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A B S T R A C T

With the surge in big data, the complexity of synthesizing information from multiple sources has become a
critical challenge for feature selection methodologies. Feature selection is the process of reducing the number of
attributes in data. Traditional single-source centric approaches are inefficient, requiring extensive preprocessing
for multi-source data consolidation prior to feature selection. At the same time, an information fusion method is
needed to transform the multi-source information system with selected features into a single-source information
system. This paper introduces a novel multi-source information fusion and feature selection approach that
seamlessly integrates the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE)
with a dynamic adaptation mechanism. This method is adept at addressing the complexities introduced by the
evolving nature of feature and information source dimensions. The Attribute Evaluation Matrix (AEM) and the
Attribute Preference Degree Matrix (APDM) are proposed to systematically assess and rank the significance
of attributes within a static decision-making framework. Following this, an information fusion method using
the source center is proposed. The dynamic feature selection and information fusion methods are proposed
to deal with the condition when number of attributes and samples change. Extensive experimental validation
confirms that this method not only reduces the computational overhead associated with multi-source feature
selection but also significantly enhances the efficiency as the volume and variety of data sources increase.
1. Introduction

As the information age progresses, we are continuously confronted
with an overwhelming influx of diverse data types. The imperative
to efficiently distill pivotal features from a multitude of attributes is
paramount, thereby enhancing the efficacy of the information acquisi-
tion process. The process of reducing the number of attributes in data is
called feature selection. Feature selection methodologies have become
pivotal in a spectrum of critical domains, including but not limited to:
medical diagnostics [1–3], fraud detection [4], text feature selection [5]
and credit scoring [6]. A compendium of additional applications can be
found in [7,8].

The field of feature selection has witnessed extensive scholarly
inquiry, with a plethora of research achievements summarized herein.
Pioneering studies have proposed feature selection techniques tailored
for single-source, single-value information systems [9–14], as well as
for single-source interval-valued [15–17], multi-scale [18–20], and
incomplete information systems [21–24]. Beyond these static feature
extraction methodologies, a burgeoning body of research has emerged
on dynamic feature selection approaches [25–27]. For an exhaustive
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exploration of feature selection methods, the reader is directed to [28–
30], which present a diverse array of techniques catering to various
preferences and requirements.

For single-source single-value information systems, Hu [9] invented
a method combining Overlap Degree (OD) & K-Nearest-Neighbor (KNN)
for feature selection based on rough set theory, Li [10] presented a
novel binary relation based on improved Fuzzy C-Means (FCM) instead
of equivalence relation. Khodadadi [12] introduces a binary variant of
the Arithmetic Optimization Algorithm (BAOA) designed to address the
feature selection challenge in classification. Abdelhamid [14] present
a new hybrid binary meta-heuristic algorithm for solving the feature
selection problem by integrating two algorithms: Dipper Throated Op-
timization (DTO) and the Sine Cosine (SC) algorithm. Ganesh [13]
presents an innovative K-nearest neighbor (KNN)-based wrapper system
for feature selection, which utilizes the iterative enhancement capa-
bility of the weighted superposition attraction (WSA). Alhussan [11]
introduces a new algorithm inspired by the hunting behavior of wa-
terwheel plants and how they adjust their locations during exploration
and exploitation processes. For single-source interval value information
systems, Xu’s graph-based method [15] considered the left and right
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Knowledge-Based Systems 309 (2025) 112781 
boundaries of interval values when defining the distance between two
amples. Each feature was used as a point in the graph to establish
he graph, and the features were sorted through the graph. Dai [17]
dopted a method utilizing kernel density estimation specifically de-

signed for interval-valued data. In [16], algorithm for deriving the
interval-valued dominance relation and the feature selection method
was established by interval-valued ordered decision system (IV-ODS).
For single-source multi-scale information system, Huang [19] made
 new data analysis model with multi-scale coverings by extending
artitions to coverings. For single-source incomplete information sys-
ems, Shen [21] explored a novel Unsupervised Feature Selection (UFS)
ethod for performing UFS on incomplete data sets to address the
reviously mentioned issues. Maghsoodi [22] introduces a machine

learning-based DDDM approach to address LSDM problems involving
incomplete data and numerous decision attributes. Sun [23] intro-
duced a new feature selection approach that utilizes neighborhood
rough sets, incorporating Lebesgue and entropy measures within in-
complete neighborhood decision systems. For dynamic feature selection

ethods, Fahy [25] introduced a dynamic feature mask for clustering
high-dimensional data streams that updates in real-time by masking
redundant features and unmasking relevant ones as their importance
changes. Shu [27] focused on incrementally updating and selecting a
ew feature subset as multiple objects undergo variation. These articles
rovide some inspiration for our research.

Most of these previous studies have provided effective solutions
or single-source information systems in different forms. However, in
oday’s era, where information sources are increasingly diverse, these
ingle-source feature selection methods are evidently inadequate for
andling multiple information sources. For multi-source decision in-
ormation systems, there are some articles that study the information
usion of these systems, such as: [31–36]. The process of informa-
ion fusion is combining the same type of information from multiple

sources into a single source of information. Xu [31] used statistical
istribution principles and KL divergence to create a metric for eval-
ating the similarity between intervals. Zhang [32] introduced a new
nformation fusion method based on information entropy for multi-
ource incomplete interval-valued data, along with four incremental
usion mechanisms that account for changes in information sources
nd attributes. Xiao [36] introduces a new MSIF method for decision-
aking, based on a newly defined generalized evidential divergence
easure across multiple sources of evidence. If you want to learn more

about articles on information fusion, Zhang [34] has summarized the
existing information fusion methods based on rough set theory for
our reference. These articles address some of the issues related to
nformation fusion in multi-source information systems. At present,

there are few feature selection methods for multi-source, and it is
troublesome to solve the problem of multi-source feature selection.
One approach is to first use an information fusion method to con-
vert the multi-source information system into a single-source system,
and then apply feature selection methods to the single-source system.
The feature selection result from this method is based on the data
constructed through information fusion, rather than the original data,
which means the selected features may not represent the important
features in the original information system. This is not conducive
to subsequent information collection based on the feature selection
results. The other approach involves applying feature selection methods
to each source within the multi-source information system. The feature
selection results from each source are then combined using methods
such as intersection or union to obtain the final feature selection result
for the multi-source system. This approach ensures that the feature
selection results are based on the original data, but it requires a
significant amount of time. In this article, we first propose a multi-
source feature selection method that can handle multiple information
sources. In contrast to the first approach, our method allows us to
obtain feature selection results based on the original data, ensuring
that the selected features are important within the original dataset.
2 
Additionally, compared to the second approach mentioned above, our
ethod saves a significant amount of time while achieving feature

election results that can surpass those of the second approach. After
eature selection, information fusion can be carried out based on the
ulti-source decision information system with selected features. So we

lso proposed an information fusion method that can integrate the
esults after feature selection. However, this information fusion and
eature selection method is static, meaning it requires re-computation
hen information sources change, which also consumes considerable

ime. In the information age, the forms and sources of information can
hange at any time, rendering static methods inadequate. Therefore, in
his article, we also propose dynamic methods that allow our feature
election approach to adapt to changes in information sources. The
ynamic methods tend to deal with the condition when number of
ttributes and samples change. The main contributions of this article
an be summarized as follows:

∙ We defined the Attribute Evaluation Matrix (AEM) to evaluate the
arious features of each information source, thereby determining the
mpact of each feature of each information source on the classification

effectiveness.
∙ To comprehensively consider the impact of different features from

ifferent information sources on classification effectiveness, we defined
the Attribute Preference Degree Matrix (APDM). The APDM compares
each feature with other features and evaluates the superiority or infe-
riority of each feature relative to others in terms of their performance
in classification.

∙ We also defined the leaving flow, the entering flow, and the net
low to provide a comprehensive evaluation of attributes. Finally, based
n the net flow values of attributes, we sorted the attributes, making

it convenient to extract different quantities of attributes according to
specific needs.

∙ To integrate the multi-source information system with selected
eatures into a single-source information system, we proposed an in-
ormation fusion method that selects the optimal information source

through the source center.
∙ In order to make our method adaptable to changes in information

sources, we developed a dynamic method that considers variations in
both the number of information sources and the number of attributes.
The dynamic feature selection method is divided into four scenarios to
cover all possible variations in information sources.

The article is organized into several sections. In the introduction, we
present the background and motivation for the study. The preliminaries
section covers the concepts of the multi-source information system,
rough set theory, and the Preference Ranking Organization Method
for Enrichment Evaluations (PROMETHEE) method. In Section 3, Our
research findings are divided into five parts: defining the AEM, in-
roducing the APDM and the net flow, proposing the information
usion method, explaining the steps of our static information fusion
nd feature selection method, and providing a small case study as
n illustration. The dynamic information fusion and feature selection
ethod is detailed in Section 4, where we present it in four scenarios

with accompanying code for clarity. The experimental section discusses
our experimental setup, presents the results of the experiments, and
analyzes the effectiveness of our methods. In the conclusion and future

ork section, we summarize our findings, highlight key points, and
ropose avenues for future research. Finally, the references section lists
ll the cited sources in the article.

