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 a b s t r a c t

With the rapid advancement of new-generation artificial intelligence technologies, machines can process and an-
alyze large-scale data more accurately and efficiently and for more complex tasks. Enhancing the usability and 
value of the information derived from various information systems across multiple dimensions is essential. How-
ever, traditional data dominance relationships cannot reflect people’s different levels of attention to antithetic 
features, leading to higher complexity and lower classification accuracy. Therefore, it is necessary to consider 
the weight relationships between attributes in the data, which refers to the degree of correlation between each 
attribute and the decision in multi-source information systems. Based on these weights and dominance rela-
tionships, we consider an entropy-based weighted information fusion method for processing supervised data 
in multi-source ordered decision systems. We intend four incremental fusion mechanisms to adjust informa-
tion sources and attribute changes to save running time. Furthermore, experiments are conducted on nine real 
datasets to demonstrate our method’s effectiveness. The results show that the inevitable accuracy comparisons 
by the proposed method are superior to most fusion methods. In addition, the dynamic mechanisms, compared 
to static mechanisms, can significantly reduce running time.

1.  Introduction

The supervised information fusion method is an information fusion 
technology that makes decisions based on known labels or categories of 
data, and it has wide-ranging applications in various fields [1–4].

Furthermore, rough set theory was proposed by Pawlak [5] in 
1982 and is a mathematical tool for handling incomplete and fuzzy 
data. Fuzzy set theory, introduced by Zadeh [6] in 1965, deals with 
vague and uncertain concepts in the real world by using fuzzy sets 
and membership functions. Fuzzy rough set [7], formed by combin-
ing the two theories, which describe the fuzziness of attribute val-
ues using fuzzy membership functions and combine the approxima-
tion and equivalence relations of rough sets for data processing. An-
other concept of rough membership functions in pattern classification 
tasks has evolved and expanded into rough-fuzzy membership functions 
and ownership functions. Sarkar [8] introduced this evolution. Xu [9] 
constructed multi-granulation fuzzy rough sets on tolerance relations. 
After that, Xu [10] proposed a local multi-granulation neighborhood 
rough set model and explored dynamic approximate updating algo-
rithms for data. By combining covering-based rough sets, fuzzy rough 
sets, and multi-granulation rough sets, covering-based multi-granulation 
fuzzy rough set models were introduced by Zhan [11] using fuzzy 𝛽-
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neighborhoods. Fuzzy set and rough set theory applied in feature selec-
tion [12,13], knowledge discovery [14–16], data mining [17], pattern 
recognition [18], decision analysis [19], machine learning [20], and 
other fields. Scholars have gradually refined fuzzy rough set theory. At 
the same time, based on the rough set theory, many researchers have 
proposed development models based on information fusion [21–24].

Initially proposed by Shannon [25], information entropy is a math-
ematical tool used to measure uncertainty and is now widely applied 
in information processing [26]. Entropy-based methods have flourished 
in different fields [27–30], such as when combined with information 
fusion. In order to extract useful information from incomplete multi-
source data, a fusion method combining information entropy was pro-
posed by Li [31]. Based on information entropy, a fusion method, devel-
oped by Xu [32] in fuzzy incomplete information system, and a novel 
information fusion method, proposed by Zhang [33] for multi-source 
incomplete interval-valued data. Additionally, Zhang [34] also intro-
duced a two-way concept-cognitive learning method in the context of 
multi-source fuzzy data by integrating information fusion based on in-
formation entropy. Xu [35] established a fusion model for multi-source 
interval-valued ordered data based on the defined fuzzy dominance con-
ditional entropy. The existing multi-source fusion methods always result 
in a single-source information system. In order to improve this situation, 
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$\beta $


$\mathcal {IS} = (U,AT,F)$


$U=\{x_1,x_2,\dots ,x_n\}$


$AT=\{a_1,a_2,\dots ,a_p\}$


$F=\{f|U\rightarrow V_a,a\in AT\}$


$U$


$AT$


$V_a$


$a$


$\mathcal {DS} =(U,AT\bigcup D,F,G)$


$D=\{d_1,d_2,\dots ,d_q\}$


$G=\{g|U\rightarrow V_d,d\in D\}$


$U$


$D$


$V_d$


$d$


$P\subseteq AT$


$R_P\subseteq U\times U$


$a\in U$


$a$


${[a]}^{R_P} =\{b\in U|(a,b)\in R_P\}$


$A\subseteq U$


$A$


\begin {equation}{\underline {R_{P}}(A)=\{a\in U|{[a]}^{R_P}\subseteq A \}}, \label {Xeqn1-1}\end {equation}


\begin {equation}{\overline {R_{P}}(A)=\{a\in U|{[a]}^{R_P}\cap A\neq \emptyset \}}. \label {Xeqn2-2}\end {equation}


$U_{D}=\{D_1,D_2,\dots ,D_m\}$


$U$


$D$


$U$


$AP$


$AQ$


$U_{D}$


$R_P$


\begin {equation}{AP_{R_P}(U_{D})=\frac {\sum _{i = 1}^{m}\left |\underline {R_{P}}(D_i)\right |}{\sum _{i = 1}^{m}\left |\overline {R_{P}}(D_i)\right | }}, \label {Xeqn3-3}\end {equation}


\begin {equation}{AQ_{R_P}(U_{D})=\frac {\sum _{i = 1}^{m}\left |\underline {R_{P}}(D_i)\right |}{\left | U\right | }}. \label {Xeqn4-4}\end {equation}


$AP$


$AQ$


$p\in AT$


$S_p$


$\preceq _p$


$a\preceq _p b\iff f(a,p)\leq f(b,p)$


$a\preceq _p b\iff f(a,p)\geq f(b,p)$


$\mathcal {MS-ODS}=\{\mathcal {ODS}_i|\mathcal {ODS}_i=(U,AT_i\bigcup D_i,F,G),i=1,2,\dots ,s\}$


$\mathcal {ODS}_i$


$\widetilde {A}$


$U=\{u_1,u_2,\dots ,u_n\}$


$\widetilde {A}: U \rightarrow [0,1]$


$\widetilde {A}$


$\widetilde {A}(x)$


$x$


$\widetilde {A}$


$x\in U$


$\widetilde {A}=\sum _{k = 1}^{n}\frac {\widetilde {A}(u_k)}{u_k}$


$\widetilde {B}=\sum _{k = 1}^{n}\frac {\widetilde {B}(u_k)}{u_k}$


$\widetilde {A}$


$\widetilde {B}$


\begin {equation}{\widetilde {A}\cap \widetilde {B}=\sum _{k = 1}^{n}\frac {\widetilde {A}(u_k)\land \widetilde {B}(u_k)}{u_k}}, \label {Xeqn5-5}\end {equation}


\begin {equation}{\widetilde {A}\cup \widetilde {B}=\sum _{k = 1}^{n}\frac {\widetilde {A}(u_k)\lor \widetilde {B}(u_k)}{u_k}}, \label {Xeqn6-6}\end {equation}


\begin {equation}{\widetilde {A}^C=\sum _{k = 1}^{n}\frac {1-\widetilde {A}(u_k)}{u_k}}. \label {Xeqn7-7}\end {equation}


$P\subseteq AT$


$U_{D}=\{D_1,D_2,\dots ,D_m\}$


$D$


$P$


\begin {equation}{H(D|P)=-\sum _{i = 1}^{\left | U\right | }\sum _{j = 1}^{m}\frac {\left |{[x_i]}^{R_P}\cap D_j\right |}{\left | U \right |}\log \frac {\left |{[x_i]}^{R_P}\cap D_j \right |}{\left | {[x_i]}^{R_P}\right |}}. \label {Xeqn8-8}\end {equation}


$H(D|P)$


\begin {equation*}\begin {aligned} &0\leqslant H(D|P)\leqslant \left | U\right |\log \left | U\right |, \\ &H(D|P_1)\leqslant H(D|P_2),\text { if } P_2\subseteq P_1. \\ \end {aligned}\end {equation*}


$\mathcal {ODS} =(U,AT\bigcup D,F,G)$


$\forall p \in AT$


$a \in U$


$f(a,p)$


$p$


$a$


\begin {equation}{ M_A=\begin {bmatrix} f(a_1,p_1) & f(a_1,p_2) & \cdots & f(a_1,p_m) \\ f(a_2,p_1) & f(a_2,p_2) & \cdots & f(a_2,p_m) \\ \vdots & \vdots & \ddots & \vdots \\ f(a_n,p_1) & f(a_n,p_2) & \cdots & f(a_n,p_m) \end {bmatrix} .} \label {Xeqn9-9}\end {equation}


$d$


$M_d = {(g(a_1, d),g(a_2, d),\dots , g(a_n, d))}^T$


$M_A\eta =M_d$


${M^T_A}{M_A}\eta ={M^T_A}{M_d}$


$\eta ={({M_A^T}{M_A})}^{-1}{M_A^T}{M_d}$


${M_A^T}{M_A}$


$\eta ={(\eta (p_1),\eta (p_2),\dots .\eta (p_m))}^T$


$({M^T_A}{M_A}+E)\eta ={M^T_A}{M_d}$


$p$


\begin {equation}{\omega (p)=\frac {\left | AT\right |\times \left | \eta (p)\right |}{\sum _{p_i\in AT}\left | \eta (p_i)\right | }.} \label {Xeqn10-10}\end {equation}


$\omega ={(\omega (p_1),\omega (p_2),\dots .\omega (p_m))}^T$


\begin {equation*}\begin {aligned} &\omega (p)\geqslant 0, \\ &\sum _{p_i\in AT}\omega (p_i)=\left | AT\right |. \\ \end {aligned}\end {equation*}


$\mathcal {ODS} =(U,AT\bigcup D,F,G)$


$p\in AT$


$\forall a,b\in U$


\begin {equation}{dis_p(a,b)=\left | \omega (p)\times (f(a,p)-f(b,p)) \right | . } \label {Xeqn11-11}\end {equation}


$a$


$b$


$p$


\begin {equation}{\widetilde {W_p}(a,b)=\frac {dis_p(a,b)-\min (dis_p)}{\max (dis_p)-\min (dis_p)} . } \label {Xeqn12-12}\end {equation}


$a$


$p$


${[a]}_{\widetilde {W_p}}=\sum _{b\in U }\frac {\widetilde {W_p}(a,b)}{b}$


$\mathcal {ODS} =(U,AT\bigcup D,F,G)$


$\forall a,b\in U$


$p\in AT$


$a$


$b$


$p$


\begin {equation}{ \widetilde {D_p}(a,b)=\begin {cases} {(\frac {1}{1+e^{k\times (f(b,p)-f(a,p))}}-0.5)} \times 2 , & {(\frac {1}{1+e^{k\times (f(b,p)-f(a,p))}}-0.5)} \geq 0 \\ 0, & {(\frac {1}{1+e^{k\times (f(b,p)-f(a,p))}}-0.5)} < 0 \end {cases} ,} \label {Xeqn13-13}\end {equation}


$k$


$a$


$p$


${[a]}^\succcurlyeq _{\widetilde {D_p}}=\sum _{b\in U }\frac {\widetilde {D_p}(a,b)}{b}$


${[a]}^\preccurlyeq _{\widetilde {D_p}}=\sum _{b\in U }\frac {\widetilde {D_p}(b,a)}{b}$


${[a]}_{\widetilde {D_p}}$


$p$


${[a]}_{\widetilde {D_p}}={[a]}^\succcurlyeq _{\widetilde {D_p}}$


$p$


${[a]}_{\widetilde {D_p}}={[a]}^\preccurlyeq _{\widetilde {D_p}}$


$\mathcal {ODS} =(U,AT\bigcup D,F,G)$


$\forall a\in U$


$p\in AT$


$a$


$p$


\begin {equation}{{[a]}_{\widetilde {{W\cap D}_p}}={[a]}_{\widetilde {W_p}}\cap {[a]}_{\widetilde {D_p}} . } \label {Xeqn14-14}\end {equation}


$\mathcal {ODS} =(U,AT\bigcup D,F,G)$


$\forall a,b\in U$


$D$


\begin {equation}{ R_D(a,b)=\begin {cases} 1 , & g(b,d) \geq g(a,d) \\ 0, & g(b,d) < g(a,d) \end {cases} . } \label {Xeqn15-15}\end {equation}


$a$


$D$


${[a]}^\succcurlyeq _{R_D}=\sum _{b\in U }\frac {R_D(a,b)}{b}$


${[a]}^\preccurlyeq _{R_D}=\sum _{b\in U }\frac {R_D(b,a)}{b}$


${[a]}_{R_D}$


$D$


${[a]}_{R_D}={[a]}^\succcurlyeq _{R_D}$


$D$


${[a]}_{R_D}={[a]}^\preccurlyeq _{R_D}$


$\mathcal {MS-ODS}=\{\mathcal {ODS}_i|\mathcal {ODS}_i=(U,AT\bigcup D,F,G),i=1,2,\dots ,s\}$


$U=\{x_1,x_2,\dots ,x_n\}$


$p\in AT$


$\mathcal {ODS}_q$


$p$


$D$


\begin {equation}{ E_p(D|\mathcal {ODS}_q)=-\frac {1}{\left | U \right |} \sum _{i = 1}^{n} \log {\frac {\left | {[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D} \right |}{\left |{[x_i]}_{\widetilde {{W\cap D}_p}} \right |} }. } \label {Xeqn16-16}\end {equation}


$E_p(D|\mathcal {ODS}_q) \geq 0$


$E_p(D|\mathcal {ODS}_q) < \infty $


$E_{p_1}(D|\mathcal {ODS}_q) \leq E_{p_2}(D|\mathcal {ODS}_q)$


$\widetilde {{W\cap D}_{p_1}} \subseteq \widetilde {{W\cap D}_{p_2}}$


$\frac {\left | {[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D} \right |}{\left |{[x_i]}_{\widetilde {{W\cap D}_p}} \right |} \leq 1$


$\log {\frac {\left | {[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D} \right |}{\left |{[x_i]}_{\widetilde {{W\cap D}_p}} \right |} } \leq 0$


$E_p(D|\mathcal {ODS}_q)=-\frac {1}{\left | U \right |} \sum _{i = 1}^{n} \log {\frac {\left | {[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D} \right |}{\left |{[x_i]}_{\widetilde {{W\cap D}_p}} \right |} }$


$\frac {\left | {[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D} \right |}{\left |{[x_i]}_{\widetilde {{W\cap D}_p}} \right |} \geq 0$


$\log {\frac {\left | {[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D} \right |}{\left |{[x_i]}_{\widetilde {{W\cap D}_p}} \right |} } \geq -\infty $


$E_p(D|\mathcal {ODS}_q)=-\frac {1}{\left | U \right |} \sum _{i = 1}^{n} \log {\frac {\left | {[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D} \right |}{\left |{[x_i]}_{\widetilde {{W\cap D}_p}} \right |} }$


$f(x,y)=-\log {\frac {x}{x+y}}$


$\frac {\partial f}{\partial x}=-\frac {y}{x(x+y)}$


$\frac {\partial f}{\partial y}=\frac {1}{x+y}$


$x,y>0$


$\frac {\partial f}{\partial x}<0$


$\frac {\partial f}{\partial y}>0$


$\forall x_i \in U$


${[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D} =({[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D} )\cup ({[x_i]}_{\widetilde {{W\cap D}_p}}\cap {({[x_i]}_{R_D})}^C)$


