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A B S T R A C T

Rough set theory is a powerful mathematical framework for managing uncertainty and is widely utilized
in feature selection. However, traditional rough set-based feature selection algorithms encounter significant
challenges, especially when processing large-scale incremental data and adapting to the dynamic nature of
real-world scenarios, where both data volume and feature sets are continuously changing. To overcome these
limitations, this study proposes an innovative algorithm that integrates local neighborhood rough sets with
composite entropy to measure uncertainty in information systems more accurately. By incorporating decision
distribution, composite entropy enhances the precision of uncertainty quantification, thereby improving the
effectiveness of the algorithm in feature selection. To further improve performance in handling large-scale
incremental data, matrix operations are employed in place of traditional set-based methods, allowing the
algorithm to fully utilize modern hardware capabilities for accelerated processing. Additionally, parallel
computing technology is integrated to further enhance computational speed. An incremental version of the
algorithm is also introduced to better adapt to dynamic data environments, increasing its flexibility and
practicality. Comprehensive experimental evaluations demonstrate that the proposed algorithm significantly
surpasses existing methods in both effectiveness and efficiency.
1. Introduction

Rough Set Theory [1], proposed by Pawlak in 1982, is a mathe-
matical framework for managing ambiguous data by employing upper
and lower approximations. However, traditional rough sets depend on
strict inclusion relationships, which restrict their fault tolerance and
applicability in complex scenarios. The 0.5 Probabilistic Rough Set [2]
addresses these limitations by integrating conditional probabilities and
thresholds, thereby enhancing flexibility and fault tolerance. Building
on this, Yao et al. developed the Decision-Theoretic Rough Set [3],
which further improves robustness by introducing fault-tolerant thresh-
olds. In the era of big data, challenges such as limited labeling and
low efficiency emerge. To tackle these issues, Qian et al. proposed
Local Rough Sets [4], which improve performance when handling large
datasets. Wang et al. extended this approach with Local Neighborhood
Rough Sets [5], adapting it to real-world data environments.

As a versatile theory for data analysis and processing, Rough Set
Theory has been successfully applied across various fields, including
machine learning [6], decision making [7], and outlier detection [8].
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Rough sets have also made significant contributions to granular com-
puting, particularly in areas like Concept-Cognitive Learning (CCL).
For example, the cognitive process of learning approximate concepts
is inspired by the notion of approximation spaces within Rough Set
Theory [9]. Additionally, when combined with the Three-Way Decision
(3WD) model, which is derived from Rough Set Theory and operates
within a dynamic fuzzy framework, CCL has been employed to model
real-time cognitive updating procedures [10]. Moreover, the adaptabil-
ity of Rough Set Theory extends beyond traditional single-label datasets
to multi-label [11] and incomplete datasets [12], highlighting its wide
applicability.

Among these various applications, one of the most prominent areas
of research is feature selection. Traditional feature selection algorithms
based on rough sets typically quantify the consistency of informa-
tion systems by partitioning them into positive, negative, and bound-
ary regions, utilizing discernibility matrices for feature selection [13].
However, as research progressed, these methods revealed certain limi-
tations. To address these challenges, entropy, a fundamental concept
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in information theory, was introduced to more accurately measure
uncertainty in rough sets, leading to significant advancements.

For instance, Sun et al. proposed the Fuzzy Neighborhood Multi-
ranulation Rough Set (FNMRS) approach, which enhances both pre-
rocessing and classification across diverse datasets by incorporat-
ng uncertainty measures to optimize feature selection [14]. Simi-
arly, Wang et al. integrated fuzzy rough approximations with self-
nformation to develop four types of uncertainty measures, aimed at
valuating the classification performance of attribute subsets [15].

Building on these developments, Sang et al. introduced incremental
feature selection methods using a novel conditional entropy to handle
dynamic ordered data, leading to the creation of the Fuzzy Dominance
Neighborhood Rough Set (FDNRS) model [16]. Additionally, Xu et al.
presented a local composite entropy approach based on neighbor-
hood rough sets to address feature selection challenges in fuzzy and
imbalanced datasets [17]. Expanding on these concepts, Yuan et al.
proposed a novel zentropy-based uncertainty measure for feature selec-
tion, leveraging granular structures within the knowledge space [18].
Yuan et al. further developed the zentropy-based uncertainty measure
for heterogeneous feature selection, an effective and robust method
that broadens the practical applications of entropy in rough set-based
feature selection [19].

As datasets grow and evolve, the need for rapid and adaptive
feature selection has become critical. Researchers have increasingly
ntegrated incremental learning and parallel computing principles into
ough Set Theory. Huang et al. developed an incremental feature

selection method for hierarchical classification using fuzzy rough set
techniques [20]. Zhao and colleagues extended tolerance Rough Set

heory by introducing the Subrelation Tolerance Class (STC) and de-
veloped an algorithm for managing incomplete streaming data during
ncremental feature selection [21]. They also devised a Consistency

Approximation (CA)-based framework to refine fuzzy Rough Set Theory
for feature selection [22]. Pan et al. proposed an incremental feature
election algorithm based on weighted dominance-based neighborhood
ough sets [23]. Additionally, Zhang et al. created an incremental
eature selection mechanism for interval-valued fuzzy decision informa-
ion systems, using 𝜆-fuzzy similarity self-information to dynamically
pdate feature selections [24]. Xu et al. presented a generalized incre-

mental multi-granulation neighborhood rough set approach based on a
eight partition model in matrix form [25].

Parallel computing also plays a key role in accelerating rough set
algorithms for feature selection. Chen et al. explored parallel attribute
reduction using Dominance-based Neighborhood Rough Sets (DNRS),

hich accommodate both numerical and categorical attribute values in
ulti-criteria decision-making frameworks [26]. Nosheen et al. intro-

duced a parallel method for calculating Dominance-based Rough Set
Approach (DRSA) approximation sets without computing dominance
relations, employing heuristic guidelines [27]. Finally, Turaga et al.
eveloped the Parallel Algorithm for Computing Probabilistic Rough
et Approximations (PACPRSA), which allows for parallel computation
f regions and approximations in probabilistic rough sets [28].

Building on these impressive results, we introduce a novel feature
selection algorithm that integrates local neighborhood rough sets with
composite entropy. Local neighborhood rough sets excel at processing
rough data with numerical attributes, delivering not only satisfactory
analysis outcomes but also significantly enhanced efficiency compared
to global rough sets. Unlike other forms of information entropy, com-
posite entropy places greater emphasis on quantifying uncertainty and
considering decision distribution, thereby improving its capacity to
describe uncertainty. As a result, it performs more accurately and effi-
ciently in feature evaluation and selection. By leveraging the strengths
of both approaches, we achieve an excellent and efficient feature
selection algorithm.

Meanwhile, to address practical needs, we have developed an in-
remental version of our algorithm for feature selection in dynamic
2 
datasets, which can handle evolving datasets with changing data vol-
me and features over time, significantly reducing computational time

and resource consumption. We have replaced set operations with ma-
rix operations, allowing for accelerated rough set calculations using
cientific computing packages such as NumPy, thus enhancing compu-
ational efficiency. Matrix operations are inherently more efficient than
et operations due to their optimized algorithms and hardware acceler-
tion, leading to faster processing and better handling of large datasets.
dditionally, both algorithms have been optimized with parallel com-
uting to fully exploit the multi-core capabilities of modern CPUs,
reatly improving running speed. In summary, this paper presents
wo parallel, matrix-based feature selection algorithms–one for static
atasets and one for dynamic datasets–based on local neighborhood
ough sets and composite entropy, with a simplified flowchart of our
ynamic data algorithm shown in Fig. 1.

The research contributions are delineated as follows:

(1) Proposed a feature selection algorithm combining local neigh-
borhood rough sets with composite entropy, leveraging the
strengths of both to achieve improved feature selection perfor-
mance. This algorithm was further extended into an incremental
version, allowing it to handle dynamic datasets with changing
data volumes and features, thus meeting real-world needs. Com-
pared to static algorithms, the incremental approach eliminates
the need for recalculations, resulting in higher efficiency.

(2) Innovatively transformed set operations in local neighborhood
rough sets and composite entropy into matrix operations, en-
abling the algorithm to fully utilize the advantages of matrix
computation in modern computers. This significantly acceler-
ates the calculation speed of rough sets and composite entropy,
greatly enhancing the computational efficiency of the feature
selection algorithm.

(3) Introduced parallel computing into rough set-based feature se-
lection algorithms, leveraging the multi-core capabilities of CPUs
to distribute the computational workload across multiple re-
sources. This further improves the computational efficiency of
the feature selection process.

This paper is organized as follows. Section 2 introduces related
works and basics about neighborhood rough set and composite entropy.
In Section 3, we explore the use of matrices to handle rough sets,
potentially increasing computational speed. In Section 4, we propose
two parallel feature selection algorithms, one for static data and an-
other for dynamic data. Both algorithms aim to improve efficiency.
Section 5 presents experiments on classification accuracy and reduction
fficiency, along with result analysis. Finally, we provide a summary
nd discuss future research directions in Section 6.

2. Preliminaries

In this section, we will introduce some fundamental concepts of
ocal neighborhood rough sets and composite entropy.

2.1. Local neighborhood rough set

The concept of information system is utilized in Rough Set Theory
to describe data, which can be represented by a 4-tuple 𝐼𝑆 = (𝑈 , 𝐴 ∪

 , 𝑉 , 𝑓 ). Here, 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑝} represents the finite set of samples,
= {𝑎1, 𝑎2,… , 𝑎𝑞} represents the finite set of conditional attributes,

and 𝐷 = {𝑑} is the set of decision attributes. When there are NaN values
in the information system, they will be filled as 0 during computation.

Table 1 provides an example of information, where 𝑈 = {𝑥1, 𝑥2,… ,
𝑥8} and 𝐴 = {𝑎1, 𝑎2,… , 𝑎9}.

Now, assuming the set 𝐵 is a subset of 𝐴, the neighborhood class
under the relation 𝑅𝛿

𝐵 is defined as:
[𝑥]𝑅𝛿
𝐵
= {𝑦|𝛥(𝑥, 𝑦) ≤ 𝛿 , 𝑥, 𝑦 ∈ 𝑈},



W. Xu and W. Ye Pattern Recognition 159 (2025) 111141 
Fig. 1. Simple flowchart of algorithm for dynamic data (Algorithm 4: PMLCE-D).
Table 1
An information system.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑑

𝑥1 0.57 0.27 0.44 0.34 0.37 0.29 0.54 0.42 NaN 1
𝑥2 0.37 0.21 0.46 0.56 0.51 0.31 0.44 0.66 NaN 1
𝑥3 0.37 0.22 0.29 0.32 0.35 0.26 0.28 0.66 0.64 1
𝑥4 0.30 0.36 0.59 0.99 0.97 0.39 0.70 0.32 0.30 1
𝑥5 0.82 0.29 0.42 0.37 0.39 0.39 0.86 0.39 0.51 0
𝑥6 0.30 0.20 0.37 0.44 0.43 0.34 0.82 0.36 NaN 0
𝑥7 0.19 0.23 0.29 0.34 0.36 0.35 0.61 0.35 NaN 0
𝑥8 0.15 0.29 0.33 0.39 0.39 0.62 0.92 0.31 0.26 0

where 𝛥(𝑥, 𝑦) is the Euclidean distance between 𝑥 and 𝑦, and 𝛿 is
a hyper-parameter named neighbor radius. The Euclidean distance
between two samples 𝑥 and 𝑦 is calculated as:

𝛥(𝑥, 𝑦) =
√

√

√

√

𝑛
∑

𝑖=1

|

|

𝑥𝑖 − 𝑦𝑖||
2.

