.35
 6  71.94 ± 2.92  69.05 ± 2.86  69.41 ± 2.98  44.35 ± 3.58  51.00 ± 2.63  58.03 ± 4.56  41.00 ± 3.24  40.53 ± 2.62  69.47 ± 3.40
 7  78.46 ± 1.59  76.37 ± 4.84  77.37 ± 1.45  76.62 ± 1.31  77.39 ± 2.05  77.14 ± 0.99  77.80 ± 1.55  77.73 ± 1.69  77.05 ± 5.10
 8  100.00 ± 0.00  99.99 ± 0.02  100.00 ± 0.00  92.32 ± 0.50  93.48 ± 0.34  100.00 ± 0.00  96.29 ± 0.89  82.21 ± 9.17  100.00 ± 0.00
 9  94.70 ± 0.24  89.58 ± 0.70  94.38 ± 0.66  95.98 ± 0.25  94.72 ± 0.26  95.84 ± 0.21  94.35 ± 0.64  88.73 ± 0.79  90.57 ± 0.52
 10  80.00 ± 10.95  75.00 ± 17.80  63.00 ± 14.94  30.00 ± 12.47  31.00 ± 13.70  54.67 ± 15.96  21.00 ± 13.75  18.00 ±8.71  76.00 ± 12.00
 11  83.57 ± 8.06  76.86 ± 7.06  60.00 ± 5.22  77.71 ± 5.99  50.28 ± 7.28  47.69 ± 7.73  27.43 ± 7.25  18.29 ± 6.41  73.14 ± 6.41
 12  95.12 ± 1.09  94.86 ± 2.00  84.15 ± 4.77  80.49 ± 3.81  89.27 ± 3.29  81.31 ± 4.25  47.80 ± 8.94  67.07 ± 4.53  94.87 ± 2.77
 Average  87.1567  83.9100  80.2133  75.9458  70.7375  75.3600  60.7267  64.5150  83.7875

Table 4 
Comparison of accuracy (Mean ± Standard Deviation%) among MIFCL-A and eight fuzzy-based algorithms.
 ID  MIFCL-A  IF-KNN  FRNN  PFKNN  CFKNN  GAFuzzyKNN  FuzzyKNN  EF-KNN-IVF  FuzzyNPC
 1  97.78 ± 1.94  96.11 ± 3.09  95.56 ± 3.56  96.67 ± 2.42  94.17 ± 2.90  94.72 ± 1.94  95.28 ± 3.52  95.56 ± 2.83  77.00 ± 14.33
 2  74.41 ± 7.29  67.44 ± 7.50  52.56 ± 9.02  44.88 ± 7.06  60.00 ± 7.04  64.19 ± 7.22  60.47 ± 7.99  66.98 ± 6.72  37.20 ± 9.64
 3  96.98 ± 2.83  94.88 ± 2.50  68.37 ± 3.63  93.95 ± 4.05  93.02 ± 5.30  93.95 ± 4.05  92.09 ± 4.90  93.02 ± 4.53  75.11± 4.77
 4  86.84 ± 3.01  79.52 ± 4.11  88.32 ± 2.09  72.00 ± 4.71  75.44 ± 3.73  84.32 ± 2.35  80.00 ± 1.75  81.84 ± 3.33  62.00 ± 10.49
 5  86.08 ± 3.05  83.19 ± 1.80  83.11 ± 4.62  85.72 ± 2.05  74.20 ± 2.05  85.14 ± 2.10  84.64 ± 2.33  83.33 ± 3.15  75.07 ± 6.88
 6  71.94 ± 2.92  71.05 ± 2.84  53.53 ± 3.10  44.53 ± 2.82  65.29 ± 3.13  58.18 ± 3.52  71.47 ± 1.61  68.76 ± 3.46  32.58 ± 4.63
 7  78.46 ± 1.59  75.56 ± 5.03  75.92 ± 1.56  74.01 ± 1.34  69.75 ± 11.77  68.48 ± 10.13  73.72 ± 8.95  78.34 ± 1.75  73.67 ± 4.58
 8  100.00 ± 0.00  99.99 ± 0.02  94.14 ± 0.49  87.78 ± 0.56  99.94 ± 0.08  100.00 ± 0.00  99.94 ± 0.08  99.99 ± 0.02  68.64 ± 8.73
 9  94.70 ± 0.24  89.19 ± 0.74  63.29 ± 0.88  87.42 ± 0.54  83.05 ± 0.51  91.11 ± 0.63  89.38 ± 0.65  90.29 ± 0.77  68.09 ± 4.81
 10  80.00 ± 10.95  73.00 ± 15.52  71.00 ± 11.36  75.00 ± 12.04  76.00 ± 13.56  76.00 ± 11.14  72.00 ± 11.66  73.00 ± 17.34  41.00 ± 16.40
 11  83.57 ± 8.06  83.14 ± 6.81  82.29 ± 5.54  68.57 ± 6.13  70.00 ± 4.82  73.71 ± 4.92  79.14 ± 4.95  59.71 ± 9.68  33.14 ± 8.87
 12  95.12 ± 1.09  93.41 ± 2.89  94.39 ± 3.78  94.15 ± 3.96  94.39 ± 2.89  95.12 ± 2.89  94.63 ± 3.74  93.41 ± 2.19  71.95 ± 9.33
 Average  87.1567  83.8733  76.8733  77.0567  79.6042  82.0767  82.7300  82.0192  59.6208