2. Preliminaries

In this section, we will first briefly recall the concept of Decision
Information System (DIS), Multi-Source Decision Information System
(MSDIS), rough set theory and PROMETHEE. Then, we will explain the
combinations between each preliminaries and their application in our
study.
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Table 1
An example of MSDIS.

𝑓 1
𝑎1

𝑓 1
𝑎2

𝑓 1
𝑎3

𝑓 1
𝑎4

𝑓 2
𝑎1

𝑓 2
𝑎2

𝑓 2
𝑎3

𝑓 2
𝑎4

𝑓 3
𝑎1

𝑓 3
𝑎2

𝑓 3
𝑎3

𝑓 3
𝑎4

𝑓𝑑

𝑥1 0.33 0.67 0.5 0.99 0.33 0.68 0.5 1 0.29 0.58 0.43 0.85 N
𝑥2 0.83 0.74 0 0.19 0.99 0.88 0 0.23 0.99 0.88 0 0.23 N
𝑥3 0.34 0 0.5 1.01 0.33 0 0.49 0.98 0.32 0 0.48 0.96 O
𝑥4 0 0.64 0 0.41 0 0.56 0 0.36 0 0.63 0 0.4 O
𝑥5 1.03 0.62 0.51 0.31 1.18 0.71 0.59 0.36 0.94 0.57 0.47 0.29 N
𝑥6 0 0.75 0 0.67 0 0.65 0 0.57 0 0.69 0 0.61 O
𝑥7 0.56 0.85 0.85 0 0.58 0.87 0.87 0 0.65 0.97 0.97 0 N
𝑥8 1.03 0.7 0.52 0.24 1.19 0.81 0.6 0.28 1.16 0.79 0.58 0.27 O
𝑥9 0 0.65 0.96 0.29 0 0.69 1.01 0.31 0 0.72 1.06 0.32 N
𝑥10 0.62 0.83 0.47 0.43 0.5 0.67 0.38 0.35 0.65 0.87 0.49 0.45 O
𝑥11 0.35 0 0.53 1.06 0.35 0 0.52 1.03 0.35 0 0.53 1.05 O
|

f

m

m
M

t

2.1. MSDIS and rough set theory

A decision information system can be denoted as DIS={𝑈 , 𝐴, 𝐷 ,
𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, where 𝑈 is the set of samples; 𝐴 represents a set of
ttributes these samples have; 𝐷 represents a set of decision attribute
hese samples have; 𝑉𝐴 is the domain of 𝐴; 𝑓𝐴 is a function which can
et the value of attribute 𝑎 ∈ 𝐴 in sample 𝑥 ∈ 𝑈 . 𝑓𝐴 can be represent
s 𝑓𝐴 ∶ 𝑈 ×𝐴 = 𝑉𝐴; 𝑉𝐷 is the domain of 𝐷; 𝑓𝐷 is a function which can
et the value of decision attribute 𝑑 ∈ 𝐷 in sample 𝑥 ∈ 𝑈 . 𝑓𝐷 can be
epresented as 𝑓𝐷 ∶ 𝑈 ×𝐷 → 𝑉𝐷;

A multi-sources decision information system is a set of several DIS
hich can be denoted as MSDIS = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷,

𝑓𝐷}, 𝑖 = 1, 2, 3,… , 𝑛}. An example for MSDIS = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝐷 ,
𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 = 1, 2, 3,… , 𝑛} is shown in Table 1.

After we defined the DIS and MSDIS, we will have a brief review of
rough set theory. Rough Set Theory, proposed by Polish mathematician
Zdzisław Pawlak in the early 1980s, is a mathematical tool for handling
uncertainty and vagueness. The theory is primarily used for analyzing
data sets with incomplete or uncertain information. Before reviewing
rough set theory, let us first revisit the basic theory of sets. With a
DIS={𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, we can get a relation between any two
samples 𝑎, 𝑏 ∈ 𝑈 using Cartesian product

𝑅 = 𝑈 × 𝑈 = {(𝑥𝑖, 𝑥𝑗 )|𝑥𝑖 ∈ 𝑈 ∩ 𝑥𝑗 ∈ 𝑈}. (1)

If the relation 𝑅 satisfies the condition mentioned below, it can be
alled equivalence relation.

∙ For any 𝑥𝑖 ∈ 𝑈 , there is 𝑥𝑖𝑅𝑥𝑖.
∙ If 𝑥𝑖𝑅𝑥𝑗 , there is 𝑥𝑗𝑅𝑥𝑖.
∙ If 𝑥𝑖𝑅𝑥𝑗 and 𝑥𝑗𝑅𝑥𝑘, there is 𝑥𝑖𝑅𝑥𝑘.
With the definition of equivalence relation, we can get equivalence

lass of every samples 𝑥 ∈ 𝑈 which can be denoted as follow

[𝑥𝑖]𝑅 = {𝑥𝑗 |(𝑥𝑖, 𝑥𝑗 ) ∈ 𝑅}. (2)

Because the relation is equivalent, we can get several quotient sets
ccording to the equivalence class and these quotient sets will divide
he samples into partitions which can be represented as U/R={𝑃1,
2, 𝑃3,…}, 𝑃1, 𝑃2, 𝑃3,… are partitions we get using the equivalence
elation. Samples within the same parts are considered equivalent.

After we recall the basic theory of sets, we can introduce rough
et theory. According to the [37], when we randomly draw a subset
 ⊆ 𝑈 , if 𝑋 can be represented as the union of several parts 𝑃𝑖, then

𝑋 is considered a precise set. Otherwise, 𝑋 is a rough set.
To represent the roughness of the set 𝑋 ⊆ 𝑈 , we define the

pper approximation, the lower approximation, and the accuracy of
pproximation. For a subset of the sample set 𝑋 ∈ 𝑈 , a lower and
pper approximation can be define as follow

𝑅(𝑋) = {𝑥|[𝑥]𝑅 ⊆ 𝑋} (3)

𝑅(𝑋) = {𝑥|[𝑥]𝑅 ∩𝑋 ≠ ∅}. (4)
3 
With 𝑅(𝑋) and 𝑅(𝑋), we can find that 𝑅(𝑋) ⊆ 𝑋 ⊆ 𝑅(𝑋). With the
definition of lower and upper approximation, the approximate accuracy
is denoted as follow

𝐴𝑃𝑅(𝑋) = |𝑅(𝑋)|

|𝑅(𝑋)|
, 𝑋 ⊆ 𝑈 , (5)

where |𝑅(𝑋)| is the amount of units in lower approximation 𝑅(𝑋),
𝑅(𝑋)| is the amount of units in upper approximation 𝑅(𝑋). The higher

approximate accuracy is, the less roughness set 𝑋 have.
To assess the significance of each attribute in classification, Now we

define two kinds of equivalence relations for the decision attribute set
𝐷 and the attribute set 𝐴 as follow

𝑅𝐷 = {(𝑥𝑖, 𝑥𝑗 )|𝑥𝑖 ∈ 𝑈 ∩ 𝑥𝑗 ∈ 𝑈 ∩ 𝑓𝐷(𝑥𝑖, 𝑑) = 𝑓𝐷(𝑥𝑗 , 𝑑)} (6)

𝑅𝐴(𝑎) = {(𝑥𝑖, 𝑥𝑗 )|𝑥𝑖 ∈ 𝑈 ∩𝑥𝑗 ∈ 𝑈 ∩ |𝑓𝐴(𝑥𝑖, 𝑎) −𝑓𝐴(𝑥𝑗 , 𝑎)| < 𝛼}, 𝑎 ∈ 𝐴, (7)

where 𝛼 is a parameter to be defined. With the equivalence relations
or the decision attribute set 𝑅𝐷, we can get partitions 𝑈∕𝑅𝐷 =
{𝑌1, 𝑌2, 𝑌3,…}. Using the partitions derived from 𝑅𝐷, we then deter-

ine the approximation accuracy under the equivalence relations of
the attribute set 𝑅𝐴 as follow

𝐴𝑃𝑅𝐴(𝑎)(𝑌𝑖) =
|𝑅𝐴(𝑎)(𝑌𝑖)|

|𝑅𝐴(𝑎)(𝑌𝑖)|
, 𝑎 ∈ 𝐴, (8)

where |𝑅𝐴(𝑎)(𝑌𝑖)| is the amount of units in lower approximation
𝑅𝐴(𝑎)(𝑌𝑖), |𝑅𝐴(𝑎)(𝑌𝑖)| is the amount of units in upper approximation
𝑅𝐴(𝑎)(𝑌𝑖). The higher approximate accuracy is, the better this attribute
behave in classification. With 𝐴𝑃𝑅𝐴(𝑎)(𝑌𝑖), we can find out the role
of attributes in classification. Next, we will introduce PROMETHEE
method to comprehensively evaluate and rank the attributes based on
attributes’ effectiveness on classification.