Subsequently, the local lower and upper approximations [4], crucial
concepts in Rough Set Theory that aid in measuring the uncertainty of
an information system, can be computed as follows:

𝑅𝛿
𝐵(𝑍𝑖) = {𝑥|[𝑥]𝑅𝛿

𝐵
⊆ 𝑍𝑖, 𝑥 ∈ 𝑍𝑖},

𝑅𝛿
𝐵(𝑍𝑖) = {𝑥|[𝑥]𝑅𝛿

𝐵
∩𝑍𝑖 ≠ ∅, 𝑥 ∈ 𝑍𝑖}.

Furthermore, for 𝑈∕𝐷 = 𝑍 = {𝑍1, 𝑍2,… , 𝑍𝑠}, the local lower
approximation 𝑅𝛿

𝐵(𝑍) and upper approximation 𝑅𝛿
𝐵(𝑍) are:

𝑅𝛿
𝐵(𝑍) = {𝑅𝛿

𝐵(𝑍1), 𝑅𝛿
𝐵(𝑍2),… , 𝑅𝛿

𝐵(𝑍𝑠)},

𝑅𝛿
𝐵(𝑍) = {𝑅𝛿

𝐵(𝑍1), 𝑅𝛿
𝐵(𝑍2),… , 𝑅𝛿

𝐵(𝑍𝑠)}.

2.2. Composite entropy

However, even with the utilization of positive and negative regions
along with boundary region, we still encounter challenges in accurately
measuring the uncertainty of information systems, and the effectiveness
of feature selection remains unsatisfactory. To address this limitation,
entropy is introduced into Rough Set Theory—a pivotal concept in
information theory employed to quantify the uncertainty of possible
outcomes of random variables. Through entropy, we can more precisely
characterize the uncertainty of information systems, where certainty
weakens as entropy increases.

In this paper, we choose to employ composite entropy [17] to
assess the uncertainty of this information system, which focuses on the
uncertainty measure and decision distribution, improving its ability to
describe uncertainty and better evaluate selection features.

If the neighbor radius is denoted as 𝛿, the composite entropy can be
expressed as follows:

𝐶𝐸(𝐵 , 𝑍) = −
𝑠
∑

|𝑍𝑖|

|𝑈 |

ln
|𝑅𝛿

𝐵(𝑍𝑖)|

𝛿
.

𝑖=1 |𝑅𝐵(𝑍𝑖)|

3 
Proposition 1. For 𝑏 ∈ 𝐵 ⊆ 𝐴, 𝑈∕𝐷 = 𝑍 = {𝑍1, 𝑍2,… , 𝑍𝑠}, and
𝐵 ⊆ 𝐵′, the following properties hold:
(1) 𝐶𝐸(𝐵 , 𝑍) ≥ 0;
(2) 𝐶𝐸(𝐵′, 𝑍) ≤ 𝐶𝐸(𝐵 , 𝑍);

(3) If there exists 𝑍𝑖 such that
|𝑅𝛿

𝐵 (𝑍𝑖)|

|𝑅𝛿
𝐵 (𝑍𝑖)|

= 0 for 𝑖 = 1, 2,… , 𝑠, then
𝐶𝐸(𝐵 , 𝑍) → ∞;

(4) If
|𝑅𝛿

𝐵 (𝑍𝑖)|

|𝑅𝛿
𝐵 (𝑍𝑖)|

= 1 for all 𝑍𝑖 (𝑖 = 1, 2,… , 𝑠), then 𝐶𝐸(𝐵 , 𝑍) = 0.

Proposition 2. For a given set of samples 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑝}, consider
an attribute subset 𝑏 ∈ 𝐵 ⊆ 𝐴, and let 𝑈∕𝐷 = 𝑍 = {𝑍1, 𝑍2,… , 𝑍𝑠}.
The inner and outer significance measures of attribute 𝑎 ∈ 𝐴 are defined as
follows:

𝐼𝑀(𝑏, 𝐵 , 𝑍) = 𝐶𝐸(𝐵 − {𝑏}, 𝑍) − 𝐶𝐸(𝐵 , 𝑍),
𝑆𝑀(𝑏, 𝐵 , 𝑍) = 𝐶𝐸(𝐵 , 𝑍) − 𝐶𝐸(𝐵 ∪ {𝑏}, 𝑍).

Moreover,

(1) A higher value of 𝐼𝑀(𝑏, 𝐵 , 𝑍) or 𝑆𝑀(𝑏, 𝐵 , 𝑍) indicates greater
importance of the feature 𝑏 relative to 𝐵;

(2) If 𝐶𝐸(𝐵 − {𝑏}, 𝑍) → ∞ and 𝐶𝐸(𝐵 , 𝑍) → ∞, then 𝐼𝑀(𝑏, 𝐵 , 𝑍) = 0;
If 𝐶𝐸(𝐵 , 𝑍) → ∞ and 𝐶𝐸(𝐵 ∪ 𝑏, 𝑍) → ∞, then 𝑆𝑀(𝑏, 𝐵 , 𝑍) = 0.

3. Local neighborhood rough set and composite entropy based on
matrix

In this section, we will introduce the matrix-form representation
of local neighborhood rough sets and the computation method of
composite entropy. By replacing set operations with matrix computa-
tions, the calculations of rough sets can be accelerated using scientific
computing packages such as Numpy, significantly enhancing the op-
erational speed. Furthermore, this approach enables the possibility of
leveraging GPUs for rough set computations, which will further boost
the computational efficiency.

The main contents of this section are as follows:
Definition 1 discusses how sets can be converted into matrix form

and the definition of submatrices. Our algorithm performs rough set
operations through matrix computations, while utilizing submatrices to
update the original matrix. This serves as the cornerstone for incremen-
tal computation in our algorithm.

Definition 2 delves into the computation method of distance matri-
ces, while Definition 3 builds upon Definition 2 to discuss the calcula-
tion of neighborhood matrices. These are fundamental for computing
the lower and upper approximations in neighborhood rough sets.

Definition 4 presents the matrix-based computation method for the
lower and upper approximations in neighborhood rough sets. By lever-
aging these approximation matrices, we can calculate the composite
entropy according to Definition 5.

To facilitate readers’ verification, we have attached an example to
each definition.
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Definition 1. Given a finite field 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑝} where any subset
𝑍𝑖 ⊆ 𝑈 can be transformed into a boolean matrix 𝑖, where 0 represents
alse and 1 represents true.

𝑖 =
[

𝑧𝑖1 𝑧𝑖2 … 𝑧𝑖𝑝
]

𝑗≤𝑝 , 𝑧𝑖𝑗 =
{

0, 𝑧𝑖𝑗 ∉ 𝑍𝑖,

1, 𝑧𝑖𝑗 ∈ 𝑍𝑖.

So, 𝑍 = {𝑍1, 𝑍2,… , 𝑍𝑠} can also be transformed to

 =

⎡

⎢

⎢

⎢

⎢

⎣

1
2
⋮
𝑠

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑧11 𝑧12 … 𝑧1𝑝
𝑧21 𝑧22 … 𝑧2𝑝
⋮ ⋮ ⋱ ⋮
𝑧𝑠1 𝑧𝑠2 … 𝑧𝑠𝑝

⎤

⎥

⎥

⎥

⎥

⎦

.

Meanwhile, if 𝑀 ⊆ {𝑖 ∈ Z+ ∣ 𝑖 ≤ 𝑠} and 𝑁 ⊆ {𝑗 ∈ Z+ ∣ 𝑗 ≤ 𝑝} can be
epresented as

[𝑀 , 𝑁] = [

𝑧𝑚𝑛
]

𝑚∈𝑀 ,𝑛∈𝑁 .

Example 1. Given a finite field 𝑈 = {𝑥1, 𝑥2,… , 𝑥8} where 𝑍 =
{𝑍1, 𝑍2}, 𝑍1 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, and 𝑍2 = {𝑥5, 𝑥6, 𝑥7, 𝑥8}, we can
ransform these sets into a matrix as

𝑍 = {𝑍1, 𝑍2} = {{𝑥1, 𝑥2, 𝑥3, 𝑥4}, {𝑥5, 𝑥6, 𝑥7, 𝑥8}},
⇑⇑⇑⇑⇑⇑
⇓

 =
[

1
2

]

=
[

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

]

.

If 𝑀 = {1} and 𝑁 = {1, 3}, the submatrix of  can be shown as

[𝑀 , 𝑁] = [{1}, {1, 3}] =
[

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

]

=
[

1 1
]

.

And then, if we let

[𝑀 , 𝑁] = [

0 0
]

.

The matrix  would be updated as

 =
[

0 1 0 1 0 0 0 0
0 0 0 0 1 1 1 1

]

.

Definition 2. Given an information system 𝐼𝑆 = (𝑈 , 𝐴 ∪ 𝐷 , 𝑉 , 𝑓 )
with conditional attributes 𝐵 ⊆ 𝐴. Let 𝐺 = {𝑔1, 𝑔2,… , 𝑔𝑣} ⊆ 𝑈 , and
𝐻 = {ℎ1, ℎ2,… , ℎ𝑤} ⊆ 𝑈 . When the neighbor radius is 𝛿, the distance
matrix between 𝐺 and 𝐻 is defined as follows:

𝐵(𝐺 , 𝐻) =
⎡

⎢

⎢

⎢

⎢

⎣

𝑑 𝑚11 𝑑 𝑚12 … 𝑑 𝑚1𝑤
𝑑 𝑚21 𝑑 𝑚22 … 𝑑 𝑚2𝑤
⋮ ⋮ ⋱ ⋮

𝑑 𝑚𝑣1 𝑑 𝑚𝑣2 … 𝑑 𝑚𝑣𝑤

⎤

⎥

⎥

⎥

⎥

⎦

=
[

𝛥(𝑔𝑖, ℎ𝑗 )
]

𝑖≤𝑣,𝑗≤𝑤 .

Example 2. From Table 1, the sample set 𝑈 = {𝑥1, 𝑥2,… , 𝑥8} and
conditional attributes set 𝐴 = {𝑎1, 𝑎2,… , 𝑎9}. According to Definition 2,
we could obtain the distance matrix of the information system when
𝐴 = {𝑎1, 𝑎2,… , 𝑎9}

𝐵(𝑈 , 𝑈 ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0. 0.42 0.78 1.01 0.66 0.43 0.43 0.72
0.42 0. 0.74 0.85 0.88 0.52 0.51 0.79
0.78 0.74 0. 1.17 0.82 0.91 0.81 0.93
1.01 0.85 1.17 0. 1.05 0.88 1.01 0.95
0.66 0.88 0.82 1.05 0. 0.74 0.86 0.76
0.43 0.52 0.91 0.88 0.74 0. 0.28 0.44
0.43 0.51 0.81 1.01 0.86 0.28 0. 0.50
0.72 0.79 0.93 0.95 0.76 0.44 0.50 0.