$\left | {[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D} \right |=\left | {[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D}\right |+\left |{[x_i]}_{\widetilde {{W\cap D}_p}}\cap {({[x_i]}_{R_D})}^C\right |$


$-\log {\frac {\left | {[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D} \right |}{\left |{[x_i]}_{\widetilde {{W\cap D}_p}} \right |} }=-\log {\frac {\left | {[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D} \right |}{\left | {[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D}\right |+\left |{[x_i]}_{\widetilde {{W\cap D}_p}}\cap {({[x_i]}_{R_D})}^C\right |} }$


$\left | {[x_i]}_{\widetilde {{W\cap D}_p}}\cap {[x_i]}_{R_D}\right |$


$x$


$\left |{[x_i]}_{\widetilde {{W\cap D}_p}}\cap {({[x_i]}_{R_D})}^C\right |$


$y$


$\widetilde {{W\cap D}_{p_1}}\subseteq \widetilde {{W\cap D}_{p_2}}$


$\left |{[x_i]}_{\widetilde {{W\cap D}_{p_1}}}\cap {[x_i]}_{R_D}\right | \leq \left |{[x_i]}_{\widetilde {{W\cap D}_{p_2}}}\cap {[x_i]}_{R_D}\right |$


$\left |{[x_i]}_{\widetilde {{W\cap D}_{p_1}}}\cap {({[x_i]}_{R_D})}^C\right | \leq \left |{[x_i]}_{\widetilde {{W\cap D}_{p_2}}}\cap {({[x_i]}_{R_D})}^C\right |$


$E_{p_1}(D|\mathcal {ODS}_q) \leq E_{p_2}(D|\mathcal {ODS}_q)$


$\mathcal {MS-ODS}=\{\mathcal {ODS}_i|\mathcal {ODS}_i=(U,AT\bigcup D,F,G),i=1,2,\dots ,s\}$


$p$


\begin {equation}{i_p= {\arg \min }_{q\in {1,2,\dots ,s}}E_p(D|\mathcal {ODS}_q) . } \label {Xeqn17-17}\end {equation}


$d$


$d$


$\mathcal {ODS}_1$


$\mathcal {ODS}_1$


\begin {equation*}\begin {aligned} \omega ={(1.093872,2.320957,0.515018,0.070153)}^T, \end {aligned}\end {equation*}


$dis_{a_1}(x_1,x_1)=0.0$


$dis_{a_1}(x_1,x_2)=10.93872$


$dis_{a_1}(x_1,x_7)=13.126463$


$ODS_1$


$a_1$


\begin {equation*}\begin {aligned} M_{\widetilde {W_{a_1}}}=\begin {bmatrix} 0.000000&0.222222&0.733333&0.022222&0.133333&0.244444&0.266667\\ 0.222222&0.000000&0.955556&0.244444&0.088889&0.022222&0.044444\\ 0.733333&0.955556&0.000000&0.711111&0.866667&0.977778&1.000000\\ 0.022222&0.244444&0.711111&0.000000&0.155556&0.266667&0.288889\\ 0.133333&0.088889&0.866667&0.155556&0.000000&0.111111&0.133333\\ 0.244444&0.022222&0.977778&0.266667&0.111111&0.000000&0.022222\\ 0.266667&0.044444&1.000000&0.288889&0.133333&0.022222&0.000000 \end {bmatrix} . \end {aligned}\end {equation*}


${[x_1]}_{\widetilde {W_{a_1}}}= \dfrac {0.222222}{x_2}+ \dfrac {0.733333}{x_3}+ \dfrac {0.022222}{x_4}+ \dfrac {0.133333}{x_5}+ \dfrac {0.244444}{x_6}+ \dfrac {0.266667}{x_7}$


${[x_2]}_{\widetilde {W_{a_1}}}= \dfrac {0.222222}{x_1}+ \dfrac {0.955556}{x_3}+ \dfrac {0.244444}{x_4}+ \dfrac {0.088889}{x_5}+ \dfrac {0.022222}{x_6}+ \dfrac {0.044444}{x_7}$


${[x_7]}_{\widetilde {W_{a_1}}}= \dfrac {0.266667}{x_1}+ \dfrac {0.044444}{x_2}+ \dfrac {1.000000}{x_3}+ \dfrac {0.288889}{x_4}+ \dfrac {0.133333}{x_5}+ \dfrac {0.022222}{x_6}$


$a_1$


\begin {equation*}\begin {aligned} M_{\widetilde {D_{a_1}}}=\begin {bmatrix} 0.000000&0.000000&1.000000&0.462117&0.000000&0.000000&0.000000\\ 0.999909&0.000000&1.000000&0.999967&0.964028&0.000000&0.000000\\ 0.000000&0.000000&0.000000&0.000000&0.000000&0.000000&0.000000\\ 0.000000&0.000000&1.000000&0.000000&0.000000&0.000000&0.000000\\ 0.995055&0.000000&1.000000&0.998178&0.000000&0.000000&0.000000\\ 0.999967&0.462117&1.000000&0.999988&0.986614&0.000000&0.000000\\ 0.999988&0.761594&1.000000&0.999995&0.995055&0.462117&0.000000 \end {bmatrix} . \end {aligned}\end {equation*}


${[x_1]}_{\widetilde {D_{a_1}}}= \dfrac {1}{x_3}+ \dfrac {0.462117}{x_4}$


${[x_2]}_{\widetilde {D_{a_1}}}= \dfrac {0.999909}{x_1}+ \dfrac {1}{x_3}+ \dfrac {0.999967}{x_4}+ \dfrac {0.964028}{x_5}$


${[x_7]}_{\widetilde {D_{a_1}}}= \dfrac {0.999988}{x_1}+ \dfrac {0.761594}{x_2}+ \dfrac {1}{x_3}+ \dfrac {0.999995}{x_4}+ \dfrac {0.995055}{x_5}+ \dfrac {0.462117}{x_6}$


${[x_1]}_{\widetilde {{W\cap D}_{a_1}}}= \dfrac {0.733333}{x_3}+ \dfrac {0.022222}{x_4}$


${[x_1]}_{\widetilde {{W\cap D}_{a_1}}}= \dfrac {0.222222}{x_1}+ \dfrac {0.955556}{x_3}+ \dfrac {0.244444}{x_4}+ \dfrac {0.088889}{x_5}$


${[x_7]}_{\widetilde {{W\cap D}_{a_1}}}= \dfrac {0.266667}{x_1}+ \dfrac {0.044444}{x_2}+ \dfrac {1}{x_3}+ \dfrac {0.288889}{x_4}+ \dfrac {0.133333}{x_5}+ \dfrac {0.022222}{x_6}$


\begin {equation*}\begin {aligned} M_{R_D}=\begin {bmatrix} 1& 1& 1& 1& 1& 1& 1\\ 1& 1& 1& 1& 1& 1& 1\\ 1& 1& 1& 1& 1& 1& 1\\ 0& 0& 0& 1& 1& 1& 1\\ 0& 0& 0& 1& 1& 1& 1\\ 0& 0& 0& 0& 0& 1& 1\\ 0& 0& 0& 0& 0& 1& 1 \end {bmatrix} , \end {aligned}\end {equation*}


$H_{a_1}(D|\mathcal {ODS}_1)=8.805261$


$T_1$


$T_2$


$\{\mathcal {ODS}_j,j=m+1,m+2,\dots ,m+\Delta m\}$


$\{a_i,{i=n+1,n+2,\dots ,n+\Delta n}\}$


$\{a_1,a_2,\dots ,a_n\}$


${\min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q) \geq {\min }_{q\in {1,2,\dots ,m}}E_p(D|\mathcal {ODS}_q)$


$F^{T_2}_a=F^{T_1}_a$


${\min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q) < {\min }_{q\in {1,2,\dots ,m}}E_p(D|\mathcal {ODS}_q)$


$F^{T_2}_a=F^{i_a}_a$


$i_a= {\arg \min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q)$


${\min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q) \geq {\min }_{q\in {1,2,\dots ,m}}E_p(D|\mathcal {ODS}_q)$


${\min }_{q\in {1,2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q) = {\min }_{q\in {1,2,\dots ,m}}E_p(D|\mathcal {ODS}_q)$


$F^{T_2}_a=F^{T_1}_a$


${\min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q) < {\min }_{q\in {1,2,\dots ,m}}E_p(D|\mathcal {ODS}_q)$


${\min }_{q\in {1,2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q) = {\min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q)$


$i_a= {\arg \min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q)$


$F^{T_2}_a=F^{i_a}_a$


$a_3$


$a_4$


$T_1$


$a_1$


$a_4$


$T_1$


$T_1$


$T_2$


$T_1$


$T_2$


$\{\mathcal {ODS}_j,j=m+1,m+2,\dots ,m+\Delta m\}$


$\{a_i,{i=n+1,n+2,\dots ,n+\Delta n}\}$


$\{a_1,a_2,\dots ,a_n\}$


${\min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q) \geq {\min }_{q\in {1,2,\dots ,m}}E_p(D|\mathcal {ODS}_q)$


$F^{T_2}_a=F^{T_1}_a$


${\min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q) < {\min }_{q\in {1,2,\dots ,m}}E_p(D|\mathcal {ODS}_q)$


$F^{T_2}_a=F^{i_a}_a$


$i_a= {\arg \min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q)$


$a\in \{a_i,{i=n+1,n+2,\dots ,n+\Delta n}\}$


$F^{T_2}_a=F^{i_a}_a$
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$T_1$
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$T_1$
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$\{a_i,{i=n+1,n+2,\dots ,n+\Delta n}\}$


$\{a_1,a_2,\dots ,a_n\}$


${\min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q) \geq {\min }_{q\in {1,2,\dots ,m}}E_p(D|\mathcal {ODS}_q)$


$F^{T_2}_a=F^{T_1}_a$


${\min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q) < {\min }_{q\in {1,2,\dots ,m}}E_p(D|\mathcal {ODS}_q)$
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$\{a_i,{i=n+1,n+2,\dots ,n+\Delta n}\}$


$\{a_1,a_2,\dots ,a_n\}$


${\min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q) \geq {\min }_{q\in {1,2,\dots ,m}}E_p(D|\mathcal {ODS}_q)$


$F^{T_2}_a=F^{T_1}_a$


${\min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q) < {\min }_{q\in {1,2,\dots ,m}}E_p(D|\mathcal {ODS}_q)$


$F^{T_2}_a=F^{i_a}_a$


$i_a= {\arg \min }_{q\in {m+1,m+2,\dots ,m+\Delta m}}E_p(D|\mathcal {ODS}_q)$


$a\in \{a_i,{i=n+1,n+2,\dots ,n+\Delta n}\}$


$F^{T_2}_a=F^{i_a}_a$


$i_a= {\arg \min }_{q\in {1,2,\dots ,m}}E_p(D|\mathcal {ODS}_q)$
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$T_1$
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Table 1 
Comparison of fusion methods based on information entropy.
Models Main content
Conditional 
entropy [32]

Conditional entropy determines the importance of each 
information source for the entire system and facilitates 
multi-source data fusion by minimizing conditional 
entropy.

Generalized 
information 
entropy [37]

A novel information imputation technique based on 
generalized information entropy is proposed to address the 
issue of incompleteness in decision fusion.

Extension model 
based on 
information 
entropy [39]

For example, a new fault diagnosis method utilizes the 
Bayesian network to infer the fault severity of power 
components.

Yang [36] proposed a multi-granulation method for information fusion 
in multi-source decision information systems.

The primary approach for information fusion based on information 
entropy is to employ information entropy as a metric to quantify the 
amount of information contained in each source, effectively leverag-
ing the crucial properties of information entropy to address the issue of 
information asymmetry in multi-source data. Consequently, this facili-
tates acquiring and fusing multi-source data’s informational content or 
rules. As shown in Table 1, research on utilizing information entropy 
to achieve multi-source information fusion within multi-source systems 
primarily concentrates on three key aspects:

(1) The conditional entropy determines the importance of each infor-
mation source to the whole system and the multi-source data fusion 
through the minimum conditional entropy method [32].

(2) The generalized information entropy is used for multi-source data fu-
sion and applied to practical problems such as multi-sensor decision 
fusion [37], sensor strategy data processing, fusion index evaluation, 
and multi-label feature selection [38] in multi-source data.

(3) An expanded information entropy model can be the foundation for 
multi-source information fusion. For example, Zeng [39] proposes a 
new fault diagnosis method for power grids based on multi-source 
information fusion theory. Bayesian networks can help derive the 
degree of fault of power components to address the problem of mis-
judgment caused by traditional fault diagnosis methods. Following 
each circuit failure, the electric signal undergoes extraction of time-
domain singular spectrum entropy, frequency-domain power spec-
tral entropy, and wavelet packet energy spectral entropy. Multi-
source information fusion can amalgamate these three feature quan-
tities to construct the fault support component of the power source. 
The proposed method can improve the accuracy and reliability of 
fault diagnosis in power grids.

However, we propose a weight-based information fusion method 
with conditional entropy. In order to describe the typical relationship 
between samples more specifically, we introduce the conditional en-
tropy of weighted dominance distance fuzzy relation to fuse the data 
of a multi-source ordered decision system, and the weight generation 
method [40] was combined. Based on this conditional entropy, a super-
vised information fusion method is proposed for multi-source ordered 
decision information systems based on weights. Firstly, the concepts of 
weighted distance fuzzy relation and dominance degree fuzzy relation 
between two ordered samples are introduced. Then, the weighted dis-
tance fuzzy class and the dominance degree fuzzy class are defined for 
each sample. On this basis, the conditional entropy of the weighted dom-
inance distance fuzzy relation can be defined by combining it with the 
decision dominance relation. For each attribute, the lower the entropy, 
the more critical it is in the system. This implies that the conditional 
entropy needs to be calculated for each attribute in different systems 
separately, and an attempt is made to identify the system where each 
attribute is most important. Finally, the attribute values from these sys-
tems are synthesized into a new system as a result of the fusion.

Helpful information also needs to be updated accordingly. For dy-
namic data, using static methods can be time-consuming. In order to 
cope with data changes and effectively handle updated data, many re-
searchers have conducted explorations [41–43]. A summary of multi-
source information fusion was provided by Zhang [23], and future pro-
jections were made. The incremental learning still shows great potential. 
After research methods focusing on static multi-source environments 
were proposed [38,44,45], Zhu [46] presented an approach for incre-
mentally fusing fuzzy and uncertain data. Subsequently, fusion meth-
ods were proposed by Huang [47] based on attribute and source dy-
namic updates. A matrix-based method was proposed by Zhang [48] for 
dynamically updating multigranulation fusion operators to cope with 
changes in samples and sources.

Based on the above analysis, while proposing the weight-based infor-
mation fusion method, this paper also presents a fusion method based on 
attribute and source dynamic updates. The overall framework is shown 
in Fig. 1. Our main contributions are as follows:
(1) The focus of our study is on multi-source ordered decision systems. 

The attribute matrix and decision matrix are categorized and cal-
culated. The partition coefficient of attributes is calculated as well. 
Then, the partition coefficients of attributes are processed to gen-
erate weight vectors for the attributes in the information system. 
Then, the weighted distance fuzzy relation for attributes is defined 
for multi-source ordered datasets.