2.2. PROMETHEE

PROMETHEE is a decision-making method used in the field of
ulti-criteria decision analysis. It was developed by J.P. Brans and B.
areschal in the late 1980s in the article [38]. This method is designed

to help decision-makers evaluate and rank a set of alternative options
based on multiple criteria. It considers both the positive and negative
aspects of each alternative and provides a preference ranking.

Next, we will explain PROMETHEE method in details. PROMETHEE
method need to input a decision matrix including alternatives and
criteria. The purpose of this method is to derive a ranking from best
to worst for each alternative based on all the criteria. Firstly, we need
o normalize the decision matrix using the formula below

𝑅𝑖𝑗 =
𝑥𝑖𝑗 − 𝑚𝑖𝑛𝑥𝑖𝑗

𝑚𝑎𝑥𝑥𝑖𝑗 − 𝑚𝑖𝑛𝑥𝑖𝑗
𝑖 = 1, 2,… , 𝑛, 𝑗 = 1, 2,… , 𝑚, (9)

where 𝑥𝑖𝑗 is the element in matrix, n represents the number of alterna-
tives and m represents the number of criteria. Then we will calculate
the preference function 𝑃𝑗 (𝑖, 𝑖′). This function represents the difference
between alternative 𝑖 and alternative 𝑖′ under criteria 𝑗. Through the
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preference function of each criteria, we will calculate the aggregated
preference function between alternative 𝑖 and alternative 𝑖′.

𝜋(𝑖, 𝑖′) =
∑𝑚

𝑗=1 𝜔𝑗 × 𝑃𝑗 (𝑖, 𝑖′)
∑𝑚

𝑗=1 𝜔𝑗
. (10)

With aggregated preference function between every two alternatives,
we can calculate the leaving flow and entering flow as follow

𝜙𝑙 𝑒𝑎𝑣𝑖𝑛𝑔(𝑖) = 1
𝑛 − 1

𝑛
∑

𝑖′=1
𝜋(𝑖, 𝑖′) (11)

𝜙𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔(𝑖) = 1
𝑛 − 1

𝑛
∑

𝑖′=1
𝜋(𝑖′, 𝑖). (12)

We can calculate the net flow by the leaving flow and entering flow as
ollow

𝜙𝑛𝑒𝑡(𝑖) = 𝜙𝑙 𝑒𝑎𝑣𝑖𝑛𝑔(𝑖) − 𝜙𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔(𝑖). (13)

The larger the net flow value is, the better the alternative is. We can
rank all the alternatives from highest to lowest based on their net flow
values, thereby forming the ranking of the alternatives.

PROMETHEE is devoted to solve the problem of multi-criteria de-
cision analysis. Because the multi-criteria decision matrix is similar
o the MSDIS, we can use this method to deal with the MSDIS and
enerate the result of sample’s rank. However, there are still some
ifferences between MSDIS and multi-criteria decision table, we will

enhance PROMETHEE to make it applicable for MSDIS.
To provide readers with a deeper understanding of the preliminary

oncepts, we will next introduce the connections between each prelim-
nary and how they contribute to our research. MSDIS is the subject of
ur research, where we will focus on feature selection and information

fusion. Rough set theory is employed to evaluate the contribution of
ach attribute in MSDIS to classification. Specifically, by using the
elationships 𝑅𝐷 and 𝑅𝐴(𝑎), we derive the upper approximation sets
𝑅𝐴(𝑎)(𝑌𝑖) and the lower approximation sets 𝑅𝐴(𝑎)(𝑌𝑖) and calculate the
approximate accuracy 𝐴𝑃𝑅𝐴(𝑎)(𝑌𝑖), which allows us to assess the sig-
nificance of each attribute in classification. The PROMETHEE method
is then used to comprehensively consider the impact of each attribute
across different information sources, resulting in a ranking of attribute
importance, thus achieving effective feature selection.

3. Information fusion and feature selection based on PROMETHEE
for MSDIS

In this section, we will introduce the AEM and the feature selection
ethod based on PROMETHEE inspired by [39] and the information

fusion method.

3.1. Attribute evaluation matrix

To comprehensively reflect the impact of various attributes on
lassification, we defined the AEM to evaluate every attribute in each
IS. A DIS={𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷} is given. To form an AEM, firstly,
e need to calculate the 𝑈∕𝑅𝐷 = {𝑌1, 𝑌2, 𝑌3,…} by the relation for

he decision attribute set 𝑅𝐷 defined in Eq. (6). Secondly, with 𝑈∕𝑅𝐷
nd the relation for the attribute set 𝑅𝐴(𝑎𝑖) defined in Eq. (7), we

can calculate the lower approximation 𝑅𝐴(𝑎𝑖)(𝑌𝑗 ) and upper approxi-
mation 𝑅𝐴(𝑎𝑖)(𝑌𝑗 ) of every attributes separately according to Eq. (3)
nd Eq. (4). Thirdly, with 𝑅𝐴(𝑎𝑖)(𝑌𝑗 ) and 𝑅𝐴(𝑎𝑖)(𝑌𝑗 ), we can calculate
he approximation accuracy 𝐴𝑃𝑅𝐴(𝑎𝑖)(𝑌𝑗 ) by Eq. (8). Finally, using the

approximation accuracy of every attributes 𝑎𝑖 in every partitions 𝑌𝑗 , We
can create an AEM just like in Table 2.

After defining the AEM, each 𝐷 𝐼 𝑆𝑖 corresponds to a 𝐴𝐸 𝑀𝑖. The
umber of rows in AEM corresponds to the number of attributes, while
he number of columns corresponds to the number of elements in the

set 𝑈∕𝑅𝐷. For a MSDIS={𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 =
1, 2, 3,… , 𝑛}, there is a set of AEMs={𝐴𝐸 𝑀1, 𝐴𝐸 𝑀2,… , 𝐴𝐸 𝑀𝑛}. Next,

e propose a method based on PROMETHEE to integrate these AEM
nd derive a ranking of the attributes.
 a
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Table 2
Attribute evaluation matrix.
𝐴𝑃𝑅𝐴 (𝑎𝑖 )(𝑌𝑗 ) 𝑌1 𝑌2 ... 𝑌𝑛

𝑎1 𝐴𝑃𝑅𝐴 (𝑎1 )(𝑌1) 𝐴𝑃𝑅𝐴 (𝑎1 )(𝑌2) ... 𝐴𝑃𝑅𝐴 (𝑎1 )(𝑌𝑛)
𝑎2 𝐴𝑃𝑅𝐴 (𝑎2 )(𝑌1) 𝐴𝑃𝑅𝐴 (𝑎2 )(𝑌2) ... 𝐴𝑃𝑅𝐴 (𝑎2 )(𝑌𝑛)
... ... ... ... ...
𝑎𝑛 𝐴𝑃𝑅𝐴 (𝑎𝑛 )(𝑌1) 𝐴𝑃𝑅𝐴 (𝑎𝑛 )(𝑌2) ... 𝐴𝑃𝑅𝐴 (𝑎𝑛 )(𝑌𝑛)

Table 3
The AEM calculated in the example.

𝑌 1
1 𝑌 1

2 𝑌 2
1 𝑌 2

2 𝑌 3
1 𝑌 3

2

𝑎1 0.09 0 0 0 0 0
𝑎2 0 0.18 0 0.18 0 0.15
𝑎3 0.18 0 0.18 0 0.18 0
𝑎4 0 0.07 0.1 0.1 0.125 0.36

Example 3.1. To better explain the creation of AEM, we provide
n example for understanding purpose. The data for this example is
aken from the fertility data set in UCI. We select 4 features and
1 objects from this data set, which are used to generate 3 sources
f information. The data is shown on Table 1. In this example, we

calculate 𝐴𝐸 𝑀1 corresponding to the first information source 𝐷 𝐼 𝑆1 of
the entire information system MSDIS in detail.

