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 A B S T R A C T

Feature selection is pivotal for enhancing machine learning and data mining models, where its accuracy directly 
affects model performance and applicability. Traditional methods often overlook the dynamic nature of data 
and the multi-scale aspect of high-dimensional datasets, leading to limitations in real-world applications. This 
paper introduces a novel incremental feature selection method using a regularization vector (𝑅𝑉 ) tailored 
for dynamic multi-scale interval valued fuzzy decision systems (𝐷-𝑀𝐼𝑣𝐹𝐷). The paper first establishes the 
concepts of object affiliation relation and class, providing a theoretical basis for integrating replay and 
regularization. It then introduces the affiliation contradictory state (𝐴𝐶𝑆) and 𝑅𝑉 , broadening the application 
of contradictory state (𝐶𝑆) in dynamic settings and enabling efficient feature selection. The integration of 
regularization and replay strategies is realized through four algorithms designed for different update patterns. 
Empirical results across various datasets show that the proposed method significantly outperforms multiple 
conventional techniques, highlighting its practical potential for real-world deployments.
1. Introduction

Incremental feature selection is a continuously evolving method 
within the fields of dynamic data analysis and machine learning, serv-
ing a fundamental role in the dynamic identification and optimiza-
tion [1]. This iterative process not only boosts data processing effi-
ciency and alleviates overfitting risks, but also ameliorates the model’s 
capacity to generalize, particularly when handling extensive and high-
dimensional [2] datasets, such as pictures and videos [3]. By selectively 
introducing or excluding features over time, incremental feature se-
lection [4] enables models to adjust to evolving data patterns, which 
is a crucial capability in real-time data analysis and online learning 
scenarios [5]. With the integration of deep learning [6] technologies, 
incremental feature selection methods are being further optimized to 
accommodate more intricate data structures and extract profound fea-
ture insights, thus indicating expanded application prospects in areas 
such as image object detection [7], natural language processing [8], 
concept-cognitive learning [9], pattern recognition [10].

One notable distinction between incremental feature selection [11] 
and conventional feature selection methods lies in its ability to effec-
tively and adaptively respond to the evolving peculiarity of real-world 
information [12]. In various realistic fields such as autonomous driv-
ing [13] and remote sensing monitoring [14] research, datasets usually 
exhibit dynamic characteristics, with features and data points fluctu-
ating over time based on the concrete context, which necessitates a 
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superior standard of adaptability from the model. Incremental feature 
selection provides the advantage of adjusting and optimizing feature 
subsets [15] in real-time, enabling it to seamlessly accommodate these 
dynamic variations. Numerous studies have been conducted on the 
topic of incremental feature selection. An incremental feature selection 
approach to multi-dimensional variation based on matrix dominance 
conditional entropy was expounded by Xu et al. [16]. This paper 
introduces two algorithms 𝐼𝐹𝑆-𝐴 and 𝐼𝐹𝑆-𝐷 that leverage prior re-
duction results to efficiently decrease the required computation time. 
An incremental reduction method of imbalanced distributed mixed data 
based on 𝑘-nearest neighbor rough set was formulated by Xu et al. [17]. 
A novel incremental feature selection approach based on fuzzy rough 
set theory was delineated by Zhao et al. [4]. A rough set theory-
based group incremental feature selection approach was elaborated 
by Zhao et al. [18]. The triple nested equivalence class rough set 
theory (𝑇𝑁𝐸𝐶𝑅𝑆𝑇 ) was introduced in this article as a refinement to 
the incremental feature selection technique based on rough set theory 
(𝑅𝑆𝑇 ), addressing the issues of excessive redundancy and limited effi-
ciency associated with the extant approach. A novel incremental feature 
selection based on sub-tolerance relation for dynamic incomplete data 
was illuminated by Zhao et al. [19]. The sub-tolerance relation class 
(𝑆𝑇𝐶) was suggested to promote the incremental feature selection 
algorithm for managing incomplete stream data.
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The prevalence of uncertainty and imprecision in information
presents challenges in the decision-making process [20], such as object 
boundary perception [21] and multi-label classification, rendering 
traditional decision models inadequate. The exploration of 𝐷-𝑀𝐼𝑣𝐹𝐷
provides a more adaptable and comprehensive framework for address-
ing tanglesome decision-making scenarios [22]. This area of study holds 
theoretical and practical significance in intensifying decision quality 
and streamlining decision processes [23]. The ongoing researches in 
this domain [24] are displayed below. An attribute ranking method 
based on rough sets and interval-valued fuzzy sets was proposed by 
BK Vo et al. [25]. This study introduces a novel rough-fuzzy hybrid 
(𝑅𝐴𝐹𝐴𝑅) approach that employs an interval-valued fuzzy matrix to 
articulate the preference relations among attribute pairs. An overlap 
function-based three-way intelligent decision model under interval-
valued fuzzy information systems (𝐼𝐹𝐼𝑆𝑠) was suggested by Wang 
et al. [26]. This study conceives a 3𝑊𝐷 model rooted in prospect 
theory (𝑃𝑇 ) within the framework of 𝐼𝐹𝐼𝑆𝑠 to resolve decision-
making challenges effectively. In addition, an embedded feature selec-
tion model that includes both feature fusion and feature enhancement 
between views is proposed by Hao et al. [27]. In this paper, the 
comprehensive information of features is preserved by minimizing the 
difference between the weights of the two types of features, so as to 
reduce the impact of noise on multi-view multi-label learning. The 
literature classification related to this study is summarized in Table  13.

However, the current work does not incorporate a relatively full-
fledged and comprehensive incremental feature selection model or 
algorithm for 𝐷-𝑀𝐼𝑣𝐹𝐷 format data. Furthermore, several aspects, 
including the efficiency, accuracy and adaptability of feature selection, 
still require further promotion. Finally, the task of integrating the ideas 
of other research fields into this discipline and thereby facilitating the 
progress of the theoretical framework remains to be further accom-
plished. To summarize, in the light of these extant issues, the following 
contributions are presented in this article.

• First and foremost, the notion of 𝐷-𝑀𝐼𝑣𝐹𝐷 is procured, and the 
conceptions of object affiliation relation and affiliation class are 
raised, which lays a theoretical foundation for the implementation 
of the replay tactic.

• Secondly, the concepts of affiliation first contradictory index and 
𝑅𝑉  are elucidated in the context of dynamic data update, which 
furnishes a possibility for the combination of regularization and 
replay ideas.

• Finally, in accordance with four dynamic update modes, four 
high-efficiency incremental feature selection strategies are man-
ifested. Experimental results demonstrate the superior perfor-
mance of the proposed methods over traditional approaches 
across multiple datasets.

The rest of the article is organized as follows. Interval valued 
decision information system (𝐼𝑉 𝐷𝐼𝑆) and multi-scale decision infor-
mation system (𝑀𝐷𝐼𝑆) are illuminated in Section 2. Furthermore, the 
concepts of object affiliation relation, affiliation class, 𝐴𝐶𝑆 and 𝑅𝑉
are elaborated in Section 3. After that, four incremental feature selec-
tion techniques are expounded in Section 4. In Section 5, numerous 
numerical experiments are conducted to appraise the efficacy of the 
aforementioned methods in conjunction with comparative experiments. 
Finally, the results and conclusions of this paper are summarized and 
further directions for future research are pointed out.

2. Interval valued decision information system and multi-scale 
decision information system

In this section, the concept of 𝐼𝑉 𝐷𝐼𝑆 is presented initially, followed 
by a comprehensive interpretation of 𝑀𝐷𝐼𝑆. These principles serve as 
the foundation for the investigation conducted in this study.
2 
2.1. Interval valued decision information system

In practical decision-making scenarios, data frequently does not 
exist in the form of a single value and instead exhibits a degree of 
uncertainty, which can be represented through interval values. An 
𝐼𝑉 𝐷𝐼𝑆 [28] can be picturesquely demonstrated by a tuple 𝑆 = (𝑂,𝐶 ∪
{𝑑}). 𝑂 = {𝑜1, 𝑜2,… , 𝑜𝑛} is a non-empty finite set of objects, which is 
known as the universe of discourse. 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑚} is a non-empty 
restricted set of conditional attributes, where 𝑐𝑗 can be referred to as 
a mapping, 𝑐𝑗 ∶ 𝑂 → 𝑊 (𝑉𝑗 ), for all 𝑐𝑗 ∈ 𝐶, i.e. 𝑐𝑗 (𝑜𝑖) = [𝑎𝐿𝑗 (𝑜𝑖), 𝑎

𝑈
𝑗 (𝑜𝑖)], 

𝑜𝑖 ∈ 𝑂. Where 𝑎𝐿𝑗 (𝑜𝑖) ≤ 𝑎𝑈𝑗 (𝑜𝑖), 𝑎𝐿𝑗 (𝑜𝑖) ∈ 𝑉𝑗 , 𝑎𝑈𝑗 (𝑜𝑖) ∈ 𝑉𝑗 , and 𝑉𝑗 is 
the domain of conditional attribute 𝑐𝑗 , 𝑊 (𝑉𝑗 ) is the set of all interval 
values over 𝑉𝑗 . Besides, 𝑑 ∉ {𝑐𝑗 |𝑗 = 1, 2,… , 𝑚} the decision such that 
𝑑 ∶ 𝑂 → 𝑉𝑑 , where 𝑉𝑑 is the domain of decision attribute 𝑑.

2.2. Multi-scale decision information system

𝑀𝐷𝐼𝑆 operates on the principle of multi-granularity, enabling the 
examination and manipulation of data from various perspectives and 
in-depth levels. An 𝑀𝐷𝐼𝑆 [29] can be pictorially exhibited by a tuple 
𝑆 = (𝑂,𝐶 ∪ {𝑑}). 𝑂 = {𝑜1, 𝑜2,… , 𝑜𝑛} is a non-empty limited set of ob-
jects, which is deemed as the universe of discourse. 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑚}
is a non-empty numbered set of conditional attributes, each conditional 
attribute possesses 𝐿 scales. Where 𝑐𝑙𝑗 can be considered as a mapping, 
𝑐𝑙𝑗 ∶ 𝑂 → 𝑉 𝑙

𝑗 , for all 𝑐𝑗 ∈ 𝐶. And 𝑉 𝑙
𝑗  is the domain of conditional 

attribute 𝑐𝑗 on the 𝑙th scale. Furthermore, 𝑑 ∉ {𝑐𝑙𝑗 |𝑗 = 1, 2,… , 𝑚; 𝑙 =
1, 2,… , 𝐿} the decision such that 𝑑 ∶ 𝑂 → 𝑉𝑑 .

3. Dynamic multi-scale interval valued Fuzzy decision informa-
tion system

This section provides a meticulous explanation of the multi-scale 
interval valued fuzzy decision information system (𝑀𝐼𝑣𝐹𝐷). Subse-
quently, in consideration of the characteristics of dynamic issues, four 
patterns of updating information system are delineated. Drawing from 
the principles of incremental learning grounded in regularization and 
replay, the notions of object affiliation relation and affiliation class 
are introduced. Where regularization and replay methodologies are 
significant techniques employed in machine learning to enhance the 
generalization capacity and stability of models. Regularization miti-
gates the risk of overfitting by incorporating a penalty term into the loss 
function, whereas the replay strategy refines the learning process of the 
current model by leveraging previously acquired data or experiences. 
When these two concepts are applied to the domain of information 
systems research, certain adaptations are implemented to enhance 
their relevance and applicability, and the particular modifications are 
expounded in the following sections. In addition, in accordance with 
the illustration of 𝐶𝑆 and object affiliation relation, 𝐴𝐶𝑆 and affiliation 
contradictory state sequence (𝐴𝐶𝑆𝑆) that are appropriate for address-
ing dynamic issues are presented. The primary model of this research 
is expounded in Fig.  1.

3.1. Multi-scale interval valued Fuzzy decision information system

An 𝑀𝐼𝑣𝐹𝐷 [30] can be held up by a tuple 𝑆 = (𝑂,𝐶 ∪ {𝑑}). 𝑂 =
{𝑜1, 𝑜2,… , 𝑜𝑛} is a non-empty restricted set of objects, which is referred 
to as the universe of discourse. 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑚} is a non-empty 
finite set of conditional attributes, each conditional attribute possesses 
𝐿 scales. Where 𝑐𝑙𝑗 can be deemed as a mapping, 𝑐𝑙𝑗 ∶ 𝑂 → 𝑊 (𝑉 𝑙

𝑗 ), 
i.e. 𝑐𝑙𝑗 (𝑜𝑖) = [𝑎𝑙,𝐿𝑗 (𝑜𝑖), 𝑎

𝑙,𝑈
𝑗 (𝑜𝑖)], 𝑜𝑖 ∈ 𝑂. And 𝑎𝑙,𝐿𝑗 (𝑜𝑖) ≤ 𝑎𝑙,𝑈𝑗 (𝑜𝑖), 𝑎𝑙,𝐿𝑗 (𝑜𝑖) ∈ 𝑉 𝑙

𝑗 , 
𝑎𝑙,𝑈𝑗 (𝑜𝑖) ∈ 𝑉 𝑙

𝑗 , 𝑊 (𝑉 𝑙
𝑗 ) is the set of all interval values over 𝑉 𝑙

𝑗 , for all 
𝑐𝑗 ∈ 𝐶. In addition, 𝑑 ∉ {𝑐𝑙𝑗 |𝑗 = 1, 2,… , 𝑚; 𝑙 = 1, 2,… , 𝐿} the decision 
such that 𝑑 ∶ 𝑂 → [0, 1], where [0, 1] is the domain of decision attribute 
𝑑 with a single scale.