Fig. 4. Performance comparison under 10% Gaussian noise contamination (Accuracy/Precision/Recall/F1-score).

4.2.  Classification performance analysis

In this section, we compare a total of nineteen classification methods, 
including eight classical machine learning classifiers-K-NearestNeighbor 
(KNN) [43], Decision Tree (DT) [44], Naive Bayes (NB) [45], Boot-
strap Aggregating (Bagging) [46], Adaptive Boosting (AdaBoost) [47], 
Extreme Learning Machine (ELM) [48], Radial Basis Function Net-
work (RBFN) [49], and Instance-base KNN (IBK) [50]-along with 

eight fuzzy-based classifiers: Intuitionistic Fuzzy KNN (IF-KNN) [51], 
Fuzzy-rough KNN (FRNN) [52], Pruned Fuzzy KNN (PFKNN) [53], 
Condensed Fuzzy KNN (CFKNN) [54], Genetic Algorithm Fuzzy KNN
(GAFuzzyKNN) [55], Fuzzy KNN (FuzzyKNN) [56], Evolutionary FKNN-
Interval-Valued Fuzzy Sets (EF-KNN-IVFS) [57], and Fuzzy Nearest 
Prototype Classifier (FuzzyNPC) [56]. Additionally, we examine three
advanced CCL classifiers: Fuzzy Concept-cognitive Learning Model 
(FCLM) [14], Interval-intent Fuzzy Concept-cognitive Learning Model 
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Table 5 
Average classification performance (mean ± standard deviation %) of four CCL algorithms.
 Dataset  Mechanism  Accuracy  Precision  Recall  F1-score

Wine

 MIFCL-A  97.50 ± 1.94  97.39 ± 2.25  97.87 ± 1.57  97.48 ± 2.03
 FCLM  94.44 ± 3.93  94.39 ± 4.03  95.24 ± 3.32  94.23 ± 4.16
 IFCRL  96.39 ± 2.17  95.94 ± 2.22  97.07 ± 1.59  96.27 ± 2.00
 PWFCL  86.11 ± 11.11  85.20 ± 14.73  88.02 ± 9.67  85.58 ± 12.96

Glass

 MIFCL-A  75.58 ± 5.01  70.34 ± 6.05  71.68 ± 11.73  69.07 ± 8.89
 FCLM  65.35 ± 525  63.99 ± 8.82  64.00 ± 6.88  61.38 ± 6.12
 IFCRL  73.72 ± 6.98  72.41 ± 11.73  71.34 ± 7.05  67.91 ± 7.54
 PWFCL  33.95 ± 7.29  5.79 ± 1.37  17.00 ± 1.00  8.56 ± 1.60

Newthyroid

 MIFCLL-A  95.58 ± 3.81  94.19 ± 4.62  95.28 ± 4.13  94.27 ± 4.51
 FCLM  95.11 ± 3.36  97.54 ± 2.11  89.24 ± 7.48  92.45 ± 5.21
 IFCRL  93.48 ± 2.90  93.82 ± 4.58  90.46 ± 4.58  91.34 ± 3.38
 PWFCL  94.65 ± 3.13  96.09 ± 3.76  89.91 ± 6.15  92.07 ± 4.63