Firstly, get the 𝑈∕𝐷 and 𝑈∕𝑅𝐴.the 𝛼 is set to 0.2. The 𝑈∕𝐷 =
{{𝑥1, 𝑥2, 𝑥5, 𝑥7, 𝑥9}, {𝑥3, 𝑥4, 𝑥6, 𝑥8, 𝑥10, 𝑥11}}. The 𝑈∕𝑅𝐴(𝑎1) of 𝐷 𝐼 𝑆1 is
𝑈∕𝑅𝐴(𝑎1) = {{𝑥1, 𝑥3, 𝑥11}, {𝑥2}, {𝑥5, 𝑥8}, {𝑥4, 𝑥6, 𝑥9}, {𝑥7, 𝑥10}}

Secondly, calculate the 𝐴𝑃𝑅𝐴(𝑎𝑖)(𝑌𝑗 ) for every 𝑎𝑖 ∈ 𝐴 in every
𝑌𝑗 ∈ 𝑈∕𝐷. For example, we calculate the 𝐴𝑃𝑅𝐴(𝑎1)(𝑌1) in 𝐷 𝐼 𝑆1,
𝑅𝐴(𝑎1)(𝑌1) = {𝑥2}, 𝑅𝐴(𝑎1)(𝑌1) = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11},
𝐴𝑃𝑅𝐴(𝑎1)(𝑌1) =

|𝑅𝐴(𝑎1)(𝑌1)|

|𝑅𝐴(𝑎1)(𝑌1)|
= 1

11 ≈ 0.09.
Finally, we can create the 𝐴𝐸 𝑀1 of the first information source

 𝐼 𝑆1. We place the calculated 𝐴𝑃𝑅𝐴(𝑎𝑖)(𝑌𝑗 ) in the corresponding posi-
ions according to the AEM structure given in Table 2, thereby forming

the 𝐴𝐸 𝑀1. Using the same method, we create two additional AEMs
hrough the other two DIS sources. All the AEMs we constructed can
e combined to form a single set of AEMs={𝐴𝐸 𝑀1, 𝐴𝐸 𝑀2,… , 𝐴𝐸 𝑀𝑛}.
he AEMs we created is shown on Table 3.

3.2. Feature selection based on PROMETHEE

Given a MSDIS = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 = 1, 2, 3,
}, every DIS in MSDIS can produce an AEM. Firstly, we should define

 preference function 𝑃 (𝑥) as follow

𝑃 (𝑥) ∶ 𝑈 × 𝑈 → (0, 1). (14)

By using 𝑃 (𝑥), we can constrain the range of 𝑥 within (0, 1). Ac-
ording to the PROMETHEE method, we need to define the attribute
reference degree as follow

𝐴𝑃 𝐷𝑖
𝑘(𝑎, 𝑏) = 𝑃 (𝐴𝑃𝑅𝐴(𝑎)(𝑌𝑘) − 𝐴𝑃𝑅𝐴(𝑏)(𝑌𝑘)), 𝑎, 𝑏 ∈ 𝐴, (15)

where 𝑖 represents the number of information source in the MSDIS. To
omment the extent to which attribute 𝑎 ∈ 𝐴 is better than 𝑏 ∈ 𝐴 in

the 𝑖th information source, the calculate formula is as follow

𝐴𝑃 𝐷𝑖(𝑎, 𝑏) =
𝑛
∑

𝑘=1
𝑤𝑘 ∗ 𝐴𝑃 𝐷𝑖

𝑘(𝑎, 𝑏), (16)

where 𝑤𝑘 is 𝑌𝑘’s weight. In order to comprehensively consider multiple
information sources, the calculate formula is as follow

𝐴𝑃 𝐷(𝑎, 𝑏) =
𝑛
∑

𝑖=1
𝐴𝑃 𝐷𝑖(𝑎, 𝑏). (17)

𝐴𝑃 𝐷(𝑎, 𝑏) reflect the extent to which attribute 𝑎 ∈ 𝐴 is better than
ttribute 𝑏 ∈ 𝐴 in classification. The higher 𝐴𝑃 𝐷(𝑎, 𝑏) is, the greater
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Table 4
Attribute preference degree matrix.
𝐴𝑃 𝐷(𝑎, 𝑏) 𝑎1 𝑎2 ... 𝑎𝑛
𝑎1 0 𝐴𝑃 𝐷(𝑎1 , 𝑎2) ... 𝐴𝑃 𝐷(𝑎1 , 𝑎𝑛)
𝑎2 𝐴𝑃 𝐷(𝑎2 , 𝑎1) 0 ... 𝐴𝑃 𝐷(𝑎2 , 𝑎𝑛)
... ... ... ... ...
𝑎𝑛 𝐴𝑃 𝐷(𝑎𝑛 , 𝑎1) 𝐴𝑃 𝐷(𝑎𝑛 , 𝑎2) ... 0

extent 𝑎 is better than 𝑏. Since every two attributes can compute a
ttribute preference degree, we can form an APDM. The number of row
nd column in this matrix is both the quantity of attributes. The matrix
s shown in Table 4.

Through the APDM, we can comprehensively understand the ad-
antageous relationships between any two attributes. Next, we need
o evaluate each attribute based on these advantages and ultimately
btain scores for each attribute. To obtain the score we defined the
eaving flow, entering flow and net flow. The leaving flow’s definition
s as follow

𝛼𝑙 𝑒𝑎𝑣𝑖𝑛𝑔(𝑎𝑖) =
𝑛
∑

𝑗=1
𝐴𝑃 𝐷(𝑎𝑖, 𝑎𝑗 ), 𝑎𝑖, 𝑎𝑗 ∈ 𝐴. (18)

The higher leaving flow is, the greater attribute 𝑎𝑖 surpass other at-
tributes. The entering flow is defined as follow

𝛼𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔(𝑎𝑖) =
𝑛
∑

𝑗=1
𝐴𝑃 𝐷(𝑎𝑗 , 𝑎𝑖), 𝑎𝑖, 𝑎𝑗 ∈ 𝐴. (19)

The higher entering flow is, the more attribute 𝑎𝑖 backward other
attributes. We fixed leaving flow and entering flow together, and we
denote the net flow

𝛼𝑛𝑒𝑡(𝑎𝑖) = 𝛼𝑙 𝑒𝑎𝑣𝑖𝑛𝑔(𝑎𝑖) − 𝛼𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔(𝑎𝑖). (20)

With the definition of net flow, we can evaluate the goodness or
adness of a attribute. Then, we can sort the attributes by the net
low and choose the attributes do well in classification to classify the

samples.

Example 3.2. To better explain the creation of APDM and feature
election process, we provide an example for understanding purposes.

In this example, we construct the APDM using the set of AEMs cal-
culated in the example Example 3.1. To create an APDM, we have to
efine a preference function in the beginning. The preference function
f information source 𝑘 in column 𝑌𝑗 𝑃 (𝑥)𝑘𝑌𝑗 defined as follow

𝑃 (𝑥)𝑘𝑌𝑗 =

⎧

⎪

⎨

⎪

⎩

0, 𝑥 < 0
𝑥

𝑚𝑘
𝑌𝑗

, 0 < 𝑥 < 𝑚𝑘
𝑌𝑗

1, 𝑥 > 𝑚𝑘
𝑌𝑗

,

where 𝑚𝑘
𝑌𝑗

= max𝐴𝑃𝑅𝐴(𝑎)(𝑌𝑗 ) − min𝐴𝑃𝑅𝐴(𝑏)(𝑌𝑗 ), 𝑎, 𝑏 ∈ 𝐴.
Next, we can calculate 𝐴𝑃 𝐷(𝑎, 𝑏) between every 𝑎, 𝑏 ∈ 𝐴. For ease

of understanding, in this example, all weights 𝜔𝑘 for the partition 𝑌𝑘
are 0.5. For instance, we calculate the 𝐴𝑃 𝐷(𝑎1, 𝑎2). The first step is
calculating 𝐴𝑃 𝐷𝑖

𝑘(𝑎1, 𝑎2), the results of 𝐴𝑃 𝐷𝑖
𝑘(𝑎1, 𝑎2) in all conditions

are listed below. 𝐴𝑃 𝐷1
1(𝑎1, 𝑎2) = 0.09−0

0.18 = 0.5, 𝐴𝑃 𝐷1
2(𝑎1, 𝑎2) = 0,

𝐴𝑃 𝐷2
1(𝑎1, 𝑎2) = 0, 𝐴𝑃 𝐷2

2(𝑎1, 𝑎2) = 0, 𝐴𝑃 𝐷3
1(𝑎1, 𝑎2) = 0, 𝐴𝑃 𝐷3

2(𝑎1, 𝑎2) = 0.
The second step is to calculate 𝐴𝑃 𝐷𝑖(𝑎1, 𝑎2), the results of 𝐴𝑃 𝐷𝑖(𝑎1, 𝑎2)
in all conditions are listed below. 𝐴𝑃 𝐷1(𝑎1, 𝑎2) = 0.5 ∗ 0.5 + 0.5 ∗ 0 =
0.25, 𝐴𝑃 𝐷2(𝑎1, 𝑎2) = 0, 𝐴𝑃 𝐷3(𝑎1, 𝑎2) = 0. The final step is to calculate
𝐴𝑃 𝐷(𝑎1, 𝑎2) = 0.25 + 0 + 0 = 0.25.