In an 𝑀𝐼𝑣𝐹𝐷, there are two surjective relation between contiguous 
scales. One is 𝜙𝑙,𝑙+1 ∶ 𝑉 𝑙 → 𝑉 𝑙+1, i.e. 𝑣𝑙+1(𝑜 ) = 𝜙𝑙,𝑙+1(𝑣𝑙 (𝑜 )), where 
𝑗 𝑗 𝑗 𝑗 𝑖 𝑗 𝑗 𝑖
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Fig. 1. Model flow chart.
Fig. 2. The calculation process of 𝐴𝐹𝐶𝑂 and 𝐴𝐹𝐶𝐼 .
𝑜𝑖 ∈ 𝑂, 𝑣𝑙𝑗 ∈ 𝑉 𝑙
𝑗 , 𝑣𝑙+1𝑗 ∈ 𝑉 𝑙+1

𝑗 , 𝑙 ∈ {1, 2,… , 𝐿 − 1}, 𝑗 ∈ {1, 2,… , 𝑚}. The 
another is 𝛷𝑙,𝑙+1

𝑗 ∶ 𝑊 (𝑉 𝑙
𝑗 ) → 𝑊 (𝑉 𝑙+1

𝑗 ), i.e. 𝑐𝑙+1𝑗 (𝑜𝑖) = 𝛷𝑙,𝑙+1
𝑗 (𝑐𝑙𝑗 (𝑜𝑖)) =

𝛷𝑙,𝑙+1
𝑗 ([𝑎𝑙,𝐿𝑗 (𝑜𝑖), 𝑎𝑙,𝑈𝑗 (𝑜𝑖)]) = [𝑎𝑙+1,𝐿𝑗 (𝑜𝑖), 𝑎

𝑙+1,𝑈
𝑗 (𝑜𝑖)], where 𝑜𝑖 ∈ 𝑂, 𝑙 ∈

{1, 2,… , 𝐿 − 1}. And 𝛷𝑙,𝑙+1
𝑗 ([𝑎𝑙,𝐿𝑗 (𝑜𝑖), 𝑎

𝑙,𝑈
𝑗 (𝑜𝑖)]) = [𝜙𝑙,𝑙+1,𝐿

𝑗 (𝑎𝑙,𝐿𝑗 (𝑜𝑖)),
𝜙𝑙,𝑙+1,𝑈
𝑗 (𝑎𝑙,𝑈𝑗 (𝑜𝑖))], where 𝜙𝑙,𝑙+1

𝑗  is considered as scale transformation 
mapping, and 𝛷𝑙,𝑙+1

𝑗  is deemed as domain transformation mapping.
A fuzzy equivalence relation 𝑅𝑑 on objects can divide object set 𝑂

into 𝑡 decision classes based on mapping 𝑑 ∶ 𝑂 → [0, 1] and given 
𝑡, demonstrated as 𝑂∕𝑅𝑑 = {𝑅𝑑 (𝑜)|𝑜 ∈ 𝑂} = {𝐷1, 𝐷2,… , 𝐷𝑡}, where 
𝑅𝑑 (𝑜) = {𝑝|(𝑜, 𝑝) ∈ 𝑅𝑑 , 𝑝 ∈ 𝑂}, 𝐷𝑖 = {𝑜| 𝑖−1𝑡 ≤ 𝑑(𝑜) < 𝑖

𝑡 }, 𝑖 ∈ {1, 2,… , 𝑡}, 
specially 𝐷𝑡 = {𝑜| 𝑡−1𝑡 ≤ 𝑑(𝑜) ≤ 1}.

To expedite the process of feature selection within 𝑀𝐼𝑣𝐹𝐷 frame-
work, 𝐶𝑆 is introduced as a metric for evaluating the consistency of 
information systems. It can be divided into 𝐿 𝑠𝑢𝑏 − 𝐼𝑉 𝐷𝐼𝑆𝑠 for an 
𝑀𝐼𝑣𝐹𝐷, written as 𝑆𝑙 = (𝑂,𝐶 𝑙 ∪ {𝑑}), |𝑂| = 𝑛, 𝑙 ∈ {1, 2,… , 𝐿}. We 
judge whether 𝑜𝑖 ∈ 𝑂 satisfy 𝑆𝐶𝜍𝑙

𝐶 𝑙 (𝑜𝑖) ⊆ 𝑅𝑑 (𝑜𝑖) in line with the order of 
subscripts, where 𝑆𝐶𝜍𝑙

𝐶 𝑙 (𝑜𝑖) is the similarity class of object 𝑜𝑖 w.r.t. 𝐶 𝑙

and 𝜍𝑙. The first object that does not gratify 𝑆𝐶𝜍𝑙

𝐶 𝑙 (𝑜𝑖) ⊆ 𝑅𝑑 (𝑜𝑖) is called 
the first contradictory object (𝐹𝐶𝑂) w.r.t. 𝑆𝑙 = (𝑂,𝐶 𝑙∪{𝑑}), denoted by 
𝐹𝐶𝑂(𝑆𝑙) = 𝑜𝑖. And 𝑖 is the first contradictory index (𝐹𝐶𝐼) w.r.t. 𝑆𝑙 =
(𝑂,𝐶 𝑙 ∪ {𝑑}), recorded by 𝐹𝐶𝐼(𝑆𝑙) = 𝑖. If ∀𝑜𝑖 ∈ 𝑂, 𝑆𝐶𝜍𝑙

𝐶 𝑙 (𝑜𝑖) ⊆ 𝑅𝑑 (𝑜𝑖), 
then 𝐹𝐶𝐼(𝑆𝑙) = 𝑛 + 1. At last 𝐶𝑆(𝑆𝑙) [30] is propounded as follows. 

𝐶𝑆(𝑆𝑙) = 𝐶𝑆(𝑂,𝐶 𝑙 ∪ {𝑑}) =

{

0, 𝐹𝐶𝐼(𝑆𝑙) = 𝑛 + 1
𝑙 . (1)
1, 𝐹𝐶𝐼(𝑆 ) ≠ 𝑛 + 1

3 
3.2. Relevant definitions in dynamic context

Initially, it is substantial to emphasize that the dynamic operations 
illuminated in this research encompass object increase, object decrease, 
attribute increase and attribute decrease. The information system ca-
pable of performing these four types of dynamic operations based on 
𝑀𝐼𝑣𝐹𝐷 is referred to as 𝐷-𝑀𝐼𝑣𝐹𝐷.

As previously stated, it is indispensable to establish an indicator 
that appraises the level of resemblance among the interval values. 
Supposing two interval values 𝐸 = [𝑒𝐿, 𝑒𝑈 ] and 𝐹 = [𝑓𝐿, 𝑓𝑈 ] ∈ 𝑊 (𝑅), 
and 𝐸 ∩ 𝐹 = [𝑔𝐿, 𝑔𝑈 ], the pivot inclusion degree (𝑃𝐼) of 𝐸 and 𝐹  can 
be depicted as follows [30], where 0 ≤ 𝜁1, 𝜁2 ≤ 1 and 𝜁1 + 𝜁2 = 1. 

𝑃𝐼(𝐸, 𝐹 ) = 𝜁1
𝑔𝑈 − 𝑔𝐿

𝑒𝑈 − 𝑒𝐿
+ 𝜁2

𝑔𝑈 − 𝑔𝐿

𝑓𝑈 − 𝑓𝐿 . (2)

Subsequently, in consideration of the current context of dynamic 
issues and the objective of expeditious feature selection, the object 
affiliation relation is introduced.

Definition 1.  Let 𝑆 = (𝑂,𝐶 ∪ {𝑑}) = (𝑂, {𝑐𝑙𝑗 |𝑗 = 1, 2,… , 𝑚; 𝑙 =
1, 2,… , 𝐿} ∪ {𝑑}) be a 𝐷-𝑀𝐼𝑣𝐹𝐷, 𝜍𝑙 ∈ [0, 1], as well 𝐵 ⊆ 𝐶, object 
affiliation relation w.r.t. 𝜍𝑙 and 𝐵𝑙 on 𝑈 × 𝑌  is delineated as follows, 
where 𝑜 ∈ 𝑈 , 𝑝 ∈ 𝑌  and (𝑜, 𝑝) ∈ 𝑈 × 𝑌 .

𝐴𝑅𝜍𝑙

𝐵𝑙 = {(𝑜, 𝑝) ∈ 𝑈 × 𝑌 |𝑃𝐼(𝑐𝑙(𝑜), 𝑐𝑙(𝑝)) ≥ 𝜍𝑙 , ∀𝑐 ∈ 𝐵}, 𝑈 ⊆ 𝑌 . (3)
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The affiliation class w.r.t. 𝐵𝑙 and 𝜍𝑙 on 𝑈 × 𝑌  is proclaimed as 
follows. 

𝐴𝐶𝜍𝑙

𝐵𝑙 (𝑜) = {𝑝|(𝑜, 𝑝) ∈ 𝐴𝑅𝜍𝑙

𝐵𝑙 , 𝑜 ∈ 𝑈, 𝑝 ∈ 𝑌 }. (4)

To guarantee that the coarser the scale, the larger the affiliation 
class, the threshold ranges [29] for diverse scales are specified as 
follows, 𝑙 ∈ {1, 2,… , 𝐿 − 1}. 

𝜍𝑙+1 ≤ 𝜅𝑙+1 ≤ 𝜍𝑙 , 𝑤ℎ𝑒𝑟𝑒 𝜅𝑙+1 = min
⎛

⎜

⎜

⎝

min
𝑐∈𝐶

⎛

⎜

⎜

⎝

min
(𝑜,𝑝)∈𝐴𝑅𝜍𝑙

𝐶𝑙

(𝑃𝐼(𝑐𝑙+1(𝑜), 𝑐𝑙+1(𝑝)))
⎞

⎟

⎟

⎠

, 𝜍𝑙
⎞

⎟

⎟

⎠

.

(5)

In accordance with Eq. (5) declaration, it can be acquired that 
𝐴𝑅𝜍𝑙

𝐶 𝑙 ⊆ 𝐴𝑅𝜍𝑙+1

𝐶 𝑙+1 .

Proof.  For any (𝑜, 𝑝) ∈ 𝐴𝑅𝜍𝑙

𝐶 𝑙 , 𝑥 ∈ 𝐶, 𝑃𝐼(𝑥𝑙+1(𝑜), 𝑥𝑙+1(𝑝)) ≥ 𝜅𝑙+1 ≥ 𝜍𝑙+1. 
Consequently, (𝑜, 𝑝) ∈ 𝐴𝑅𝜍𝑙+1

𝐶 𝑙+1  and 𝐴𝑅𝜍𝑙

𝐶 𝑙 ⊆ 𝐴𝑅𝜍𝑙+1

𝐶 𝑙+1  can be procured. 

𝑃𝐼(𝑥𝑙+1(𝑜), 𝑥𝑙+1(𝑝)) ≥ min
𝑐∈𝐶

⎛

⎜

⎜

⎝

min
(𝑜,𝑝)∈𝐴𝑅𝜍𝑙

𝐶𝑙

(𝑃𝐼(𝑐𝑙+1(𝑜), 𝑐𝑙+1(𝑝)))
⎞

⎟

⎟

⎠

. (6)

Definition 2.  Let 𝑆 = (𝑂,𝐶 ∪{𝑑}) be an 𝐼𝑉 𝐷𝐼𝑆, 𝜍∗ ∈ [0, 1], moreover 
𝐵,𝐻 ⊆ 𝐶. If 𝐴𝐶𝜍∗

𝐵 (𝑜𝑖) ⊆ 𝐴𝐶𝜍∗
𝐻 (𝑜𝑖), for all 𝑜𝑖 ∈ 𝑈 , we proclaim that 𝐴𝐶𝜍∗

𝐵
is finer than 𝐴𝐶𝜍∗

𝐻 , and then affirm it as 𝐴𝐶𝜍∗
𝐵 ⪯ 𝐴𝐶𝜍∗

𝐻 .

Proposition 1.  Let 𝑆 = (𝑂,𝐶∪{𝑑}) be a 𝐷-𝑀𝐼𝑣𝐹𝐷, for 𝑙 ∈ {1, 2,… , 𝐿−
1}. 

𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑜𝑖) ⊆ 𝐴𝐶𝜍𝑙+1

𝐶 𝑙+1 (𝑜𝑖), ∀𝑜𝑖 ∈ 𝑈, 𝐴𝐶𝜍𝑙

𝐶 𝑙 ⪯ 𝐴𝐶𝜍𝑙+1

𝐶 𝑙+1 . (7)

The above constitutes the monotonicity of affiliation class in a 
𝐷-𝑀𝐼𝑣𝐹𝐷, which implies that, as the scale increases, the affiliation 
class becomes larger.

Definition 3.  Let 𝑆 = (𝑂,𝐶 ∪ {𝑑}) be a 𝐷-𝑀𝐼𝑣𝐹𝐷, furthermore 𝜍𝑙 ∈
[0, 1], for 𝑙 ∈ {1, 2,… , 𝐿}. 𝑆 is said to be consistent if 𝑆1 = (𝑂,𝐶1 ∪{𝑑})
is consistent, i.e. 𝐴𝐶𝜍1

𝐶1 (𝑜𝑖) ⊆ 𝑅𝑑 (𝑜𝑖), for all 𝑜𝑖 ∈ 𝑈 . On the contrary, 𝑆
is inconsistent. Similarly, 𝑆𝑙 = (𝑂,𝐶 𝑙 ∪ {𝑑}) is consistent, if and only if 
𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑜𝑖) ⊆ 𝑅𝑑 (𝑜𝑖), for all 𝑜𝑖 ∈ 𝑈 .