(2) The dominance degree fuzzy relation for attributes is defined and 
combined with the weighted distance fuzzy relation to define the 
conditional entropy. The entropy of the weighted dominance dis-
tance fuzzy relation for each attribute in each information system 
is calculated using the information entropy method to describe the 
degree of uncertainty of attributes in each system. Once the most 
accurate data among multiple information systems is identified, it is 
fused into our fusion data, which represents the optimal data.

(3) Based on previous research, four incremental learning algorithms are 
designed to adapt to changes in sources and attributes at different 
times while maintaining and updating previously learned models.

(4) Comparative experiments are conducted on nine datasets, and the 
results show that our proposed static and dynamic fusion methods 
both have excellent performance.
This article is organized as follows. To facilitate understanding, Sec-

tion 2 introduces the necessary and fundamental knowledge of multi-
source ordered decision systems, fuzzy sets, and information entropy. 
Section 3 defines the weighted distance fuzzy relation and dominance 
degree fuzzy relation and presents the fusion method on multi-source 
ordered decision systems. Section 4 discusses four incremental fusion 
mechanisms and provides corresponding fusion algorithms. Section 5 
presents the experimental data and plots the experimental results. Fi-
nally, in Section 6, the entire paper is recapped, and prospects are pro-
vided.

2.  Related work

This section briefly reviews several fundamental concepts, specifi-
cally multi-source ordered decision systems (MS-ODS), fuzzy sets, and 
information entropy for our current work. These concepts are thor-
oughly discussed in the references [6,23,33].

2.1.  Multi-source ordered decision systems

Consider an information system (IS) denoted as  = (𝑈,𝐴𝑇 , 𝐹 ), 
where 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛} is finite object set, 𝐴𝑇 = {𝑎1, 𝑎2,… , 𝑎𝑝} is fi-
nite condition attribute set, 𝐹 = {𝑓 |𝑈 → 𝑉𝑎, 𝑎 ∈ 𝐴𝑇 } is relationship set 
between 𝑈 and 𝐴𝑇 , 𝑉𝑎 is the finite value domain of 𝑎. Therefore, a deci-
son system (DS) can be denoted as  = (𝑈,𝐴𝑇

⋃

𝐷,𝐹 ,𝐺), where 𝐷 =
{𝑑1, 𝑑2,… , 𝑑𝑞} is finite decision attribute set, 𝐺 = {𝑔|𝑈 → 𝑉𝑑 , 𝑑 ∈ 𝐷} is 
relationship set between 𝑈 and 𝐷, 𝑉𝑑 is the finite value domain of 𝑑.
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Fig. 1. Overview of our work.

For any 𝑃 ⊆ 𝐴𝑇 , a relation 𝑅𝑃 ⊆ 𝑈 × 𝑈 can be defined. And for any 
𝑎 ∈ 𝑈 , the relation class of 𝑎 is denoted as [𝑎]𝑅𝑃 = {𝑏 ∈ 𝑈 |(𝑎, 𝑏) ∈ 𝑅𝑃 }. 
For any 𝐴 ⊆ 𝑈 , the lower and upper approximations of 𝐴 are denoted 
as:

𝑅𝑃 (𝐴) = {𝑎 ∈ 𝑈 |[𝑎]𝑅𝑃 ⊆ 𝐴}, (1)

𝑅𝑃 (𝐴) = {𝑎 ∈ 𝑈 |[𝑎]𝑅𝑃 ∩ 𝐴 ≠ ∅}. (2)

Let 𝑈𝐷 = {𝐷1, 𝐷2,… , 𝐷𝑚} be the subspace of 𝑈 based on 𝐷, which 
corresponds to the classification of elements in 𝑈 . the 𝐴𝑃  and 𝐴𝑄 of 𝑈𝐷
with respect to 𝑅𝑃  are represented as follows:

𝐴𝑃𝑅𝑃
(𝑈𝐷) =

∑𝑚
𝑖=1

|

|

|

𝑅𝑃 (𝐷𝑖)
|

|

|

∑𝑚
𝑖=1

|

|

|

𝑅𝑃 (𝐷𝑖)
|

|

|

, (3)

𝐴𝑄𝑅𝑃
(𝑈𝐷) =

∑𝑚
𝑖=1

|

|

|

𝑅𝑃 (𝐷𝑖)
|

|

|

|𝑈 |

. (4)

𝐴𝑃  and 𝐴𝑄 were first proposed by Pawlak. The former is used to 
measure the proportion of correct classifications in the approximate 
classification result, while the latter is used to measure the consistency 
between the approximate classification result and the true class. Both of 
them indicate better results when the value is higher.

For any 𝑝 ∈ 𝐴𝑇 , 𝑆𝑝 is completely pre-ordered by the relation ⪯𝑝, 
where 𝑎 ⪯𝑝 𝑏 ⟺ 𝑓 (𝑎, 𝑝) ≤ 𝑓 (𝑏, 𝑝) or 𝑎 ⪯𝑝 𝑏 ⟺ 𝑓 (𝑎, 𝑝) ≥ 𝑓 (𝑏, 𝑝), then 
the decision system can be referred to as an ordered decision system 
(ODS). Essentially, this implies that there exists a preference that can be 
expressed as either increasing or decreasing.

 −  = { 𝑖| 𝑖 = (𝑈,𝐴𝑇𝑖
⋃

𝐷𝑖, 𝐹 , 𝐺), 𝑖 = 1, 2,… , 𝑠} is 
used to define an MS-ODS, where  𝑖 represents ith ODS of MS-ODS.

2.2.  Fuzzy set

Let 𝐴 be a fuzzy set on the domain 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑛} with 𝐴 ∶ 𝑈 →
[0, 1]. The membership function of 𝐴, denoted as 𝐴(𝑥), means the degree 
to which 𝑥 belongs to 𝐴, 𝑥 ∈ 𝑈 . Let 𝐴 =

∑𝑛
𝑘=1

𝐴(𝑢𝑘)
𝑢𝑘

, 𝐵 =
∑𝑛

𝑘=1
𝐵(𝑢𝑘)
𝑢𝑘

. The 
operations of intersection, union and complement for 𝐴 and 𝐵 are de-
fined as follows:

𝐴 ∩ 𝐵 =
𝑛
∑

𝑘=1

𝐴(𝑢𝑘) ∧ 𝐵(𝑢𝑘)
𝑢𝑘

, (5)

𝐴 ∪ 𝐵 =
𝑛
∑

𝑘=1

𝐴(𝑢𝑘) ∨ 𝐵(𝑢𝑘)
𝑢𝑘

, (6)

𝐴𝐶 =
𝑛
∑

𝑘=1

1 − 𝐴(𝑢𝑘)
𝑢𝑘

. (7)

Table 2 
The abbreviations of the terminologies.
 Terminologies Abbreviations

 ODS ordered decision system
𝑊𝑝(𝑎, 𝑏) the weighted distance fuzzy relation between 

sample 𝑎 and sample 𝑏 under attribute 𝑝
𝐷𝑝(𝑎, 𝑏) the dominance degree fuzzy relation between 

sample 𝑎 and sample 𝑏 under attribute 𝑝
𝑅𝐷(𝑎, 𝑏) the decision dominance relation of 𝐷 between 

sample 𝑎 and sample 𝑏
𝐸𝑝(𝐷|𝑞 ) the information entropy of 𝑞 for attribute 𝑝

under decision attribute 𝐷
𝑖𝑝 = argmin𝑞∈1,2,…,𝑠𝐸𝑝(𝐷|𝑞 ) The ith source which is the most essential for 

attribute 𝑝 under the conditional entropy of 
weighted dominance distance fuzzy relation

[𝑎]𝑊𝑝
the weighted distance fuzzy class of sammple 𝑎
under attribute 𝑝

[𝑎]𝐷𝑝
the dominance degree fuzzy class sammple 𝑎
under attribute 𝑝

[𝑎]𝑊 ∩𝐷𝑝
the weighted dominance distance fuzzy class of 𝑎
under 𝑝

2.3.  Information entropy of ODS

To measure the degree of uncertainty, a novel form of information 
entropy is introduced in ODS. For any 𝑃 ⊆ 𝐴𝑇 , 𝑈𝐷 = {𝐷1, 𝐷2,… , 𝐷𝑚}, 
the information entropy of 𝐷 with respect to 𝑃  is computed as follows:

𝐻(𝐷|𝑃 ) = −
|𝑈 |

∑

𝑖=1

𝑚
∑

𝑗=1

|

|

|

[𝑥𝑖]𝑅𝑃 ∩𝐷𝑗
|

|

|

|𝑈 |

log
|

|

|

[𝑥𝑖]𝑅𝑃 ∩𝐷𝑗
|

|

|

|

|

|

[𝑥𝑖]𝑅𝑃 |
|

|

. (8)

It is well known that 𝐻(𝐷|𝑃 ) satisfies the following theorem:
0 ⩽ 𝐻(𝐷|𝑃 ) ⩽ |𝑈 | log |𝑈 |,

𝐻(𝐷|𝑃1) ⩽ 𝐻(𝐷|𝑃2),  if 𝑃2 ⊆ 𝑃1.

3.  Weighted information fusion method based on MS-ODS

Fusing data from multiple sources can enhance knowledge discovery 
by generating a comprehensive and unified representation. The weight 
can indicate the relevance between attributes and decisions and can be 
combined with information entropy to measure the amount of informa-
tion and its significance more accurately. The weight generation method 
can be found in [40].In this section, a weighted fusion method is intro-
duced for MS-ODS. All Terminologies and abbreviations are presented 
in Table 2.

3.1.  Weight distance fuzzy relation

The generation process of weights is as follows.
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Given an ODS,  = (𝑈,𝐴𝑇
⋃

𝐷,𝐹 ,𝐺), for ∀𝑝 ∈ 𝐴𝑇 , 𝑎 ∈ 𝑈 , 𝑓 (𝑎, 𝑝)
represents the value of 𝑝 for 𝑎, the coefficient matrix is showed as fol-
lows:

𝑀𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑓 (𝑎1, 𝑝1) 𝑓 (𝑎1, 𝑝2) ⋯ 𝑓 (𝑎1, 𝑝𝑚)
𝑓 (𝑎2, 𝑝1) 𝑓 (𝑎2, 𝑝2) ⋯ 𝑓 (𝑎2, 𝑝𝑚)

⋮ ⋮ ⋱ ⋮
𝑓 (𝑎𝑛, 𝑝1) 𝑓 (𝑎𝑛, 𝑝2) ⋯ 𝑓 (𝑎𝑛, 𝑝𝑚)

⎤

⎥

⎥

⎥

⎥

⎦

. (9)

The vector of the decision attribute 𝑑 be 𝑀𝑑 =
(𝑔(𝑎1, 𝑑), 𝑔(𝑎2, 𝑑),… , 𝑔(𝑎𝑛, 𝑑))

𝑇 . Assuming 𝑀𝐴𝜂 = 𝑀𝑑 , then 
𝑀𝑇

𝐴𝑀𝐴𝜂 = 𝑀𝑇
𝐴𝑀𝑑 , and the coefficient of attribute partition 

𝜂 = (𝑀𝑇
𝐴𝑀𝐴)

−1𝑀𝑇
𝐴𝑀𝑑 can be obtained. If the matrix 𝑀𝑇

𝐴𝑀𝐴 is not 
invertible, or a penalty term is in need in the optimum function, we can 
solve for 𝜂 = (𝜂(𝑝1), 𝜂(𝑝2),… .𝜂(𝑝𝑚))

𝑇  by using (𝑀𝑇
𝐴𝑀𝐴 + 𝐸)𝜂 = 𝑀𝑇

𝐴𝑀𝑑 . 
The weight of 𝑝 can be calculated as follows:

𝜔(𝑝) =
|𝐴𝑇 | × |𝜂(𝑝)|
∑

𝑝𝑖∈𝐴𝑇
|

|

𝜂(𝑝𝑖)||
. (10)

Moreover, the weight vector of attributes 𝜔 =
(𝜔(𝑝1), 𝜔(𝑝2),… .𝜔(𝑝𝑚))

𝑇  has the following properties:

𝜔(𝑝) ⩾ 0,
∑

𝑝𝑖∈𝐴𝑇
𝜔(𝑝𝑖) = |𝐴𝑇 |.

A definition of weighted distance can be expressed based on the weight 
generation method.
Definition 1: Let  = (𝑈,𝐴𝑇

⋃

𝐷,𝐹 ,𝐺) be an ODS. For any 𝑝 ∈ 𝐴𝑇 , 
∀𝑎, 𝑏 ∈ 𝑈 the weighted distance is defined as follows:

𝑑𝑖𝑠𝑝(𝑎, 𝑏) = |𝜔(𝑝) × (𝑓 (𝑎, 𝑝) − 𝑓 (𝑏, 𝑝))|. (11)

A definition of fuzzy relationship for weighted distance is provided 
based on the definition of weighted distance, in conjunction with the 
concept of normalization. The values of the fuzzy relationship are pre-
cise, but the concept itself is fuzzy. The weighted distance fuzzy relation 
between 𝑎 and 𝑏 under 𝑝 is obtained as follows:

𝑊𝑝(𝑎, 𝑏) =
𝑑𝑖𝑠𝑝(𝑎, 𝑏) − min(𝑑𝑖𝑠𝑝)
max(𝑑𝑖𝑠𝑝) − min(𝑑𝑖𝑠𝑝)

. (12)

And, the weighted distance fuzzy class of 𝑎 under 𝑝 is denoted as [𝑎]𝑊𝑝
=

∑

𝑏∈𝑈
𝑊𝑝(𝑎,𝑏)

𝑏 .

3.2.  Dominance degree fuzzy relation

Furthermore, a fuzzy relationship of dominance degree is considered, 
which can describe the ranking relationship between two samples in a 
certain attribute. Its values are also within the normalized range.
Definition 2: Given an ODS,  = (𝑈,𝐴𝑇

⋃

𝐷,𝐹 ,𝐺), ∀𝑎, 𝑏 ∈ 𝑈 and for 
any 𝑝 ∈ 𝐴𝑇 , the dominance degree fuzzy relation between 𝑎 and 𝑏 under 
𝑝 is defined as:

𝐷𝑝(𝑎, 𝑏) =

{

( 1
1+𝑒𝑘×(𝑓 (𝑏,𝑝)−𝑓 (𝑎,𝑝)) − 0.5) × 2, ( 1

1+𝑒𝑘×(𝑓 (𝑏,𝑝)−𝑓 (𝑎,𝑝)) − 0.5) ≥ 0
0, ( 1

1+𝑒𝑘×(𝑓 (𝑏,𝑝)−𝑓 (𝑎,𝑝)) − 0.5) < 0
,

(13)

where 𝑘 is a positive integer. The dominance degree fuzzy relation func-
tion can be defined differently depending on the actual circumstances. 
The dominating and dominated degree fuzzy classes of 𝑎 under 𝑝 is de-
noted as [𝑎]≽

𝐷𝑝
=
∑

𝑏∈𝑈
𝐷𝑝(𝑎,𝑏)

𝑏 , [𝑎]≼
𝐷𝑝

=
∑

𝑏∈𝑈
𝐷𝑝(𝑏,𝑎)

𝑏 . Denoting the domi-
nance degree fuzzy class by [𝑎]𝐷𝑝

, if a higher value of 𝑝 is preferred, then 
[𝑎]𝐷𝑝

= [𝑎]≽
𝐷𝑝
. And, if a lower value of 𝑝 is preferred, then [𝑎]𝐷𝑝

= [𝑎]≼
𝐷𝑝
.