Then, we can form the APDM by 𝐴𝑃 𝐷(𝑎, 𝑏). According to the
structure of APDM demonstrate in Table 4, the APDM can be created.
The APDM of this example is shown in Table 5.

Finally, we calculate the leaving flow 𝛼𝑙 𝑒𝑎𝑣𝑖𝑛𝑔(𝑎𝑖), the entering flow
𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔(𝑎𝑖) and the net flow 𝛼𝑛𝑒𝑡(𝑎𝑖). The net flow of this example is

shown below. 𝛼𝑛𝑒𝑡(𝑎1) ≈ −3.55, 𝛼𝑛𝑒𝑡(𝑎2) ≈ 0.29, 𝛼𝑛𝑒𝑡(𝑎3) ≈ 1.45, 𝛼𝑛𝑒𝑡(𝑎4) ≈
1.81. So the rank of attributes is 𝑎4 > 𝑎3 > 𝑎2 > 𝑎1.
a
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Table 5
The APDM calculated in the example.

𝑎1 𝑎2 𝑎3 𝑎4
𝑎1 0 0.25 0 0.25
𝑎2 1.21 0 1.21 0.52
𝑎3 1.25 1.5 0 0.88
𝑎4 1.59 0.9 0.97 0

3.3. Information fusion

In this subsection, we will talk about our information fusion method.
With attributes selected 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡, we can turn the original MSDIS to
𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡, 𝐷 , 𝑉𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑓𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑉𝐷, 𝑓𝐷}, 𝑖 =
1, 2, 3,… , 𝑛}. Next, we will integrate 𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 into an information
able using information fusion methods.

The main idea of this method is to choose the best 𝐷 𝐼 𝑆𝑖 in
𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 to represent the 𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡. In order to choose the best
𝐷 𝐼 𝑆𝑖, we firstly calculate the center of MSDIS. Dropping the decision
ttributes, the 𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 become a 𝑀 𝑆 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 = {𝐼 𝑆𝑖|𝐼 𝑆𝑖 =
𝑈 , 𝐴, 𝑉𝐴, 𝑓𝐴}, 𝑖 = 1, 2, 3,… , 𝑛}. We can put every 𝐼 𝑆𝑖 in MSIS as a

matrix, whose number of column is the quantity of samples and number
of row is the quantity of attributes. With MSIS, we can calculate the
center of 𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 𝑉 as follow:

𝑣𝑝𝑞 = (
𝑛
∑

𝑖=1
𝐼 𝑆𝑝𝑞

𝑖 )∕𝑛, (21)

where 𝑣𝑝𝑞 represents the element in the 𝑝th row and q-th column of the
center of 𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 𝑉 matrix, and 𝐼 𝑆𝑝𝑞

𝑖 represents the element in the
𝑝th row and q-th column of the 𝐼 𝑆𝑖 matrix. After calculate the center
of 𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡, we begin to choose the best 𝐷 𝐼 𝑆𝑖. The best 𝐷 𝐼 𝑆𝑖 is
correspond to the 𝐼 𝑆𝑖 which is closest to the center of MSDIS. To judge
which 𝐼 𝑆𝑖 is closest to the center of MSDIS, we defined the function to
measure the distance between two matrices.

𝐿(𝐴, 𝐵) = ‖𝐴 − 𝐵‖𝐹 , (22)

where A and B are the two matrices, ‖ ∗ ‖𝐹 is F-norm of the matrix.
ith the 𝐿(𝐴, 𝐵), we can get the best 𝐷 𝐼 𝑆𝑖 of MSDIS. The best 𝐷 𝐼 𝑆𝑖 is

defined as follow.

𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐷 𝐼 𝑆𝑖
𝐿(𝑉 , 𝐼 𝑆𝑖), 𝑖 = 1, 2,… , 𝑛. (23)

Finally the result of information confusion is 𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡.

3.4. The steps of information fusion and feature selection

According to the content above, we can conclude the steps of this
ethod. The main method is shown in Fig. 1. A MSDIS = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 =

{𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 = 1, 2, 3,… , 𝑛} is the input of this algorithm.
This method will output the top few attributes and the best DIS.
Information fusion and feature selection method based of PROMETHEE
in multi-sources information decision system is shown in the Algorithm
1.

In Algorithm 1, the time complex of step 1–11 is 𝑂(𝑛×|𝐴|×|𝑈∕𝑅𝐷|×
𝑈 |× |𝑈 |). The time complex of step 12–24 is 𝑂(|𝐴|× |𝐴|× 𝑛× |𝑈∕𝑅𝐷|).
he time complex of step 25–28 is 𝑂(|𝐴| × |𝐴|). The time complex of
tep 29–32 is 𝑂(𝑛). In conclusion, the time complex of Algorithm 1 is
(𝑛 × |𝐴| × |𝑈∕𝑅𝐷| × (|𝑈 | × |𝑈 | + |𝐴|)).

4. Dynamic feature selection and information fusion based on
PROMETHEE with the change of attributes and information sources

With the change of attributes and information sources, the method
is different from the method we talked in Section 3. In this section, we
will first talk about the information fusion method and then will discuss
the feature selection methods in four conditions. The four conditions is
shown in Fig. 2. Finally, we will summarize all the proposed algorithms
to provide readers with a comprehensive understanding of the entire
pproach.
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Fig. 1. The framework of static information fusion and feature selection method based on PROMETHEE in MSDIS.
Fig. 2. Demonstration of dynamic changes in number of features and sources.
4.1. Dynamic information fusion

The approach to dynamic information fusion is similar to that of
static information fusion. Both seek to find an optimal DIS within MS-
DIS as the result of information fusion. In dynamic situations, the origi-
nal 𝑀 𝑆 𝐷 𝐼 𝑆 = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 = 1, 2, 3,… , 𝑛}
is transformed into 𝑀 𝑆 𝐷 𝐼 𝑆′ = {𝐷 𝐼 𝑆 |𝐷 𝐼 𝑆 =
𝑖 𝑖

6 
{𝑈 , 𝐴′, 𝐷 , 𝑉𝐴′ , 𝑓𝐴′ , 𝑉𝐷, 𝑓𝐷}, 𝑖 = 1, 2, 3,… , 𝑛′} due to changes in fea-
tures and the number of information sources. Since the information
fusion in this paper occurs after feature selection, the selected fea-
tures 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 are obtained before the fusion process. The dynamic
information fusion method first converts the transformed MSDIS’ to
𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡, 𝐷 , 𝑉𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑓𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑉𝐷, 𝑓𝐷}, 𝑖 =
1, 2, 3,… , 𝑛′}. Similar to the static information fusion method, we can
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Algorithm 1: Information fusion and feature selection based of
ROMETHEE in multi-sources information decision system
Input: 𝑀 𝑆 𝐷 𝐼 𝑆 = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 =

1, 2, 3, ..., 𝑛}
Output: 𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡 = {𝑈 , 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡, 𝐷 , 𝑉𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑓𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑉𝐷, 𝑓𝐷}

1 𝐴𝐸 𝑀𝑔 𝑟𝑜𝑢𝑝 ⇐ ∅
2 for each 𝐷 𝐼 𝑆𝑖 ∈ MSDIS do
3 𝐴𝐸 𝑀 ⇐ ∅
4 calculate 𝑈∕𝑅𝐷 ⇐ {𝑌1, 𝑌2, ..., 𝑌𝑚}
5 for each 𝑎𝑝 ∈ 𝐴 do
6 for each 𝑌𝑞 ∈ 𝑈∕𝑅𝐷 do

7 𝐴𝐸 𝑀[𝑝, 𝑞] ⇐
|𝑅𝐴(𝑎𝑝)(𝑌𝑞 )|

|𝑅𝐴(𝑎𝑝)(𝑌𝑞 )|
, 𝑎 ∈ 𝐴

8 end
9 end
10 𝐴𝐸 𝑀𝑔 𝑟𝑜𝑢𝑝 ⇐ 𝐴𝐸 𝑀𝑔 𝑟𝑜𝑢𝑝 ∪ 𝐴𝐸 𝑀
11 end
12 𝐴𝑃 𝐷 𝑀 ⇐ ∅
13 for each 𝑎𝑝 ∈ 𝐴 do
14 for each 𝑎𝑞 ∈ 𝐴 do
15 for each 𝐴𝐸 𝑀𝑖 ∈ 𝐴𝐸 𝑀𝑔 𝑟𝑜𝑢𝑝 do
16 for each 𝑌ℎ ∈ 𝑈∕𝑅𝐷 do
17 calculate 𝐴𝑃 𝐷𝑖