Evidently, as the scale increases, the consistency of 𝑆𝑙 will pro-
gressively diminish. In order to refrain from the demand for continual 
assessment of the consistency of information subtable during feature 
selection, it is suggested to ensure that 𝑈 undergoes a consistency 
processing prior to the execution of any algorithms, i.e. delete 𝑜𝑖, if 
𝐴𝐶𝜍1

𝐶1 (𝑜𝑖) ⊈ 𝑅𝑑 (𝑜𝑖), for all 𝑜𝑖 ∈ 𝑈 .

Proposition 2. Let 𝑆 = (𝑂,𝐶∪{𝑑}) be an 𝐼𝑉 𝐷𝐼𝑆, 𝜍∗ ∈ [0, 1], in addition 
𝐵,𝐻 ⊆ 𝐶. If 𝐻 ⊆ 𝐵, it follows that 𝐴𝐶𝜍∗

𝐵 ⪯ 𝐴𝐶𝜍∗
𝐻 .

When 𝑆𝑙 = (𝑂,𝐶 𝑙 ∪ {𝑑}), 𝑙 ∈ {1, 2,… , 𝐿} in a 𝐷-𝑀𝐼𝑣𝐹𝐷, check 
whether 𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑜𝑖) ⊆ 𝑅𝑑 (𝑜𝑖) is satisfied from the smallest to largest 
subscripts for all 𝑜𝑖 ∈ 𝑈 = {𝑜1, 𝑜2,… , 𝑜𝑥}, |𝑈 | = 𝑥. The first object 𝑜𝑖 that 
does not gratify 𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑜𝑖) ⊆ 𝑅𝑑 (𝑜𝑖) is called affiliation first contradictory 
object (𝐴𝐹𝐶𝑂) w.r.t. 𝑆𝑙 and 𝑈 × 𝑌 , denoted by 𝐴𝐹𝐶𝑂(𝑆𝑙 , 𝑈 × 𝑌 ) = 𝑜𝑖. 
And then 𝑖 is affiliation first contradictory index (𝐴𝐹𝐶𝐼) w.r.t. 𝑆𝑙 and 
𝑈 × 𝑌 , recorded by 𝐴𝐹𝐶𝐼(𝑆𝑙 , 𝑈 × 𝑌 ) = 𝑖. If 𝑆𝑙 is consistent, then 
𝐴𝐹𝐶𝐼(𝑆𝑙 , 𝑈 × 𝑌 ) = 𝑥 + 1.

The procedure of computation 𝐴𝐹𝐶𝑂 and 𝐴𝐹𝐶𝐼 within an infor-
mation system is illustrated in Fig.  2.

Definition 4.  In a 𝐷-𝑀𝐼𝑣𝐹𝐷, 𝑆 = (𝑂,𝐶 ∪ {𝑑}), 𝑆𝑙 = (𝑂,𝐶 𝑙 ∪ {𝑑}), 
𝑙 ∈ {1, 2,… , 𝐿}. The format of 𝐴𝐶𝑆 w.r.t. 𝑆𝑙 and 𝑈 × 𝑌  is signified as 
4 
Table 1
Symbol interpretation in 𝑅𝑉 .
 Symbol Explanation Value range  
 𝐶𝑂𝑆 Current optimal scale 𝐶𝑂𝑆 ∈ {1, 2,… , 𝐿} 
 𝐶𝐹𝑆 Current feature selection –  
 𝐶𝑇𝑁𝑂 Current total number of objects –  
 𝐶𝑇𝑁𝐴 Current total number of attributes –  
 𝐿𝑂𝑈 Last object update –  
 𝐿𝐴𝑈 Last attribute update –  
 𝛶 Review rate 𝛶 ∈ [0, 1]  
 𝛬 Joint training indicator 𝛬 ∈ {0, 1}  
 𝑂𝐼 Other information –  

follows, where |𝑈 | = 𝑥 and 𝑈 = {𝑜1, 𝑜2,… , 𝑜𝑥}. 

𝐴𝐶𝑆(𝑆𝑙 , 𝑈 × 𝑌 ) =

{

0, 𝐴𝐹𝐶𝐼(𝑆𝑙 , 𝑈 × 𝑌 ) = 𝑥 + 1

1, 𝐴𝐹𝐶𝐼(𝑆𝑙 , 𝑈 × 𝑌 ) ≠ 𝑥 + 1
. (8)

There is no doubt that 𝐴𝐶𝑆(𝑆𝑙 , 𝑈 × 𝑌 ) is a Boolean value. When 
𝑆𝑙 is consistent, i.e. 𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑜𝑖) ⊆ 𝑅𝑑 (𝑜𝑖), for all 𝑜𝑖 ∈ 𝑈 , 𝐴𝐶𝑆(𝑆𝑙 , 𝑈 ×
𝑌 ) = 0, otherwise 𝐴𝐶𝑆(𝑆𝑙 , 𝑈 × 𝑌 ) = 1. 𝐴𝐶𝑆(𝑆𝑙 , 𝑈 × 𝑌 ) can be 
gained by inspecting whether 𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑜𝑖) ⊆ 𝑅𝑑 (𝑜𝑖) in order, and the 
scrutiny can be terminated when 𝐴𝐹𝐶𝑂(𝑆𝑙 , 𝑈 × 𝑌 ) is found. When 
multiple 𝐴𝐶𝑆𝑠 are lined up together, a series of Boolean values could 
embody a transformation in the quantitative characteristics of a specific 
procedure. A monotonically undecreasing ordered sequence consisting 
of denumerable restricted 𝐴𝐶𝑆𝑠 is stipulated as 𝐴𝐶𝑆𝑆 to fulfill prompt 
and efficient feature selection in 𝐷-𝑀𝐼𝑣𝐹𝐷. Several especial sequences 
will be revealed and implemented in the process of feature and optimal 
scale selection, such as optimal scale selection affiliation contradictory 
state sequence (𝑂𝑆𝐴𝐶𝑆), feature selection affiliation contradictory 
state sequence (𝐹𝑆𝐴𝐶𝑆).

Then introducing an indicator to document crucial intermediate 
calculation outcomes during the 𝐷-𝑀𝐼𝑣𝐹𝐷 update process, and em-
ploying it to direct subsequent experiments could dramatically intensify 
speed and reduce computational resource consumption.

Definition 5.  In the dynamic update process of 𝐷-𝑀𝐼𝑣𝐹𝐷 𝑆 = (𝑂,𝐶∪
{𝑑}), the format of 𝑅𝑉  is proposed as follows. 
𝑅𝑉 (𝑆) = (𝐶𝑂𝑆,𝐶𝐹𝑆, 𝐶𝑇𝑁𝑂,𝐶𝑇𝑁𝐴,𝐿𝑂𝑈,𝐿𝐴𝑈, 𝛶 ,𝛬,𝑂𝐼). (9)

The notations in 𝑅𝑉  are formulated in Table  1 accordingly. 𝐿𝑂𝑈
and 𝐿𝐴𝑈 monitor the latest updates of objects and attributes, respec-
tively. It is imperative to highlight that 𝛶  can vary during the dynamic 
update process, and serious-minded consideration is required to deter-
mine the appropriate setting of 𝛶  for excellent outcomes. Furthermore, 
𝛶  serves to restrict the percentage of data that will be incorporated into 
the new training phase, i.e. the percentage of replay.

In the domain of information system research, the omission of 
historical data in dynamic feature selection algorithms can result in 
catastrophic forgetting, which may lead to a range of significant reper-
cussions. These include a diminished comprehension of historical pat-
terns, the neglect of time series data, an increased risk of overfitting 
to current datasets, the oversight of long-term trends and seasonal 
variations, and a decrease in model robustness. Consequently, histor-
ical data is essential in the incremental feature selection process, as 
it enables the model to effectively capture the long-term dynamics 
and changes within the system, thereby ensuring stable predictive 
performance and enhanced generalization capabilities. This necessity 
underscores the importance of integrating the concept of replay into 
the research framework.

To streamline algorithm design, this study opts to involve the latter 
portion of dataset in the new training, denoted as 𝑂 ⊗ 𝛶 . Then 𝛬 = 1
implies that the complete data table is trained to obtain new feature 
selection. When 𝛶 = 1 (i.e. 𝛬 = 1), it requires the longest execution 
time but offers the most comprehensive training range.
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Table 2
A dynamic updated multi-scale interval valued fuzzy decision information system.
 𝑂 𝑐5 𝑐6 𝑐1 𝑐2 𝑐3 𝑐4 𝑑  
 𝑐15 𝑐25 𝑐16 𝑐26 𝑐11 𝑐21 𝑐12 𝑐22 𝑐13 𝑐23 𝑐14 𝑐24   
 𝑜1 [96, 96] [9, 10] [45, 83] [4, 9] [73, 82] [7, 9] [35, 57] [3, 6] [8, 10] [0, 1] [59, 76] [5, 8] 0.3 
 𝑜2 [30, 36] [3, 4] [1, 19] [0, 2] [62, 86] [6, 9] [44, 87] [4, 9] [32, 74] [3, 8] [36, 67] [3, 7] 0.1 
 𝑜3 [20, 66] [2, 7] [32, 55] [3, 6] [32, 54] [3, 6] [22, 46] [2, 5] [40, 82] [4, 9] [12, 24] [1, 3] 0.6 
 𝑜4 [18, 52] [1, 6] [55, 89] [5, 9] [12, 46] [1, 5] [27, 53] [2, 6] [34, 86] [3, 9] [3, 20] [0, 2] 0.9 
 𝑜5 [24, 35] [2, 4] [5, 36] [0, 4] [79, 80] [7, 8] [77, 88] [7, 9] [76, 96] [7, 10] [64, 83] [6, 9] 0.2 
 𝑜6 [15, 59] [1, 6] [1, 72] [0, 8] [26, 48] [2, 5] [41, 73] [4, 8] [77, 98] [7, 10] [48, 94] [4, 10] 0.1 
 𝑜7 [47, 50] [4, 5] [22, 77] [2, 8] [17, 37] [1, 4] [18, 37] [1, 4] [5, 38] [0, 4] [51, 84] [5, 9] 0.6 
 𝑜8 [41, 98] [4, 10] [44, 85] [4, 9] [68, 71] [6, 8] [2, 27] [0, 3] [29, 33] [2, 4] [31, 40] [3, 4] 0.7 
 𝑜9 [31, 98] [3, 10] [36, 78] [3, 8] [3, 24] [0, 3] [3, 73] [0, 8] [60, 91] [6, 10] [68, 86] [6, 9] 0.4 
 𝑜10 [14, 44] [1, 5] [20, 53] [2, 6] [9, 24] [0, 3] [4, 39] [0, 4] [34, 55] [3, 6] [47, 86] [4, 9] 0.3 
 𝑜11 [20, 66] [2, 7] [32, 55] [3, 6] [96, 96] [9, 10] [45, 83] [4, 9] [85, 96] [8, 10] [36, 86] [3, 9] 0.8 
 𝑜12 [40, 46] [4, 5] [69, 82] [6, 9] [34, 89] [3, 9] [17, 58] [1, 6] [32, 99] [3, 10] [11, 52] [1, 6] 0.6 
 𝑜13 [54, 87] [5, 9] [26, 89] [2, 9] [23, 45] [2, 5] [12, 50] [1, 5] [37, 98] [3, 10] [27, 100] [2, 10] 0.2 
 𝑜14 [42, 59] [4, 6] [18, 28] [1, 3] [7, 66] [0, 7] [69, 86] [6, 9] [31, 95] [3, 10] [26, 29] [2, 3] 0.4 
 𝑜15 [47, 70] [4, 7] [94, 96] [9, 10] [76, 79] [7, 8] [64, 94] [6, 10] [40, 61] [4, 7] [50, 71] [5, 8] 0.7 
This chapter lays the theoretical foundation for four feature se-
lection algorithms argued in the following section. Subsequently, a 
micromesh portrait of feature selection will be provided for the four 
update patterns of 𝐷-𝑀𝐼𝑣𝐹𝐷.

4. Incremental feature selection for dynamic multi-scale interval 
valued Fuzzy decision information system

Dynamic updating is a continual procedure that necessitates prior 
knowledge pertaining to the initial dataset 𝑆 = (𝑂,𝐶∪{𝑑}) = (𝑂, {𝑐𝑙𝑗 |𝑗 =
1, 2,… , 𝑚; 𝑙 = 1, 2,… , 𝐿} ∪ {𝑑}), 𝑂 = {𝑜1, 𝑜2,… , 𝑜𝑛}. The approach 
detailed in [30] is employed to determine the optimal scale and fea-
ture selection for the original dataset, and 𝑅𝑉 (𝑆) = (𝑂𝑆, 𝐹𝑆, 𝑛, 𝑚, 0, 
0, 𝛶 , 0, 𝑛𝑢𝑙𝑙). It is requisite to emphasize that prior to feature selec-
tion, the optimal scale must be notarized in 𝐷-𝑀𝐼𝑣𝐹𝐷. The optimal 
scale refers to the coarsest scale that guarantees the consistency of 
information subtable.