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Definition 3. Given an information system 𝐼𝑆 = (𝑈 , 𝐴 ∪ 𝐷 , 𝑉 , 𝑓 )
with conditional attributes 𝐵 ⊆ 𝐴. Let 𝐺 = {𝑔1, 𝑔2,… , 𝑔𝑣} ⊆ 𝑈 , and
𝐻 = {ℎ , ℎ ,… , ℎ } ⊆ 𝑈 . When the neighbor radius is 𝛿, the distance
1 2 𝑤

4 
matrix 𝐵(𝐺 , 𝐻) = [

𝑑 𝑚𝑖𝑗
]

𝑖≤𝑣,𝑗≤𝑤. The neighborhood matrix between
𝐺 and 𝐻 is defined as follows, where 0 represents false and 1 represents
true:

𝛿
𝐵(𝐺 , 𝐻) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑛𝑚11 𝑛𝑚12 … 𝑛𝑚1𝑤
𝑛𝑚21 𝑛𝑚22 … 𝑛𝑚2𝑤
⋮ ⋮ ⋱ ⋮

𝑛𝑚𝑣1 𝑛𝑚𝑣2 … 𝑛𝑚𝑣𝑤

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑛𝑚𝑖𝑗 =

{

1, 𝑑 𝑚𝑖𝑗 ≤ 𝛿 ,
0, others.

Example 3. According to Example 2, the distance matrix is 𝐵(𝑈 ,
𝑈 ). So, when 𝛿 = 0.5, the neighborhood matrix can be computed

𝛿
𝐵(𝑈 , 𝑈 ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 0 0 1 1 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 1 1 1
1 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Definition 4. Given an information system 𝐼𝑆 = (𝑈 , 𝐴 ∪𝐷 , 𝑉 , 𝑓 ) that
consists of samples 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑝}, conditional attributes 𝐵 ⊆ 𝐴,
and the quotient set between samples and decision attributes 𝑈∕𝐷 =

= {𝑍1, 𝑍2,… , 𝑍𝑠}. When the neighbor radius is 𝛿, the set 𝑍 can
e transformed into matrix  =

[

𝑧𝑖𝑗
]

𝑖≤𝑠,𝑗≤𝑝. The neighborhood matrix
𝛿

𝐵(𝑈 , 𝑈 ) = [

𝑛𝑚𝑖𝑗
]

𝑖≤𝑝,𝑗≤𝑝 can be computed based on the conditional
attribute subset 𝐵 and neighbor radius 𝛿. Overall, lower and upper
approximation matrices can be defined as follows:

𝛿
𝐵(𝑍) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑟11 𝑟12 … 𝑟1𝑝
𝑟21 𝑟22 … 𝑟2𝑝
⋮ ⋮ ⋱ ⋮
𝑟𝑠1 𝑟𝑠2 … 𝑟𝑠𝑝

⎤

⎥

⎥

⎥

⎥

⎦

,𝛿
𝐵(𝑍) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑟11 𝑟12 … 𝑟1𝑝
𝑟21 𝑟22 … 𝑟2𝑝
⋮ ⋮ ⋱ ⋮
𝑟𝑠1 𝑟𝑠2 … 𝑟𝑠𝑝

⎤

⎥

⎥

⎥

⎥

⎦

.

If 𝑍 𝑖𝑛𝑑 𝑒𝑥 = {𝑍 𝑖𝑛𝑑 𝑒𝑥
1 , 𝑍 𝑖𝑛𝑑 𝑒𝑥

2 ,… , 𝑍 𝑖𝑛𝑑 𝑒𝑥
𝑠 }, 𝑍 𝑖𝑛𝑑 𝑒𝑥

𝑖 = {𝑗|𝑧𝑖𝑗 = 1, 𝑗 ∈ Z+},
hen

𝛿
𝐵(𝑍)[{𝑖}, 𝑍 𝑖𝑛𝑑 𝑒𝑥

𝑖 ] =
[

𝑟𝑖𝑗
]

𝑗∈𝑍𝑖𝑛𝑑 𝑒𝑥
𝑖

=
[
⋀𝑝

𝑘=1(𝑛𝑚𝑗 𝑘 → 𝑧𝑖𝑘)
]

𝑗∈𝑍𝑖𝑛𝑑 𝑒𝑥
𝑖

,

𝛿
𝐵(𝑍)[{𝑖}, 𝑍 𝑖𝑛𝑑 𝑒𝑥

𝑖 ] = [

𝑟𝑖𝑗
]

𝑗∈𝑍𝑖𝑛𝑑 𝑒𝑥
𝑖

=
[
⋁𝑝

𝑘=1(𝑛𝑚𝑗 𝑘 ∧ 𝑧𝑖𝑘)
]

𝑗∈𝑍𝑖𝑛𝑑 𝑒𝑥
𝑖

,

in which → is operator of material implication, ∧ is operator of logical
onjunction and ∨ is operator of logical disjunction.

Specially, the upper approximation matrix is equivalent to
𝛿

𝐵(𝑍) =  =
[

𝑧𝑖𝑗
]

𝑖≤𝑠,𝑗≤𝑝 .

Example 4. From Table 1, let 𝑈∕𝐷 = 𝑍 = {𝑍1, 𝑍2} = {{𝑥1, 𝑥2, 𝑥3, 𝑥4},
𝑥5, 𝑥6, 𝑥7, 𝑥8}}, and 𝑍 𝑖𝑛𝑑 𝑒𝑥 = {𝑍 𝑖𝑛𝑑 𝑒𝑥

1 , 𝑍 𝑖𝑛𝑑 𝑒𝑥
2 } = {{1, 2, 3, 4}, {5, 6, 7, 8}}.

We can transform set 𝑍 into a matrix:

 =
[

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

]

.

Next, initialize the lower approximation matrix:

𝛿
𝐵(𝑍) =

[

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

]

.

According to Example 3, the neighborhood matrix is 𝛿
𝐵(𝑈 , 𝑈 ).

e can now compute the lower approximation for each class:

𝛿
𝐵(𝑍)[{1}, 𝑍 𝑖𝑛𝑑 𝑒𝑥

1 ] = [

0 1 1 1
]

,𝛿
𝐵(𝑍)[{2}, 𝑍 𝑖𝑛𝑑 𝑒𝑥

2 ]

=
[

1 0 0 1
]

.

The lower and upper approximation matrix are:

𝛿
𝐵(𝑍) =

[

0 1 1 1 0 0 0 0
0 0 0 0 1 0 0 1

]

,𝛿
𝐵(𝑍)

=
[

1 1 1 1 0 0 0 0
]

,

0 0 0 0 1 1 1 1
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which are equivalent to:

𝑅𝛿
𝐵(𝑍) = {𝑅𝛿

𝐵(𝑍1), 𝑅𝛿
𝐵(𝑍2)} = {{𝑥2, 𝑥3, 𝑥4}, {𝑥5, 𝑥8}},

𝑅𝛿
𝐵(𝑍) = {𝑅𝛿

𝐵(𝑍1), 𝑅𝛿
𝐵(𝑍2)} = {{𝑥1, 𝑥2, 𝑥3, 𝑥4}, {𝑥5, 𝑥6, 𝑥7, 𝑥8}}.

Definition 5. Given an information system 𝐼𝑆 = (𝑈 , 𝐴 ∪𝐷 , 𝑉 , 𝑓 ) that
consists of samples 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑝}, conditional attributes 𝐵 ⊆ 𝐴,
and the quotient set between samples and decision attributes 𝑈∕𝐷 =
𝑍 = {𝑍1, 𝑍2,… , 𝑍𝑠}. When the neighbor radius is 𝛿, the set 𝑈 and 𝑍
can be transformed into matrices  =

[

𝑢𝑗
]

𝑗≤𝑝 and  =
[

𝑧𝑖𝑗
]

𝑖≤𝑠,𝑗≤𝑝, re-
spectively. Subsequently, the lower and upper approximation matrices
𝛿

𝐵(𝑍) =
[

𝑟𝑖𝑗
]

𝑖≤𝑠,𝑗≤𝑝
and 𝛿

𝐵(𝑍) = [

𝑟𝑖𝑗
]

𝑖≤𝑠,𝑗≤𝑝 can be computed based
on the conditional attribute subset 𝐵 and neighbor radius 𝛿. Overall,
composite entropy based on matrix can be defined as follows:

𝐶𝐸(𝐵 , 𝑍) = −
𝑠
∑

𝑖=1

∑𝑝
𝑗=1 𝑧𝑖𝑗

∑𝑝
𝑗=1 𝑢𝑗

𝑙 𝑛
∑𝑝

𝑗=1 𝑟𝑖𝑗
∑𝑝

𝑗=1 𝑟𝑖𝑗
.

Example 5. From Table 1, let 𝑈 = {𝑥1, 𝑥2,… , 𝑥8}. It can be trans-
ormed into a matrix as follows:

 =
[

𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 𝑢7 𝑢8
]

=
[

1 1 1 1 1 1 1 1
]

.

Referring to Example 4, the lower and upper approximation matri-
es are 𝛿

𝐵(𝑍) =
[

𝑟𝑖𝑗
]

𝑖≤2,𝑗≤8
and 𝛿

𝐵(𝑍) = [

𝑟𝑖𝑗
]

𝑖≤2,𝑗≤8. We could also get
, which is the matrix form of 𝑍. Then, We could compute composite
ntropy

𝐶𝐸(𝐴, 𝑍) = −
2
∑

𝑖=1

∑8
𝑗=1 𝑧𝑖𝑗

∑8
𝑗=1 𝑢𝑗

𝑙 𝑛
∑8

𝑗=1 𝑟𝑖𝑗
∑8

𝑗=1 𝑟𝑖𝑗
= −(4

8
𝑙 𝑛 3
4
+ 4

8
𝑙 𝑛2
4
) ≈ 0.4904.

4. Parallel matrix-based feature selection algorithms

In this section, we will introduce two feature selection algorithms
roposed by us.

Algorithm 1 outlines the computation method of the neighborhood
atrix for static data, while Algorithm 2 utilizes Algorithm 1 to perform

parallel feature selection on static data.
Definition 6 introduces the concept of information system updates,

nd in Proposition 3, we present the updating rules of the neighborhood
atrix in a dynamic data environment, which serves as a crucial

oundation for our algorithm to achieve incremental updates.
Subsequently, in Algorithm 3, we implement the updating and com-

utation of the neighborhood matrix in a dynamic data environment,
nd apply it in Algorithm 4 to realize a parallel incremental feature

selection algorithm.

4.1. Parallel matrix-based feature selection algorithm for static data

Firstly, we will present a static feature selection algorithm. This
algorithm necessitates the recalculation of all neighborhood matri-
ces every time the data is updated, resulting in a high time com-
plexity. Nevertheless, we have integrated parallel computing into this
algorithm, thereby enhancing its efficiency to a certain extent.

In Algorithm 1, we compute the neighborhood matrix statically,
indicating that each time we perform the calculation on the entire
dataset. The time complexity of Algorithm 1 is 𝑂(|𝑈 |

2).
Algorithm 1: Calculate Neighborhood Matrix Statically

Input: An Information System 𝐼𝑆 = (𝑈 , 𝐴 ∪𝐷 , 𝑉 , 𝑓 ), the subset of
samples 𝐵 and the neighbor radius 𝛿.