3.3.  Weighted dominance distance fuzzy class

The fuzzy relationship of weighted dominance distance has been ob-
tained by combining the fuzzy relationships of weighted distance and 
dominance degree.
Definition 3: Given an ODS,  = (𝑈,𝐴𝑇

⋃

𝐷,𝐹 ,𝐺), ∀𝑎 ∈ 𝑈 and for 
any 𝑝 ∈ 𝐴𝑇 , the weighted dominance distance fuzzy class of 𝑎 under 𝑝
is defined as follows:
[𝑎]𝑊 ∩𝐷𝑝

= [𝑎]𝑊𝑝
∩ [𝑎]𝐷𝑝

. (14)

3.4.  The conditional entropy of the weighted dominance distance fuzzy 
relation

The decision dominance relationship between two samples is pro-
vided, which pertains to the classification of labels for the two samples. 
Based on the values, the superiority or inferiority between the two sam-
ples can be determined.
Definition 4: Given an ODS,  = (𝑈,𝐴𝑇

⋃

𝐷,𝐹 ,𝐺), ∀𝑎, 𝑏 ∈ 𝑈 , the 
decision dominance relation of 𝐷 is defined as follows:

𝑅𝐷(𝑎, 𝑏) =

{

1, 𝑔(𝑏, 𝑑) ≥ 𝑔(𝑎, 𝑑)
0, 𝑔(𝑏, 𝑑) < 𝑔(𝑎, 𝑑)

. (15)

The dominating and dominated classes of 𝑎 under 𝐷 is denoted as 
[𝑎]≽𝑅𝐷

=
∑

𝑏∈𝑈
𝑅𝐷(𝑎,𝑏)

𝑏 , [𝑎]≼𝑅𝐷
=
∑

𝑏∈𝑈
𝑅𝐷(𝑏,𝑎)

𝑏 . Denoting the decision dom-
inance class by [𝑎]𝑅𝐷

, if a higher value of 𝐷 is preferred, then [𝑎]𝑅𝐷
=

[𝑎]≽𝑅𝐷
. And, if a lower value of 𝐷 is preferred, then [𝑎]𝑅𝐷

= [𝑎]≼𝑅𝐷
.

In the next, the definition of entropy is presented.
Definition 5: Given a MS-ODS,  −  = { 𝑖| 𝑖 =
(𝑈,𝐴𝑇

⋃

𝐷,𝐹 ,𝐺), 𝑖 = 1, 2,… , 𝑠}, where 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛}. For any 
𝑝 ∈ 𝐴𝑇 , the information entropy of 𝑞 for 𝑝 under 𝐷 is defined as 
follows:

𝐸𝑝(𝐷|𝑞) = − 1
|𝑈 |

𝑛
∑

𝑖=1
log

|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩ [𝑥𝑖]𝑅𝐷

|

|

|

|

|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝

|

|

|

|

. (16)

Proposition 1. The conditional entropy of the weighted dominance distance 
fuzzy relation has the following properties.

(1) 𝐸𝑝(𝐷|𝑞) ≥ 0;
(2) 𝐸𝑝(𝐷|𝑞) < ∞;
(3) 𝐸𝑝1 (𝐷|𝑞) ≤ 𝐸𝑝2 (𝐷|𝑞), if 𝑊 ∩𝐷𝑝1 ⊆ 𝑊 ∩𝐷𝑝2 .

Proof.

(1) Since 
|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩[𝑥𝑖]𝑅𝐷

|

|

|

|

|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝

|

|

|

|

≤ 1, it follows that log
|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩[𝑥𝑖]𝑅𝐷

|

|

|

|

|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝

|

|

|

|

≤ 0.

And 𝐸𝑝(𝐷|𝑞) = − 1
|𝑈 |

∑𝑛
𝑖=1 log

|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩[𝑥𝑖]𝑅𝐷

|

|

|

|

|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝

|

|

|

|

, so the inequal-

ity is satisfied.

(2) Since 
|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩[𝑥𝑖]𝑅𝐷

|

|

|

|

|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝

|

|

|

|

≥ 0, it follows that log
|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩[𝑥𝑖]𝑅𝐷

|

|

|

|

|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝

|

|

|

|

≥ −∞.

And 𝐸𝑝(𝐷|𝑞) = − 1
|𝑈 |

∑𝑛
𝑖=1 log

|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩[𝑥𝑖]𝑅𝐷

|

|

|

|

|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝

|

|

|

|

, then the in-

equality is true.
(3) Given 𝑓 (𝑥, 𝑦) = − log 𝑥

𝑥+𝑦 , then 
𝜕𝑓
𝜕𝑥 = − 𝑦

𝑥(𝑥+𝑦)  and 
𝜕𝑓
𝜕𝑦 = 1

𝑥+𝑦 .

When 𝑥, 𝑦 > 0, 𝜕𝑓𝜕𝑥 < 0 and 𝜕𝑓𝜕𝑦 > 0 can be hold.
For ∀𝑥𝑖 ∈ 𝑈 , [𝑥𝑖]𝑊 ∩𝐷𝑝

∩ [𝑥𝑖]𝑅𝐷
= ([𝑥𝑖]𝑊 ∩𝐷𝑝

∩ [𝑥𝑖]𝑅𝐷
) ∪

([𝑥𝑖]𝑊 ∩𝐷𝑝
∩ ([𝑥𝑖]𝑅𝐷

)𝐶 ),

then |

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩ [𝑥𝑖]𝑅𝐷

|

|

|

|

=
|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩ [𝑥𝑖]𝑅𝐷

|

|

|

|

+
|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩ ([𝑥𝑖]𝑅𝐷

)𝐶
|

|

|

|

.
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− log
|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩[𝑥𝑖]𝑅𝐷

|

|

|

|

|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝

|

|

|

|

= − log
|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩[𝑥𝑖]𝑅𝐷

|

|

|

|

|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩[𝑥𝑖]𝑅𝐷

|

|

|

|

+
|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩([𝑥𝑖]𝑅𝐷 )𝐶

|

|

|

|

can be get.
By substituting |

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩ [𝑥𝑖]𝑅𝐷

|

|

|

|

 with 𝑥 and 
|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝
∩ ([𝑥𝑖]𝑅𝐷

)𝐶
|

|

|

|

 with 𝑦,
if 𝑊 ∩𝐷𝑝1 ⊆ 𝑊 ∩𝐷𝑝2 ,

then |

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝1
∩ [𝑥𝑖]𝑅𝐷

|

|

|

|

≤
|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝2
∩ [𝑥𝑖]𝑅𝐷

|

|

|

|

 and 
|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝1
∩ ([𝑥𝑖]𝑅𝐷

)𝐶
|

|

|

|

≤
|

|

|

|

[𝑥𝑖]𝑊 ∩𝐷𝑝2
∩ ([𝑥𝑖]𝑅𝐷

)𝐶
|

|

|

|

.

Thus, 𝐸𝑝1 (𝐷|𝑞) ≤ 𝐸𝑝2 (𝐷|𝑞).

 ∎

3.5.  Static fusion algorithm

Given a MS-ODS,  −  = { 𝑖| 𝑖 =
(𝑈,𝐴𝑇

⋃

𝐷,𝐹 ,𝐺), 𝑖 = 1, 2,… , 𝑠}, The ith source which is the most 
essential for 𝑝 under the conditional entropy of weighted dominance 
distance fuzzy relation can be obtained by
𝑖𝑝 = argmin𝑞∈1,2,…,𝑠𝐸𝑝(𝐷|𝑞). (17)

By above, the source with the lowest entropy for each attribute can be 
identified, and it can be used to generate a new information system. 
The fusion algorithm is shown in Algorithm 1, and the figure is shown 
in Fig. 2.

Algorithm 1: The conditional entropy-based fusion algorithm 
using the weighted dominance distance fuzzy relation.
Input :  −  = { 𝑖| 𝑖 =

(𝑈,𝐴𝑇
⋃

𝐷,𝐹 ,𝐺), 𝑖 = 1, 2,… , 𝑠}.
Output : A new fusion result.

1 begin
2 for 𝑞 = 1 ∶ 𝑠 do
3 for  each 𝑝 ∈ 𝐴𝑇  do
4 compute 𝜔(𝑝)
5 end 
6 end 
7 for 𝑞 = 1 ∶ 𝑠 do
8 obtain 𝐸𝑝(𝐷|𝑞) ←
9 for each 𝑝 ∈ 𝐴𝑇  do
10 for 𝑖 = 1 ∶ |𝑈 | do
11 get [𝑥𝑖]𝑊𝑝

 and [𝑥𝑖]𝐷𝑝
 and [𝑥𝑖]𝑅𝐷

,then 
compute [𝑥𝑖]𝑊 ∩𝐷𝑝

12 end 
13 end 
14 end 
15 for each 𝑝 ∈ 𝐴𝑇  do
16 find 𝑖𝑝 = argmin𝑞∈1,2,…,𝑠𝐸𝑝(𝐷|𝑞)
17 end 
18 end

return : (𝐹 𝑖𝑝1
𝑝1 , 𝐹

𝑖𝑝2
𝑝2 ,… , 𝐹 𝑖

|𝐴𝑇 |
|𝐴𝑇 | )

The algorithm takes a MS-ODS as input and outputs a new fusion 
result. The main steps of the algorithm include calculating attribute 
weights, obtaining conditional entropy, and selecting the optimal fusion 
result. We analyze its time and space complexity, as shown in Table 3.
Example 1: In this example, a process to find the result of static fusion 
will be shown. A MS-ODS is given, as shown in Table 4. This MS-ODS 
represents the grades of seven students in four exams for four courses, 
with 𝑑 indicating the classification of excellence level for each student. 

In this system, each attribute and 𝑑 are considered better if its value is 
higher. Starting from 1, the weight vector under 1 is calculated 
as

𝜔 = (1.093872, 2.320957, 0.515018, 0.070153)𝑇 ,

then compute the weighted distance of each sample under the attribute, 
such as 𝑑𝑖𝑠𝑎1 (𝑥1, 𝑥1) = 0.0, 𝑑𝑖𝑠𝑎1 (𝑥1, 𝑥2) = 10.93872,…, 𝑑𝑖𝑠𝑎1 (𝑥1, 𝑥7) =
13.126463.

Therefore, the weighted distance fuzzy relation matrix of 𝑂𝐷𝑆1 sam-
ples under 𝑎1 can be calculated as 

𝑀𝑊𝑎1
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.000000 0.222222 0.733333 0.022222 0.133333 0.244444 0.266667
0.222222 0.000000 0.955556 0.244444 0.088889 0.022222 0.044444
0.733333 0.955556 0.000000 0.711111 0.866667 0.977778 1.000000
0.022222 0.244444 0.711111 0.000000 0.155556 0.266667 0.288889
0.133333 0.088889 0.866667 0.155556 0.000000 0.111111 0.133333
0.244444 0.022222 0.977778 0.266667 0.111111 0.000000 0.022222
0.266667 0.044444 1.000000 0.288889 0.133333 0.022222 0.000000

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

And from this matrix we get, [𝑥1]𝑊𝑎1
= 0.222222

𝑥2
+ 0.733333

𝑥3
+

0.022222
𝑥4

+ 0.133333
𝑥5

+ 0.244444
𝑥6

+ 0.266667
𝑥7

, [𝑥2]𝑊𝑎1
= 0.222222

𝑥1
+

0.955556
𝑥3

+ 0.244444
𝑥4

+ 0.088889
𝑥5

+ 0.022222
𝑥6

+ 0.044444
𝑥7

, …, [𝑥7]𝑊𝑎1
=

0.266667
𝑥1

+ 0.044444
𝑥2

+ 1.000000
𝑥3

+ 0.288889
𝑥4

+ 0.133333
𝑥5

+ 0.022222
𝑥6

.

The matrix of the dominance degree fuzzy relation under 𝑎1 can be 
obtained by definition: 

𝑀𝐷𝑎1
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.000000 0.000000 1.000000 0.462117 0.000000 0.000000 0.000000
0.999909 0.000000 1.000000 0.999967 0.964028 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000
0.995055 0.000000 1.000000 0.998178 0.000000 0.000000 0.000000
0.999967 0.462117 1.000000 0.999988 0.986614 0.000000 0.000000
0.999988 0.761594 1.000000 0.999995 0.995055 0.462117 0.000000

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

And by this matrix, we have [𝑥1]𝐷𝑎1
= 1

𝑥3
+ 0.462117

𝑥4
, 

[𝑥2]𝐷𝑎1
= 0.999909

𝑥1
+ 1

𝑥3
+ 0.999967

𝑥4
+ 0.964028

𝑥5
, …, [𝑥7]𝐷𝑎1

=

0.999988
𝑥1

+ 0.761594
𝑥2

+ 1
𝑥3

+ 0.999995
𝑥4

+ 0.995055
𝑥5

+ 0.462117
𝑥6

. 

Then we can get, [𝑥1]𝑊 ∩𝐷𝑎1
= 0.733333

𝑥3
+ 0.022222

𝑥4
, [𝑥1]𝑊 ∩𝐷𝑎1

=

0.222222
𝑥1

+ 0.955556
𝑥3

+ 0.244444
𝑥4

+ 0.088889
𝑥5

, …, [𝑥7]𝑊 ∩𝐷𝑎1
=

0.266667
𝑥1

+ 0.044444
𝑥2

+ 1
𝑥3

+ 0.288889
𝑥4

+ 0.133333
𝑥5

+ 0.022222
𝑥6

.

According to decision matrix

𝑀𝑅𝐷
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐻𝑎1 (𝐷|1) = 8.805261 can be gain. Similarly, the information en-
tropy of all sources is explored for each attribute as shown in Table 5. 
The result of the fusion is the underline attribute column in the Table 4.

4.  The incremental learning mechanism in the fusion process of 
MS-ODS

This section studies four mechanisms and their corresponding al-
gorithms for incremental fusion that adapt to changes in information 
sources and attributes. Four cases of data changes are investigated, 
namely:

(a) Inserting new significant information sources into the data while re-
moving some dispensable attributes.

(b) Simultaneously inserting new significant information sources and 
pivotal attributes into the data.

(c) Removing dispensable information sources and redundant attributes 
from the data.
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Fig. 2. The fusion process of the proposed method.

Table 3 
Complexity analysis of the static fusion algorithm (Algorithm 1).

Time complexity Cyclic analysis In Algorithm 1, steps from 2 to 6 traverse each ODS (𝑠 in total) and each attribute (|𝐴𝑇 | in total) 
and calculate the weight 𝜔(𝑝), the time complexity of this part is 𝑂(𝑠 × |𝐴𝑇 |); steps from 7 to 14 first 
traverse each ODS and then operate on each attribute and each object in 𝑈 , which has a complexity 
of 𝑂(𝑠 × |𝐴𝑇 | × |𝑈 |); steps from 15 to 17 find the smallest 𝐸𝑝(𝐷|𝑞 ) for each attribute, which is 
𝑂(|𝐴𝑇 | × 𝑠).

Overall time complexity Therefore, the time complexity of the whole algorithm is rough 𝑂(𝑠 × |𝐴𝑇 | × |𝑈 |), assuming that |𝑈 |

(the number of objects) is the dominant factor.

Space complexity
Static space requirement It mainly includes the input MS-ODS and the variables used inside the algorithm and the space com-

plexity is 𝑂(1).