4.1. Incremental feature selection for dynamic object increase

Appending ℎ1 objects to the original dataset, the ℎ1 objects consti-
tute 𝑂1, denoted as 𝑂1 = {𝑜𝑛+1, 𝑜𝑛+2,… , 𝑜𝑛+ℎ1}. 𝑂1 and its correspond-
ing multi-scale interval value and fuzzy decision value are added to 𝑆, 
and the organization and arrangement of the data are demonstrated 
in Fig.  3. When 𝑈 = 𝑂, 𝑌 = 𝑂 and 𝑈 = 𝑂 ∪ 𝑂1, 𝑌 = 𝑂 ∪ 𝑂1

respectively, corresponding to 𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑜), 𝐴𝐶
𝜍𝑙

𝐶 𝑙 (𝑝), ∀𝑜 ∈ 𝑂, 𝑝 ∈ 𝑂 ∪ 𝑂1, 
then 𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑜) ⊆ 𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑜). Further, it can be deduced that, when 𝑆𝑙 =
(𝑂,𝐶 𝑙 ∪ {𝑑}) is inconsistent, then �̂�𝑙 = (𝑂 ∪ 𝑂1, 𝐶 𝑙 ∪ {𝑑}) is also 
inconsistent. Evidently, the new optimal scale 𝑂𝑆 only needs to be 
searched within {1, 2,… , 𝑂𝑆}. Meanwhile, in order to economize on 
training time, 𝑂𝑆 will be sought within the range of information table 
regulated by 𝛶 , i.e. 𝑈 = (𝑂 ⊗ 𝛶 ) ∪ 𝑂1 and 𝑌 = 𝑂 ∪ 𝑂1, 𝐴𝐶

𝜍𝑙

𝐶 𝑙 (𝑜), 
∀𝑜 ∈ 𝑈 . Additionally, as the scale becomes coarser, the inconsistency 
of information table gradually amplifies, corresponding to the mono-
tonically increasing 𝐴𝐶𝑆(�̂�𝑙 , 𝑈 × 𝑌 ), where �̂�𝑙 = (𝑂 ∪ 𝑂1, 𝐶 𝑙 ∪ {𝑑}), 
𝑙 ∈ {1, 2,… , 𝑂𝑆}, 𝑈 = (𝑂 ⊗ 𝛶 ) ∪ 𝑂1 and 𝑌 = 𝑂 ∪ 𝑂1, which constitutes 
𝑂𝑆𝐴𝐶𝑆 = [𝐴𝐶𝑆(�̂�1, 𝑈 × 𝑌 ), 𝐴𝐶𝑆(�̂�2, 𝑈 × 𝑌 ),… , 𝐴𝐶𝑆(�̂�𝑂𝑆 , 𝑈 × 𝑌 )]. 
Subsequently, a half-search is executed on 𝑂𝑆𝐴𝐶𝑆 to chase down the 
sequence of final 𝐴𝐶𝑆(�̂�𝑙 , 𝑈 × 𝑌 ) = 0, thereby identifying 𝑂𝑆. The 
next step involves confirming new feature selection set ̂𝐹𝑆 through 
a bond of 𝑂𝑆 and 𝐹𝑆. This article employs a top-down approach to 
feature selection, i.e. delete the first attribute of 𝐶 successively to form 
a conditional attribute subset sequence. The last 𝑗 attributes in 𝐶 are 
used to constitute the conditional attribute subset, 𝑗 ∈ {𝑚,𝑚 − 1, 𝑚 −
5 
2,… , 1, 0}. 

{{𝑐1, 𝑐2,… , 𝑐𝑚}, {𝑐2,… , 𝑐𝑚}, {𝑐3,… , 𝑐𝑚},… , {𝑐𝑚},∅} = {𝐶𝑚, 𝐶𝑚−1, 𝐶𝑚−2,… , 𝐶1, 𝐶0}.

(10)

The smallest subset 𝐶𝑗 that guarantees the consistency of infor-
mation subtable at 𝑂𝑆 is ̂𝐹𝑆. When 𝑂𝑆 = 𝑂𝑆, it is imperative to 
seek ̂𝐹𝑆 within {𝐶𝑚, 𝐶𝑚−1,… , 𝐶𝐹𝑆}; otherwise the scope of inquiry 
extends to {𝐶𝑚, 𝐶𝑚−1, 𝐶𝑚−2,… , 𝐶1, 𝐶0}. As the feature subset dwindles, 
𝐴𝐶𝑆(�̂�𝑂𝑆

𝑗 , 𝑈 × 𝑌 ) emerges gradual aggrandization, where �̂�𝑂𝑆
𝑗 = (𝑂 ∪

𝑂1, 𝐶𝑂𝑆
𝑗 ∪ {𝑑}), 𝑈 = (𝑂 ⊗ 𝛶 ) ∪ 𝑂1 and 𝑌 = 𝑂 ∪ 𝑂1. Then, only 

one half-search in either 𝐹𝑆𝐴𝐶𝑆 = [𝐴𝐶𝑆(�̂�𝑂𝑆
𝑚 , 𝑈 × 𝑌 ), 𝐴𝐶𝑆(�̂�𝑂𝑆

𝑚−1, 𝑈 ×
𝑌 ),… , 𝐴𝐶𝑆(�̂�𝑂𝑆

𝐹𝑆 , 𝑈 × 𝑌 )] or 𝐹𝑆𝐴𝐶𝑆 = [𝐴𝐶𝑆(�̂�𝑂𝑆
𝑚 , 𝑈 × 𝑌 ), 𝐴𝐶𝑆(�̂�𝑂𝑆

𝑚−1,
𝑈 × 𝑌 ),… , 𝐴𝐶𝑆(�̂�𝑂𝑆

0 , 𝑈 × 𝑌 )] is indispensable to obtain the order in 
which the last 𝐴𝐶𝑆(�̂�𝑂𝑆

𝑗 , 𝑈 × 𝑌 ) = 0, ̂𝐹𝑆 can then be inferred from 
this order. Following the completion of feature selection in this phase, 
𝑅𝑉 (𝑆) is subsequently updated to (𝑂𝑆, ̂𝐹𝑆, 𝑛 + ℎ1, 𝑚,+ℎ1, 0, 𝛶 , 0, 𝑛𝑢𝑙𝑙).

Example 1. 𝑆 = (𝑂,𝐶 ∪ {𝑑}) = (𝑂, {𝑐𝑙𝑗 |𝑗 = 1, 2, 3, 4; 𝑙 = 1, 2} ∪
{𝑑}) is the information system corresponding to part of Table  2, ob-
viously 𝑆 is consistent. When 𝜍1 = 0.8 and 𝜍2 = 0.5, 𝑅𝑉 (𝑆) =
(2, {𝑐2, 𝑐3, 𝑐4}, 10, 4, 0, 0, 0.7, 0, 𝑛𝑢𝑙𝑙). Next, add five extra objects to 𝑆 and 
position them subsequent to the current items, the relevant data of 
these objects are presented in Table  2. Suppose 𝑡 = 2, then 𝐷1 =
{𝑜1, 𝑜2, 𝑜5, 𝑜6, 𝑜9, 𝑜10, 𝑜13, 𝑜14} and 𝐷2 = {𝑜3, 𝑜4, 𝑜7, 𝑜8, 𝑜11, 𝑜12, 𝑜15}. Follow-
ing the accomplishment of consistency processing, 𝑂𝑆 is determined 
through a half-search. Since 𝐴𝐶𝑆(�̂�1, 𝑈 ×𝑌 ) = 0 and 𝐴𝐶𝑆(�̂�2, 𝑈 ×𝑌 ) =
1, then 𝑂𝑆 = 1. ̂𝐹𝑆 is subsequently calculated through a half-search 
operation and based on 𝐴𝐶𝑆(�̂�1

0 , 𝑈 × 𝑌 ) = 1, 𝐴𝐶𝑆(�̂�1
1 , 𝑈 × 𝑌 ) = 1, 

𝐴𝐶𝑆(�̂�1
2 , 𝑈 × 𝑌 ) = 0, 𝐴𝐶𝑆(�̂�1

3 , 𝑈 × 𝑌 ) = 0 and 𝐴𝐶𝑆(�̂�1
4 , 𝑈 × 𝑌 ) = 0. Ul-

timately, ̂𝐹𝑆 = {𝑐3, 𝑐4} and 𝑅𝑉 (𝑆) = (1, {𝑐3, 𝑐4}, 15, 4,+5, 0, 0.7, 0, 𝑛𝑢𝑙𝑙).

4.2. Incremental feature selection for dynamic object decrease

The initial dataset is subjected to object deletion operation, the 
ℎ2 objects that require to be removed form 𝑂2, 𝑂2 ⊆ 𝑂, as well as 
the organization and arrangement of the data are illustrated in Fig. 
4. When 𝑈 = 𝑂, 𝑌 = 𝑂 and 𝑈 = 𝑂 − 𝑂2, 𝑌 = 𝑂 − 𝑂2 severally, 
corresponding to 𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑜), 𝐴𝐶
𝜍𝑙

𝐶 𝑙 (𝑝), ∀𝑜 ∈ 𝑂, 𝑝 ∈ 𝑂 −𝑂2, then 𝐴𝐶
𝜍𝑙

𝐶 𝑙 (𝑝) ⊆

𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑝). Further, when 𝑆𝑙 = (𝑂,𝐶 𝑙 ∪ {𝑑}) is consistent, then �̂�𝑙 =
(𝑂−𝑂2, 𝐶 𝑙 ∪ {𝑑}) is also consistent. Clearly, it is essential to search for 
𝑂𝑆 within {𝑂𝑆,𝑂𝑆 +1,… , 𝐿}. To save time, 𝑂𝑆 will be sought within 
the range of information table directed by 𝛶 , i.e. 𝑈 = (𝑂 − 𝑂2) ⊗ 𝛶
and 𝑌 = 𝑂 − 𝑂2, 𝐴𝐶

𝜍𝑙

𝐶 𝑙 (𝑜), ∀𝑜 ∈ 𝑈 . Besides, as the scale becomes 
coarser, the inconsistency of information table gradually reinforces, 
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Fig. 3. Data organization and arrangement with dynamic object increase.
Algorithm 1: Feature Selection for Dynamic Object Increase 
(𝑂𝑏𝐷𝐼 − 𝐹𝑆).
Input: A 𝐷-𝑀𝐼𝑣𝐹𝐷 𝑆 = (𝑂,𝐶 ∪ {𝑑}), 𝑂, 𝑅𝑉 (𝑆), 𝑂1.
Output: New optimal scale 𝑂𝑆, new feature selection set ̂𝐹𝑆, new 

𝑅𝑉 (𝑆). 
1: Calculating {𝐷1, 𝐷2, ..., 𝐷𝑡} about the updated dataset 
2: 𝑙𝑒𝑓 𝑡 = 1, 𝑟𝑖𝑔ℎ𝑡 = 𝑂𝑆 /*Finding new optimal scale 𝑂𝑆.*/ 
3: while 𝑙𝑒𝑓 𝑡 ≤ 𝑟𝑖𝑔ℎ𝑡 do 
4: 𝑚𝑖𝑑 = (𝑙𝑒𝑓 𝑡 + 𝑟𝑖𝑔ℎ𝑡)∕∕2
5: Calculating 𝐴𝐹𝐶𝐼(�̂�𝑚𝑖𝑑 , 𝑈 × 𝑌 ) and 𝐴𝐶𝑆(�̂�𝑚𝑖𝑑 , 𝑈 × 𝑌 )
6: if 𝐴𝐶𝑆(�̂�𝑚𝑖𝑑 , 𝑈 × 𝑌 ) = 1 then 
7: 𝑟𝑖𝑔ℎ𝑡 = 𝑚𝑖𝑑 − 1
8: else 
9: 𝑙𝑒𝑓 𝑡 = 𝑚𝑖𝑑 + 1
10: end if
11: end while
12: 𝑂𝑆 = 𝑙𝑒𝑓 𝑡 − 1
13: if 𝑂𝑆 = 𝑂𝑆 then 
14: 𝑙𝑒𝑓 𝑡 = 𝐹𝑆, 𝑟𝑖𝑔ℎ𝑡 = 𝑚
15: else 
16: 𝑙𝑒𝑓 𝑡 = 0, 𝑟𝑖𝑔ℎ𝑡 = 𝑚
17: end if
18: while 𝑙𝑒𝑓 𝑡 ≤ 𝑟𝑖𝑔ℎ𝑡 do 
19: 𝑚𝑖𝑑 = (𝑙𝑒𝑓 𝑡 + 𝑟𝑖𝑔ℎ𝑡)∕∕2
20: Calculating 𝐴𝐹𝐶𝐼(�̂�𝑂𝑆

𝑚𝑖𝑑 , 𝑈 × 𝑌 ) and 𝐴𝐶𝑆(�̂�𝑂𝑆
𝑚𝑖𝑑 , 𝑈 × 𝑌 )

21: if 𝐴𝐶𝑆(�̂�𝑂𝑆
𝑚𝑖𝑑 , 𝑈 × 𝑌 ) = 0 then 

22: 𝑟𝑖𝑔ℎ𝑡 = 𝑚𝑖𝑑 − 1
23: else 
24: 𝑙𝑒𝑓 𝑡 = 𝑚𝑖𝑑 + 1
25: end if
26: end while
27: ̂𝐹𝑆 = 𝐶𝑙𝑒𝑓 𝑡
28: return 𝑂𝑆, ̂𝐹𝑆, 𝑅𝑉 (𝑆) = (𝑂𝑆, ̂𝐹𝑆, 𝑛 + ℎ1, 𝑚,+ℎ1, 0, 𝛶 , 0, 𝑛𝑢𝑙𝑙)

corresponding to the monotonically increasing 𝐴𝐶𝑆(�̂�𝑙 , 𝑈 × 𝑌 ), where 
�̂�𝑙 = (𝑂−𝑂2, 𝐶 𝑙∪{𝑑}), 𝑙 ∈ {𝑂𝑆,𝑂𝑆+1,… , 𝐿}, 𝑈 = (𝑂−𝑂2)⊗𝛶  and 𝑌 =
𝑂−𝑂2, which constitutes 𝑂𝑆𝐴𝐶𝑆 = [𝐴𝐶𝑆(�̂�𝑂𝑆 , 𝑈×𝑌 ), 𝐴𝐶𝑆(�̂�𝑂𝑆+1, 𝑈×
𝑌 ),… , 𝐴𝐶𝑆(�̂�𝐿, 𝑈 × 𝑌 )]. Then a half-search is proceeded on 𝑂𝑆𝐴𝐶𝑆
to chase down the sequence of final 𝐴𝐶𝑆(�̂�𝑙 , 𝑈 × 𝑌 ) = 0, thereby 
ascertaining 𝑂𝑆.