Output: Neighborhood matrix 𝛿
𝐵(𝑈 , 𝑈 ).

1 Calculate neighborhood matrix 𝛿
𝐵(𝑈 , 𝑈 ) via Definition 3;

2 return 𝛿
𝐵(𝑈 , 𝑈 );
5 
In Algorithm 2, we introduce a procedure named PMLCE-S for
selecting features in parallel for static data. The steps of Algorithm 2
are outlined in detail. Initially, we compute 𝐼𝑀 and select attributes
with values greater than 0. Next, we calculate 𝑆𝑀 and choose attributes
from the remaining set that maximize 𝑆𝑀 , iteratively, until the entropy
of the complete information system is equal to the information system
after selection. Finally, we discard attributes for which the entropy
remains unchanged even after the selection process. Notably, steps 2
to 9, steps 11 to 15, and steps 19 to 25 can be executed in parallel. The
time complexity of Algorithm 2 is 𝑂((|𝐴| + |𝑈 ||𝐴| + |𝐵|)|𝑈 |

2).
Algorithm 2: PMLCE-S: Parallel Local Neighborhood Rough Set
with Composite Entropy for Static Data

Input: An Information System 𝐼𝑆 = (𝑈 , 𝐴 ∪𝐷 , 𝑉 , 𝑓 ), the neighbor
radius 𝛿.

Output: Selected features 𝐵.
1 Initialize 𝐵 = ∅;
2 do in parallel
3 for 𝑎 ∈ 𝐴 do
4 Compute 𝑖𝑚 = 𝐼𝑀(𝑎, 𝐴, 𝐷) via Proposition 2 and Algorithm 1;
5 if 𝑖𝑚 > 0 then
6 𝐵 ← 𝑎;
7 end
8 end
9 end
10 while 𝐶𝐸(𝐵 , 𝐷) ≠ 𝐶𝐸(𝐴, 𝐷) do /* Use Algorithm 1 to

calculate the neighborhood matrix */
11 do in parallel
12 for 𝑎 ∈ (𝐴 − 𝐵) do
13 Compute 𝑠𝑚 = 𝑆𝑀(𝑎, 𝐵 , 𝐷) via Proposition 2 and

Algorithm 1;
14 end
15 end
16 𝑎𝑚𝑎𝑥 = ar g max

𝑎𝑚𝑎𝑥∈𝐴−𝐵
(𝑠𝑚);

17 𝐵 ← 𝑎𝑚𝑎𝑥;
18 end
19 do in parallel
20 for 𝑏 ∈ 𝐵 do
21 if 𝐶𝐸(𝐵 − {𝑏}, 𝐷) = 𝐶𝐸(𝐵 , 𝐷) then /* Use Algorithm 1 to

calculate the neighborhood matrix */
22 𝐵 = 𝐵 − {𝑏};
23 end
24 end
25 end
26 return 𝐵;

4.2. Parallel matrix-based feature selection algorithm for dynamic data

Subsequently, we propose a dynamic feature selection algorithm
that builds upon Algorithm 1 and Algorithm 2. This algorithm stores
the neighborhood matrix calculated each time in the cache. When the
ata is updated, only the corresponding neighborhood matrix needs
o be retrieved from the cache. By utilizing the updated data to up-
ate the neighborhood matrix, we achieve a dynamic and incremental
lgorithm, significantly reducing the time complexity and enhancing
he operational efficiency of the algorithm. Additionally, we have

incorporated parallel computing into this algorithm to further enhance
its operational efficiency.

Definition 6. Given an information system 𝐼𝑆 = (𝑈 , 𝐴 ∪ 𝐷 , 𝑉 , 𝑓 ),
consider an incremental information system 𝐼𝑆′ = (𝑈 ′, 𝐴′ ∪ 𝐷 , 𝑉 ′, 𝑓 ′).
The merging of 𝐼𝑆′ and 𝐼𝑆 results in a combined information system
𝐼𝑆 = (𝑈 , 𝐴 ∪𝐷 , 𝑉 , 𝑓 ) following these rules:

𝑈 = 𝑈 ∪ 𝑈 ′, 𝐴 = 𝐴 ∪ 𝐴′, 𝐷 = 𝐷 , 𝑉 = 𝑈 × 𝐴, 𝑓 = 𝑈 ×𝐷 .

Example 6. Table 1 and Table 2 represent two information systems.

We can merge Table 2 with Table 1, resulting in Table 3.
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Table 2
An incremental information system.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑑

𝑥1 0.57 0.27 0.44 0.34 0.37 0.29 0.54 0.42 0.62 1
𝑥2 0.37 0.21 0.46 0.56 0.51 0.31 0.44 0.66 0.53 1
𝑥6 0.30 0.20 0.37 0.44 0.43 0.34 0.82 0.36 0.20 0
𝑥7 0.19 0.23 0.29 0.34 0.36 0.35 0.61 0.35 0.37 0
𝑥9 0.37 0.22 0.45 0.56 0.50 0.32 0.44 0.64 0.52 1
𝑥10 0.17 0.31 0.33 0.37 0.37 0.60 0.94 0.33 0.26 0
Table 3
The updated information system.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑑

𝑥1 0.57 0.27 0.44 0.34 0.37 0.29 0.54 0.42 0.62 1
𝑥2 0.37 0.21 0.46 0.56 0.51 0.31 0.44 0.66 0.53 1
𝑥3 0.37 0.22 0.29 0.32 0.35 0.26 0.28 0.66 0.64 1
𝑥4 0.30 0.36 0.59 0.99 0.97 0.39 0.70 0.32 0.30 1
𝑥5 0.82 0.29 0.42 0.37 0.39 0.39 0.86 0.39 0.51 0
𝑥6 0.30 0.20 0.37 0.44 0.43 0.34 0.82 0.36 0.20 0
𝑥7 0.19 0.23 0.29 0.34 0.36 0.35 0.61 0.35 0.37 0
𝑥8 0.15 0.29 0.33 0.39 0.39 0.62 0.92 0.31 0.26 0
𝑥9 0.37 0.22 0.45 0.56 0.50 0.32 0.44 0.64 0.52 1
𝑥10 0.17 0.31 0.33 0.37 0.37 0.60 0.94 0.33 0.26 0
n
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Proposition 3. By merging 𝐼𝑆′ and 𝐼𝑆 according to Definition 6, we
obtain 𝐼𝑆 = (𝑈 , 𝐴∪𝐷 , 𝑉 , 𝑓 ). Additionally, for 𝐺 = 𝑈 ′−𝑈 = {𝑔1, 𝑔2,… , 𝑔𝑣}
and 𝐻 = 𝑈 ′ ∩ 𝑈 = {ℎ1, ℎ2,… , ℎ𝑤}, by utilizing 𝛿

𝐵(𝑈 , 𝑈 ) =
[

𝑛𝑚𝑖𝑗
]

𝑖≤𝑝,𝑗≤𝑝, 𝛿
𝐵(𝐺 , 𝑈 ) =

[

𝑛𝑚′
𝑖𝑗

]

𝑖≤𝑣,𝑗≤𝑝
and 𝛿

𝐵(𝐻 , 𝑈 ) =
[

𝑛𝑚′′
𝑖𝑗

]

𝑖≤𝑤,𝑗≤𝑝
, we can dynamically compute 𝛿

𝐵(𝑈 , 𝑈 ) as follows:

𝛿
𝐵(𝑈 , 𝑈 ) = [

𝑛𝑚𝑖𝑗
]

𝑖≤𝑝+𝑣,𝑗≤𝑝+𝑣 , ̂𝑛𝑚𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑛𝑚′
𝑖𝑗 , 𝑥𝑖 ∈ 𝐺 ∨ 𝑥𝑗 ∈ 𝐺 ,

𝑛𝑚′′
𝑖𝑗 , 𝑥𝑖 ∈ 𝐻 ∨ 𝑥𝑗 ∈ 𝐻 ,

𝑛𝑚𝑖𝑗 , others.

Example 7. From Table 1, Table 2 and Table 3, there are three
nformation system 𝐼𝑆 = (𝑈 , 𝐴 ∪𝐷 , 𝑉 , 𝑓 ), 𝐼𝑆′ = (𝑈 ′, 𝐴′ ∪𝐷 , 𝑉 ′, 𝑓 ′) and
𝐼𝑆 = (𝑈 , 𝐴∪𝐷 , 𝑉 , 𝑓 ), where 𝐺 = 𝑈 ′−𝑈 = {𝑥9, 𝑥10}, 𝐻 = {𝑥1, 𝑥2, 𝑥6, 𝑥7},
and 𝛿 is 0.5.

According to Example 3, the neighborhood matrix is 𝛿
𝐵(𝑈 , 𝑈 ).

Now, Computing 𝛿
𝐵(𝐺 , 𝑈 ) and 𝛿

𝐵(𝐻 , 𝑈 ) via Definition 3
𝛿

𝐵(𝐺 , 𝑈 ) =
[

1 1 1 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 0 1

]

,

𝛿
𝐵(𝐻 , 𝑈 ) =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1 0 1 0 1 0 1 0
1 1 1 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 0 1
1 0 0 0 0 1 1 1 0 1

⎤

⎥

⎥

⎥

⎥

⎦

.

Finally, according to Proposition 3, 𝛿
𝐵(𝑈 , 𝑈 ) can be computed

y 𝛿
𝐵(𝑈 , 𝑈 ), 𝛿

𝐵(𝐺 , 𝑈 ) and 𝛿
𝐵(𝐻 , 𝑈 )

𝛿
𝐵(𝑈 , 𝑈 ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 0 1 0 1 0 1 0
1 1 1 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 1 0 1
1 0 0 0 0 1 1 1 0 1
0 0 0 0 0 1 1 1 0 1
1 1 1 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

By using Algorithm 3, We can dynamically calculate the neigh-
orhood matrix. Initially, we generate a key using a hash function,
etrieve the neighborhood matrix, and an increment counter from the

cache. If the neighborhood matrix does not exist, we statically compute
𝛿

𝐵(𝑈 , 𝑈 ). Subsequently, we save it into the cache along with the
increment counter.
 𝑂

6 
If the neighborhood matrix exists and the increment counter does
ot match the one in the cache, we retrieve 𝐺 and 𝐻 from the
ache—representing samples that have been updated in the infor-
ation system. These sets are then used to update the neighbor-
ood matrix in the cache accordingly. Subsequently, we compute
𝛿

𝐵(𝐺 , 𝑈 ) and 𝛿
𝐵(𝐻 , 𝑈 ), further updating the neighborhood ma-

rix to 𝛿
𝐵(𝑈 , 𝑈 ).

Finally, in other situations where the increment counter and the
𝛿

𝐵(𝑈 , 𝑈 ) in the cache match the corresponding values for 𝛿
𝐵(𝑈 ,

̂), the result can be returned directly. This algorithm significantly
educes the time complexity of computing 𝛿

𝐵(𝑈 , 𝑈 ) by partially
pdating the neighborhood matrix stored in the cache. The time com-
lexity of this approach is 𝑂(|𝐺||𝑈 | + |𝐻||𝑈 |).