ℎ(𝑎𝑝, 𝑎𝑞)
18 end
19 𝐴𝑃 𝐷𝑖(𝑎𝑝, 𝑎𝑞) ⇐

∑𝑛
ℎ=1 𝑤ℎ ∗ 𝐴𝑃 𝐷𝑖

ℎ(𝑎, 𝑏)
20 end
21 𝐴𝑃 𝐷(𝑎𝑝, 𝑎𝑞) ⇐

∑𝑛
𝑖=1 𝐴𝑃 𝐷𝑖(𝑎, 𝑏)

22 𝐴𝑃 𝐷 𝑀[𝑝, 𝑞] ⇐ 𝐴𝑃 𝐷(𝑎𝑝, 𝑎𝑞)
23 end
24 end
25 for each 𝑎𝑝 ∈ 𝐴 do
26 calculate 𝛼𝑛𝑒𝑡(𝑎𝑝) ⇐ 𝛼𝑙 𝑒𝑎𝑣𝑖𝑛𝑔(𝑎𝑝) − 𝛼𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔(𝑎𝑝)
27 end
28 rank the attributes by the net flow 𝛼𝑛𝑒𝑡(𝑎𝑝) and choose the top

few as 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡
29 𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 ⇐ {𝑈 , 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡, 𝐷 , 𝑉𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑓𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑉𝐷, 𝑓𝐷}, 𝑖 =

1, 2, 3, ..., 𝑛}
30 𝑀 𝑆 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 ⇐ {𝐼 𝑆𝑖|𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝑉𝐴, 𝑓𝐴}, 𝑖 = 1, 2, 3, ..., 𝑛}
31 𝑉 ⇐

∑𝑛
𝑖=0 𝐼 𝑆𝑖∕𝑛

32 𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡 ⇐ 𝑎𝑟𝑔 𝑚𝑖𝑛𝐷 𝐼 𝑆𝑖
𝐿(𝑉 , 𝐼 𝑆𝑖), 𝑖 = 1, 2, ..., 𝑛

obtain 𝑀 𝑆 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 = {𝐼 𝑆𝑖|𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝑉𝐴, 𝑓𝐴}, 𝑖 = 1, 2, 3,… , 𝑛′}
through 𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡. Then, we calculate center of 𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡
through the formula as follow

𝑉 =
𝑛
∑

𝑖=0
𝐼 𝑆𝑖∕𝑛′. (24)

Then, we can get 𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡 by the following equation

𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐷 𝐼 𝑆𝑖
𝐿(𝑉 , 𝐼 𝑆𝑖), 𝑖 = 1, 2,… , 𝑛′. (25)

The 𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡 is the result of dynamic information fusion method.

4.2. Dynamic information fusion and feature selection in case of addition
of attributes and sources

With the change of attributes and information sources, the AEM and
he APDM will change. When the attributes and information sources
ncrease, firstly, we will deal with the added attributes. Then, we will

deal with the added information sources.
Given a MSDIS = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 =

, 2, 3,… , 𝑛}, some attributes 𝐴 = {𝑎 , 𝑎 ,… , 𝑎 } and information
𝑎𝑑 𝑑 1 2 𝑘 p

7 
Table 6
Modified attribute evaluation matrix when the attributes add.
𝐴𝑃𝑅𝐴 (𝑎𝑖 )(𝑌𝑗 ) 𝑌1 𝑌2 ... 𝑌𝑛

𝑎1 𝐴𝑃𝑅𝐴 (𝑎1 )(𝑌1) 𝐴𝑃𝑅𝐴 (𝑎1 )(𝑌2) ... 𝐴𝑃𝑅𝐴 (𝑎1 )(𝑌𝑛)
𝑎2 𝐴𝑃𝑅𝐴 (𝑎2 )(𝑌1) 𝐴𝑃𝑅𝐴 (𝑎2 )(𝑌2) ... 𝐴𝑃𝑅𝐴 (𝑎2 )(𝑌𝑛)
... ... ... ... ...
𝑎𝑛 𝐴𝑃𝑅𝐴 (𝑎𝑛 )(𝑌1) 𝐴𝑃𝑅𝐴 (𝑎𝑛 )(𝑌2) ... 𝐴𝑃𝑅𝐴 (𝑎𝑛 )(𝑌𝑛)
𝑎𝑛+1 𝐴𝑃𝑅𝐴 (𝑎𝑛+1 )(𝑌1) 𝐴𝑃𝑅𝐴 (𝑎𝑛+1 )(𝑌2) ... 𝐴𝑃𝑅𝐴 (𝑎𝑛+1 )(𝑌𝑛)
... ... ... ... ...
𝑎𝑛+𝑘 𝐴𝑃𝑅𝐴 (𝑎𝑛+𝑘 )(𝑌1) 𝐴𝑃𝑅𝐴 (𝑎𝑛+𝑘 )(𝑌2) ... 𝐴𝑃𝑅𝐴 (𝑎𝑛+𝑘 )(𝑌𝑛)

sources {𝐷 𝐼 𝑆𝑗 |𝐷 𝐼 𝑆𝑗 = {𝑈 , 𝐴 ∪ 𝐴𝑎𝑑 𝑑 , 𝐷 , 𝑉𝐴∪𝐴𝑎𝑑 𝑑 , 𝑓𝐴∪𝐴𝑎𝑑 𝑑 , 𝑉𝐷, 𝑓𝐷}, 𝑗 =
1, 2, 3,… , 𝑚} are tend to join in the MSDIS. With the addition of
attributes and information sources, the former MSDIS is changed to
MSDIS’={𝐷 𝐼 𝑆𝑡|𝐷 𝐼 𝑆𝑡 = {𝑈 , 𝐴 ∪ 𝐴𝑎𝑑 𝑑 , 𝐷 , 𝑉𝐴∪𝐴𝑎𝑑 𝑑 , 𝑓𝐴∪𝐴𝑎𝑑 𝑑 , 𝑉𝐷, 𝑓𝐷}, 𝑡 =
1, 2, 3,… , 𝑛, 𝑛 + 1, 𝑛 + 2,… , 𝑛 + 𝑚}. With the former MSDIS’s AEMs, we
just have to deal with the added attributes.

Deal with added attributes. For every DIS in the former MSDIS,
alculating the added attributes’ approximate accuracies 𝐴𝑃𝑅𝐴𝑎𝑑 𝑑 (𝑎)(𝑌 )

and add them to the former DIS’s AEM. Now the number of rows in
AEM is increasing, while the number of columns in the matrix is still
remain. To better explain the state of the AEM in cases where the
number of attributes increases, the 𝐴𝐸 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑 is shown in Table 6.

After calculating the 𝐴𝐸 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑 , we need to reformulate the
PDM of the former MSDIS. The method to calculate a APDM is similar

o the method proposed in Section 3.2. As the preference function
(𝑥) is defined when using static feature selection method, the same
reference function 𝑃 (𝑥) should be used when calculate 𝐴𝑃 𝐷 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑
n dynamic cases. Then, we can calculate 𝐴𝑃 𝐷(𝑎, 𝑏) of every 𝑎, 𝑏 ∈
∪𝐴𝑎𝑑 𝑑 with Eqs. (15)–(17). Since the number of attributes increases,

the shape of APDM changes. To better explain the state of the APDM
when the number of attributes increases, the 𝐴𝑃 𝐷 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑 is shown
in Table 7. According to Table 7, we can generate a 𝐴𝑃 𝐷 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑 with
𝐴𝑃 𝐷(𝑎, 𝑏) of every 𝑎, 𝑏 ∈ 𝐴 ∪ 𝐴𝑎𝑑 𝑑 .

After dealing with the added attributes, we begin to deal with the
added information sources.

Deal with added information sources. To deal with added infor-
ation sources, we need to calculate the APDM of added information

ources with the method in Section 3.2 and get the final APDM using
the formula as follow.

𝐴𝑃 𝐷 𝑀𝑓 𝑖𝑛𝑎𝑙 = 𝐴𝑃 𝐷 𝑀𝑓 𝑜𝑟𝑚𝑒𝑟 + 𝐴𝑃 𝐷 𝑀𝑎𝑑 𝑑 , (26)

where 𝐴𝑃 𝐷 𝑀𝑓 𝑖𝑛𝑎𝑙 is the final APDM, 𝐴𝑃 𝐷 𝑀𝑓 𝑜𝑟𝑚𝑒𝑟 is the 𝐴𝑃 𝐷 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑 ,
the 𝐴𝑃 𝐷 𝑀𝑎𝑑 𝑑 is the APDM we calculate according to the added
nformation sources.

With the 𝐴𝑃 𝐷 𝑀𝑓 𝑖𝑛𝑎𝑙, we calculate the net flow with Eqs. (18)–(20).
ith the 𝐴𝑃 𝐷 𝑀𝑓 𝑖𝑛𝑎𝑙, we calculate the net flow with Eqs. (18)–(20).

y the net flow of all attributes, we will get a rank of them. Finally,
we can select any number of attributes from the top ranks as the final
result. The information fusion and feature selection algorithm with the
ddition of attributes and information sources is shown in Algorithm 2.