When 𝑂𝑆 = 𝑂𝑆, search for ̂𝐹𝑆 within {𝐶𝐹𝑆 , 𝐶𝐹𝑆−1,… , 𝐶0}; oth-
erwise the search area will be expanded to {𝐶𝑚, 𝐶𝑚−1,… , 𝐶0}. As the 
feature subset shrinks, 𝐴𝐶𝑆(�̂�𝑂𝑆

𝑗 , 𝑈 × 𝑌 ) exhibits gradual expansion, 
where �̂�𝑂𝑆 = (𝑂 − 𝑂 ,𝐶𝑂𝑆 ∪ {𝑑}). Then, a half-search in either 
𝑗 2 𝑗

6 
𝐹𝑆𝐴𝐶𝑆 = [𝐴𝐶𝑆(�̂�𝑂𝑆
𝐹𝑆 , 𝑈 ×𝑌 ), 𝐴𝐶𝑆(�̂�𝑂𝑆

𝐹𝑆−1, 𝑈 ×𝑌 ),… , 𝐴𝐶𝑆(�̂�𝑂𝑆
0 , 𝑈 ×𝑌 )]

or 𝐹𝑆𝐴𝐶𝑆 = [𝐴𝐶𝑆(�̂�𝑂𝑆
𝑚 , 𝑈×𝑌 ), 𝐴𝐶𝑆(�̂�𝑂𝑆

𝑚−1, 𝑈×𝑌 ),… , 𝐴𝐶𝑆(�̂�𝑂𝑆
0 , 𝑈×𝑌 )]

is requisite to acquire the order in which the last 𝐴𝐶𝑆(�̂�𝑂𝑆
𝑗 , 𝑈 ×𝑌 ) = 0, 

̂𝐹𝑆 can then be inferred from this order. 𝑅𝑉 (𝑆) is subsequently updated 
upon the completion of this procedure, and 𝑅𝑉 (𝑆) = (𝑂𝑆, ̂𝐹𝑆, 𝑛 −
ℎ2, 𝑚,−ℎ2, 0, 𝛶 , 0, 𝑛𝑢𝑙𝑙).
Algorithm 2: Feature Selection for Dynamic Object Decrease 
(𝑂𝑏𝐷𝐷 − 𝐹𝑆).
Input: A 𝐷-𝑀𝐼𝑣𝐹𝐷 𝑆 = (𝑂,𝐶 ∪ {𝑑}), 𝑂, 𝑅𝑉 (𝑆), 𝑂2, |𝑂2| = ℎ2, 

𝑂2 ⊆ 𝑂.
Output: New optimal scale 𝑂𝑆, new feature selection set ̂𝐹𝑆, new 

𝑅𝑉 (𝑆). 
1: Calculating {𝐷1, 𝐷2, ..., 𝐷𝑡} about the updated dataset 
2: 𝑙𝑒𝑓 𝑡 = 𝑂𝑆, 𝑟𝑖𝑔ℎ𝑡 = 𝐿 /*Finding new optimal scale 𝑂𝑆.*/ 
3: Steps 3-11 of Algorithm 1 
4: 𝑂𝑆 = 𝑙𝑒𝑓 𝑡 − 1
5: if 𝑂𝑆 = 𝑂𝑆 then 
6: 𝑙𝑒𝑓 𝑡 = 0, 𝑟𝑖𝑔ℎ𝑡 = 𝐹𝑆
7: else 
8: 𝑙𝑒𝑓 𝑡 = 0, 𝑟𝑖𝑔ℎ𝑡 = 𝑚
9: end if
10: Steps 18-26 of Algorithm 1 
11: ̂𝐹𝑆 = 𝐶𝑙𝑒𝑓 𝑡
12: return 𝑂𝑆, ̂𝐹𝑆, 𝑅𝑉 (𝑆) = (𝑂𝑆, ̂𝐹𝑆, 𝑛 − ℎ2, 𝑚,−ℎ2, 0, 𝛶 , 0, 𝑛𝑢𝑙𝑙)

4.3. Incremental feature selection for dynamic attribute increase

Incorporating ℎ3 attributes into initial dataset, the ℎ3 attributes 
make up 𝐴1, recorded as 𝐴1 = {𝑐𝑚+1, 𝑐𝑚+2,… , 𝑐𝑚+ℎ3}, and the organi-
zation and arrangement of the data are manifested in Fig.  5. ∀𝑜 ∈ 𝑂, 
𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑜), 𝐴𝐶
𝜍𝑙

(𝐶∪𝐴1)𝑙
(𝑜), then 𝐴𝐶𝜍𝑙

(𝐶∪𝐴1)𝑙
(𝑜) ⊆ 𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑜). According to the 
statement of consistency in information table, when 𝑆𝑙 = (𝑂,𝐶 𝑙 ∪ {𝑑})
is consistent, then �̂�𝑙 = (𝑂, (𝐶 ∪ 𝐴1)𝑙 ∪ {𝑑}) is also consistent, thus 
simply search for 𝑂𝑆 within {𝑂𝑆,𝑂𝑆+1,… , 𝐿}. To save training time, 
𝑂𝑆 will be sought within the range of information table controlled 
by 𝛶 , i.e. 𝑈 = 𝑂 ⊗ 𝛶  and 𝑌 = 𝑂, 𝐴𝐶𝜍𝑙

(𝐶∪𝐴1)𝑙
(𝑜), ∀𝑜 ∈ 𝑈 . In 

addition, as the scale becomes coarser, the inconsistency of informa-
tion table gradually aggrandizes, corresponding to the monotonically 
increasing 𝐴𝐶𝑆(�̂�𝑙 , 𝑈 × 𝑌 ), where �̂�𝑙 = (𝑂, (𝐶 ∪ 𝐴1)𝑙 ∪ {𝑑}), 𝑙 ∈
{𝑂𝑆,𝑂𝑆 + 1,… , 𝐿}, 𝑈 = 𝑂 ⊗ 𝛶  and 𝑌 = 𝑂, which constitutes 
𝑂𝑆𝐴𝐶𝑆 = [𝐴𝐶𝑆(�̂�𝑂𝑆 , 𝑈 ×𝑌 ), 𝐴𝐶𝑆(�̂�𝑂𝑆+1, 𝑈 ×𝑌 ),… , 𝐴𝐶𝑆(�̂�𝐿, 𝑈 ×𝑌 )]. 
Subsequently, a half-search is performed on 𝑂𝑆𝐴𝐶𝑆 to chase down 
the sequence of final 𝐴𝐶𝑆(�̂�𝑙 , 𝑈 × 𝑌 ) = 0, therefore recognizing 𝑂𝑆. 
Whereafter ̂𝐹𝑆 can be notarized within {𝐶𝑚+ℎ3 , 𝐶𝑚+ℎ3−1,… , 𝐶0}. As the 
feature subset lessens, 𝐴𝐶𝑆(�̂�𝑂𝑆 , 𝑈 ×𝑌 ) appears gradual amplification, 
𝑗
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Fig. 4. Data organization and arrangement with dynamic object decrease.
Fig. 5. Data organization and arrangement with dynamic attribute increase.
Fig. 6. Data organization and arrangement with dynamic attribute decrease.
where �̂�𝑂𝑆
𝑗 = (𝑂, (𝐶 ∪ 𝐴1)𝑂𝑆

𝑗 ∪ {𝑑}), 𝑈 = 𝑂 ⊗ 𝛶  and 𝑌 = 𝑂. Then, only 
one half-search in 𝐹𝑆𝐴𝐶𝑆 = [𝐴𝐶𝑆(�̂�𝑂𝑆

𝑚+ℎ3
, 𝑈 × 𝑌 ), 𝐴𝐶𝑆(�̂�𝑂𝑆

𝑚+ℎ3−1
, 𝑈 ×

𝑌 ),… , 𝐴𝐶𝑆(�̂�𝑂𝑆
0 , 𝑈 × 𝑌 )] is necessary to obtain the order in which the 

last 𝐴𝐶𝑆(�̂�𝑂𝑆
𝑗 , 𝑈 × 𝑌 ) = 0, and this order can furnish implications for 

̂𝐹𝑆.

Example 2. 𝑆 = (𝑂,𝐶 ∪ {𝑑}) = (𝑂, {𝑐𝑙𝑗 |𝑗 = 1, 2, 3, 4; 𝑙 = 1, 2} ∪
{𝑑}) is the information system corresponding to part of Table  2, 𝑆
is consistent apparently. When 𝜍1 = 0.8 and 𝜍2 = 0.5, 𝑅𝑉 (𝑆) =
(2, {𝑐2, 𝑐3, 𝑐4}, 10, 4, 0, 0, 0.7, 0, 𝑛𝑢𝑙𝑙). Subsequently two additional
attributes {𝑐5, 𝑐6} are appended to 𝑆 and positioned before the original 
attributes. The corresponding values for these attributes can be found 
in Table  2. Assuming 𝑡 = 2, then 𝐷1 = {𝑜1, 𝑜2, 𝑜5, 𝑜6, 𝑜9, 𝑜10} and 𝐷2 =
{𝑜3, 𝑜4, 𝑜7, 𝑜8}. In the light of half-search algorithm and 𝐴𝐶𝑆(�̂�1, 𝑈 ×
𝑌 ) = 0 and 𝐴𝐶𝑆(�̂�2, 𝑈 × 𝑌 ) = 0, it is toilless to verify 𝑂𝑆 = 2. In 
7 
Algorithm 3: Feature Selection for Dynamic Attribute Increase 
(𝐴𝑡𝐷𝐼 − 𝐹𝑆).
Input: A 𝐷-𝑀𝐼𝑣𝐹𝐷 𝑆 = (𝑂,𝐶 ∪ {𝑑}), 𝑅𝑉 (𝑆), 𝐴1.
Output: New optimal scale 𝑂𝑆, new feature selection set ̂𝐹𝑆, new 

𝑅𝑉 (𝑆). 
1: Calculating {𝐷1, 𝐷2, ..., 𝐷𝑡} about the updated dataset 
2: 𝑙𝑒𝑓 𝑡 = 𝑂𝑆, 𝑟𝑖𝑔ℎ𝑡 = 𝐿 /*Finding new optimal scale 𝑂𝑆.*/ 
3: Steps 3-11 of Algorithm 1 
4: 𝑂𝑆 = 𝑙𝑒𝑓 𝑡 − 1
5: 𝑙𝑒𝑓 𝑡 = 0, 𝑟𝑖𝑔ℎ𝑡 = 𝑚 + ℎ3 /*Finding new feature selection set ̂𝐹𝑆.*/ 
6: Steps 18-26 of Algorithm 1 
7: ̂𝐹𝑆 = 𝐶𝑙𝑒𝑓 𝑡
8: return 𝑂𝑆, ̂𝐹𝑆, 𝑅𝑉 (𝑆) = (𝑂𝑆, ̂𝐹𝑆, 𝑛, 𝑚 + ℎ3, 0,+ℎ3, 𝛶 , 0, 𝑛𝑢𝑙𝑙)
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Table 3
Time complexity of the proposed algorithms.
 Step Function Best Worst Average  
 1 Calculating decision class 𝑂(𝑦) 𝑂(𝑦𝑡) 𝑂(𝑦𝑡)  
 2–11 Finding new optimal scale 𝑂𝑆 𝑂(𝑦) 𝑂(𝑢𝑦𝑎𝑙𝑜𝑔2(𝑂𝑆)) 𝑂(𝑢𝑦𝑎𝑙𝑜𝑔2(𝑂𝑆))  
 5 Calculating 𝐴𝐹𝐶𝐼(�̂� 𝑙 , 𝑈 × 𝑌 ) 𝑂(𝑦) 𝑂(𝑢𝑦𝑎) 𝑂(𝑢𝑦𝑎)  
 5 Calculating 𝐴𝐶𝑆(�̂� 𝑙 , 𝑈 × 𝑌 ) 𝑂(1) 𝑂(1) 𝑂(1)  
 13–26 Finding new feature selection set ̂𝐹𝑆 𝑂(𝑦) 𝑂(𝑢𝑦𝑎𝑙𝑜𝑔2(𝑎 + 1)) 𝑂(𝑢𝑦𝑎𝑙𝑜𝑔2(𝑎 + 1)) 
 20 Calculating 𝐴𝐹𝐶𝐼(�̂�𝑂𝑆

𝑗 , 𝑈 × 𝑌 ) 𝑂(𝑦) 𝑂(𝑢𝑦𝑎) 𝑂(𝑢𝑦𝑎)  
 20 Calculating 𝐴𝐶𝑆(�̂�𝑂𝑆

𝑗 , 𝑈 × 𝑌 ) 𝑂(1) 𝑂(1) 𝑂(1)  
addition, due to 𝐴𝐶𝑆(�̂�2
0 , 𝑈 ×𝑌 ) = 1, 𝐴𝐶𝑆(�̂�2

1 , 𝑈 ×𝑌 ) = 1, 𝐴𝐶𝑆(�̂�2
2 , 𝑈 ×

𝑌 ) = 1, 𝐴𝐶𝑆(�̂�2
3 , 𝑈×𝑌 ) = 0, 𝐴𝐶𝑆(�̂�2

4 , 𝑈×𝑌 ) = 0, 𝐴𝐶𝑆(�̂�2
5 , 𝑈×𝑌 ) = 0 and 

𝐴𝐶𝑆(�̂�2
6 , 𝑈 × 𝑌 ) = 0, it can be deduced that ̂𝐹𝑆 = {𝑐2, 𝑐3, 𝑐4}. To sum 

up, it can be known that 𝑅𝑉 (𝑆) = (2, {𝑐2, 𝑐3, 𝑐4}, 10, 6, 0,+2, 0.7, 0, 𝑛𝑢𝑙𝑙).