Dynamic space requirement To reduce the running time in practice, it mainly uses numpy for two-dimensional operations in code. 
The time complexity is calculated separately for each part.
(1) The space complexity of ODS weights is 𝑂(|𝑈 | × |𝐴𝑇 | + |𝐴𝑇 |2), depending on the input array
size and linear transformation.
(2) The space complexity of the weight distance fuzzy relation is 𝑂(|𝐴𝑇 | × |𝑈 |

2). For each attribute,
there is a distance matrix between samples.
(3) The space complexity of the dominance degree fuzzy relation is 𝑂(|𝐴𝑇 | × |𝑈 |

2). For each
attribute, there is a dominant matrix between samples.
(4) The space complexity of the weighted dominance distance fuzzy relation is 𝑂(|𝐴𝑇 | × |𝑈 |

2),
which mainly depends on the fusion of the dominant relationship and the distance relationship.
(5) The space complexity of the conditional entropy of the weighted dominance distance fuzzy
relation is 𝑂(|𝐴𝑇 | × |𝑈 |

2), depending on the calculation of the dominant distance relationship.
Overall space complexity Thus, the space complexity is roughly 𝑂(𝑠 × |𝐴𝑇 | × |𝑈 |

2), which takes into account storing information 
about each object under the information source for each attribute.

Table 4 
A example of MS-ODS.

1 2 3 4

𝑎1 𝑎2 𝑎3 𝑎4 𝑎1 𝑎2 𝑎3 𝑎4 𝑎1 𝑎2 𝑎3 𝑎4 𝑎1 𝑎2 𝑎3 𝑎4 𝑑

𝑥1  79  68  78  45  69  71  78  40  70  71  75  55  76  71  75  45  1
𝑥2  89  70  70  57  89  70  70  57  89  70  70  57  81  72  80  47  1
𝑥3  46  57  90  66  49  50  91  60  40  69  90  60  59  75  95  49  1
𝑥4  78  80  75  91  78  80  75  91  78  75  70  94  74  75  71  82  2
𝑥5  85  85  69  89  80  83  75  79  80  82  78  79  89  80  70  69  2
𝑥6  90  90  95  95  90  91  95  95  95  86  90  91  95  96  97  82  3
𝑥7  91  92  92  92  85  90  92  98  80  80  97  91  89  89  91  89  3

Table 5 
The information entropy for Example 1.

𝑎1 𝑎2 𝑎3 𝑎4

1  8.805261  8.822688  5.844748  9.001521
2  8.749065  8.985611  11.010392  8.806077
3  8.671777  8.473404  8.410354  10.787628
4  8.510980  8.534104  5.664968  8.656720

(d) Removing dispensable information sources from the data and insert-
ing new crucial attributes.

The updating process of the data is shown in Fig. 3, and the fusion pro-
cesses of four changing cases are shown in Fig. 4.

Case (a): Inserting new significant information sources into the data 
while removing some dispensable attributes.

Suppose there is a MS-DOS at time 𝑇1, and the incremen-
tal fusion algorithm is introduced below to add some information 
sources and reduce some attributes at time 𝑇2. Let {𝑗 , 𝑗 = 𝑚 +
1, 𝑚 + 2,… , 𝑚 + Δ𝑚} be the set of added information sources and 
{𝑎𝑖, 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + Δ𝑛} be the set of reduced attributes. The al-
gorithm is expressed in Algorithm 2, the complexity analysis of the al-
gorithm is in Table 9, and has the following proposition:
Proposition 2. For {𝑎1, 𝑎2,… , 𝑎𝑛}, the following properties are true.

(1) If min𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞) ≥ min𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞), then 
𝐹 𝑇2
𝑎 = 𝐹 𝑇1

𝑎 .
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Fig. 3. The updating processes in four different scenarios.

Table 6 
The updated entropy at time 𝑇2 in 
Example 2.

𝑎1 𝑎2

1  8.805261  8.822688
2  8.749065  8.985611
3  8.671777  8.473404
4  8.510980  8.534104

Table 7 
The initial entropy for at time 𝑇1 in Example 2.

𝑎1 𝑎2 𝑎3 𝑎4

1  8.805261  8.822688  5.844748  9.001521
2  8.749065  8.985611  11.010392  8.806077

(2) If min𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞) < min𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞), then 
𝐹 𝑇2
𝑎 = 𝐹 𝑖𝑎

𝑎 ,
where 𝑖𝑎 = argmin𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞).

Proof.

(1) If min𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞) ≥ min𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞),
then min𝑞∈1,2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞) = min𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞) can 

be get, so we have 𝐹 𝑇2
𝑎 = 𝐹 𝑇1

𝑎 .
(2) If min𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞) < min𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞),

then min𝑞∈1,2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞) =
min𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞),

𝑖𝑎 = argmin𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞).
Thus, we have 𝐹 𝑇2

𝑎 = 𝐹 𝑖𝑎
𝑎 .

According to Proposition 2, the fusion table can be incrementally up-
dated when new important information source data is added and there 
is a need to abandon unimportant conditional attributes. ∎
Example 1. (Continued from Example 1) Suppose that the data from 
the latter two ODSs in Table 4 are newly added important information 
sources, and only information on the first two important attributes is 
needed for all samples. This means that the scores of two additional 
exams need to be considered, and courses 𝑎3 and 𝑎4 should be excluded 
from the assessment to evaluate the students’ excellence. At time 𝑇1, we 
provide the first two ODSs with attributes 𝑎1 to 𝑎4, and the conditional 
entropy of each attribute for each information source at time 𝑇1 is given 
in Table 7 as our initial fusion result. In Table 6, the updated entropy 
values for the dynamically updated data are provided. 
Case (b): Simultaneously inserting new significant information sources 
and pivotal attributes into the data.

Suppose there is a MS-ODS at time 𝑇1, and the incremental fusion 
algorithm is introduced below to add some attributes and information 
sources at time 𝑇2. Let {𝑗 , 𝑗 = 𝑚 + 1, 𝑚 + 2,… , 𝑚 + Δ𝑚} be the set 
of added information sources and {𝑎𝑖, 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + Δ𝑛} be the 

Algorithm 2: The dynamic fusion algorithm of inserting new 
information sources and removing existing attributes.
Input : 
1. Original fusion result (𝐹 𝑇1

𝑎1 , 𝐹
𝑇1
𝑎2 ,… , 𝐹 𝑇1

𝑎𝑛+Δ𝑛 );
2. The information entropy set 

{𝐻𝑎𝑖 (𝐷| 𝑗), 𝑖 = 1, 2,… , 𝑛 + Δ𝑛, 𝑗 = 1, 2,… , 𝑚};
3. Deleted attribute set {𝑎𝑖, 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + Δ𝑛};
4. Inserted source set { 𝑗 , 𝑗 = 𝑚 + 1, 𝑚 + 2,… , 𝑚 + Δ𝑚}.

Output : An updated result.
1 begin
2 for 𝑞 = 𝑚 + 1 ∶ 𝑚 + Δ𝑚 do
3 for each 𝑝 ∈ {𝑎1, 𝑎2,… , 𝑎𝑛} do
4 get 𝐸𝑝(𝐷|𝑞)
5 end 
6 end 
7 for each 𝑝 ∈ {𝑎1, 𝑎2,… , 𝑎𝑛} do
8 if min𝑞∈{𝑚+1,𝑚+2,…,𝑚+Δ𝑚} 𝐸𝑝(𝐷|𝑞) ≥

min𝑞∈{1,2,…,𝑚} 𝐸𝑝(𝐷|𝑞) then
9 𝐹 𝑇2

𝑎 = 𝐹 𝑇1
𝑎

10 else
11 𝐹 𝑇2

𝑎 = 𝐹 𝑖𝑎
𝑎 (𝑖𝑎 =

argmin𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞))
12 end
13 end 
14 end

return : (𝐹 𝑇2
𝑎1 , 𝐹

𝑇2
𝑎2 ,… , 𝐹 𝑇2

𝑎𝑛 )

set of added attributes. The algorithm is expressed in Algorithm 3, the 
complexity analysis of the algorithm is in Table 10, and has the following 
proposition:

Proposition 3. For {𝑎1, 𝑎2,… , 𝑎𝑛}, the following properties are true:

(1) If min𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞) ≥ min𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞), then 
𝐹 𝑇2
𝑎 = 𝐹 𝑇1

𝑎 .
(2) If min𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞) < min𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞), then 

𝐹 𝑇2
𝑎 = 𝐹 𝑖𝑎

𝑎 ,
where 𝑖𝑎 = argmin𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞).

(3) For 𝑎 ∈ {𝑎𝑖, 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + Δ𝑛},
we have 𝐹 𝑇2

𝑎 = 𝐹 𝑖𝑎
𝑎  where 𝑖𝑎 = argmin𝑞∈1,2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞).

Proof:

(1) Proposition 3(1) is similar to Proposition 2(1), so its proof is similar to 
the proof of Proposition 2(1).

(2) Proposition 3(2) is similar to Proposition 2(2), so its proof is similar to 
the proof of Proposition 2(2).

(3) According to Definition 7, it can be obtained.

According to Proposition 3, the fusion table can be incrementally updated 
when new important information sources and attributes are added. 
Example 2. (Continued from Example 1) It is assumed that the data 
from the latter two ODSs in Table 4 and the last two attributes are newly 
added important information sources and attributes. This implies that 
the scores of two additional exams need to be taken into account, and 
evaluations for all courses are needed to assess the students’ excellence. 
At time 𝑇1, the first two ODSs with attributes 𝑎1 and 𝑎2 are provided, 
and the initial fusion result is obtained by presenting the initial condi-
tional entropy of each attribute for each information source at time 𝑇1
in Table 8. It can be observed that the entropy values of the dynamically 
updated data remain the same as those in Table 5. 
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Fig. 4. The dynamic fusion processes of four changing cases.

Table 8 
The initial entropy at time 𝑇1 in Ex-
ample 3.

𝑎1 𝑎2

1  8.805261  8.822688
2  8.749065  8.985611

Case (c): Removing dispensable information sources and redundant at-
tributes from the data.

Suppose there is a MS-ODS at time 𝑇1, and the incremental fusion 
algorithm is introduced below to delete some attributes and information 
sources at time 𝑇2. Let {𝑗 , 𝑗 = 𝑚 + 1, 𝑚 + 2,… , 𝑚 + Δ𝑚} be the set of 
deleted information sources and {𝑎𝑖, 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + Δ𝑛} be the 
set of deleted attributes. The algorithm is expressed in Algorithm 4, the 
complexity analysis of the algorithm is in Table 11, and has the following 
proposition:

Proposition 4. For {𝑎1, 𝑎2,… , 𝑎𝑛}, the following properties are true:

(1) If min𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞) ≥ min𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞), then 
𝐹 𝑇2
𝑎 = 𝐹 𝑇1

𝑎 .

(2) If min𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞) < min𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞), then 
𝐹 𝑇2
𝑎 = 𝐹 𝑖𝑎

𝑎 ,
where 𝑖𝑎 = argmin𝑞∈1,2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞).

Proof.

(1) Proposition 4(1) is similar to Proposition 2(1), so its proof is similar 
to the proof of Proposition 2(1).

(2) Proposition 4(2) is similar to Proposition 2(2), so its proof is similar 
to the proof of Proposition 2(2).

According to Proposition 4, the fusion table can be incrementally up-
dated when information sources are deleted and conditional attributes 
are deleted, too. ∎
Example 3. (Continued from Example 1) Suppose that the data from 
the latter two ODSs in Table 4 and the last two attributes are invalid 
information sources and attributes that do not need to be considered. 
This means that the scores of the last two exams should be excluded, and 
only the first two courses need to be evaluated to assess the students’ 
excellence. At time 𝑇1, we provide all of the ODSs, including attributes 
𝑎1 to 𝑎4. In Table 5, we can observe the initial conditional entropy of 
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Table 9 
Complexity analysis of case (a) (Algorithm 2).

Time complexity Cyclic analysis In Algorithm 2, Steps from 2 to 6 loop through the new sources (Δ𝑚 in total) and each attribute (𝑛 in total) and 
calculate the corresponding information entropy 𝐸𝑝(𝐷|𝑞 ), the time complexity of this part is 𝑂(Δ𝑚 × 𝑛 ×
|𝑈 |). Steps from 7 to 14 loops through the original attribute from 𝑎1to 𝑎𝑛, and compares the minimum entropy 
of the newly added source with the minimum entropy of the original attribute, the time complexity is 𝑂(𝑛).

Overall time complexity Therefore, The time complexity of this part is 𝑂(Δ𝑚 × 𝑛 × |𝑈 |).

Space complexity
Static space requirement It mainly includes all inputs in Algorithm 2 and the variables used inside the algorithm, and the space complexity 

is 𝑂(1).

Dynamic space requirement To reduce the running time in practice, it mainly uses a numpy array for two-dimensional operation. The 
time complexity is calculated separately for each part. The space complexity of steps from 2 to 6 is about 
𝑂(Δ𝑚 × 𝑛 × |𝑈 |

2), depending on the calculation of the dominant and distance relationships and sources.
Overall space complexity Thus, the space complexity is roughly 𝑂(Δ𝑚 × 𝑛 × |𝑈 |

2).

Algorithm 3: The dynamic fusion algorithm of inserting both 
new sources and attributes.
Input : 
1. Original fusion result (𝐹 𝑇1

𝑎1 , 𝐹
𝑇1
𝑎2 ,… , 𝐹 𝑇1

𝑎𝑛 );
2. The information entropy set 

{𝐻𝑎𝑖 (𝐷| 𝑗), 𝑖 = 1, 2,… , 𝑛, 𝑗 = 1, 2,… , 𝑚};
3. Inserted attribute set {𝑎𝑖, 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + Δ𝑛};
4. Inserted source set { 𝑗 , 𝑗 = 𝑚 + 1, 𝑚 + 2,… , 𝑚 + Δ𝑚}.

Output : An updated result.
1 begin
2 for 𝑞 = 𝑚 + 1 ∶ 𝑚 + Δ𝑚 do
3 for each 𝑝 ∈ {𝑎1, 𝑎2,… , 𝑎𝑛+Δ𝑛} do
4 get 𝐸𝑝(𝐷|𝑞)
5 end 
6 end 
7 for 𝑞 = 1 ∶ 𝑚 do
8 for each 𝑝 ∈ {𝑎𝑛+1, 𝑎𝑛+2,… , 𝑎𝑛+Δ𝑛} do
9 get 𝐸𝑝(𝐷|𝑞)
10 end 
11 end 
12 for each 𝑝 ∈ {𝑎1, 𝑎2,… , 𝑎𝑛} do
13 if min𝑞∈{𝑚+1,𝑚+2,…,𝑚+Δ𝑚} 𝐸𝑝(𝐷|𝑞) ≥

min𝑞∈{1,2,…,𝑚} 𝐸𝑝(𝐷|𝑞) then
14 𝐹 𝑇2

𝑎 = 𝐹 𝑇1
𝑎

15 else
16 𝐹 𝑇2

𝑎 = 𝐹 𝑖𝑎
𝑎 (𝑖𝑎 =

argmin𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞))
17 end
18 end 
19 for each 𝑝 ∈ {𝑎𝑛+1, 𝑎𝑛+2,… , 𝑎𝑛+Δ𝑛} do
20 𝐹 𝑇2

𝑎 = 𝐹 𝑖𝑎
𝑎 (𝑖𝑎 = argmin𝑞∈1,2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞))

21 end 
22 end

return : (𝐹 𝑇2
𝑎1 , 𝐹

𝑇2
𝑎2 ,… , 𝐹 𝑇2

𝑎𝑛 , 𝐹
𝑖𝑎𝑛+1
𝑎𝑛+1 , 𝐹

𝑖𝑎𝑛+2
𝑎𝑛+2 ,… , 𝐹

𝑖𝑎𝑛+Δ𝑛
𝑎𝑛+Δ𝑛 )

each attribute for each information source at time 𝑇1, which serves as 
our initial fusion result. It can be observed that the entropy values of 
the dynamically updated data are the same as those in Table 8.
Case (d): Removing dispensable information sources from the data and 
inserting new crucial attributes.