Balance

 MIFCL-A  86.56 ± 5.03  87.76 ± 10.06  68.08 ± 4.96  69.70 ± 6.70
 FCLM  88.16 ± 3.21  80.15 ± 13.59  68.57 ± 3.80  69.66 ± 5.29
 IFCRL  72.72 ± 3.91  57.00 ± 2.44  56.02 ± 2.75  56.13 ± 2.43
 PWFCL  60.39 ± 12.16  59.43 ± 3.95  55.21 ± 6.19  51.25 ± 7.23

Australian

 MIFCL-A  85.94 ± 1.86  85.76 ± 1.88  85.50 ± 1.86  85.59 ± 1.84
 FCLM  82.02 ± 2.58  82.28 ± 3.03  80.82 ± 3.04  81.16 ± 2.96
 IFCRL  84.85 ± 2.48  84.63 ± 2.42  84.89 ± 2.61  84.63 ± 2.47
 PWFCL  84.20 ± 3.02  84.33 ± 2.91  83.54 ± 3.13  83.73 ± 3.07

Vehicle

 MIFCL-A  72.29 ± 2.89  71.48 ± 3.05  72.53 ± 2.78  71.70 ± 2.90
 FCLM  69.00 ± 3.69  68.97 ± 2.76  69.63 ± 2.51  69.17 ± 2.67
 IFCRL  71.58 ± 1.68  70.64 ± 1.87  71.42 ± 1.35  70.15 ± 1.88
 PWFCL  36.29 ± 5.67  31.33 ± 11.93  35.82 ± 5.19  30.33 ± 7.72

Titanic

 MIFCL-A  78.69 ± 1.62  77.85 ± 2.05  70.57 ± 1.84  71.12 ± 2.03
 FCLM  62.43 ± 16.41  65.75 ± 7.28  62.35 ± 6.06  57.87 ± 13.72
 IFCRL  46.64 ± 1.72  59.73 ± 1.82  57.41 ± 1.49  45.85 ± 1.91
 PWFCL  40.99 ± 14.61  30.44 ± 27.17  50.58 ± 1.23  29.47 ± 8.59

Mushroom

 MIFCL-A  100.00 ± 0.00  100.00 ± 0.00  100.00 ± 0.00  100.00 ± 0.00
 FCLM  99.99 ± 0.02  99.99 ± 0.02  99.99 ± 0.03  99.99 ± 0.02
 IFCRL  100.00 ± 0.00  100.00 ± 0.00  100.00 ± 0.00  100.00 ± 0.00
 PWFCL  99.99 ± 0.02  99.99 ± 0.02  99.99 ± 0.02  99.99 ± 0.02

EGSS

 MIFCL-A  94.33 ± 0.04  94.19 ± 0.05  92.94 ± 0.19  93.51 ± 0.10
 FCLM  86.02 ± 0.13  85.16 ± 0.07  84.62 ± 0.13  84.87 ± 0.07
 IFCRL  91.88 ± 0.56  91.85 ± 0.49  90.27 ± 0.81  90.97 ± 0.69
 PWFCL  80.13 ± 0.74  79.22 ± 0.48  81.47 ± 0.64  79.44 ± 0.63

GLIOMA

 MIFCL-A  80.00 ± 10.95  81.04 ± 12.58  80.17 ± 16.03  78.21 ± 14.36
 FCLM  69.00 ± 9.43  69.17 ± 13.42  69.21 ± 17.42  65.72 ± 14.29
 IFCRL  83.00 ± 11.87  79.70 ± 17.93  78.13 ± 20.57  76.50 ± 20.34
 PWFCL  75.00 ± 9.22  73.31 ± 13.73  71.79 ± 11.29  68.95 ± 11.03

TOX_171

 MIFCL-A  84.00 ± 3.18  83.98 ± 4.03  83.15 ± 3.92  83.93 ± 4.19
 FCLM  86.29 ± 5.54  86.61 ± 7.07  88.72 ± 4.25  86.26 ± 6.82
 IFCRL  80.85 ± 5.43  81.95 ± 5.12  81.80 ± 6.09  80.63 ± 6.15
 PWFCL  76.00 ± 6.89  77.97 ± 5.41  76.95 ± 6.11  76.20 ± 6.17

Lung

 MIFCL-A  95.12 ± 1.09  92.71 ± 4.96  92.63 ± 4.82  92.18 ± 4.61
 FCLM  94.15 ± 1.62  92.45 ± 6.28  91.78 ± 3.92  90.83 ± 3.81
 IFCRL  94.15 ± 4.11  93.69 ± 6.82  90.74 ± 8.85  91.28 ± 7.86
 PWFCL  88.44 ± 4.28  83.29 ± 14.97  79.63 ± 10.32  79.84 ± 11.66

(IFCRL) [42], and Dynamic Updating Mechanism Progressive Weighted 
Fuzzy Concept-cognitive Learning Model (DMPWFC) [36]. Since this pa-
per does not deal with the dynamic update of objects, the algorithm in 
Reference 13 is de-dynamicized and simply referred to as PWFCL.