4.4. Incremental feature selection for dynamic attribute decrease

Remove ℎ4 attributes from the initial dataset, with these ℎ4 at-
tributes collectively constituting 𝐴2, 𝐴2 ⊆ 𝐶, as well as the organization 
and arrangement of the data are revealed in Fig.  6. ∀𝑜 ∈ 𝑂, 𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑜), 
𝐴𝐶𝜍𝑙

(𝐶−𝐴2)𝑙
(𝑜), then 𝐴𝐶𝜍𝑙

𝐶 𝑙 (𝑜) ⊆ 𝐴𝐶𝜍𝑙

(𝐶−𝐴2)𝑙
(𝑜). Ulteriorly when 𝑆𝑙 = (𝑂,𝐶 𝑙∪

{𝑑}) is inconsistent, then �̂�𝑙 = (𝑂, (𝐶 −𝐴2)𝑙 ∪{𝑑}) is also inconsistent. It 
is apparent that 𝑂𝑆 can be found within {1, 2,… , 𝑂𝑆}. To expedite the 
training process, 𝑂𝑆 will be sought within the range of information 
table managed by 𝛶 , i.e. 𝑈 = 𝑂 ⊗ 𝛶  and 𝑌 = 𝑂, 𝐴𝐶𝜍𝑙

(𝐶−𝐴2)𝑙
(𝑜), 

∀𝑜 ∈ 𝑈 . Additionally, as the scale becomes coarser, the inconsistency 
of information table gradually amplifies, corresponding to the mono-
tonically increasing 𝐴𝐶𝑆(�̂�𝑙 , 𝑈 × 𝑌 ), where �̂�𝑙 = (𝑂, (𝐶 − 𝐴2)𝑙 ∪ {𝑑}), 
𝑙 ∈ {1, 2,… , 𝑂𝑆}, 𝑈 = 𝑂 ⊗ 𝛶  and 𝑌 = 𝑂, which constitutes 𝑂𝑆𝐴𝐶𝑆 =
[𝐴𝐶𝑆(�̂�1, 𝑈 × 𝑌 ), 𝐴𝐶𝑆(�̂�2, 𝑈 × 𝑌 ),… , 𝐴𝐶𝑆(�̂�𝑂𝑆 , 𝑈 × 𝑌 )]. Subsequently, 
a half-search is conducted on 𝑂𝑆𝐴𝐶𝑆 to chase down the sequence of 
final 𝐴𝐶𝑆(�̂�𝑙 , 𝑈 × 𝑌 ) = 0, hence notarizing 𝑂𝑆. Subsequently, it is im-
perative to search for ̂𝐹𝑆 within {𝐶𝑚−ℎ4 , 𝐶𝑚−ℎ4−1, 𝐶𝑚−ℎ4−2,… , 𝐶1, 𝐶0}. 
As the feature subset narrows, 𝐴𝐶𝑆(�̂�𝑂𝑆

𝑗 , 𝑈 × 𝑌 ) displays gradual 
magnification, where �̂�𝑂𝑆

𝑗 = (𝑂, (𝐶 − 𝐴2)𝑂𝑆
𝑗 ∪ {𝑑}), 𝑈 = 𝑂 ⊗ 𝛶  and 

𝑌 = 𝑂. Then, only one half-search in 𝐹𝑆𝐴𝐶𝑆 = [𝐴𝐶𝑆(�̂�𝑂𝑆
𝑚−ℎ4

, 𝑈 ×

𝑌 ), 𝐴𝐶𝑆(�̂�𝑂𝑆
𝑚−ℎ4−1

, 𝑈 × 𝑌 ),… , 𝐴𝐶𝑆(�̂�𝑂𝑆
0 , 𝑈 × 𝑌 )] is needful to gain the 

order in which the last 𝐴𝐶𝑆(�̂�𝑂𝑆
𝑗 , 𝑈 × 𝑌 ) = 0, ̂𝐹𝑆 can be deduced 

from the order spontaneously. Assuming number of attributes = 𝑎, 
|𝑈 | = 𝑢 and |𝑌 | = 𝑦, the time complexities of these four algorithms 
are presented in Table  3.
Algorithm 4: Feature Selection for Attribute Decrease (𝐴𝑡𝐷𝐷−𝐹𝑆).
Input: A 𝐷-𝑀𝐼𝑣𝐹𝐷 𝑆 = (𝑂,𝐶 ∪ {𝑑}), 𝑅𝑉 (𝑆), 𝐴2, |𝐴2| = ℎ4, 𝐴2 ⊆ 𝐶.
Output: New optimal scale 𝑂𝑆, new feature selection set ̂𝐹𝑆, new 

𝑅𝑉 (𝑆). 
1: Calculating {𝐷1, 𝐷2, ..., 𝐷𝑡} about the updated dataset 
2: 𝑙𝑒𝑓 𝑡 = 1, 𝑟𝑖𝑔ℎ𝑡 = 𝑂𝑆 /*Finding new optimal scale 𝑂𝑆.*/ 
3: Steps 3-11 of Algorithm 1 
4: 𝑂𝑆 = 𝑙𝑒𝑓 𝑡 − 1
5: 𝑙𝑒𝑓 𝑡 = 0, 𝑟𝑖𝑔ℎ𝑡 = 𝑚 − ℎ4 /*Finding new feature selection set ̂𝐹𝑆.*/ 
6: Steps 18-26 of Algorithm 1 
7: ̂𝐹𝑆 = 𝐶𝑙𝑒𝑓 𝑡
8: return 𝑂𝑆, ̂𝐹𝑆, 𝑅𝑉 (𝑆) = (𝑂𝑆, ̂𝐹𝑆, 𝑛, 𝑚 − ℎ4, 0,−ℎ4, 𝛶 , 0, 𝑛𝑢𝑙𝑙)

5. Experimental analysis

In this section, the practicality and efficacy of the four algorithms 
are validated through experimental procedures. All experimental hard-
ware setups are configured as Windows 11, Intel(R) Core(TM) i7-
10750H CPU @ 2.60 GHz and 16.0 GB memory. The software envi-
ronment for executing the algorithms is Python 3.7. Twelve datasets 
from the University of California, Irvine (https://archive.ics.uci.edu/) 
8 
are selected to verify the performance of the proposed algorithms, and 
the details of twelve datasets are displayed in Table  4. The technique 
expounded in [30] is implemented to convert the standard dataset into 
the 𝑀𝐼𝑣𝐹𝐷, where each feature possesses five scales.

Then a series of constraints will be imposed on these static tables 
to enable them to execute various update patterns. In this study, the 
dataset’s object set and attribute set are segmented into four equivalent 
portions, each representing 25% of the whole. These segments are 
denoted as 𝛺1, 𝛺2, 𝛺3 and 𝛺4 for the object set, and 𝛹1, 𝛹2, 𝛹3 and 
𝛹4 for the attribute set. Initially, the object set comprises 𝛺1 ∪ 𝛺2, 
while the attribute set consists of 𝛹3 ∪ 𝛹4. The object set becomes 
𝛺1∪𝛺2∪𝛺3 when the objects are aggrandized, and 𝛺1 when the objects 
are decreased. The attribute set is transformed to 𝛹2 ∪𝛹3 ∪𝛹4 when the 
attribute increases, and to 𝛹4 when the attribute decreases (see Table 
7).

5.1. Experimental design

Based on the findings [30] of prior experiments, the parameters 
illuminated in this study are established as follows, 𝜁1 = 1

2 , 𝜁2 =
1
2 , 𝜍

1 =
0.9, 𝜍2 = 0.7, 𝜍3 = 0.5, 𝜍4 = 0.3, 𝜍5 = 0.1. In [30], extensive experimental 
evidence has demonstrated that optimal accuracy and efficiency, in a 
general context, can be attained when the parameters are configured 
as above specified. Where 𝜁1 and 𝜁2 represent the two parameters of 
𝑃𝐼 , while 𝜍1, 𝜍2, 𝜍3, 𝜍4 and 𝜍5 denote the associated thresholds for 
the five scales. Initially, the outcomes of the initial dataset are derived 
utilizing the technique elucidated in [30], as manifested in Table  5. 
Then experiments are conducted on twelve datasets, and the results 
are documented in Table  6 ∼ Table  8. (Table Notation Description:PT-
Consistency processing time, TSS-Training set size, 𝑇1-Finding optimal 
scale time, 𝑇2-Finding feature selection time)

Based on the exploration of algorithm performance and review 
rate, it is distinct that higher review rates generally correspond to 
broader learning scopes and ameliorated algorithm accuracy. Never-
theless, there exists a specific scenario where an increase in learning 
scope may introduce more abnormal data, leading to a decrease in 
accuracy. Furthermore, alterations in algorithm accuracy are observed 
with the addition or removal of attributes. It is logical to deduce 
that as attributes are augmented, the algorithm’s perception of the 
object becomes more comprehensive, resulting in higher classification 
accuracy, or else the accuracy levels will be dramatically impacted.

5.2. Contrast experiment

In this subsection, seven relevant algorithms in this field, individ-
ually namely 𝐴𝐸- 𝑅𝐴𝑅 [31], 𝐻𝐾𝐶𝑀𝐼 [32], 𝐼𝐺𝑈𝐹𝑆(𝛼 = 0.5, 𝛽 =
0.1) [33], 𝐼𝑁𝐹 -𝑈𝐹𝑆 [34], 𝑈𝑀 [35], 𝐺𝐷𝐺𝑅𝑁(𝛼 = 0.7, 𝛽 = 0.001) [24] 
and 𝑈𝐻𝐷𝐹𝐾 [2] are compared with the algorithms of this study. 
These comparison algorithms are detailed and classified in Table  13, 
and all other parameters are initialized with default values. It is im-
portant to note that the incremental feature selection model presented 
in this study, along with several other comparative algorithms, can 
fundamentally be classified as feature selection systems. These systems 
are capable of executing feature selection processes and producing 

https://archive.ics.uci.edu/
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Table 4
Details of the datasets.
 Order Datasets Abbreviations Objects Features 
 1 Toxicity Toxicity 171 1203  
 2 Period Changer PC 90 1177  
 3 DARWIN DARWIN 174 451  
 4 Tunadromd Tunadromd 4465 242  
 5 NATICUSdroid Dataset NATICUSdroid 29333 86  
 6 Predict Students Dropout and Academic Success PSDAS 4424 36  
 7 Tarvel Review Ratings TRR 5456 24  
 8 Glioma Grading Clinical and Mutation Features GGCMF 839 23  
 9 Diferentiated Thyroid Cancer Recurrence DTCR 383 16  
 10 Shill Bidding Dataset SBD 6321 13  
 11 Accelerometer Gyro Mobile Phone Dataset AGMPD 31991 8  
 12 Sepsis Survival Minimal Clinical Records SSMCR 110341 3  
Table 5
Experimental results on the original datasets.
 Datasets PT(s) TSS 𝑇1(s) OS 𝑇2(s) FS  
 DTCR 0.88 190 0.02 1 0.70 𝐶7  
 Toxicity 0.11 85 0.41 5 2.67 𝐶360 
 PC 0.03 45 0.24 5 1.01 𝐶252 
 DARWIN 0.13 87 1.09 5 5.58 𝐶201 
 GGCMF 7.34 68 0.01 1 0.27 𝐶9  
 PSDAS 55.59 1824 0.38 1 32.13 𝐶21  
 Tunadromd 286.32 2231 1436.98 5 1.00 𝐶1  
 TRR 53.24 1797 0.11 1 0.48 𝐶12  
 SBD 52.52 1807 0.06 1 0.02 𝐶5  
 NATICUSdroid 8533.04 11230 4.57 1 11782.64 𝐶28  
 AGMPD 1810.22 15995 2106.50 5 48.75 𝐶1  
 SSMCR 13894.54 0 0.00 5 0.00 𝐶1  
Fig. 7. Comparison of accuracy about different algorithms under four classifiers. Separately (a) and (b) are the accuracy of the KNN classifier, (c) and (d) are the accuracy of the 
SVM classifier, (e) and (f) are the accuracy of the Bayes classifier, (g) and (h) are the accuracy of the Random Forest classifier.
relevant outcomes following four distinct updates to the dataset: Object 
Increase, Object Decrease, Attribute Increase and Attribute Decrease.
9 
Following a data update, each system is assigned an accuracy value 
and a processing time for the feature selection outcomes. To conduct 
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Table 6
Experimental results of different algorithms on twelve datasets when review rate=0.3.
 Algorithms Datasets PT(s) TSS 𝑇1(s) 𝑂𝑆 𝑇2(s) ̂𝐹𝑆  
 