Suppose there is a MS-DOS at time 𝑇1, and the incremental 
fusion algorithm is introduced below to reduce some information 
sources and add some attributes at time 𝑇2. Let {𝑗 , 𝑗 = 𝑚 +
1, 𝑚 + 2,… , 𝑚 + Δ𝑚} be the set of deleted information sources and 

Algorithm 4: The dynamic fusion algorithm of removing both 
sources and attributes.
Input : 
1. Original fusion result (𝐹 𝑇1

𝑎1 , 𝐹
𝑇1
𝑎2 ,… , 𝐹 𝑇1

𝑎𝑛+Δ𝑛 );
2. The information entropy set 

{𝐻𝑎𝑖 (𝐷| 𝑗), 𝑖 = 1, 2,… , 𝑛 + Δ𝑛, 𝑗 = 1, 2,… , 𝑚 + Δ𝑚};
3. Deleted attribute set {𝑎𝑖, 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + Δ𝑛};
4. Deleted source set { 𝑗 , 𝑗 = 𝑚 + 1, 𝑚 + 2,… , 𝑚 + Δ𝑚}.

Output : An updated result.
1 begin
2 for each 𝑝 ∈ {𝑎1, 𝑎2,… , 𝑎𝑛} do
3 if min𝑞∈{𝑚+1,𝑚+2,…,𝑚+Δ𝑚} 𝐸𝑝(𝐷|𝑞) ≥

min𝑞∈{1,2,…,𝑚} 𝐸𝑝(𝐷|𝑞) then
4 𝐹 𝑇2

𝑎 = 𝐹 𝑇1
𝑎

5 else
6 𝐹 𝑇2

𝑎 = 𝐹 𝑖𝑎
𝑎 (𝑖𝑎 = argmin𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞))

7 end
8 end 
9 end
return : (𝐹 𝑇2

𝑎1 , 𝐹
𝑇2
𝑎2 ,… , 𝐹 𝑇2

𝑎𝑛 )

{𝑎𝑖, 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + Δ𝑛} be the set of added attributes. The algo-
rithm is expressed in Algorithm 5, the complexity analysis of the algo-
rithm is in Table 12, and has the following proposition:

Proposition 5. For {𝑎1, 𝑎2,… , 𝑎𝑛}, the following properties are true:

(1) If min𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞) ≥ min𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞), then 
𝐹 𝑇2
𝑎 = 𝐹 𝑇1

𝑎 .
(2) If min𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞) < min𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞), then 

𝐹 𝑇2
𝑎 = 𝐹 𝑖𝑎

𝑎 ,
where 𝑖𝑎 = argmin𝑞∈𝑚+1,𝑚+2,…,𝑚+Δ𝑚𝐸𝑝(𝐷|𝑞).

(3) For 𝑎 ∈ {𝑎𝑖, 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + Δ𝑛},
we have 𝐹 𝑇2

𝑎 = 𝐹 𝑖𝑎
𝑎  where 𝑖𝑎 = argmin𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞).

Proof.

(1) Proposition 5(1) is similar to Proposition 2(1), so its proof is similar 
to the proof of Proposition 2(1).

(2) Proposition 5(2) is similar to Proposition 2(2), so its proof is similar 
to the proof of Proposition 2(2).

(3) According to Definition 7, it can be obtained.

The fusion table can be incrementally updated when sources are 
deleted and valid conditional attributes need to be inserted, according 
to Proposition 5. ∎
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Table 10 
Complexity analysis of case (b) (Algorithm 3).

Time complexity Cyclic analysis In Algorithm 3, steps from 2 to 6 loop through the new source (Δ in total) and each attribute (𝑛 + Δ𝑛 in total) and compute 
the corresponding information entropy 𝐸𝑝(𝐷|𝑞 ), the time complexity of this part is 𝑂(Δ𝑚 × (𝑛 + Δ𝑛) × |𝑈 |). Steps from 
7 to 11 traverse the attribute from 𝑎𝑛+1to 𝑎𝑛+Δ𝑛, and calculate the information entropy 𝐸𝑝(𝐷|𝑞 ) of the new attribute 
of the original source, the time complexity of this part is 𝑂(𝑚 × Δ𝑛 × |𝑈 |). The complexity of Steps from 12 to 18 is 𝑂(𝑛). 
The time complexity of steps from 19 to 21 is 𝑂(Δ𝑛).

Overall time complexity Therefore, The time complexity of this part is 𝑂(Δ𝑚 × (𝑛 + Δ𝑛) × |𝑈 | + 𝑚 × Δ𝑛 × |𝑈 |).

Space complexity
Static space requirement It mainly includes all inputs in Algorithm 3 and the variables used inside the algorithm, and the space complexity is 𝑂(1).

Dynamic space requirement To reduce the running time in practice, it mainly uses a numpy array for two-dimensional operation. The time complexity is 
calculated separately for each part. The space complexity of steps from 2 to 6 is about 𝑂(Δ𝑚 × (𝑛 + Δ𝑛) × |𝑈 |

2), depending 
on the calculation of the dominant and distance relationships and sources. The space complexity of steps from 7 to 11 is 
about 𝑂(𝑚 × Δ𝑛 × |𝑈 |

2), depending on the calculation of the dominant and distance relationships and sources.
Overall space complexity Thus, the space complexity is roughly 𝑂(Δ𝑚 × (𝑛 + Δ𝑛) × |𝑈 |

2 + 𝑚 × Δ𝑛 × |𝑈 |

2).

Table 11 
Complexity analysis of case (c) (Algorithm 4).

Time complexity Cyclic analysis In Algorithm 4, steps from 2 to 8 the time complexity of this part is 𝑂(𝑛).

Overall time complexity Therefore, The time complexity of this part is 𝑂(𝑛).

Space complexity
Static space requirement It mainly includes all inputs in Algorithm 4 and the variables used inside the algorithm, and the space complexity is 𝑂(1).

Dynamic space requirement To reduce the running time in practice, it mainly uses a numpy array for two-dimensional operation. The time complexity 
is calculated separately for each part. The space complexity of steps from 2 to 8 is about 𝑂(1).

Overall space complexity Thus, the space complexity is roughly 𝑂(1).

Algorithm 5: The dynamic fusion algorithm of removing 
sources and inserting new attributes.
Input : 
1. Original fusion result (𝐹 𝑇1

𝑎1 , 𝐹
𝑇1
𝑎2 ,… , 𝐹 𝑇1

𝑎𝑛 );
2. The information entropy set 

{𝐻𝑎𝑖 (𝐷| 𝑗), 𝑖 = 1, 2,… , 𝑛, 𝑗 = 1, 2,… , 𝑚 + Δ𝑚};
3. Inserted attribute set {𝑎𝑖, 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + Δ𝑛};
4. Deleted source set { 𝑗 , 𝑗 = 𝑚 + 1, 𝑚 + 2,… , 𝑚 + Δ𝑚}.

Output : An updated result.
1 begin
2 for 𝑞 = 1 ∶ 𝑚 do
3 for each 𝑝 ∈ {𝑎𝑛+1, 𝑎𝑛+2,… , 𝑎𝑛+Δ𝑛} do
4 compute 𝐸𝑝(𝐷|𝑞)
5 end 
6 end 
7 for each 𝑝 ∈ {𝑎1, 𝑎2,… , 𝑎𝑛} do
8 if min𝑞∈{𝑚+1,𝑚+2,…,𝑚+Δ𝑚} 𝐸𝑝(𝐷|𝑞) ≥

min𝑞∈{1,2,…,𝑚} 𝐸𝑝(𝐷|𝑞) then
9 𝐹 𝑇2

𝑎 = 𝐹 𝑇1
𝑎

10 else
11 𝐹 𝑇2

𝑎 = 𝐹 𝑖𝑎
𝑎 (𝑖𝑎 = argmin𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞))

12 end
13 end 
14 for each 𝑝 ∈ {𝑎𝑛+1, 𝑎𝑛+2,… , 𝑎𝑛+Δ𝑛} do
15 compute 𝑖𝑎 = argmin𝑞∈1,2,…,𝑚𝐸𝑝(𝐷|𝑞)
16 end 
17 end

return : (𝐹 𝑇2
𝑎1 , 𝐹

𝑇2
𝑎2 ,… , 𝐹 𝑇2

𝑎𝑛 , 𝐹
𝑖𝑎𝑛+1
𝑎𝑛+1 , 𝐹

𝑖𝑎𝑛+2
𝑎𝑛+2 ,… , 𝐹

𝑖𝑎𝑛+Δ𝑛
𝑎𝑛+Δ𝑛 )

Example 4. (Continued from Example 1) Suppose that the data from 
the latter two ODSs in Table 4 are invalid information sources that do 
not need to be considered, and the last two attributes are important 
attributes that need to be taken into account. This means that the scores 

of the last two exams should be excluded, and evaluations for all four 
courses are required to assess the students’ excellence. At time 𝑇1, all 
of the ODSs are provided, including attributes a1 and a2. In Table 6, 
initial conditional entropy of each attribute for each information source 
at time 𝑇1 can be observed, which serves as our initial fusion result. It 
can be noted that the entropy values of the dynamically updated data 
are the same as those in Table 7. 

Moreover, Tables 13 and 14 compare time and space complexity be-
tween the static and four incremental algorithms. Based on the highest 
order term of the complexity, we can observe that the four incremental 
algorithms are more efficient than the static algorithm in both time and 
space.

5.  Experimental analysis

To evaluate the efficiency of the four proposed method, a series 
of comparative experiments are performed on UCI and KEEL-related 
datasets. Nine datasets were selected for comparison, which is shown 
in Table 15. All experiments were conducted on a personal computer 
with Windows11 operating system, Python 3.10 environment, Intel (R) 
Core (TM) i7 13500U CPU and 32GB RAM. Before conducting exper-
iments, 20 multi-source datasets were generated using the composite 
noise addition method. Specifically, gaussian white noise with a stan-
dard deviation of 0.05 was added to the attribute data to preserve the 
structure and features of the data. Additionally, 25% of the data was 
randomly altered with salt-and-pepper noise, changing it to the max-
imum or minimum value of the attribute under a particular decision 
class.

5.1.  Performance of static fusion method

The purpose of this section is to validate the effectiveness of the 
proposed fusion method, abbreviated as DDF. DDF was compared with 
three common fusion methods:

(1) 𝑀𝑎𝑥𝐹𝑝(𝑥) = max𝑖∈{1,2,…,𝑚} 𝑓𝑖(𝑥, 𝑝);
(2) 𝑀𝑖𝑛𝐹𝑝(𝑥) = min𝑖∈{1,2,…,𝑚} 𝑓𝑖(𝑥, 𝑝);
(3) 𝑀𝑒𝑎𝑛𝐹𝑝(𝑥) =

1
𝑁
∑𝑁

𝑖=1𝑓𝑖(𝑥, 𝑝).
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Table 12 
Complexity analysis of case (c) (Algorithm 5).

Time complexity Cyclic analysis In Algorithm 5, Steps from 2 to 6 iterate over the new properties of the reserved source and calculate the corresponding 
information entropy 𝐸𝑝(𝐷|𝑞 ), the time complexity of this part is 𝑂(𝑚 × Δ𝑛 × |𝑈 |). Steps from 7 to 13 compare the 
information entropy of the original properties, the time complexity of this part is 𝑂(𝑛). The complexity of steps from 14 
to 16 is 𝑂(𝑛).

Overall time complexity Therefore, The time complexity of this part is 𝑂(𝑚 × Δ𝑛 × |𝑈 |).

Space complexity
Static space requirement It mainly includes all inputs in Algorithm 5 and the variables used inside the algorithm, and the space complexity is 𝑂(1).

Dynamic space requirement To reduce the running time in practice, it mainly uses a numpy array for two-dimensional operation. The time complexity 
is calculated separately for each part. The space complexity of steps from 2 to 6 is about 𝑂(𝑚 × Δ𝑛 × |𝑈 |

2), depending on 
the calculation of the dominant and distance relationships, sources and attributes.

Overall space complexity Thus, the space complexity is roughly 𝑂(𝑚 × Δ𝑛 × |𝑈 |

2).

Table 13 
The time complexity of fusion algorithms.
 Case  Static algorithm  Dynamic algorithm
 (a) 𝑂((𝑚 + Δ𝑚) × 𝑛 × |𝑈 |) 𝑂(Δ𝑚 × 𝑛 × |𝑈 |)
 (b) 𝑂((𝑚 + Δ𝑚) × (𝑛 + Δ𝑛) × |𝑈 |) 𝑂(Δ𝑚 × (𝑛 + Δ𝑛) × |𝑈 | + 𝑚 × Δ𝑛 × |𝑈 |)
 (c) 𝑂(𝑚 × 𝑛 × |𝑈 |) 𝑂(𝑛)
 (d) 𝑂(𝑚 × (𝑛 + Δ𝑛) × |𝑈 |) 𝑂(𝑚 × Δ𝑛 × |𝑈 |)

Table 14 
The space complexity of fusion algorithms.
 Case  Static algorithm  Dynamic algorithm
 (a) 𝑂((𝑚 + Δ𝑚) × 𝑛 × |𝑈 |

2) 𝑂(Δ𝑚 × 𝑛 × |𝑈 |

2)
 (b) 𝑂((𝑚 + Δ𝑚) × (𝑛 + Δ𝑛) × |𝑈 |

2) 𝑂(Δ𝑚 × (𝑛 + Δ𝑛) × |𝑈 |

2 + 𝑚 × Δ𝑛 × |𝑈 |

2)
 (c) 𝑂(𝑚 × 𝑛 × |𝑈 |

2) 𝑂(1)
 (d) 𝑂(𝑚 × (𝑛 + Δ𝑛) × |𝑈 |

2) 𝑂(𝑚 × Δ𝑛 × |𝑈 |

2)

Table 15 
The detailed presentation of data sets.
 No.  Data sets  Abbreviation  Instances  Attributes  Labels
 1  Automobile  Automobile  159  18  4
 2  Wine  Wine  178  13  3
 3  Bands  Bands  365  19  2
 4  Auto MPG  AM  398  7  3
 5  Wisconsin Diagnostic Breast Cancer  WDBC  569  30  2
 6  Abalone  Abalone  4177  8  3
 7  Wine Quality-white  WQW  4898  11  7
 8  Phoneme  Phoneme  5404  5  2
 9  Apartments for Rent Classified  ARC  10000  6  3

AP and AQ were used as indicators of approximate classification pre-
cision and quality to evaluate the effectiveness of DDF. AP and AQ ef-
fectively represent the accuracy and quality of approximate classifica-
tion. The higher the values of AP and AQ, the more accurate and higher 
quality the approximate classification is. A relation 𝑅𝛼 is defined on 
the set 𝑈 as {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 |

𝑑𝑖𝑠(𝑥,𝑦)
max𝑧∈𝑈 {𝑑𝑖𝑠(𝑥,𝑧)} ≤ 𝛼}, where 𝑑𝑖𝑠 represents 

the Euclidean distance between two samples. The value of 𝛼 ranges 
from 0.05 to 0.5 within the interval defining the sample relationship. 
A smaller value indicates a more minor difference between the sam-
ples. We compare the approximation precision and quality of the DDF 
method with three standard methods using the relationship 𝑅𝛼 . The 
comparative results are illustrated in Figs. 5 and 6. From these two fig-
ures, it is clear that DDF performs better on the Automobile, Wine, AM, 
WDBC, WQR, Abalone and WQW datasets when 𝛼 takes smaller values. 
For the Bands dataset, MinF methods exhibit equally good performance. 
On both Phoneme and ARC datasets, the MeanF method demonstrates 
superior performance. Therefore, in most cases, our method is a better 
choice for integrating MS-ODS.