4.2.1.  Comparison with classical machine learning method
We compare the performance of MIFCL-A with eight classic machine 

learning classifiers using accuracy as the evaluation metric. The results, 
as shown in Table 3 (optimal values are shown in bold), demonstrate 
that MIFCL-A outperforms all other models across the most datasets.

Notably, MIFCL-A, DT, AdaBoost, and IBK achieve 100% classifica-
tion accuracy on dataset 8, demonstrating perfect classification capabil-
ity for specific datasets. Crucially, MIFCL-A outperforms all competitors 
by achieving the highest accuracy in ten datasets, while NB leads in 
only two. With an average accuracy across twelve datasets that exceeds 
second-place KNN by 3.25% and third-place IBK by 3.37%, MIFCL-

A demonstrates superior classification performance. Furthermore, our 
model excels across all three high-dimensional tumor datasets, confirm-
ing its robustness in handling complex, high-dimensional data.

4.2.2.  Comparison with fuzzy-based method
Since MIFCL-A leverages interval-intent fuzzy concepts, we compare 

it against eight fuzzy-based KNN variants. As shown in Table 4 (optimal 
values bolded), the MIFCL-A model demonstrates superior classification 
performance across twelve diverse datasets. It achieves the highest ac-
curacy in dataset 8, with particularly significant margins in dataset 2 
(10.22% higher than GAFuzzyKNN) and dataset 3 (28.61% higher than 
FRNN). Notably, MIFCL-A maintains robust performance with consis-
tently low standard deviations (e.g., 0.24 in dataset 9), indicating excep-
tional stability. With an average accuracy of 87.1567%, it outperforms 
the second-best algorithm (IF-KNN at 83.8733%) by 3.28 percentage 
points and the weakest comparator (FuzzyNPC at 59.6208%) by 27.54 
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Fig. 5. Performance comparison under 20% Gaussian noise contamination (Accuracy/Precision/Recall/F1-score).

Fig. 6. Performance comparison under 30% Gaussian noise contamination (Accuracy/Precision/Recall/F1-score).

percentage points. While FRNN and GAFuzzyKNN attain optimal results 
on one and two datasets respectively, MIFCL-A demonstrates superior 
overall accuracy - exceeding these models by 10.28% and 5.08% respec-
tively. Furthermore, MIFCL-A achieves the best average rank (1.08) in 
fuzzy classification comparisons. This performance advantage extends 
to high-dimensional tumor datasets, where MIFCL-A maintains excep-
tional results against other fuzzy methods.

4.2.3.  Comparison with CCL method
To further validate the effectiveness of the proposed model, we com-

pare MIFCL-A with three advanced CCL models across four metrics: ac-
curacy, precision, recall, and F1-score. The results are shown in Table 5, 
with the best values highlighted in bold. MIFCL-A achieved the best re-

sults in accuracy, precision, recall and F1 score 9, 9, 10 and 11 times, re-
spectively, across nine datasets. This demonstrates that MIFCL-A outper-
forms existing CCL models, offering superior classification performance 
and better stability.

To evaluate the robustness of the models, we introduce Gaussian 
noise at varying intensities (10%, 20%, and 30%) into the dataset 
to analyze the performance of the four CCL models. The models’ per-
formance metrics, including accuracy, precision, recall, and F1-score, 
are presented in Figs. 4–6. Comprehensive experimental results demon-
strate that MIFCL-A achieved superior performance, attaining the high-
est scores in 25, 20, 19, and 20 instances across the four evaluation met-
rics under the three different noise conditions, respectively. In certain 
cases, adding moderate noise appears to improve model performance. 
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Fig. 7. The comprehensive ranking chart of MIFCL-A compared with nineteen other algorithms (MIFCL-A demonstrates significant differences compared to the 
algorithms positioned above the purple dashed line).