After testing, we observed that the majority of the time spent on
Algorithm 2 is dedicated to calculating 𝑆 𝑀 and 𝐼 𝑀 . Thus, by leverag-
ng multiple processes to compute Proposition 2, we can significantly

enhance the algorithm’s efficiency.
As illustrated in Fig. 2, the attribute 𝑎 to be computed is initially

placed in the input queue. When a process in the pool becomes avail-
able, it is assigned to compute either 𝐼 𝑀 or 𝑆 𝑀 for the attribute 𝑎𝑥
sing the idle process 𝑝𝑟𝑜𝑐 𝑒𝑠𝑠𝑦. Upon completion of the computation,

the result is placed in the output queue, and process 𝑝𝑟𝑜𝑐 𝑒𝑠𝑠𝑦 is marked
as idle and returned to the pool. This parallel computation continues
ntil the input queue is empty. Once all computations are complete,

the results are dequeued from the output queue sequentially, finalizing
the parallel computation of 𝐼 𝑀 and 𝑆 𝑀 .

Algorithm 4 is a parallel feature selection algorithm for the local
neighborhood rough set with composite entropy designed for dynamic
data. Initially, the selected features 𝐵 are initialized. If it is the first
time training the model, the increment counter 𝑡 is initialized to record
he count of model training. Otherwise, it is incremented by 1. Next,
he original information system 𝐼𝑆 = (𝑈 , 𝐴∪𝐷 , 𝑉 , 𝑓 ) is merged with the
ncremental information system 𝐼𝑆′ = (𝑈 ′, 𝐴′ ∪𝐷 , 𝑉 ′, 𝑓 ′) to obtain the

updated information system 𝐼𝑆 = (𝑈 , 𝐴 ∪ 𝐷 , 𝑉 , 𝑓 ). Simultaneously, 𝐺
nd 𝐻 are computed and stored in the cache, representing added data
nd updated data, respectively.

If 𝐶𝐸(𝐵′, 𝐷) does not equal 𝐶𝐸(𝐴, 𝐷), the selected features are
ecalculated; otherwise, 𝐵′ remains as the selected features. Finally,
ttributes whose deletion does not affect composite entropy are re-
oved. Notably, steps 11 to 18, steps 20 to 24, and steps 31 to 37

an be computed in parallel. The time complexity of Algorithm 4 is
((|𝐴| + |𝑈 ||𝐴| + |𝐵|)(|𝐺| + |𝐻|)|𝑈 |).
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Fig. 2. Parallel schematic diagram.
Algorithm 3: Calculate Neighborhood Matrix Dynamically
Input: The updated information system 𝐼𝑆 = (𝑈 , 𝐴 ∪𝐷 , 𝑉 , 𝑓 ), the

subset of samples 𝐵,the neighbor radius 𝛿 and the increment
counter 𝑡.

Output: Neighborhood matrix 𝛿
𝐵(𝑈 , 𝑈 ).

1 Initialize 𝑘𝑒𝑦 = ℎ𝑎𝑠ℎ(𝐵);
2 Get (𝛿

𝐵(𝑈 , 𝑈 ), 𝑡𝑐 𝑎𝑐 ℎ𝑒) from cache via using 𝑘𝑒𝑦;
3 if 𝛿

𝐵(𝑈 , 𝑈 ) not in cache then
4 Calculate neighborhood matrix 𝛿

𝐵(𝑈 , 𝑈 ) via Definition 3;
5 Save key–value pair (𝑘𝑒𝑦, (𝛿

𝐵(𝑈 , 𝑈 ), 𝑡)) in cache;
6 else if 𝑡 ≠ 𝑡𝑐 𝑎𝑐 ℎ𝑒 then
7 Initialize 𝐺 = ∅, 𝐻 = ∅;
8 for 𝑡𝑘𝑒𝑦 = 𝑡𝑐 𝑎𝑐 ℎ𝑒 + 1 to 𝑡 do
9 Get (𝐺𝑐 𝑎𝑐 ℎ𝑒, 𝐻𝑐 𝑎𝑐 ℎ𝑒) from cache via using 𝑡𝑘𝑒𝑦;
10 𝐺 = 𝐺 ∪ 𝐺𝑐 𝑎𝑐 ℎ𝑒;
11 𝐻 = 𝐻 ∪𝐻𝑐 𝑎𝑐 ℎ𝑒;
12 end
13 if 𝐺 ≠ ∅ then
14 Compute local neighborhood matrix 𝛿

𝐵(𝐺 , 𝑈 ) via
Definition 3;

15 end
16 if 𝐻 ≠ ∅ then
17 Compute local neighborhood matrix 𝛿

𝐵(𝐻 , 𝑈 ) via
Definition 3;

18 end
19 Compute 𝛿

𝐵(𝑈 , 𝑈 ) with 𝛿
𝐵(𝑈 , 𝑈 ), 𝛿

𝐵(𝐺 , 𝑈 ) and
𝛿

𝐵(𝐻 , 𝑈 ) via Proposition 3;
20 Save key–value pair (𝑘𝑒𝑦, (𝛿

𝐵(𝑈 , 𝑈 ), 𝑡)) in cache;
21 else
22 𝛿

𝐵(𝑈 , 𝑈 ) = 𝛿
𝐵(𝑈 , 𝑈 );

23 end
24 return 𝛿

𝐵(𝑈 , 𝑈 );
7 
5. Experimental results and analysis

5.1. Experimental preparation

In this section, we selected 12 datasets for our experiments, all of
which are listed in Table 4 and are available from the UCI.

During data preprocessing, we applied the sigmoid function to
normalize the data to the range (0, 1). Any missing values were replaced
with 0, with the 0 value serving as a special marker to differentiate
between missing and non-missing entries. The sigmoid function used is
expressed as follows, where 𝜇 represents the mean and 𝜎 denotes the
standard deviation:

𝑦𝑖 =
1

1 + 𝑒−
𝑥𝑖−𝜇
𝜎

.

We employed ten-fold cross-validation in all experiments to evalu-
ate different feature subsets. Each dataset was divided into ten equal
portions, with seven used as the training set for the classifier model
and the remaining three as the test set.

All algorithms discussed in this paper were implemented in Python
using the Anaconda Navigator environment. The computations were
performed on a computer equipped with an AMD Ryzen 7 5700G
CPU (3.80 GHz), 64.0 GB of memory, and running a 64-bit version of
Windows 11.

5.2. Experimental design

In this subsection, we design an experiment to evaluate the per-
formance and efficiency of our proposed algorithm. Specifically, we
compare its execution with 1 process and 8 processes. Additionally, we
assess it against 7 feature selection algorithms, 3 of which are based
on rough sets. For the PMLCE-S and PMLCE-D algorithms, the neighbor
radius 𝛿 is varied from 0.01 to 0.5, with a step size of 0.01.

The detailed information and parameters of the 7 algorithms is as
follows:

https://archive.ics.uci.edu/
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Algorithm 4: PMLCE-D: Parallel Local Neighborhood Rough Set
ith Composite Entropy for Dynamic Data
Input: Original information system 𝐼𝑆 = (𝑈 , 𝐴 ∪𝐷 , 𝑉 , 𝑓 ), the neighbor

radius 𝛿, the incremental information system
𝐼𝑆′ = (𝑈 ′, 𝐴′ ∪𝐷 , 𝑉 ′, 𝑓 ′), last selected attributes 𝐵′ and
increment counter 𝑡.

Output: Selected features 𝐵.
1 Initialize 𝐵 = ∅;
2 if it is t he f ir st t ime t o t r ain then
3 Initialize increment counter 𝑡 = 0;
4 else
5 𝑡 = 𝑡 + 1;
6 end
7 Merge 𝐼𝑆 and 𝐼𝑆′ via Definition 6, and the updated information

system is 𝐼𝑆 = (𝑈 , 𝐴 ∪𝐷 , 𝑉 , 𝑓 );
8 Get 𝐺 and 𝐻 via Proposition 3;
9 Save key–value pair (𝑡, (𝐺 , 𝐻)) in cache;
10 if 𝐶𝐸(𝐵′, 𝐷) ≠ 𝐶𝐸(𝐴, 𝐷) then /* Use Algorithm 3 to

calculate the neighborhood matrix */
11 do in parallel
12 for 𝑎 ∈ 𝐴 do
13 Compute 𝑖𝑚 = 𝐼𝑀(𝑎, 𝐴, 𝐷) via Proposition 2 and

Algorithm 3;
14 if 𝑖𝑚 > 0 then
15 𝐵 ← 𝑎;
16 end
17 end
18 end
19 while 𝐶𝐸(𝐵 , 𝐷) ≠ 𝐶𝐸(𝐴, 𝐷) do /* Use Algorithm 3 to

calculate the neighborhood matrix */
20 do in parallel
21 for 𝑎 ∈ (𝐴 − 𝐵) do
22 Compute 𝑠𝑚 = 𝑆𝑀(𝑎, 𝐵 , 𝐷) via Proposition 2 and

Algorithm 3;
23 end
24 end
25 𝑎𝑚𝑎𝑥 = ar g max

𝑎𝑚𝑎𝑥∈𝐴−𝐵
(𝑠𝑚);

26 𝐵 ← 𝑎𝑚𝑎𝑥;
27 end
28 else
29 𝐵 = 𝐵′;
30 end
31 do in parallel
32 for 𝑏 ∈ 𝐵 do
33 if 𝐶𝐸(𝐵 − {𝑏}, 𝐷) = 𝐶𝐸(𝐵 , 𝐷) then /* Use Algorithm 3 to

calculate the neighborhood matrix */
34 𝐵 = 𝐵 − {𝑏};
35 end
36 end
37 end
38 return 𝐵;

(1) ICA [29]: Independent Component Analysis (ICA) is a compu-
tational technique employed to segregate a multivariate signal
into additive subcomponents. Widely applied in signal process-
ing, image processing, and machine learning, ICA is instrumen-
tal for dimensionality reduction and feature selection. In this
experiment, all components are utilized.

(2) Isomap [30]: Isomap is a nonlinear method for reducing di-
mensionality, which is used to calculate a low-dimensional
embedding of a set of high-dimensional data points. Among sev-
eral widely used low-dimensional embedding methods, Isomap
stands out. For this experiment, we specifically configure
𝑛_𝑐 𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 2.

(3) PCA [31]: Principal Component Analysis (PCA) is a widely
adopted technique for analyzing extensive datasets characterized
8 
by a high number of dimensions or features per observation. Its
popularity stems from its ability to improve data interpretability
while retaining the maximum amount of information. In the
context of this experiment, we specifically choose attributes
whose cumulative contribution rate surpasses 0.8.

(4) Relief [32]: Relief is an algorithm for feature weighting that as-
signs varying weights to features based on their correlation with
the class. It eliminates features with weights below a specified
threshold. In this experiment, we specifically choose components
whose cumulative contribution rate exceeds 0.8.

(5) LFSACIE [17]: LFSACIE is an attribute reduction algorithm
based on composite entropy and local neighborhood rough set.
In this experiment, we set the neighborhood radius 𝛿 = 0.01 and
𝛽 = 0.1.

(6) LARD [5]: LARD is an attribute reduction algorithm based on
local rough set. The fundamental concept is to ensure that the
certainty of the rough set model is at least as much as that of
the original model. In this experiment, we set the neighborhood
radius 𝛿 = 0.01.

(7) LFSASI [33]: LFSASI is an attribute reduction algorithm based
on self-information and local rough set. In this experiment, the
neighborhood radius are 𝛿 = 0.3 and 𝛽 = 0.1.