ObDI-FS

DTCR 0.47 280 0.00 1 0.48 𝐶7  
 Toxicity 0.14 128 0.48 5 3.17 𝐶360 
 PC 0.02 67 0.18 5 0.93 𝐶261 
 DARWIN 0.14 130 1.16 5 2.04 𝐶219 
 GGCMF 8.61 343 0.00 1 0.35 𝐶11  
 PSDAS 37.90 2933 0.00 1 0.00 𝐶21  
 Tunadromd 263.86 3348 2.92 1 928.68 𝐶55  
 TRR 89.57 3203 0.00 1 0.00 𝐶12  
 SBD 64.11 3745 0.00 1 0.00 𝐶5  
 NATICUSdroid 9762.27 13532 0.00 1 1149.52 𝐶42  
 AGMPD 2238.09 11297 0.28 1 4.67 𝐶3  
 SSMCR 17360.70 38572 0.00 5 0.00 𝐶1  
 

ObDD-FS

DTCR 0.03 95 0.02 1 0.09 𝐶7  
 Toxicity 0.02 43 0.03 5 0.17 𝐶16  
 PC 0.00 22 0.01 5 0.04 𝐶146 
 DARWIN 0.01 43 0.08 5 0.56 𝐶129 
 GGCMF 0.33 156 0.02 1 0.02 𝐶10  
 PSDAS 4.31 1069 0.11 1 3.94 𝐶19  
 Tunadromd 21.93 1115 110.62 5 0.08 𝐶1  
 TRR 4.94 1225 0.06 1 0.09 𝐶12  
 SBD 4.19 1385 0.06 1 0.16 𝐶5  
 NATICUSdroid 650.11 7332 1866.20 5 3.19 𝐶1  
 AGMPD 131.93 7997 160.18 5 4.24 𝐶1  
 SSMCR 1141.73 19285 0.00 5 0.00 𝐶1  
 

AtDI-FS

DTCR 0.19 190 0.23 2 0.34 𝐶5  
 Toxicity 0.03 85 0.14 5 2.02 𝐶221 
 PC 0.02 45 0.06 5 0.48 𝐶186 
 DARWIN 0.05 87 0.35 5 2.27 𝐶201 
 GGCMF 2.81 334 0.08 1 0.11 𝐶17  
 PSDAS 9.87 2205 0.58 1 10.45 𝐶30  
 Tunadromd 104.44 2231 639.18 5 0.30 𝐶1  
 TRR 17.39 2688 0.67 1 8.45 𝐶18  
 SBD 17.71 3146 0.16 1 0.14 𝐶7  
 NATICUSdroid 3143.88 14412 7.89 1 14290.70 𝐶65  
 AGMPD 658.79 15995 838.18 5 14.81 𝐶1  
 SSMCR 5064.72 38602 0.66 4 0.36 𝐶3  
 

AtDD-FS

DTCR 0.11 184 0.00 1 0.08 𝐶1  
 Toxicity 0.03 85 0.14 5 0.93 𝐶221 
 PC 0.00 45 0.06 5 0.44 𝐶186 
 DARWIN 0.03 87 0.23 4 0.37 𝐶80  
 GGCMF 1.57 301 0.00 1 0.08 𝐶4  
 PSDAS 9.30 1755 0.00 1 0.03 𝐶11  
 Tunadromd 61.91 2231 214.45 5 0.31 𝐶1  
 TRR 16.81 2070 0.00 1 0.17 𝐶6  
 SBD 14.64 2551 0.00 1 0.02 𝐶2  
 NATICUSdroid 2274.67 13210 0.00 1 7.45 𝐶6  
 AGMPD 428.50 15995 516.88 5 17.39 𝐶1  
 SSMCR 3020.00 38571 0.00 5 0.00 𝐶1  
a thorough assessment of the system’s performance, the overall accu-
racy is calculated as the mean of the accuracy values obtained from 
four updates. Likewise, the processing times associated with the four 
updates are averaged to represent the system’s time consumption. The 
comparative analysis of running times is presented in Table  11 and 
illustrated in Fig.  8.

Furthermore, this study employs K-Nearest Neighbors (𝐾𝑁𝑁), Sup-
port Vector Machines (𝑆𝑉𝑀), Naive Bayes (𝐵𝑎𝑦𝑒𝑠), and Random Forest 
(𝑅𝐹 ) algorithms to assess the accuracy of each system, as illustrated in 
Table  9, Table  10 and Fig.  7. The models are evaluated under varying 
review rates, specifically Review Rate=0.3 (𝛶 = 0.3), Review Rate=0.5 
(𝛶 = 0.5), and Review Rate=0.7 (𝛶 = 0.7).

Through the experimental results, it is not difficult to find that the 
proposed model has a significant improvement in efficiency, and can 
deal with the feature selection task of large-scale data sets under the 
condition of not running out of memory. Subsequently, these algo-
rithms will undergo thorough statistical analyses to yield substantiating 
estimation findings.
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5.3. Statistical analysis

In this subsection, the Friedman test, a nonparametric statistical 
approach, will be employed to ascertain whether there exist statistically 
significant disparities in the average performance of the aforemen-
tioned algorithms across twelve distinct datasets. The Friedman test is 
a methodology utilized to compare ranking variances among multiple 
related sample groups. Prior to the Friedman test, we hypothesize that 
there is no substantial difference in accuracy performance among all the 
algorithms. The relevant formulas of Friedman statistics are presented 
as follows. 

𝜒2
𝐹 = 12𝑁

𝑘(𝑘 + 1)

( 𝑘
∑

𝑗=1
𝑅2
𝑗 −

𝑘(𝑘 + 1)2

4

)

, 𝐹𝐹 =
(𝑁 − 1) 𝜒2

𝐹

𝑁(𝑘 − 1) − 𝜒2
𝐹

. (11)

Then 𝜒2 and 𝑃 < 0.05 are derived through computation, it is evi-
dent that the calculation results indicate that the original hypothesis 
is invalid. The Friedman test can merely be employed to ascertain 
whether there exists a significant disparity among the experimental 
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Table 7
Experimental results of different algorithms on twelve datasets when review rate=0.5.
 Algorithms Datasets PT(s) TSS 𝑇1(s) 𝑂𝑆 𝑇2(s) ̂𝐹𝑆  
 

ObDI-FS

DTCR 0.63 277 0.00 1 0.53 𝐶7  
 Toxicity 0.18 128 0.59 5 4.15 𝐶360 
 PC 0.04 67 0.46 5 2.70 𝐶261 
 DARWIN 0.18 130 1.51 5 3.72 𝐶219 
 GGCMF 10.72 274 0.00 1 0.42 𝐶11  
 PSDAS 47.28 2848 0.00 1 0.00 𝐶21  
 Tunadromd 335.39 3348 2.80 1 949.74 𝐶55  
 TRR 90.97 3061 0.00 1 0.00 𝐶12  
 SBD 79.94 3464 0.00 1 0.00 𝐶5  
 NATICUSdroid 12279.52 11616 0.00 1 1366.76 𝐶42  
 AGMPD 2734.31 8159 6.08 1 5.36 𝐶3  
 SSMCR 21279.81 27551 0.02 5 0.00 𝐶1  
 

ObDD-FS

DTCR 0.06 95 0.02 1 0.08 𝐶7  
 Toxicity 0.01 43 0.06 5 0.25 𝐶16  
 PC 0.01 22 0.02 5 0.05 𝐶252 
 DARWIN 0.01 43 0.07 5 0.20 𝐶147 
 GGCMF 0.95 122 0.02 1 0.07 𝐶10  
 PSDAS 4.31 1041 0.09 1 2.31 𝐶21  
 Tunadromd 36.83 1115 180.89 5 0.12 𝐶1  
 TRR 7.81 1196 0.09 1 0.47 𝐶12  
 SBD 7.46 1265 0.05 1 0.05 𝐶5  
 NATICUSdroid 1032.14 7332 3108.99 5 5.36 𝐶1  
 AGMPD 223.65 7997 266.37 5 6.69 𝐶1  
 SSMCR 1923.13 13775 0.00 5 0.00 𝐶1  
 

AtDI-FS

DTCR 0.30 190 0.42 2 0.51 𝐶5  
 Toxicity 0.06 85 0.21 5 1.47 𝐶360 
 PC 0.02 45 0.13 5 0.91 𝐶186 
 DARWIN 0.11 87 0.60 5 2.96 𝐶201 
 GGCMF 4.73 280 0.06 1 0.27 𝐶17  
 PSDAS 29.14 2203 0.64 1 34.55 𝐶30  
 Tunadromd 171.83 2231 1043.37 5 0.61 𝐶1  
 TRR 28.22 2679 0.50 1 1.40 𝐶18  
 SBD 27.85 3137 0.19 1 0.08 𝐶7  
 NATICUSdroid 4649.75 14256 7.70 1 23742.60 𝐶65  
 AGMPD 1089.73 15995 1439.31 5 27.23 𝐶1  
 SSMCR 8472.05 27603 0.48 4 0.27 𝐶3  
 

AtDD-FS

DTCR 0.17 181 0.00 1 0.16 𝐶1  
 Toxicity 0.05 85 0.25 4 0.69 𝐶53  
 PC 0.01 45 0.11 5 0.74 𝐶186 
 DARWIN 0.06 87 0.32 4 0.43 𝐶80  
 GGCMF 2.58 223 0.00 1 0.10 𝐶4  
 PSDAS 15.97 1447 0.00 1 0.09 𝐶11  
 Tunadromd 102.86 2231 340.32 5 0.56 𝐶1  
 TRR 27.22 1679 0.00 1 0.16 𝐶6  
 SBD 24.04 2143 0.00 1 0.00 𝐶2  
 NATICUSdroid 3879.48 12276 0.00 1 12.16 𝐶6  
 AGMPD 756.76 15995 851.25 5 26.86 𝐶1  
 SSMCR 4739.54 27551 0.00 5 0.00 𝐶1  
outcomes of multiple models. However, it fails to identify whether there 
is a difference between any two specific models. Hence, the Nemenyi 
test ought to be conducted in the subsequent step. The values of 𝑞𝛼
and 𝐶𝐷 are derived through reference to the table and subsequent 
calculations. When the Average Rank Difference (𝐴𝑅𝐷) of the two 
algorithms exceeds 𝐶𝐷, the performance of the two algorithms is 
significantly distinct. From the foregoing, it is not arduous to deduce 
that the proposed method surpasses multiple traditional models in 
terms of performance (see Table  12).

6. Conclusions

In this study, we present four incremental feature selection algo-
rithms that leverage 𝑅𝑉  and review rate to address the challenge of 
real-time feature selection in 𝐷-𝑀𝐼𝑣𝐹𝐷. Inspired by machine learning 
principles of regularization and replay, these algorithms enhance the 
speed, adaptability, and effectiveness of feature selection processes. Our 
11 
experimental results indicate that these algorithms can rapidly identify 
optimal feature subsets, reducing storage needs while sustaining high 
classification accuracy.

This research offers significant insights for future exploration and 
practical application in related fields. Nonetheless, this paper presents 
certain limitations, including the method of data update, the type 
of data input and output, as well as the adaptability in intricate 
decision-making contexts, such as multi-label decision making sce-
narios, all of which require improvement. Future work could delve 
into deeper integration with machine learning frameworks and other 
disciplines, aiming to broaden the algorithms’ applicability to complex 
decision-making scenarios.