A series of experiments was conducted to demonstrate the im-
provement of the new multi-source fusion-based representation method 
for classification tasks. Classic classifiers, such as K-nearest neighbors 
(KNN), decision tree (DT), and support vector machine (SVM), were em-

Table 16 
Classification accuracy and variance of the fusion results of KNN.

Data sets  KNN
 DDF  MaxF  MinF  MeanF

 Automobile (𝑘=3)  34.67±0.55  21.25±1.34  33.38±0.89  32.04±0.48
 Wine (𝑘=7)  64.61±0.86  35.39±1.92  62.39±0.97  64.08±0.91
 Bands (𝑘=3)  61.63±0.42  49.30±1.04  59.43±0.22  55.83±0.84
 AM (𝑘=12)  66.06±0.44  60.17±0.40  66.32±0.34  65.56±0.43
 WDBC (𝑘=18)  87.00±0.05  51.49±0.34  86.64±0.14  84.71±0.22
 Abalone (𝑘=35)  50.56±0.04  34.00±0.08  50.68±0.04  50.49±0.06
 WQW(𝑘=68)  45.40±0.05  43.56±0.02  45.21±0.01  44.48±0.04
 Phoneme (𝑘=3)  77.61±0.01  62.95±0.02  74.46±0.02  76.02±0.02
 ARC (𝑘=23)  88.58±0.01  50.80±0.02  78.09±0.02  84.62±0.02

ployed to handle the data after weighted distance fuzzy dominance class 
processing. To obtain more accurate results, 10-fold cross-validation was 
utilized during the classification process, and the mean and standard de-
viation of 10-fold classification accuracy were presented in Tables 16, 
17, and 18. The parameters 𝑘 and 𝐶, which can impact the performance 
of KNN and SVM classifiers, were also adjusted to achieve the optimal 
classification outcomes.

In around 80% of the datasets, the proposed fusion method using 
weighted distance fuzzy dominance class is outperformed by the other 
three standard methods. In addition, we use the Wilcoxon signed-rank 
test to evaluate whether the proposed method’s classification accuracy 
on the 10-fold cross-validation is statistically superior to the three com-
monly used methods. The null hypothesis (𝐻0) is defined as: DDF ≤
MeanF/MinF/MaxF, where DDF represents the fusion method’s classifi-
cation accuracy and MeanF, MinF and MaxF represent the classification 
accuracy of the other three fusion methods. The alternative hypothesis 
(𝐻1) is defined as: DDF > MeanF/MinF/MaxF, indicating that the fu-
sion method’s classification accuracy center is greater than that of the 
other three fusion methods. The comparison results’ 𝑝-values are shown 
in Table 19. A smaller 𝑝-value indicates stronger statistical significance. 
In the case of a significance level of 20%, most of the comparison results 
are statistically significant.

To enhance the reliability and diversity of our experiments, we re-
ferred to the CeF method proposed in [40] and compared it with our 
process. This method offers a fusion approach on multi-source interval-
valued ordered datasets, where single values can be seen as a particular 
case of interval values. Therefore, we can compare them from a clas-
sification perspective. The classification results are shown in Table 20, 
and the 𝑝-values comparison results are shown in Table 21. It can be ob-
served from the results that our proposed method outperforms the CeF 
method on most datasets.

5.2.  Performance of incremental fusion method

In this section, the efficiency of incremental DDF is compared with 
static DDF. Four dynamic methods will be compared with static methods 
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Fig. 5. Approximation precision contrast.

Table 17 
Classification accuracy and variance of the fusion results of DT.

Data sets  DT
 DDF  MaxF  MinF  MeanF

 Automobile  48.42±2.25  25.79±1.21  45.79±2.13  45.33±2.06
 Wine  83.69±0.90  36.99±1.26  61.70±1.73  88.17±0.53
 Bands  59.19±0.46  55.07±0.79  56.16±0.06  58.91±0.59
 AM  67.10±0.18  48.46±0.36  62.72±0.75  65.54±0.55
 WDBC  87.34±0.07  51.69±0.35  88.93±0.15  85.94±0.14
 Abalone  44.72±0.02  33.56±0.10  45.30±0.04  44.60±0.02
 WQW  37.82±0.02  32.39±0.05  36.51±0.03  37.78±0.08
 Phoneme  74.50±0.01  59.14±0.04  70.73±0.02  72.45±0.05
 ARC  87.16±0.01  39.94±0.01  74.08±0.01  91.02±0.01

Table 18 
Classification accuracy and variance of the fusion results of SVM.

Data sets  SVM
 DDF  MaxF  MinF  MeanF

 Automobile (𝐶=8)  42.83±0.98  30.21±0.07  39.08±1.01  40.92±0.59
 Wine (𝐶=30)  68.53±1.05  39.38±0.10  63.95±0.76  66.24±0.34
 Bands (𝐶=2)  63.59±0.07  63.03±0.01  63.03±0.01  63.03±0.01
 AM (𝐶=12)  66.84±0.14  62.76±0.03  62.50±0.01  66.34±0.13
 WDBC (𝐶=60)  88.75±0.21  62.92±0.01  88.05±0.12  87.69±0.19
 Abalone (𝐶=45)  51.04±0.04  36.68±0.00  49.94±0.05  52.72±0.04
 WQW (𝐶=8)  45.15±0.00  44.86±0.00  44.86±0.01  45.03±0.00
 Phoneme (𝐶=100)  76.94±0.02  70.82±0.00  75.81±0.01  79.11±0.04
 ARC (𝐶=165)  86.51±0.01  54.09±0.00  78.34±0.01  54.10±0.00

based on computation time. The updated simulation of the data set is as 
follows.

When there are changes in information sources, 50% of the data 
sources are treated as the source, and the number of sources for the 
remaining 50% increases by 10%. When the source is reduced, the 
entire data set is treated as the base and is decreased sequentially by 
10%. The same approach is applied for attribute changes, except the 
range of changes is chosen based on the number of attributes in each
dataset.

The dynamic fusion method time is compared with the static fu-
sion method time shown in Figs. 7–10. The 𝑥 axis represents the spe-
cific changes in data set attributes and information sources, and the 𝑦
axis represents the fusion running time. In Tables 24–27, static time, 
incremental time, and the time ratio between them are provided for 
different increment scenarios. It can be observed that the fusion time 
of the incremental method is significantly less than that of the static 
method. Due to the application of previous knowledge and the com-
parison of time complexity, it can be seen that the dynamic mecha-
nism can avoid double computation and significantly save calculation
time.

5.3.  Data quality analysis

In this section, we evaluated the data quality of all datasets. Using 
ten-fold cross-validation, we calculated the average multi-class cross-
entropy loss for different levels of noise using the DDF, MaxF, MinF, 
and MeanF methods. Specifically, we started with Gaussian noise at a 
standard deviation of 0.1 and incrementally increased it by 0.1 for five 
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Fig. 6. Approximation quality contrast.

Table 19 
P-values of the comparison results in KNN, DT and SVM.
Data sets  KNN  DT  SVM

𝐻1 ∶ 𝐷𝐷𝐹 >
𝑀𝑎𝑥𝐹

𝐻1 ∶ 𝐷𝐷𝐹 >
𝑀𝑖𝑛𝐹

𝐻1 ∶ 𝐷𝐷𝐹 >
𝑀𝑒𝑎𝑛𝐹

𝐻1 ∶ 𝐷𝐷𝐹 >
𝑀𝑎𝑥𝐹

𝐻1 ∶ 𝐷𝐷𝐹 >
𝑀𝑖𝑛𝐹

𝐻1 ∶ 𝐷𝐷𝐹 >
𝑀𝑒𝑎𝑛𝐹

𝐻1 ∶ 𝐷𝐷𝐹 >
𝑀𝑎𝑥𝐹

𝐻1 ∶ 𝐷𝐷𝐹 >
𝑀𝑖𝑛𝐹

𝐻1 ∶ 𝐷𝐷𝐹 >
𝑀𝑒𝑎𝑛𝐹

 Automobile 0.020709 0.347656 0.304124 0.002930 0.347656 0.316140 0.006836 0.070229 0.213136
 Wine 0.004545 0.171441 0.603770 0.000977 0.007074 0.784180 0.000977 0.154814 0.317047
 Bands 0.009766 0.186077 0.065430 0.117863 0.146218 0.406190 0.068351 0.068351 0.068351
 AM 0.010353 0.638496 0.317047 0.000977 0.137695 0.384766 0.013672 0.007074 0.389053
 WDBC 0.000977 0.384766 0.142099 0.000977 0.946063 0.199538 0.000977 0.299587 0.287232
 Abalone 0.000977 0.539063 0.500000 0.000977 0.761402 0.500000 0.000977 0.048601 0.997070
 WQW 0.004545 0.384766 0.065430 0.000977 0.065430 0.500000 0.020905 0.171202 0.305726
 Phoneme 0.000977 0.000977 0.004883 0.000977 0.000977 0.006836 0.000977 0.021913 0.995424
 ARC 0.000977 0.000977 0.000977 0.000977 0.000977 1.000000 0.000977 0.000977 0.000977

Table 20 
Classification accuracy and variance of DDF and CeF.

Data sets  KNN  DT  SVM
 DDF  CeF  DDF  CeF  DDF  CeF

 Automobile  34.67±0.55  32.63±1.59  48.42±2.25  43.42±0.44  42.83±0.98  39.67±1.21
 Wine  64.61±0.86  70.29±1.73  83.69±0.90  83.1±0.77  68.53±1.05  59.41±1.97
 Bands  61.63±0.42  61.08±0.48  59.19±0.46  58.89±0.53  63.59±0.07  62.48±0.02
 AM  66.06±0.44  68.85±0.35  67.10±0.18  64.78±0.44  66.84±0.14  67.62±0.1
 WDBC  87.00±0.05  86.82±0.12  87.34±0.07  86.29±0.15  88.75±0.21  89.63±0.19
 Abalone  50.56±0.04  49.1±0.03  44.72±0.02  46.23±0.03  51.04±0.04  50.75±0.05
 WQW  45.40±0.05  44.07±0.03  37.82±0.02  38.21±0.04  45.15±0.00  44.88±0.0
 Phoneme  77.61±0.01  77.44±0.02  74.50±0.01  72.89±0.04  76.94±0.02  77.54±0.03
 ARC  88.58±0.01  87.11±0.01  87.16±0.01  86.41±0.01  86.51±0.01  85.35±0.01
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Fig. 7. Runtime time of case (a).

Fig. 8. Runtime time of case (b).
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Fig. 9. Runtime time of case (c).

Fig. 10. Runtime time of case (d).
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Fig. 11. Comparison of multiclass cross-entropy loss in different dataset.

Fig. 12. Comparison of multiclass cross-entropy loss in different classifier.

sets. We started at 0.25 and increased it by 0.05 increments for salt-and-
pepper noise. The average multi-class cross-entropy loss was computed 
as Algorithm 6. 

These average values served as evaluation metrics, allowing us to 
measure the classification performance across different datasets. A mi-
nor multi-class cross-entropy loss indicates a close relationship between 
the classification predictions and the actual labels, demonstrating supe-
rior classification performance. Our algorithm performs better as the 
dataset size increases, as shown in Fig. 11. The average multi-class 
cross-entropy loss under different noise levels is also consistently similar 
across the three classifiers, as demonstrated in Fig. 12.

5.4.  K-parameter analysis

In this paper, the dominance degree fuzzy relation in the proposed 
model has a single parameter variable, denoted as k, which is set to 1 
for all datasets analyzed. Therefore, this analysis investigates the impact 
of different parameter k values on the model’s fusion results.

Firstly, the definition of dominance degree fuzzy relation can be 
traced back to the logsig sigmoid transfer function 𝑓 (𝑥) = 1

1+𝑒−𝑘𝑥 . The 
logsig sigmoid transfer function introduces nonlinearity, constrains the 
neural network’s output within the range of [0, 1], and facilitates the 
learning of nonlinear relationships in the network. Here, the parameter 
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Table 21 
P-values of the comparison results of 𝐷𝐷𝐹  and 𝐶𝑒𝐹 .

 Data sets KNN (𝐻1 ∶
𝐷𝐷𝐹 > 𝐶𝑒𝐹 )

DT (𝐻1 ∶
𝐷𝐷𝐹 > 𝐶𝑒𝐹 )

SVM (𝐻1 ∶
𝐷𝐷𝐹 > 𝐶𝑒𝐹 )

 Automobile 0.086986 0.137695 0.084782
 Wine 0.952133 0.261739 0.046045
 Bands 0.347656 0.577148 0.028119
 AM 0.953015 0.096064 0.778615
 WDBC 0.335189 0.287232 0.800172
 Abalone 0.028572 0.870013 0.137695
 WQW 0.018555 0.500000 0.024555
 Phoneme 0.406028 0.024414 0.883789
 ARC 0.007489 0.024414 0.032227

Fig. 13. Curve of function logsig in interval [−1,1].

Fig. 14. Curve of function the dominance degree fuzzy relation in interval 
[−1,1].

𝑘 represents the user’s preference degree, and its graph is illustrated in 
Fig. 13. Building upon this function, we apply it to the dominance de-
gree fuzzy relation and further evolve it, ensuring that the value range of 
the entire dominance degree unclear relation function remains within 
[0, 1]. The graph of this function is depicted in Fig. 14. Subsequently, 
If the number of elements in result sets 𝐴 and 𝐵 are denoted as |𝐴|
and |𝐵| respectively, and the number of elements in their intersection is 
|𝐴

⋂

𝐵|, then their overlap can be represented as: 𝑂(𝐴,𝐵) = |𝐴
⋂

𝐵|
min(|𝐴|,|𝐵|) . 

Here, 𝑂(𝐴,𝐵) represents the overlap between result sets 𝐴 and 𝐵. It 
indicates the proportion of common elements between the two result 
sets relative to the total number of elements in both sets. The value of 

𝑂(𝐴,𝐵) ranges from 0 to 1, where 𝑂(𝐴,𝐵) = 1 indicates complete over-
lap between result sets 𝐴 and 𝐵, while 𝑂(𝐴,𝐵) = 0 implies no common 
elements between the sets. We conducted experiments on nine datasets, 
comparing the fusion results of the model with 𝑘 values of 0.1, 10, and 
100 to those with 𝑘 value of 1. The experimental results demonstrate 
that different values of 𝑘 do not significantly affect the fusion results, 
as shown in Table 22. These experimental findings suggest that the 𝑘
value of 1 in the proposed model is already adequate for model fusion. 
Different values of 𝑘 may not yield a significant impact.