To simulate the incremental environment of constantly adding and
updating data in reality, we divided the dataset into four parts to
simulate data added at four different times. Then, the feature selection
results of these four moments were tested separately, and their running
time was recorded.

At time 𝑡0, we will use the first part of the data to train the model.
t 𝑡1, before using the second part of the data, we will add the original

orm of the replaced data into the second data to simulate the situation
f data update in reality. This process is repeated at 𝑡2. Finally, at 𝑡3, we
ill train models using the original form of the replaced data, which
as never been trained in 𝑡1 and 𝑡2.

After completing feature selection, we measured the classification
accuracy using 4 classification algorithms. These 4 algorithms are
k-Nearest Neighbor (KNN), Random Forest (RF), Support Vector Classi-
fication (SVC), and eXtreme Gradient Boosting (XGBoost, XGB), respec-
ively. The parameters are set as follows: neighbors of KNN is set to 5,
he number of trees in RF is set to 100, the degree and regularization
arameter of SVC are set to 3 and 1.0, respectively, and the learning
ate of XGBoost is set to 0.3.

5.3. Experiments of accuracy

In this subsection, we will discuss the performance of the feature
xtraction algorithm. We have already described the preparation and
esign of the experiment in Section 5.1 and Section 5.2.

Table 5 provides the 𝛿 values of PMLCE-S and PMLCE-D when the
final mean accuracy is highest (accuracy of 𝑡3).

Table 6 presents the highest final mean accuracy and its stan-
dard deviation for different classifiers after feature selection, with
the number of selected features indicated in parentheses. According
to the experimental results, we can see that the two algorithms we
proposed have shown very good results on data sets except Turkiye and
Quality, and have shown significant improvements compared to other
feature extraction algorithms based on rough sets, which proves that
the algorithms we proposed are effective.

Additionally, in Fig. 3, the 𝑥-axis represents the feature extraction
algorithm, while the 𝑦-axis represents the dataset. Sub-figures (a),
(e), (i), and (m) depict the classification accuracy of KNN, Random
Forest, SVC, and XGBoost, respectively, after each feature selection
algorithm has performed feature extraction on each dataset at time 𝑡0.
Similarly, sub-figures (b), (f), (j), and (n) illustrate the classification
accuracy of algorithms KNN, Random Forest, SVC, and XGBoost at
time 𝑡1, following the same process. It is worth noting that PMLCE-
S and PMLCE-D may yield different results at time 𝑡 due to different
0
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Table 4
Details of datasets.

Dataset Samples Attributes Classes Dataset Samples Attributes Classes

I Cancer 116 9 2 VII Spambase 4601 57 2
II Toxicity 171 1203 2 VIII Quality 4898 11 7
III Darwin 174 450 2 IX Turkiye 5820 32 3
IV Wine 178 13 3 X Grid 10 000 13 2
V Hill 606 100 2 XI Bean 13 611 16 7
VI Chess 3196 36 2 XII Telescope 19 020 10 2
Table 5
Delta of PMLCE-S and PMLCE-D.

PMLCE-S PMLCE-D PMLCE-S PMLCE-D PMLCE-S PMLCE-D

Cancer

KNN 0.11 0.13

Hill

KNN 0.29 0.02

Turkiye

KNN 0.01 0.01
RF 0.09 0.10 RF 0.32 0.19 RF 0.03 0.02
SVC 0.11 0.13 SVC 0.31 0.29 SVC 0.04 0.04
XGB 0.18 0.18 XGB 0.08 0.14 XGB 0.07 0.07

Toxicity

KNN 0.48 0.30

Chess

KNN 0.01 0.01

Grid

KNN 0.01 0.15
RF 0.08 0.07 RF 0.38 0.01 RF 0.12 0.13
SVC 0.25 0.25 SVC 0.48 0.48 SVC 0.01 0.15
XGB 0.07 0.07 XGB 0.43 0.43 XGB 0.07 0.19

Darwin

KNN 0.29 0.29

Spambase

KNN 0.10 0.10

Bean

KNN 0.04 0.03
RF 0.41 0.34 RF 0.11 0.43 RF 0.02 0.04
SVC 0.40 0.40 SVC 0.48 0.48 SVC 0.02 0.04
XGB 0.28 0.28 XGB 0.37 0.37 XGB 0.03 0.05

Wine

KNN 0.21 0.30

Quality

KNN 0.09 0.09

Telescope

KNN 0.01 0.03
RF 0.30 0.36 RF 0.09 0.08 RF 0.03 0.03
SVC 0.38 0.40 SVC 0.04 0.06 SVC 0.03 0.03
XGB 0.37 0.33 XGB 0.09 0.09 XGB 0.03 0.03
r

s
c
c
a
s

D

parameter choices. However, as indicated in Table 5, if PMLCE-S and
MLCE-D use the same parameters, their accuracy at time 𝑡0 in Fig. 3

will also be identical.
Simultaneously, to assess whether there is a significant difference

n classification performance between different algorithms, we employ
he Wilcoxon rank sum test to compare the experimental results. With a
est threshold set at 0.1, we observe that all the test P-values are smaller
han the threshold, as indicated in Table 7. Therefore, we can reject
he null hypothesis and conclude that there is a significant difference
etween PMLCE-S and PMLCE-D compared to other feature selection
lgorithms.

5.4. Experiments of efficiency

In this subsection, we will discuss the efficiency of the feature
election algorithm.

We used 1 process for PMLCE-S and 8 processes for PMLCE-D,
omparing them with three other rough set-based feature selection
lgorithms: LFSACIE, LARD, and LFSASI. Since our proposed algorithms
re fundamentally different from feature selection methods that do not
ely on Rough Set Theory, comparing their running speed with non-
ough set algorithms would not accurately reflect the contribution of
ur work to rough set-based feature selection techniques. Therefore,
e selected only the three aforementioned algorithms for comparison
nd analysis.

At the same time, since parallel computing is not necessary for small
data sets, we only analyze the results of the algorithm on data sets with

ore than 1000 samples, which are Chess, Spambase, Quality, Turkiye,
Grid, Bean, and Telescope.

Other details about the experiment have been described in Sec-
tion 5.1 and Section 5.2.

In Table 8, we present the cumulative running time of each model
at four different moments during the dynamic training process. It is
evident that PMLCE-S and PMLCE-D are significantly faster than other
rough set algorithms. Additionally, when run with the same number of
processes, PMLCE-D, being a dynamic algorithm, is much faster than
PMLCE-S, which is static. For both PMLCE-S and PMLCE-D, running
 t

9 
them in parallel with multiple processes is also much faster than
running them in a non-parallel fashion.

In Fig. 4, we illustrate the speed-up ratio of feature selection algo-
ithms, defined as:

Speed-up ratio =
Consuming time of PMLCE-D 1 process

Consuming time of other algorithm .

It is evident that the speed of PMLCE-D with 8 processes has
increased by 2 to 5 times compared to PMLCE-S with 1 process. This
phenomenon becomes more apparent as the number of samples in the
dataset increases.

In conclusion, both PMLCE-S and PMLCE-D are efficient feature
election algorithms. Comparing PMLCE-S with PMLCE-D, the latter
an be dynamically trained, resulting in faster performance. By suc-
essfully transforming PMLCE-S and PMLCE-D into parallel computing
lgorithms, we enhance the utilization of computing resources and
ignificantly improve training speed.

5.5. Summary of experiments

The experiments on accuracy demonstrate that the proposed feature
extraction algorithms, PMLCE-S and PMLCE-D, perform exceptionally
well on most datasets, except for Turkiye and Quality, showing sig-
nificant improvements compared to other rough set-based algorithms.
The highest mean accuracy and standard deviation for different classi-
fiers after feature selection are presented, and the difference in initial
accuracy between PMLCE-S and PMLCE-D is attributed to different
parameter choices. However, if the same parameters are selected, their
initial accuracy will be identical.

In terms of efficiency, PMLCE-S and PMLCE-D were evaluated us-
ing both 1 and 8 processes, and their performance was compared to
other rough set-based algorithms on larger datasets. PMLCE-D, being
dynamic, was significantly faster than PMLCE-S, especially when par-
allelized. The speed-up ratio of PMLCE-D with 8 processes showed
an increase of 2 to 5 times compared to PMLCE-S with 1 process.
Overall, both algorithms proved to be highly efficient, with PMLCE-
 demonstrating faster performance and better resource utilization
hrough parallel computing.

https://doi.org/10.24432/C52P59
https://doi.org/10.24432/C53G6X
https://doi.org/10.24432/C59313
https://doi.org/10.24432/C56S3T
https://doi.org/10.24432/C55D0K
https://doi.org/10.24432/C5S02S
https://doi.org/10.24432/C5PC7J
https://doi.org/10.24432/C5PG66
https://doi.org/10.24432/C5JC8P
https://doi.org/10.24432/C50S4B
https://doi.org/10.24432/C5DK5C
https://doi.org/10.24432/C52C8B
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Fig. 3. Accuracy (%) of algorithms at each moment.
Fig. 4. Speed-up ratio (%) of algorithms based on rough set.
Based on the above experiments, we can conclude that both PMLCE-
S and PMLCE-D, being parallel algorithms, outperform other algorithms
in terms of accuracy and efficiency. This advantage becomes partic-
ularly pronounced when dealing with large datasets, showcasing the
10 
benefits of parallel algorithms, especially in the context of training sub-
stantial data. Additionally, the dynamic nature of PMLCE-D results in
significant time savings, thereby realizing an efficient feature selection
algorithm.
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Table 6
Accuracy (mean ± std. %) of algorithms at last moment.