Given the increasing complexity and diversity of real-world data, 
developing effective implementation strategies for the proposed meth-
ods in practical environments is a critical direction for future research. 
This will ensure the robustness and scalability of the algorithms in the 
face of evolving data landscapes.
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Table 8
Experimental results of different algorithms on twelve datasets when review rate=0.7.
 Algorithms Datasets PT(s) TSS 𝑇1(s) 𝑂𝑆 𝑇2(s) ̂𝐹𝑆  
 

ObDI-FS

DTCR 0.69 277 0.00 1 0.63 𝐶7  
 Toxicity 0.20 128 0.68 5 4.77 𝐶360 
 PC 0.05 67 0.49 5 3.28 𝐶261 
 DARWIN 0.21 130 1.82 5 5.66 𝐶219 
 GGCMF 12.29 198 0.00 1 0.02 𝐶11  
 PSDAS 57.14 2760 0.00 1 0.00 𝐶21  
 Tunadromd 412.19 3348 2.80 1 1261.22 𝐶55  
 TRR 103.41 2843 0.00 1 0.00 𝐶12  
 SBD 96.94 3185 0.00 1 0.00 𝐶5  
 NATICUSdroid 14888.47 9672 0.00 1 1500.96 𝐶42  
 AGMPD 3473.24 5063 1.50 1 5.48 𝐶3  
 SSMCR 25464.62 16531 0.00 5 0.00 𝐶1  
 

ObDD-FS

DTCR 0.08 95 0.02 1 0.17 𝐶7  
 Toxicity 0.03 43 0.06 5 0.33 𝐶16  
 PC 0.00 22 0.05 5 0.11 𝐶252 
 DARWIN 0.01 43 0.09 5 0.36 𝐶147 
 GGCMF 1.26 86 0.02 1 0.07 𝐶10  
 PSDAS 5.77 1013 0.09 1 4.59 𝐶21  
 Tunadromd 50.79 1115 245.28 5 0.17 𝐶1  
 TRR 10.97 1082 0.06 1 0.44 𝐶12  
 SBD 9.58 1130 0.03 1 0.33 𝐶5  
 NATICUSdroid 1577.08 7332 4700.42 5 7.42 𝐶1  
 AGMPD 309.21 7997 382.17 5 9.20 𝐶1  
 SSMCR 2696.14 8266 0.00 5 0.00 𝐶1  
 

AtDI-FS

DTCR 0.41 190 0.02 1 0.73 𝐶7  
 Toxicity 0.08 85 0.30 5 2.33 𝐶360 
 PC 0.03 45 0.16 5 1.24 𝐶252 
 DARWIN 0.08 87 0.87 5 5.11 𝐶201 
 GGCMF 6.44 221 0.05 1 0.15 𝐶17  
 PSDAS 21.27 2202 0.27 1 28.17 𝐶30  
 Tunadromd 239.24 2231 1457.15 5 0.69 𝐶1  
 TRR 38.47 2645 0.83 1 1.47 𝐶18  
 SBD 38.69 3126 0.14 1 0.06 𝐶7  
 NATICUSdroid 6560.44 14095 7.73 1 32177.23 𝐶65  
 AGMPD 1492.14 15995 1946.47 5 34.09 𝐶1  
 SSMCR 12163.07 16604 0.30 4 0.14 𝐶3  
 

AtDD-FS

DTCR 0.22 177 0.00 1 0.20 𝐶1  
 Toxicity 0.08 85 0.51 4 1.18 𝐶53  
 PC 0.01 45 0.09 5 0.39 𝐶252 
 DARWIN 0.08 87 0.41 4 0.84 𝐶80  
 GGCMF 3.40 144 0.00 1 0.02 𝐶6  
 PSDAS 22.91 1142 0.00 1 0.03 𝐶11  
 Tunadromd 142.38 2231 481.88 5 0.69 𝐶1  
 TRR 38.47 1244 0.00 1 0.20 𝐶6  
 SBD 31.83 1709 0.00 1 0.00 𝐶2  
 NATICUSdroid 5098.04 11346 0.00 1 14.94 𝐶6  
 AGMPD 1062.14 15995 1214.63 5 42.27 𝐶1  
 SSMCR 6330.35 16531 0.00 5 0.00 𝐶1  
Table 9
Comparison of accuracy (%) about different algorithms under four classifiers.
 Classifiers Datasets AERAR HKCMI IGUFS INF-UFS UM 𝛶 = 0.3 𝛶 = 0.5 𝛶 = 0.7 
 

KNN

Toxicity – – – – – 75.91 73.02 73.02  
 PC – – – – – 66.27 72.62 69.84  
 DARWIN 71.43 61.42 58.58 68.36 50.82 68.53 70.14 74.86  
 Tunadromd – – – – – 94.03 94.03 94.03  
 NATICUSdroid – – – – – 88.56 88.56 88.56  
 PSDAS – – 60.78 60.36 – 70.13 73.58 73.58  
 TRR – – 83.94 79.35 74.32 75.79 75.79 75.79  
 GGCMF 75.01 70.68 71.13 66.52 51.64 61.26 62.06 62.06  
 DTCR 88.26 91.54 75.91 74.93 74.91 99.35 99.35 99.92  
 SBD – 86.14 81.45 76.34 85.68 90.82 90.82 90.82  
 AGMPD – – 94.28 91.08 – 92.86 92.86 92.86  
 SSMCR – – – – – 92.18 92.18 92.18  
 (continued on next page)
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Table 9 (continued).
 

SVM

Toxicity – – – – – 59.80 64.61 64.61 
 PC – – – – – 61.90 61.90 65.48 
 DARWIN 63.40 64.70 64.29 84.20 63.26 65.35 68.57 69.44 
 Tunadromd – – – – – 94.41 94.41 94.41 
 NATICUSdroid – – – – – 87.21 87.21 87.21 
 PSDAS – – 62.37 58.55 – 74.37 74.49 74.49 
 TRR – – 77.40 74.95 65.43 71.39 71.39 71.39 
 GGCMF 70.15 72.92 81.70 81.25 58.48 63.45 67.74 67.74 
 DTCR 91.21 93.17 78.86 79.82 79.48 96.56 96.56 98.13 
 SBD – 80.45 87.51 87.79 89.72 92.20 92.20 92.20 
 AGMPD – – 91.34 87.27 – 98.34 98.34 98.34 
 SSMCR – – – – – 92.21 92.21 92.21 
 

Bayes

Toxicity – – – – – 42.77 45.65 45.65 
 PC – – – – – 63.50 69.05 69.05 
 DARWIN 68.55 74.58 62.89 86.35 74.07 53.51 54.86 61.73 
 Tunadromd – – – – – 67.43 67.43 67.43 
 NATICUSdroid – – – – – 62.59 62.59 62.59 
 PSDAS – – 61.41 57.02 – 68.88 68.49 68.49 
 TRR – – 71.70 67.63 56.19 64.94 64.94 64.94 
 GGCMF 53.04 70.24 68.30 81.25 58.48 54.81 55.61 55.61 
 DTCR 85.99 87.97 78.21 78.51 79.48 93.31 93.31 94.59 
 SBD – 86.09 80.56 87.74 88.77 88.50 88.50 88.50 
 AGMPD – – 94.35 97.81 – 98.34 98.34 98.34 
 SSMCR – – – – – 92.21 92.21 92.21 
 

RF

Toxicity – – – – – 64.32 65.28 65.28 
 PC – – – – – 77.38 77.38 80.95 
 DARWIN 62.16 71.52 70.57 87.06 78.48 72.66 73.27 77.14 
 Tunadromd – – – – – 95.11 95.11 95.11 
 NATICUSdroid – – – – – 89.13 89.13 89.13 
 PSDAS – – 61.72 56.71 – 71.93 72.16 72.16 
 TRR – – 85.42 82.90 61.02 78.82 78.82 78.82 
 GGCMF 71.26 65.18 80.90 80.21 58.48 64.29 69.97 69.97 
 DTCR 90.56 90.24 75.25 79.16 76.86 99.35 99.35 99.92 
 SBD – 85.28 84.08 89.40 88.93 92.59 92.59 92.59 
 AGMPD – – 88.49 93.55 – 99.07 99.07 99.07 
 SSMCR – – – – – 90.87 90.87 90.87 
Fig. 8. Comparison of the running time about different algorithms.
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Table 10
Comparison of accuracy (%) about different algorithms under four classifiers.
 Classifiers Datasets GDGRN UHDFK 𝛶 = 0.3 𝛶 = 0.5 𝛶 = 0.7 
 

KNN

Toxicity 64.95 68.27 75.91 73.02 73.02  
 PC 73.24 62.38 66.27 72.62 69.84  
 DARWIN 71.36 66.70 68.53 70.14 74.86  
 Tunadromd 95.56 90.72 94.03 94.03 94.03  
 NATICUSdroid – – 88.56 88.56 88.56  
 PSDAS 58.54 64.39 70.13 73.58 73.58  
 TRR 87.29 79.43 75.79 75.79 75.79  
 GGCMF 75.37 67.36 61.26 62.06 62.06  
 DTCR 94.78 83.10 99.35 99.35 99.92  
 SBD 98.95 80.19 90.82 90.82 90.82  
 AGMPD 96.37 88.72 92.86 92.86 92.86  
 SSMCR – – 92.18 92.18 92.18  
 

SVM

Toxicity 69.52 63.29 59.80 64.61 64.61  
 PC 68.93 65.49 61.90 61.90 65.48  
 DARWIN 53.69 82.34 65.35 68.57 69.44  
 Tunadromd 91.23 86.93 94.41 94.41 94.41  
 NATICUSdroid – – 87.21 87.21 87.21  
 PSDAS 58.98 63.11 74.37 74.49 74.49  
 TRR 84.92 70.86 71.39 71.39 71.39  
 GGCMF 67.22 61.60 63.45 67.74 67.74  
 DTCR 92.16 78.86 96.56 96.56 98.13  
 SBD 95.29 84.39 92.20 92.20 92.20  
 AGMPD 97.74 83.38 98.34 98.34 98.34  
 SSMCR – – 92.21 92.21 92.21  
 

Bayes

Toxicity 47.12 42.55 42.77 45.65 45.65  
 PC 63.36 68.92 63.5 69.05 69.05  
 DARWIN 66.34 60.76 53.51 54.86 61.73  
 Tunadromd 24.61 53.77 67.43 67.43 67.43  
 NATICUSdroid – – 62.59 62.59 62.59  
 PSDAS 42.91 50.19 68.88 68.49 68.49  
 TRR 75.53 68.87 64.94 64.94 64.94  
 GGCMF 52.27 63.85 54.81 55.61 55.61  
 DTCR 79.96 87.33 93.31 93.31 94.59  
 SBD 91.55 83.51 88.50 88.50 88.50  
 AGMPD 94.92 91.71 98.34 98.34 98.34  
 SSMCR – – 92.21 92.21 92.21  
 

RF

Toxicity 56.69 59.26 64.32 65.28 65.28  
 PC 63.12 73.64 77.38 77.38 80.95  
 DARWIN 77.30 74.39 72.66 73.27 77.14  
 Tunadromd 96.91 91.64 95.11 95.11 95.11  
 NATICUSdroid – – 89.13 89.13 89.13  
 PSDAS 60.74 68.44 71.93 72.16 72.16  
 TRR 72.53 71.67 78.82 78.82 78.82  
 GGCMF 65.85 64.39 64.29 69.97 69.97  
 DTCR 93.55 96.19 99.35 99.35 99.92  
 SBD 90.74 86.20 92.59 92.59 92.59  
 AGMPD 97.51 94.44 99.07 99.07 99.07  
 SSMCR – – 90.87 90.87 90.87  
Table 11
Comparison of running times about different algorithms on twelve datasets.
 Datasets AERAR HKCMI IGUFS INF-UFS UM 𝛶 = 0.3 𝛶 = 0.5 𝛶 = 0.7  
 Toxicity – – – – – 1.83 1.99 2.64  
 PC – – – – – 0.56 1.30 1.48  
 DARWIN 10296.71 4971.36 147.29 121.80 3274.29 1.82 2.54 3.89  
 Tunadromd – – – – – 587.17 791.33 1073.62  
 NATICUSdroid – – – – – 8288.97 12521.12 16633.18 
 PSDAS – – 360.97 341.71 – 19.12 33.60 35.06  
 TRR – – 286.69 264.45 7815.74 34.54 39.21 48.58  
 GGCMF 1233.05 426.06 16.43 20.40 594.52 3.50 4.98 5.93  
 DTCR 254.33 144.43 3.96 3.19 86.47 0.51 0.72 0.79  
 SBD – 7285.33 214.76 267.81 12035.97 25.30 34.92 44.40  
 AGMPD – – 1847.43 1724.19 – 1253.49 1858.40 2493.14  
 SSMCR – – – – – 6647.04 9103.83 11663.66 
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Table 12
Results of Friedman tests with different classifiers.
 Metrics KNN SVM Bayes Random Forest 
 𝜒2 52.17 49.43 31.28 56.96  
 𝑃 0.00 0.00 0.00 0.00  
Table 13
Classification and Summary of relevant research literature.
 Methods Categories Research contents Disadvantages  
 Feature 
selection

Multi-label feature selection [12,23,27] 
Utilizing the triple nested equivalence class rough set [18]
By 𝐾-Nearest Neighbor rough set and mutual information 
[17] 
Utilizing the sub-tolerance relation class [19] 
Using all historical data for incremental algorithm [30,31,33] 

Filtering partial historical data or 
Utilizing historical results for incremental algorithm 
[4,16,19] 
Discarding historical data for incremental algorithm [32,35]

Within the specific context, 
algorithms have been developed.

Do not fit 𝐷-𝑀𝐼𝑣𝐹𝐷 framework. 
Advanced theoretical ideas or 
architectures are not combined.

 

 Interval valued 
data processing

Feature selection [30,31,33,35]
Information fusion [28]

These examines effective 
methods for feature selection, 
information fusion in 𝐼𝑉 𝐷𝐼𝑆.

These apply primarily to 
static decision-making scenarios.

 

 Contrast 
algorithms

Based on 𝛼-approximate equal relation (𝐴𝐸𝑅𝐴𝑅) [31] 
By fuzzy complementary mutual information (𝐻𝐾𝐶𝑀𝐼) [32] 

Interval valued feature selection based 
on the graph theory (𝐼𝐺𝑈𝐹𝑆) [33] 
Graph feature filtering (𝐼𝑁𝐹 -𝑈𝐹𝑆) [34] 
Based on 𝜃-rough degree (𝑈𝑀) [35] 
Via granular rectangular neighborhood rough set (𝐺𝐷𝐺𝑅𝑁)
[24] 
Using 𝐹𝐶𝑀 and K-Nearest Neighbor rough set (𝑈𝐻𝐷𝐹𝐾)
[2]

Based on various metrics, 
the feature selection under 
the framework of interval 
or single valued is realized.

Not applicable to 𝐷-𝑀𝐼𝑣𝐹𝐷
framework. Applicability need 
to be improved.

 

 Our 
approach

Incremental Feature Selection 
for 𝐷-𝑀𝐼𝑣𝐹𝐷 Datasets

Inspired by the regularization 
and replay ideas, algorithms are 
proposed for four update modes.

These update patterns are 
fixed. Not applicable to 
multi-label issues.
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