In Algorithm 2, the time complex of step 1–9 is 𝑂(𝑛 × |𝐴𝑎𝑑 𝑑 | ×
𝑈∕𝑅𝐷| × |𝑈 | × |𝑈 |). The time complex of step 10–16 is 𝑂(|𝐴 ∪ 𝐴𝑎𝑑 𝑑 | ×
𝐴 ∪ 𝐴𝑎𝑑 𝑑 | × 𝑛 × |𝑈∕𝑅𝐷|). The time complex of step 17–18 is 𝑂(𝑚 ×
𝐴 ∪ 𝐴𝑎𝑑 𝑑 |× |𝑈∕𝑅𝐷|× |𝑈 |× |𝑈 |+ |𝐴 ∪ 𝐴𝑎𝑑 𝑑 |× |𝐴 ∪ 𝐴𝑎𝑑 𝑑 |×𝑚× |𝑈∕𝑅𝐷|).
he time complex of step 19–22 is 𝑂(|𝐴 ∪ 𝐴𝑎𝑑 𝑑 |× |𝐴 ∪ 𝐴𝑎𝑑 𝑑 |). The time
omplex of step 23–26 is 𝑂(𝑛 + 𝑚). In conclusion, the time complex of
lgorithm 2 is 𝑂((𝑛 × |𝐴𝑎𝑑 𝑑 | + 𝑚 × |𝐴 ∪ 𝐴𝑎𝑑 𝑑 |) × |𝑈 | × |𝑈 | + (𝑚 + 𝑛) ×

|𝐴 ∪ 𝐴𝑎𝑑 𝑑 | × |𝐴 ∪ 𝐴𝑎𝑑 𝑑 | × |𝑈∕𝑅𝐷|).

4.3. Dynamic information fusion and feature selection in case of addition
of attributes and deletion of sources

This condition is somewhat different from the previous one. In the
revious case, we first deal with the added attributes and then with
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Table 7
Modified attribute preference degree matrix when attributes add.
𝐴𝑃 𝐷(𝑎, 𝑏) 𝑎1 𝑎2 ... 𝑎𝑛 𝑎𝑛+1 ... 𝑎𝑛+𝑘
𝑎1 0 𝐴𝑃 𝐷(𝑎1 , 𝑎2) ... 𝐴𝑃 𝐷(𝑎1 , 𝑎𝑛) 𝐴𝑃 𝐷(𝑎1 , 𝑎𝑛+1) ... 𝐴𝑃 𝐷(𝑎1 , 𝑎𝑛+𝑘)
𝑎2 𝐴𝑃 𝐷(𝑎2 , 𝑎1) 0 ... 𝐴𝑃 𝐷(𝑎2 , 𝑎𝑛) 𝐴𝑃 𝐷(𝑎2 , 𝑎𝑛+1) ... 𝐴𝑃 𝐷(𝑎2 , 𝑎𝑛+𝑘)
... ... ... ... ... ... ... ...
𝑎𝑛 𝐴𝑃 𝐷(𝑎𝑛 , 𝑎1) 𝐴𝑃 𝐷(𝑎𝑛 , 𝑎2) ... 0 𝐴𝑃 𝐷(𝑎𝑛 , 𝑎𝑛+1) ... 𝐴𝑃 𝐷(𝑎𝑛 , 𝑎𝑛+𝑘)
𝑎𝑛+1 𝐴𝑃 𝐷(𝑎𝑛+1 , 𝑎1) 𝐴𝑃 𝐷(𝑎𝑛+1 , 𝑎2) ... 𝐴𝑃 𝐷(𝑎𝑛+1 , 𝑎𝑛) 0 ... 𝐴𝑃 𝐷(𝑎𝑛+1 , 𝑎𝑛+𝑘)
... ... ... ... ... ... ... ...
𝑎𝑛+𝑘 𝐴𝑃 𝐷(𝑎𝑛+𝑘 , 𝑎1) 𝐴𝑃 𝐷(𝑎𝑛+𝑘 , 𝑎2) ... 𝐴𝑃 𝐷(𝑎𝑛+𝑘 , 𝑎𝑛) 𝐴𝑃 𝐷(𝑎𝑛+𝑘 , 𝑎𝑛+1) ... 0
a
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Algorithm 2: The information fusion and feature selection with
the addition of attributes and information sources

Input: 𝑀 𝑆 𝐷 𝐼 𝑆 = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 =
1, 2, 3, ..., 𝑛}; 𝐴𝑎𝑑 𝑑 = {𝑎𝑛+1, 𝑎𝑛+2, ..., 𝑎𝑛+𝑘};
𝑀 𝑆 𝐷 𝐼 𝑆𝑎𝑑 𝑑 = {𝐷 𝐼 𝑆𝑗 |𝐷 𝐼 𝑆𝑗 =
{𝑈 , 𝐴∪𝐴𝑎𝑑 𝑑 , 𝐷 , 𝑉𝐴∪𝐴𝑎𝑑 𝑑 , 𝑓𝐴∪𝐴𝑎𝑑 𝑑 , 𝑉𝐷, 𝑓𝐷}, 𝑗 = 1, 2, 3, ..., 𝑚};
𝐴𝐸 𝑀𝑔 𝑟𝑜𝑢𝑝 = {𝐴𝐸 𝑀𝑖, 𝑖 = 1, 2, 3, ..., 𝑛};

Output: 𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡 = {𝑈 , 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡, 𝐷 , 𝑉𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑓𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑉𝐷, 𝑓𝐷}
1 for each 𝐷 𝐼 𝑆𝑖 ∈ 𝑀 𝑆 𝐷 𝐼 𝑆 do
2 for each 𝑎𝑛+𝑝 ∈ 𝐴𝑎𝑑 𝑑 do
3 calculate 𝑈∕𝑅𝐷 ⇐ {𝑌1, 𝑌2, ..., 𝑌𝑚}
4 for each 𝑌𝑞 ∈ 𝑈∕𝑅𝐷 do
5 calculate 𝐴𝑃𝑅𝐴(𝑎𝑝)(𝑌𝑞)
6 𝐴𝐸 𝑀𝑖[𝑛 + 𝑝, 𝑞] ⇐ 𝐴𝑃𝑅𝐴(𝑎𝑝)(𝑌𝑞)
7 end
8 end
9 end
10 𝐴𝑃 𝐷 𝑀𝑓 𝑜𝑟𝑚𝑒𝑟 ⇐ ∅
11 for each 𝑎𝑝 ∈ 𝐴 ∪ 𝐴𝑎𝑑 𝑑 do
12 for each 𝑎𝑞 ∈ 𝐴 ∪ 𝐴𝑎𝑑 𝑑 do
13 calculate 𝐴𝑃 𝐷(𝑎𝑝, 𝑎𝑞)
14 𝐴𝑃 𝐷 𝑀𝑓 𝑜𝑟𝑚𝑒𝑟[𝑝, 𝑞] ⇐ 𝐴𝑃 𝐷(𝑎𝑝, 𝑎𝑞)
15 end
16 end
17 calculate 𝐴𝑃 𝐷 𝑀𝑎𝑑 𝑑 in 𝑀 𝑆 𝐷 𝐼 𝑆𝑎𝑑 𝑑
18 𝐴𝑃 𝐷 𝑀𝑓 𝑖𝑛𝑎𝑙 ⇐ 𝐴𝑃 𝐷 𝑀𝑓 𝑜𝑟𝑚𝑒𝑟 + 𝐴𝑃 𝐷 𝑀𝑎𝑑 𝑑
19 for each 𝑎 ∈ 𝐴 ∪ 𝐴𝑎𝑑 𝑑 do
20 calculate 𝛼𝑛𝑒𝑡(𝑎𝑖) by 𝐴𝑃 𝐷 𝑀𝑓 𝑖𝑛𝑎𝑙
21 end
22 rank the attributes by the net flow 𝛼𝑛𝑒𝑡(𝑎𝑝) and choose the top

few as 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡
23 𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 ⇐ {𝑈 , 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡, 𝐷 , 𝑉𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑓𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑉𝐷, 𝑓𝐷}, 𝑖 =

1, 2, 3, ..., 𝑛 + 𝑚}
24 𝑀 𝑆 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 ⇐ {𝐼 𝑆𝑖|𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝑉𝐴, 𝑓𝐴}, 𝑖 = 1, 2, 3, ..., 𝑛 + 𝑚}
25 𝑉 ⇐

∑𝑛
𝑖=0 𝐼 𝑆𝑖∕(𝑛 + 𝑚)

26 𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡 ⇐ 𝑎𝑟𝑔 𝑚𝑖𝑛𝐷 𝐼 𝑆𝑖
𝐿(𝑉 , 𝐼 𝑆𝑖), 𝑖 = 1, 2, ..., 𝑛 + 𝑚

the added sources. In this case, we first deal with the removed sources
nd then with the added attributes. Since the steps for handling added
ttributes in the former MSDIS are the same as Section 4.2, we will not

go into too much detail on that. Instead, we focus on the part dealing
the delete information sources.