Raw ICA Isomap PCA Relief LFSACIE LARD LFSASI PMLCE-S PMLCE-D

Cancer

KNN 75.76 ± 13.29(9) 65.53 ± 15.51(9) 64.70 ± 13.90(2) 73.03 ± 12.61(5) 69.02 ± 12.37(6) 72.27 ± 11.89(2) 72.27 ± 11.89(2) 65.76 ± 9.77(1) 77.35 ± 15.94(6) 79.32 ± 12.63(6)
RF 73.33 ± 10.98(9) 73.26 ± 11.79(9) 65.53 ± 17.11(2) 73.11 ± 14.23(5) 62.20 ± 12.48(6) 70.91 ± 12.37(2) 71.89 ± 15.76(2) 67.42 ± 7.87(1) 77.65 ± 9.30(6) 80.98 ± 9.24(6)
SVC 75.83 ± 14.39(9) 74.24 ± 12.08(9) 66.44 ± 16.80(2) 73.11 ± 15.56(5) 73.26 ± 11.79(6) 74.92 ± 12.17(2) 74.92 ± 12.17(2) 67.12 ± 16.36(1) 79.17 ± 15.32(6) 80.23 ± 9.67(6)
XGB 72.42 ± 9.16(9) 71.36 ± 14.51(9) 61.14 ± 16.05(2) 72.42 ± 7.72(5) 66.36 ± 10.86(6) 71.59 ± 8.95(2) 71.59 ± 8.95(2) 66.44 ± 5.77(1) 75.83 ± 9.02(8) 75.83 ± 9.02(8)

Toxicity

KNN 58.59 ± 13.65(1203) 67.25 ± 2.93(171) 64.41 ± 16.20(2) 55.69 ± 15.31(22) 58.56 ± 13.58(761) 67.84 ± 5.64(2) 67.84 ± 5.64(2) 60.88 ± 9.20(11) 67.91 ± 9.29(30) 67.29 ± 9.49(12)
RF 61.44 ± 7.68(1203) 62.55 ± 8.03(171) 61.99 ± 10.42(2) 64.41 ± 7.90(22) 59.77 ± 11.47(761) 65.52 ± 10.03(2) 64.31 ± 10.57(2) 62.58 ± 9.62(11) 69.64 ± 10.06(5) 68.46 ± 10.97(5)
SVC 65.52 ± 4.01(1203) 67.25 ± 2.93(171) 66.67 ± 2.77(2) 65.52 ± 5.61(22) 66.11 ± 4.30(761) 67.25 ± 2.93(2) 67.25 ± 2.93(2) 66.11 ± 4.30(11) 68.43 ± 4.84(11) 68.43 ± 4.84(11)
XGB 60.29 ± 10.31(1203) 61.96 ± 10.18(171) 57.94 ± 10.00(2) 60.88 ± 9.20(22) 61.47 ± 11.13(761) 61.44 ± 14.85(2) 61.44 ± 14.85(2) 61.37 ± 9.78(11) 67.35 ± 8.60(5) 67.35 ± 8.60(5)

Darwin

KNN 75.29 ± 10.33(450) 50.07 ± 11.24(174) 71.37 ± 9.48(2) 80.49 ± 8.23(49) 77.09 ± 10.79(315) 63.17 ± 14.73(2) 67.32 ± 11.10(3) 78.63 ± 10.17(11) 87.94 ± 7.80(11) 87.94 ± 7.80(11)
RF 89.58 ± 5.41(450) 56.50 ± 15.75(174) 71.34 ± 9.20(2) 83.99 ± 8.38(49) 87.84 ± 9.27(315) 66.08 ± 12.35(2) 63.01 ± 14.16(3) 83.76 ± 11.04(11) 89.54 ± 9.87(15) 89.61 ± 8.51(13)
SVC 90.78 ± 5.53(450) 51.18 ± 2.06(174) 75.75 ± 9.25(2) 91.90 ± 6.18(49) 89.61 ± 7.03(315) 60.95 ± 8.73(2) 66.05 ± 5.96(3) 82.09 ± 9.86(11) 89.61 ± 6.58(13) 89.61 ± 6.58(13)
XGB 85.59 ± 9.62(450) 56.47 ± 11.75(174) 69.64 ± 11.30(2) 84.97 ± 7.42(49) 89.05 ± 7.36(315) 67.32 ± 13.54(2) 62.42 ± 12.48(3) 81.44 ± 9.92(11) 89.08 ± 5.61(8) 89.08 ± 5.61(8)

Wine

KNN 96.67 ± 5.97(13) 90.46 ± 7.43(13) 95.00 ± 6.11(2) 96.67 ± 5.37(5) 95.00 ± 4.86(9) 87.19 ± 8.27(2) 87.19 ± 8.27(2) 69.15 ± 9.46(1) 97.78 ± 3.88(6) 99.44 ± 1.76(7)
RF 98.33 ± 3.75(13) 89.90 ± 4.37(13) 95.00 ± 6.11(2) 96.67 ± 7.03(5) 97.78 ± 3.88(9) 88.86 ± 6.90(2) 89.41 ± 7.12(2) 60.69 ± 8.18(1) 98.89 ± 2.34(7) 98.89 ± 3.51(9)
SVC 98.33 ± 3.75(13) 97.22 ± 4.72(13) 95.56 ± 5.74(2) 97.22 ± 5.40(5) 97.78 ± 2.87(9) 88.86 ± 7.83(2) 88.86 ± 7.83(2) 69.25 ± 10.96(1) 99.44 ± 1.76(10) 99.44 ± 1.76(11)
XGB 96.08 ± 6.96(13) 89.97 ± 7.75(13) 95.00 ± 5.52(2) 95.00 ± 7.15(5) 95.56 ± 6.83(9) 88.89 ± 8.69(2) 88.89 ± 8.69(2) 63.56 ± 8.10(1) 97.78 ± 3.88(10) 97.78 ± 3.88(9)

Hill

KNN 51.63 ± 4.64(100) 56.13 ± 7.11(100) 50.13 ± 7.07(2) 48.15 ± 7.57(1) 50.33 ± 4.48(64) 54.27 ± 7.52(4) 49.66 ± 5.29(86) 48.96 ± 7.75(1) 54.43 ± 5.85(29) 53.77 ± 4.57(66)
RF 58.23 ± 7.71(100) 52.82 ± 4.15(100) 48.01 ± 10.15(2) 48.66 ± 6.81(1) 54.13 ± 5.05(64) 58.89 ± 7.96(4) 55.92 ± 6.43(86) 51.65 ± 5.55(1) 59.04 ± 7.38(37) 59.22 ± 7.18(93)
SVC 47.53 ± 4.77(100) 61.23 ± 6.39(100) 48.36 ± 3.77(2) 47.20 ± 4.57(1) 47.03 ± 5.78(64) 46.87 ± 4.53(4) 47.20 ± 5.27(86) 48.86 ± 4.69(1) 47.87 ± 4.82(51) 48.36 ± 3.85(25)
XGB 60.88 ± 5.03(100) 55.46 ± 3.59(100) 48.00 ± 6.37(2) 46.52 ± 6.43(1) 55.29 ± 5.18(64) 56.41 ± 6.75(4) 61.03 ± 5.29(86) 48.50 ± 6.62(1) 62.69 ± 5.41(67) 63.51 ± 6.38(65)

Chess

KNN 95.21 ± 1.25(36) 94.59 ± 1.23(36) 64.11 ± 1.82(2) 95.31 ± 1.07(15) 92.99 ± 1.14(9) 51.82 ± 1.38(1) 96.06 ± 1.31(29) 75.72 ± 1.62(4) 96.06 ± 1.31(29) 96.06 ± 1.31(29)
RF 99.22 ± 0.68(36) 98.37 ± 0.64(36) 62.89 ± 2.59(2) 96.25 ± 1.17(15) 95.59 ± 1.64(9) 52.22 ± 0.10(1) 99.06 ± 0.57(29) 75.72 ± 1.62(4) 99.15 ± 0.68(30) 99.16 ± 0.55(29)
SVC 98.81 ± 0.69(36) 98.65 ± 0.86(36) 60.76 ± 2.52(2) 96.71 ± 0.84(15) 95.43 ± 1.51(9) 52.22 ± 0.10(1) 98.78 ± 0.70(29) 75.69 ± 1.61(4) 98.87 ± 0.71(34) 98.87 ± 0.71(34)
XGB 99.41 ± 0.52(36) 98.94 ± 0.57(36) 62.42 ± 2.96(2) 96.50 ± 1.06(15) 95.49 ± 1.59(9) 52.22 ± 0.10(1) 99.44 ± 0.60(29) 75.66 ± 1.59(4) 99.50 ± 0.51(31) 99.50 ± 0.51(31)

Spambase

KNN 91.46 ± 1.17(57) 90.46 ± 1.13(57) 87.29 ± 0.78(2) 91.50 ± 0.89(25) 91.18 ± 1.15(32) 82.87 ± 1.85(6) 91.52 ± 1.74(33) 65.05 ± 2.18(2) 92.02 ± 1.08(45) 92.02 ± 1.08(45)
RF 95.52 ± 0.78(57) 94.87 ± 0.83(57) 89.24 ± 1.22(2) 93.39 ± 0.98(25) 94.94 ± 0.90(32) 87.57 ± 1.72(6) 95.09 ± 1.17(33) 66.25 ± 2.31(2) 95.50 ± 1.05(45) 95.54 ± 0.93(55)
SVC 94.37 ± 1.05(57) 94.18 ± 0.81(57) 87.05 ± 1.31(2) 93.52 ± 0.91(25) 93.20 ± 1.01(32) 82.22 ± 0.87(6) 93.89 ± 1.13(33) 66.07 ± 2.80(2) 94.44 ± 0.93(56) 94.44 ± 0.93(56)
XGB 95.61 ± 0.90(57) 94.98 ± 1.03(57) 88.15 ± 0.79(2) 93.76 ± 0.75(25) 94.57 ± 0.81(32) 86.53 ± 1.71(6) 94.98 ± 0.79(33) 66.22 ± 2.12(2) 95.61 ± 0.90(56) 95.61 ± 0.90(56)

Quality

KNN 56.14 ± 2.76(11) 56.23 ± 2.18(11) 49.98 ± 2.01(2) 55.80 ± 1.82(6) 53.61 ± 2.59(7) 47.63 ± 2.66(3) 49.96 ± 2.64(5) 37.95 ± 2.91(2) 56.14 ± 2.76(11) 56.14 ± 2.76(11)
RF 70.31 ± 1.64(11) 70.38 ± 1.82(11) 61.33 ± 1.89(2) 69.07 ± 1.58(6) 68.48 ± 1.76(7) 60.51 ± 2.08(3) 64.56 ± 1.54(5) 45.10 ± 1.34(2) 70.27 ± 2.11(11) 70.66 ± 2.04(10)
SVC 57.13 ± 2.76(11) 57.66 ± 2.23(11) 47.69 ± 2.06(2) 54.57 ± 1.89(6) 53.80 ± 2.47(7) 46.86 ± 1.24(3) 47.20 ± 1.65(5) 44.81 ± 0.17(2) 57.53 ± 2.63(10) 57.53 ± 2.63(10)
XGB 68.74 ± 1.88(11) 69.17 ± 1.43(11) 56.04 ± 1.74(2) 67.27 ± 1.53(6) 65.52 ± 1.95(7) 53.88 ± 1.99(3) 60.94 ± 1.44(5) 45.12 ± 1.21(2) 68.74 ± 1.88(11) 68.74 ± 1.88(11)

Turkiye

KNN 70.45 ± 1.91(32) 67.94 ± 1.52(32) 66.24 ± 2.71(2) 62.27 ± 1.64(3) 71.92 ± 1.69(20) 87.25 ± 1.51(2) 71.62 ± 1.77(18) 87.25 ± 1.51(2) 72.11 ± 2.30(18) 72.11 ± 2.30(18)
RF 90.12 ± 1.15(32) 82.85 ± 1.33(32) 72.96 ± 1.70(2) 74.36 ± 1.12(3) 92.85 ± 0.93(20) 98.30 ± 0.57(2) 93.32 ± 0.86(18) 98.30 ± 0.57(2) 93.73 ± 0.92(18) 93.78 ± 0.77(18)
SVC 62.11 ± 0.27(32) 62.04 ± 0.38(32) 61.87 ± 0.05(2) 61.87 ± 0.05(3) 62.47 ± 0.44(20) 74.74 ± 3.04(2) 61.92 ± 0.17(18) 97.59 ± 0.70(2) 62.34 ± 0.53(19) 62.34 ± 0.53(19)
XGB 97.97 ± 0.62(32) 93.42 ± 0.73(32) 70.82 ± 1.81(2) 71.55 ± 1.90(3) 98.06 ± 0.65(20) 98.30 ± 0.57(2) 98.02 ± 0.65(18) 98.30 ± 0.57(2) 98.06 ± 0.71(30) 98.06 ± 0.71(30)