5.5.  Conflict analysis

We employ a voting strategy for comparative analysis to conduct a 
more in-depth comparison between the fusion results and the results 
from most data sources for assessing the existence of conflicting at-
tributes. When comparing the conflict rates of a specific attribute, we 
extract the results of the sample for that attribute from different data 
sources, forming a comparison domain. For instance, we extract the re-
sult of sample 𝑥1 under attribute 𝑎1 from the fusion model and compare 
it with the results in the comparison domain, which refers to the val-

Table 22 
Comparison results of overlap for k parameter 
(%).

Data sets 𝑂(𝑟𝑒𝑠𝑢𝑙𝑡(𝑘=1) , 𝑟𝑒𝑠𝑢𝑙𝑡𝑘=𝑘0 )

𝑘0 = 0.1 𝑘0 = 10 𝑘0 = 100

 Automobile  94.55  100.0  100.0
 Wine  100.0  100.0  100.0
 Bands  100.0  100.0  100.0
 AM  100.0  100.0  100.0
 WDBC  100.0  100.0  100.0
 Abalone  87.71  87.71  87.71
 WQW  100.0  100.0  100.0
 Phoneme  100.0  100.0  100.0
 ARC  100.0  100.0  100.0

Table 23 
Comparison results of overlap for conflict rate (%).
 Data sets overall attribute conflict rate  average conflict rate
 Automobile 5.66, 3.77, 4.4, 3.14, 1.89, 3.77, 

3.14, 5.03, 5.03, 5.03, 10.06, 
1.26, 3.14, 5.66, 6.92, 4.4, 3.77, 
1.89

 4.33

 Wine 7.3, 4.49, 4.49, 5.06, 3.37, 7.87, 
8.99, 2.25, 5.06, 11.24, 2.81, 
2.81, 2.81

 5.27

 Bands 3.56, 4.66, 2.74, 2.47, 5.48, 3.84, 
3.84, 6.03, 2.74, 10.41, 6.58, 6.3, 
6.03, 3.56, 9.86, 7.4, 7.12, 3.56, 
2.47

 5.19

 AM 4.08, 5.1, 6.38, 5.87, 5.61, 4.85, 
4.34

 5.18

 WDBC 5.45, 2.99, 4.04, 4.92, 1.76, 3.69, 
3.16, 4.39, 3.51, 4.57, 3.69, 9.84, 
5.1, 5.62, 2.11, 1.76, 1.58, 2.11, 
8.61, 2.46, 4.39, 6.33, 3.16, 5.98, 
5.1, 5.45, 3.34, 1.76, 4.22, 4.22

 4.18

 Abalone 3.85, 2.87, 3.47, 7.71, 5.53, 6.18, 
7.61, 6.85

 5.51

 WQW 4.59, 3.78, 5.0, 4.55, 2.84, 5.6, 
4.68, 3.9, 7.64, 4.04, 6.58

 4.84

 Phoneme 6.99, 4.42, 5.29, 4.29, 6.37  5.47
 ARC 6.94, 5.6, 7.24, 4.36, 5.25, 5.69  5.85
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Table 24 
Time and time ratio in case (a).
 Data sets  Attribute decreases by 10%, and source increases by 10%.

Automobile
 Static time  3.5  3.98  4.0  3.31  3.97  3.23
 Dynamic time  3.5  0.08  0.33  0.25  0.17  0.14
 Ratio  1.0  49.75  12.12  13.24  23.35  23.07

Wine
 Static time  2.75  2.41  2.67  2.81  3.31  2.86
 Dynamic time  2.75  0.33  0.3  0.2  0.28  0.19
 Ratio  1.0  7.3  8.9  14.05  11.82  15.05

Bands
 Static time  20.58  18.34  21.84  22.95  21.28  18.12
 Dynamic time  20.58  1.7  1.22  1.03  1.16  0.52
 Ratio  1.0  10.79  17.9  22.28  18.34  34.85

AM
 Static time  8.53  9.08  8.09  8.56  7.66  5.72
 Dynamic time  8.53  0.97  0.62  0.56  0.38  0.27
 Ratio  1.0  9.36  13.05  15.29  20.16  21.19

WDBC
 Static time  69.45  74.11  81.52  79.41  80.02  69.22
 Dynamic time  69.45  6.14  5.02  4.08  4.52  3.19
 Ratio  1.0  12.07  16.24  19.46  17.7  21.7

Abalone
 Static time  761.05  789.47  808.48  790.22  692.45  589.28
 Dynamic time  761.05  68.12  52.17  52.3  47.09  37.22
 Ratio  1.0  11.59  15.5  15.11  14.7  15.83

WQW
 Static time  8469.02  9483.11  9876.53  10075.55  9888.86  9441.3
 Dynamic time  8469.02  784.16  708.83  624.36  551.75  470.73
 Ratio  1.0  12.09  13.93  16.14  17.92  20.06

Phoneme
 Static time  1863.28  4652.78  3650.61  2202.08  365.72  0.0
 Dynamic time  1863.28  333.08  229.33  124.67  18.42  0.0
 Ratio  1.0  13.97  15.92  17.66  19.85  /

ARC
 Static time  3688.94  3734.36  3371.78  2946.0  2245.2  1325.53
 Dynamic time  3688.94  298.55  246.48  182.17  123.66  65.86
 Ratio  1.0  12.51  13.68  16.17  18.16  20.13

Table 25 
Time and time ratio in case (b).
 Data sets  Attribute increases by 10%, and the source increases by 10%.

Automobile
 Static time  1.59  2.12  3.3  4.25  5.62  6.17
 Dynamic time  1.59  0.52  1.05  1.2  1.44  1.17
 Ratio  1.0  4.08  3.14  3.54  3.9  5.27

Wine
 Static time  1.58  2.14  3.02  3.69  4.64  5.38
 Dynamic time  1.58  0.55  0.84  0.7  0.88  0.92
 Ratio  1.0  3.89  3.6  5.27  5.27  5.85

Bands
 Static time  10.88  13.64  19.27  23.22  33.14  37.55
 Dynamic time  10.88  4.8  5.64  6.92  6.72  9.47
 Ratio  1.0  2.84  3.42  3.36  4.93  3.97

AM
 Static time  3.23  5.05  6.89  10.23  13.5  18.28
 Dynamic time  3.23  2.34  2.67  3.52  4.7  4.44
 Ratio  1.0  2.16  2.58  2.91  2.87  4.12

WDBC
 Static time  37.64  50.03  70.47  100.81  115.8  149.75
 Dynamic time  37.64  16.58  20.27  21.61  25.27  28.89
 Ratio  1.0  3.02  3.48  4.66  4.58  5.18

Abalone
 Static time  290.28  476.31  659.84  893.28  1208.23  1458.45
 Dynamic time  290.28  194.3  219.56  265.23  292.44  327.95
 Ratio  1.0  2.45  3.01  3.37  4.13  4.45

WQW
 Static time  4768.88  6677.09  8889.94  11471.5  14324.67  17461.91
 Dynamic time  4768.88  2005.55  2346.84  2668.27  2999.53  3325.59
 Ratio  1.0  3.33  3.79  4.3  4.78  5.25

Phoneme
 Static time  0.0  1479.5  3189.36  5313.33  7889.12  10620.11
 Dynamic time  0.0  1479.5  1928.62  2392.89  2845.77  3379.02
 Ratio  /  1.0  1.65  2.22  2.77  3.14

ARC
 Static time  2013.99  3897.67  5701.68  7367.67  9208.88  10124.65
 Dynamic time  2013.99  2613.99  1998.99  1920.99  1507.99  2100.99
 Ratio  1.0  1.49  2.85  3.84  6.11  4.82

Algorithm 6: Calculation of average classification cross-
entropy loss.
1 for each noise value do
2 Divide the dataset into ten folds for ten-fold 

cross-validation;
3 for each fold do
4 Train and predict using KNN, DT, and SVM classifiers, 

and calculate the classification cross-entropy loss for 
that fold;

5 end 
6 Taking the average of all folds as the multi-class 

cross-entropy loss of the dataset under that noise 
condition;

7 for each classifier do
8 Normalize the classification cross-entropy losses of the 

four fusion methods (DDF, MaxF, MinF, MeanF) 
using min-max normalization to scale the loss values 
to the range of [0, 1];

9 Assign equal weights of 13  to the classifiers (KNN, DT, 
and SVM);

10 Calculate the weighted average classification 
cross-entropy loss by multiplying the normalized 
classification cross-entropy losses by the respective 
weights of the classifiers and summing them;

11 end 
12 end 
13 Take the average of the weighted average classification 

cross-entropy losses for all noise values to obtain the final 
average classification cross-entropy loss;

ues of attribute 𝑎1 for sample 𝑥1 across all data sources. The simplified 
algorithmic flow is outlined as Algorithm 7.

Algorithm 7: Voting strategy for comparative analysis.
Data: Sample result,comparison domain;

1 Calculate the mean and standard deviation of all values in 
comparison domain;

2 Compute the difference between sample result and the mean;
3 if difference> 2×standard deviation then
4 return False;

// Conflict exists
5 end 
6 else
7 return True;

// No conflict
8 end 

Considering the voting results of all samples under attribute 𝑎1 in 
the fusion results, we can obtain the conflict rate for attribute 𝑎1. By 
calculating the average of the conflict rates for all attributes, we can 
determine the sample conflict rate for this fusion result. Experimental 
results demonstrate that all conflict rates are below 10%, as presented 
in Tables 22 and 23.
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Table 26 
Time and time ratio in case (c).
 Data sets  Attribute decreases by 10%, and the source decreases by 10%.

Automobile
 Static time  6.16  4.77  3.8  3.02  2.91  1.72
 Dynamic time  6.16  0.0  0.0  0.0  0.0  0.0
 Ratio  1.0  /  /  /  /  /

Wine
 Static time  5.22  4.69  4.12  2.81  2.38  1.8
 Dynamic time  5.22  0.0  0.0  0.0  0.0  0.0
 Ratio  1.0  /  /  /  /  /

Bands
 Static time  41.98  29.25  22.38  19.84  15.5  8.3
 Dynamic time  41.98  0.0  0.0  0.0  0.0  0.0
 Ratio  1.0  /  /  /  /  /

AM
 Static time  20.8  13.75  8.11  6.58  4.81  2.92
 Dynamic time  20.8  0.0  0.0  0.0  0.0  0.0
 Ratio  1.0  /  /  /  /  /

WDBC
 Static time  150.23  126.31  89.72  73.12  54.08  39.17
 Dynamic time  150.23  0.0  0.0  0.0  0.0  0.0
 Ratio  1.0  /  /  /  /  /

Abalone
 Static time  2317.08  5240.92  4012.53  2071.45  459.86  283.0
 Dynamic time  2317.08  0.0  0.0  0.0  0.0  0.0
 Ratio  1.0  /  /  /  /  /

WQW
 Static time  17221.36  14116.91  11188.8  9961.44  7517.0  5165.86
 Dynamic time  17221.36  0.0  0.0  0.0  0.0  0.0
 Ratio  1.0  /  /  /  /  /

Phoneme
 Static time  5964.41  3999.17  2421.02  1110.38  62.12  0.0
 Dynamic time  5964.41  0.0  0.0  0.0  0.0  0.0
 Ratio  1.0  /  /  /  /

ARC
 Static time  11235.98  9001.23  7005.24  5100.5  4021.39  2103.48
 Dynamic time  11235.98  0.0  0.0  0.0  0.0  0.0
 Ratio  1.0  /  /  /  /  /

Table 27 
Time and time ratio in case (d).
 Data sets  Attribute increases by 10%, and the source decreases by 10%.

Automobile
 Static time  3.84  3.03  4.08  4.05  4.05  3.38
 Dynamic time  3.84  0.62  0.42  0.67  0.36  0.48
 Ratio  1.0  4.89  9.71  6.04  11.25  7.04

Wine
 Static time  2.95  2.61  3.34  3.06  2.67  2.61
 Dynamic time  2.95  0.44  0.34  0.33  0.27  0.27
 Ratio  1.0  5.93  9.82  9.27  9.89  9.67

Bands
 Static time  18.75  25.62  26.64  17.91  20.97  21.48
 Dynamic time  18.75  4.97  3.56  3.14  2.55  2.2
 Ratio  1.0  5.15  7.48  5.7  8.22  9.76

AM
 Static time  4.91  6.66  8.17  9.98  9.64  8.61
 Dynamic time  4.91  2.64  2.0  2.72  1.84  0.97
 Ratio  1.0  2.52  4.08  3.67  5.24  8.88

WDBC
 Static time  73.45  84.52  84.25  82.27  84.44  72.06
 Dynamic time  73.45  14.11  12.88  11.14  9.12  8.45
 Ratio  1.0  5.99  6.54  7.39  9.26  8.53

Abalone
 Static time  613.47  697.75  783.33  819.75  819.55  751.95
 Dynamic time  613.47  194.69  182.73  162.42  125.47  109.64
 Ratio  1.0  3.58  4.29  5.05  6.53  6.86

WQW
 Static time  10123.69  10235.64  10330.34  10280.84  9922.28  9262.11
 Dynamic time  10123.69  1607.3  1424.86  1252.05  1089.77  913.77
 Ratio  1.0  6.37  7.25  8.21  9.1  10.14

Phoneme
 Static time  0.0  349.58  604.05  743.88  847.3  896.94
 Dynamic time  0.0  349.98  319.83  272.16  246.41  200.41
 Ratio  /  1.0  1.89  2.73  3.44  4.48

ARC
 Static time  3123.69  3235.64  3330.34  3280.84  2222.28  2262.11
 Dynamic time  3123.69  607.3  324.86  252.05  289.77  113.77
 Ratio  1.0  5.33  10.25  13.02  7.67  19.88
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6.  Conclusions

This paper proposes a new fusion method that uses weighted in-
formation entropy to fuse ordered data with decisions. Firstly, the 
weighted distance between two samples is defined and used to deter-
mine weighted distance fuzzy relations. Then, dominance degree fuzzy 
relations between samples are characterized, and these two relation-
ships are combined to define information entropy. Essential sources of 
information are selected to fuse into new data. A complete static algo-
rithm for the fusion process is provided, and its time complexity is ana-
lyzed. Four incremental fusion methods are proposed to address changes 
in information sources and conditional properties, and their time com-
plexity is analyzed. Finally, comparative experiments on nine datasets 
were conducted, including experiments on approximate precision and 
approximate quality and classification comparison experiments. Our 
DDF fusion method demonstrated excellent performance. As fundamen-
tal data cannot be wholly ordered, our fusion method’s effectiveness 
would be enhanced if applied to an information system with ultimately 
requested attributes. Additionally, time analysis comparisons show that 
the incremental fusion methods effectively reduce the runtime when the 
data sources and attributes change dynamically.

In the age of big data, classifying each object or fusing other infor-
mation systems sometimes requires allocating substantial time and fi-
nancial resources. Therefore, extending this research to handling differ-
ent information systems and decision-less data is essential. Integrating 
heterogeneous data using fusion methods is also a significant challenge 
researchers face and an important direction for future research.
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