This effect may occur because: the noise helps smooth decision bound-
aries, acting as an implicit regularizer or in high-dimensional spaces 
with limited samples, the noise effectively expands the data coverage.

4.2.4.  Significance analysis
We conduct the Friedman test to assess whether there are signifi-

cant differences among the performance of the various algorithms. The 
formula for the F-statistic in Friedman’s test is as follows:

𝐹𝐹 =
(𝑁 − 1)𝜒2

𝐹

𝑁(𝑘 − 1) − 𝜒2
𝐹

∼ 𝐹 (𝑘 − 1,(𝑘 − 1)(𝑁 − 1)),

where 𝜒2
𝐹 = 12

𝑁𝑘(𝑘+1)

𝑘
∑

𝑖=1
𝑅2
𝑖 − 3𝑁(𝑘 + 1), 𝑘 and 𝑁 are the number of differ-

ent algorithms and datasets, respectively. 𝑅𝑖 =
𝑁
∑

𝑗=1
𝑟𝑖𝑗 indicates the sum 

rank of 𝑖-th algorithm on all the datasets, and 𝑟𝑖𝑗 indicates the rank of 
𝑖-th algorithm on 𝑗-th dataset.

We propose the null hypothesis (𝐻0) that there is no significant 
difference in the performance of the different algorithms at a signifi-
cance level of 0.05. Based on the test results, the p-value (0.0008) is 
smaller than the significance level of 0.05, leading to the rejection of 
the null hypothesis which indicates that there are significant differences 
in the overall performance of the algorithms. Additionally, the F-value 
𝐹𝐹 = 6.65 > 𝐹 (19, 209) = 1.63, further supporting this conclusion.

To further explore these differences, we performed the Nemenyi 
post-hoc test, which is commonly used following the Friedman test when 
there are multiple comparisons. The Nemenyi test is designed to iden-
tify which specific pairs of algorithms show statistically significant dif-
ferences in their performance. The critical range critical difference (CD) 
formula for the difference between the average order values is calcu-
lated from the Nemenyi test as follows:

𝐶𝐷 = 𝑞𝛼

√

𝑘(𝑘 + 1)
6𝑁

,

where 𝑞𝛼 is the critical value corresponding to the significance level, 
𝑘 and 𝑁 are the number of different algorithms and datasets, respec-
tively. In this paper, 𝑞𝛼 is determined to be 3.314 based on the degrees 
of freedom and significance level of the test and 𝐶𝐷 = 8. The CD di-
agram, shown in Fig. 7, provides a clear visual representation of the 
differences between MIFCL-A and other algorithms. The results indicate 
that MIFCL-A exhibits significant differences compared to eleven algo-

rithms: DT, NB, Bagging, AdaBoost, ELM, RBFN, FRNN, PFKNN, CFKNN, 
FuzzyNPC and PWFCL.

5.  Conclusion

This paper presents a multi-granularity interval-intent fuzzy concept-
cognitive learning model with multi-level attention mechanism, which 
simulates the human cognitive process of grasping the big picture while 
focusing on local details. Multi-granularity concepts are first acquired 
separately by considering a global perspective, which captures over-
all contextual information, and a local perspective, which focuses on 
finer boundary differences. Building on this, a multi-level attention 
mechanism is introduced, where global attribute attention captures 
the overall context and large-scale patterns, while local concept atten-
tion filters local information, emphasizing key boundary concepts and
ignoring irrelevant details. Futhermore, adaptive concept clustering 
serves as a pivotal step in simulating the human cognitive process of 
alternating between coarse-granularity and fine-granularity understand-
ing, which allows the model to dynamically adjust the level of granu-
larity. Meanwhile, the new concepts in the clustering process strictly 
adhere to concept definitions, ensuring consistency throughout the cog-
nitive process. Finally, extensive experiments validate the model’s fea-
sibility and effectiveness.

Multi-granularity concepts are used to represent knowledge at dif-
ferent levels. MIFCL-A, while performing multi-granularity knowledge 
representation, introduces a multi-level attention mechanism to achieve 
an adaptive concept updating and generation process. However, it is 
important to note that when dealing with datasets with numerous de-
cisions, the high overlap of attributes between decisions often leads to 
lower effectiveness of global attribute attention. Additionally, the inter-
cluster fusion in the adaptive concept cluster generation process requires 
further consideration. In the future, we will continue to think about and 
promote the research of relevant work.
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