Grid

KNN 93.62 ± 0.53(13) 92.67 ± 0.68(13) 89.83 ± 0.78(2) 91.48 ± 0.51(9) 95.66 ± 0.31(8) 99.05 ± 0.38(3) 99.10 ± 0.20(3) 95.12 ± 0.78(10) 98.33 ± 0.30(4) 97.51 ± 0.38(5)
RF 99.98 ± 0.04(13) 95.12 ± 0.64(13) 89.23 ± 1.03(2) 92.57 ± 0.91(9) 99.98 ± 0.04(8) 99.98 ± 0.04(3) 99.99 ± 0.03(3) 99.98 ± 0.04(10) 99.99 ± 0.03(8) 99.98 ± 0.04(5)
SVC 98.70 ± 0.27(13) 98.57 ± 0.13(13) 90.60 ± 1.14(2) 94.30 ± 0.55(9) 99.11 ± 0.23(8) 99.70 ± 0.12(3) 99.69 ± 0.17(3) 98.92 ± 0.24(10) 99.54 ± 0.18(4) 99.41 ± 0.19(5)
XGB 99.85 ± 0.18(13) 97.63 ± 0.54(13) 89.88 ± 0.88(2) 93.33 ± 0.87(9) 99.83 ± 0.20(8) 99.84 ± 0.16(3) 99.81 ± 0.14(3) 99.87 ± 0.16(10) 99.88 ± 0.15(6) 99.86 ± 0.12(8)

Bean

KNN 92.24 ± 0.49(16) 92.25 ± 0.43(16) 87.05 ± 0.69(2) 85.89 ± 0.82(2) 92.13 ± 0.44(10) 89.71 ± 0.56(4) 90.91 ± 0.73(5) 58.20 ± 1.20(2) 92.28 ± 0.45(14) 92.37 ± 0.44(11)
RF 92.40 ± 0.46(16) 92.69 ± 0.60(16) 86.80 ± 0.56(2) 85.79 ± 0.61(2) 92.37 ± 0.58(10) 91.01 ± 0.53(4) 91.90 ± 0.51(5) 55.08 ± 1.23(2) 92.76 ± 0.50(6) 92.50 ± 0.46(12)
SVC 92.99 ± 0.58(16) 92.98 ± 0.51(16) 88.41 ± 0.67(2) 87.74 ± 0.64(2) 93.03 ± 0.54(10) 91.18 ± 0.69(4) 92.39 ± 0.52(5) 63.35 ± 0.47(2) 93.12 ± 0.61(6) 93.08 ± 0.54(12)
XGB 92.76 ± 0.49(16) 92.84 ± 0.56(16) 87.18 ± 0.79(2) 86.32 ± 0.59(2) 92.60 ± 0.51(10) 90.74 ± 0.51(4) 91.78 ± 0.51(5) 62.66 ± 0.96(2) 92.79 ± 0.44(12) 92.76 ± 0.49(16)

Telescope

KNN 84.37 ± 0.62(10) 84.66 ± 0.99(10) 68.53 ± 0.97(2) 76.82 ± 0.57(4) 83.84 ± 0.81(7) 81.60 ± 0.77(4) 84.61 ± 0.71(6) 67.42 ± 1.11(2) 85.07 ± 0.66(6) 84.37 ± 0.62(10)
RF 88.20 ± 0.66(10) 87.67 ± 0.92(10) 69.68 ± 0.85(2) 78.68 ± 0.61(4) 87.49 ± 0.55(7) 84.58 ± 0.79(4) 87.00 ± 0.63(6) 61.62 ± 1.27(2) 88.21 ± 0.57(10) 88.35 ± 0.49(10)
SVC 86.96 ± 0.76(10) 87.56 ± 0.84(10) 71.76 ± 0.74(2) 78.44 ± 0.69(4) 85.91 ± 0.86(7) 82.91 ± 0.69(4) 86.35 ± 0.83(6) 72.01 ± 0.60(2) 86.96 ± 0.76(10) 86.96 ± 0.76(10)
XGB 88.40 ± 0.64(10) 87.08 ± 0.61(10) 71.87 ± 0.86(2) 78.60 ± 0.80(4) 87.58 ± 0.71(7) 84.43 ± 0.60(4) 86.84 ± 0.55(6) 72.70 ± 0.66(2) 88.40 ± 0.64(10) 88.40 ± 0.64(10)

* The numbers in brackets indicate the number of selected features.
Table 7
Wilcoxon rank sum test of PMLCE-S and PMLCE-D.

(a) Wilcoxon Rank Sum Test of PMLCE-S

Raw ICA Isomap PCA Relief LFSACIE LARD LFSASI

KNN 0.0001 0.0142 0.0000 0.0001 0.0000 0.0024 0.0050 0.0003
RF 0.0635 0.0010 0.0000 0.0000 0.0001 0.0012 0.0004 0.0003
SVC 0.0190 0.0717 0.0001 0.0006 0.0007 0.0041 0.0008 0.0019
XGB 0.0009 0.0062 0.0000 0.0000 0.0001 0.0002 0.0001 0.0005

(b) Wilcoxon Rank Sum Test of PMLCE-D

Raw ICA Isomap PCA Relief LFSACIE LARD LFSASI

KNN 0.0021 0.0253 0.0000 0.0016 0.0000 0.0083 0.0295 0.0004
RF 0.0093 0.0004 0.0000 0.0001 0.0001 0.0003 0.0003 0.0001
SVC 0.0244 0.0551 0.0001 0.0005 0.0007 0.0031 0.0004 0.0019
XGB 0.0031 0.0081 0.0000 0.0000 0.0001 0.0002 0.0002 0.0007
e
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a
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6. Summary and future research direction

This study introduces advanced parallel feature selection algo-
rithms, founded on matrix formulations and reinforced by the the-
retical principles of local neighborhood rough sets and composite
ntropy. It begins with an in-depth exposition of the foundational
 s
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concepts of neighborhood rough sets and the complex role of composite
ntropy. Based on this theoretical groundwork, two parallel feature
election algorithms are presented: one designed for static datasets
nd another for dynamic datasets, both exhibiting high effectiveness.
mpirical testing validates the algorithms’ precision, efficiency, and

uperior operational performance.
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Table 8
Cumulative running time (s) of algorithms based on rough set.

𝑡0 𝑡1 𝑡2 𝑡3 𝑡0 𝑡1 𝑡2 𝑡3

Chess

LFSACIE 1.70 26.17 42.30 58.42

Grid

12.18 51.20 140.83 236.50
LARD 12.66 74.02 203.62 340.37 23.78 127.76 358.77 445.93
LFSASI 3.84 84.84 241.29 324.30 14.07 70.77 197.21 697.39
PMLCE-S 1 process 10.26 25.18 48.18 63.86 5.83 28.86 84.17 176.59
PMLCE-S 8 processes 5.87 13.95 24.94 32.34 2.66 13.11 37.25 79.58
PMLCE-D 1 process 6.29 14.44 27.44 34.79 2.20 9.98 33.42 47.72
PMLCE-D 8 processes 4.69 10.09 16.88 21.67 2.76 8.96 22.57 35.25

Spambase

LFSACIE 18.18 88.48 256.43 424.21

Bean

26.98 153.70 425.34 695.42
LARD 79.00 380.88 1103.84 1757.10 69.28 359.78 989.40 1272.21
LFSASI 12.42 61.84 173.41 284.76 50.43 252.06 704.71 1156.32
PMLCE-S 1 process 51.90 107.74 162.29 209.30 13.87 70.06 199.44 319.11
PMLCE-S 8 processes 30.00 58.21 84.12 106.25 5.92 29.72 84.86 136.05
PMLCE-D 1 process 32.16 66.73 107.94 129.76 5.13 25.24 79.40 111.03
PMLCE-D 8 processes 26.41 46.52 63.06 75.09 6.30 20.52 51.91 85.25

Quality

LFSACIE 2.32 12.01 31.59 48.13

Telescope

34.40 183.33 504.61 806.27
LARD 3.46 18.42 51.63 73.57 52.89 264.38 720.87 1061.50
LFSASI 4.71 23.28 64.80 106.21 40.59 200.39 558.95 916.67
PMLCE-S 1 process 0.98 5.12 14.53 23.26 16.17 83.15 231.50 366.55
PMLCE-S 8 processes 0.62 2.68 7.32 11.66 7.75 40.56 117.23 186.07
PMLCE-D 1 process 0.43 1.90 5.56 7.46 6.52 32.52 102.90 142.13
PMLCE-D 8 processes 0.63 1.91 4.48 6.62 6.25 17.33 46.13 72.56

Turkiye

LFSACIE 7.57 37.26 105.81 173.48
LARD 37.80 198.76 589.42 941.07
LFSASI 12.57 63.08 175.38 287.94
PMLCE-S 1 process 8.70 36.11 94.62 137.10
PMLCE-S 8 processes 5.24 18.47 46.79 67.12
PMLCE-D 1 process 5.30 19.00 52.91 65.62
PMLCE-D 8 processes 5.77 19.03 45.84 60.99
d

W
d
I
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Compared to traditional feature selection algorithms based on rough
ets, the algorithms proposed in this paper offer several distinct advan-
ages:

(1) The integration of local neighborhood rough sets and com-
posite entropy significantly enhances the performance of our
algorithm. This improvement allows for more effective feature
screening, ultimately increasing the predictive power of the
overall model.

(2) By employing matrix operations, our algorithm achieves a
marked improvement in computational efficiency over conven-
tional rough set-based methods. The addition of parallel com-
puting further enhances this efficiency. Furthermore, the algo-
rithm’s adaptability to dynamic data makes it more practical
for handling real-world scenarios where the volume of data and
features changes continuously.

(3) Traditional rough set-based algorithms struggle with large
datasets due to their low computational efficiency. In contrast,
our algorithm significantly improves efficiency, enabling the
processing of large-scale datasets that traditional algorithms
cannot handle. This advancement provides a competitive edge
in addressing complex data challenges.

However, our experimental results also highlight certain limitations
of the proposed algorithm that require further refinement:

(1) Composite entropy, while useful, still exhibits some uncertainty
when measuring information systems. It provides only a single-
granularity perspective, lacking the precision of a multi-
granularity approach, which results in an incomplete represen-
tation of information system uncertainty.

(2) Although our algorithm processes larger datasets than previous
rough set-based feature selection algorithms, memory limita-
tions still hinder its ability to handle extremely large datasets
efficiently.
12 
(3) The current rough set-based feature selection algorithm is lim-
ited to tabular data and is not capable of processing other
types of data, such as audio or images, restricting its broader
applicability.

To address these limitations, our ongoing efforts and future research
irections include:

(1) Investigating a feature selection algorithm that combines com-
posite entropy and rough sets with a multi-granularity approach
to improve the measurement of information system uncertainty,
thereby enhancing the algorithm’s effectiveness.

(2) Exploring strategies to reduce computing resource consump-
tion and enhance the ability to process larger datasets more
efficiently. This may involve techniques such as compressing
neighborhood matrices to minimize memory usage or utilizing
GPUs to accelerate parallel matrix computations.

(3) Investigating the application of rough set-based feature selection
algorithms to non-tabular data, such as images and audio, to
expand the scope of rough set-based methods.
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