Given a MSDIS={𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 = 1, 2, 3,
, 𝑛}, some attributes 𝐴𝑎𝑑 𝑑 = {𝑎1, 𝑎2,… , 𝑎𝑘} are tend to add to the MS-

DIS. Some information sources {𝐷 𝐼 𝑆𝑗 |𝐷 𝐼 𝑆𝑗 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷},
𝑗 = 1, 2, 3,… , 𝑚} are going to be deleted from the MSDIS. After adding
the attributes and deleting the information resources, the MSDIS is
changed to MSDIS’={𝐷 𝐼 𝑆𝑡|𝐷 𝐼 𝑆𝑡 = {𝑈 , 𝐴∪𝐴𝑎𝑑 𝑑 , 𝐷 , 𝑉𝐴∪𝐴𝑎𝑑 𝑑 , 𝑓𝐴∪𝐴𝑎𝑑 𝑑 , 𝑉𝐷,
𝑓𝐷}, 𝑡 = 1, 2, 3,… , 𝑛 − 𝑚}.

Deal with removed information sources. We have to delete
the removed DIS’s 𝐴𝐸 𝑀𝑖 from MSDIS’s AEM group. After deleting,
𝐸 𝑀𝑔 𝑟𝑜𝑢𝑝 is turned to be {𝐴𝐸 𝑀𝑖, 𝑖 ∈ {1, 2,… , 𝑛 − 𝑚}}, where 𝑛 is the
umber of DIS in former MSDIS, 𝑚 is the number of removed DIS.
 …
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Deal with added attributes. The method of dealing with added
ttributes is same as the method in Section 4.2. According to the

method in Section 4.2, we get a modified APDM. Then, we calculate
the net flow with Eqs. (18)–(20) and rank all attributes by the net
flow. The information fusion and feature selection algorithm with the
ddition of attributes and deletion of information sources is shown in

the Algorithm 3.

Algorithm 3: The information fusion and feature selection with
the addition of attributes and deletion of information sources

Input: 𝑀 𝑆 𝐷 𝐼 𝑆 = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 =
1, 2, 3, ..., 𝑛}; 𝐴𝑎𝑑 𝑑 = {𝑎1, 𝑎2, ..., 𝑎𝑘};
𝑀 𝑆 𝐷 𝐼 𝑆𝑑 𝑒𝑙 = {𝐷 𝐼 𝑆𝑗 |𝐷 𝐼 𝑆𝑗 =
{𝑈 , 𝐴∪𝐴𝑎𝑑 𝑑 , 𝐷 , 𝑉𝐴∪𝐴𝑎𝑑 𝑑 , 𝑓𝐴∪𝐴𝑎𝑑 𝑑 , 𝑉𝐷, 𝑓𝐷}, 𝑗 = 1, 2, 3, ..., 𝑚};
𝐴𝐸 𝑀𝑔 𝑟𝑜𝑢𝑝 = {𝐴𝐸 𝑀𝑖, 𝑖 ∈ {1, 2, ..., 𝑛}};

Output: 𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡 = {𝑈 , 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡, 𝐷 , 𝑉𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑓𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑉𝐷, 𝑓𝐷}
1 for each 𝐷 𝐼 𝑆𝑗 ∈ 𝑀 𝑆 𝐷 𝐼 𝑆𝑑 𝑒𝑙 do
2 𝐴𝐸 𝑀𝑔 𝑟𝑜𝑢𝑝 ⇐ 𝐴𝐸 𝑀𝑔 𝑟𝑜𝑢𝑝 − 𝐴𝐸 𝑀𝑗
3 end
4 calculate 𝐴𝐸 𝑀 as Algorithm 2’s step 1-9
5 𝐴𝑃 𝐷 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑 ⇐ ∅
6 for each 𝑎𝑝 ∈ 𝐴 ∪ 𝐴𝑎𝑑 𝑑 do
7 for each 𝑎𝑞 ∈ 𝐴 ∪ 𝐴𝑎𝑑 𝑑 do
8 calculate 𝐴𝑃 𝐷(𝑎𝑝, 𝑎𝑞)
9 𝐴𝑃 𝐷 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑 [𝑖, 𝑗] ⇐ 𝐴𝑃 𝐷(𝑎𝑝, 𝑎𝑞)
10 end
11 end
12 for each 𝑎𝑝 ∈ 𝐴 ∪ 𝐴𝑎𝑑 𝑑 do
13 calculate 𝛼𝑛𝑒𝑡(𝑎𝑝) by 𝐴𝐸 𝑃 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑
14 end
15 rank the attributes by the net flow 𝛼𝑛𝑒𝑡(𝑎𝑝) and choose the top

few as 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡
16 𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 ⇐ {𝑈 , 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡, 𝐷 , 𝑉𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑓𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑉𝐷, 𝑓𝐷}, 𝑖 =

1, 2, 3, ..., 𝑛 − 𝑚}
17 𝑀 𝑆 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 ⇐ {𝐼 𝑆𝑖|𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝑉𝐴, 𝑓𝐴}, 𝑖 = 1, 2, 3, ..., 𝑛 − 𝑚}
18 𝑉 ⇐

∑𝑛
𝑖=0 𝐼 𝑆𝑖∕(𝑛 − 𝑚)

19 𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡 ⇐ 𝑎𝑟𝑔 𝑚𝑖𝑛𝐷 𝐼 𝑆𝑖
𝐿(𝑉 , 𝐼 𝑆𝑖), 𝑖 = 1, 2, ..., 𝑛 − 𝑚

In Algorithm 3, the time complex of step 1–3 is 𝑂(𝑚). The time
complex of step 4 is 𝑂(𝑛×|𝐴𝑎𝑑 𝑑 |×|𝑈∕𝑅𝐷|×|𝑈 |×|𝑈 |). The time complex
f step 5–11 is 𝑂(|𝐴 ∪ 𝐴𝑎𝑑 𝑑 |×|𝐴 ∪ 𝐴𝑎𝑑 𝑑 |×𝑛×|𝑈∕𝑅𝐷|). The time complex
f step 12–15 is 𝑂(|𝐴 ∪ 𝐴𝑎𝑑 𝑑 | × |𝐴 ∪ 𝐴𝑎𝑑 𝑑 |). The time complex of step
6–19 is 𝑂(𝑛 − 𝑚). In conclusion, the time complex of Algorithm 3 is
(𝑚 + (|𝐴𝑎𝑑 𝑑 | × |𝑈 | × |𝑈 | + |𝐴 ∪ 𝐴𝑎𝑑 𝑑 | × |𝐴 ∪ 𝐴𝑎𝑑 𝑑 |) × 𝑛 × |𝑈∕𝑅𝐷|)

4.4. Dynamic information fusion and feature selection in case of deletion
f attributes and sources

In this subsection, we first deal with removed information sources.
hen, we will deal with removed attributes. When the attribute de-
rease, We only need to delete the rows and columns corresponding
o the removed attributes in the AEM to form a new AEM. For the
eletion of information sources, the method is same as the method in
ection 4.3.

Given a MSDIS={𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 = 1, 2, 3,
, 𝑛}, some attributes 𝐴 = {𝑎 , 𝑎 ,… , 𝑎 } and some information
𝑑 𝑒𝑙 1 2 𝑘
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Table 8
Modified attribute evaluation matrix when attributes delete.
𝐴𝑃𝑅𝐴 (𝑎𝑖 )(𝑌𝑗 ) 𝑌1 𝑌2 ... 𝑌𝑛

𝑎1 𝐴𝑃𝑅𝐴 (𝑎1 )(𝑌1) 𝐴𝑃𝑅𝐴 (𝑎1 )(𝑌2) ... 𝐴𝑃𝑅𝐴 (𝑎1 )(𝑌𝑛)
𝑎2 𝐴𝑃𝑅𝐴 (𝑎2 )(𝑌1) 𝐴𝑃𝑅𝐴 (𝑎2 )(𝑌2) ... 𝐴𝑃𝑅𝐴 (𝑎2 )(𝑌𝑛)
... ... ... ... ...
𝑎𝑛−𝑘 𝐴𝑃𝑅𝐴 (𝑎𝑛−𝑘 )(𝑌1) 𝐴𝑃𝑅𝐴 (𝑎𝑛−𝑘 )(𝑌2) ... 𝐴𝑃𝑅𝐴 (𝑎𝑛−𝑘 )(𝑌𝑛)

Table 9
Modified attribute preference degree matrix when attributes delete.
𝐴𝑃 𝐷(𝑎, 𝑏) 𝑎1 𝑎2 ... 𝑎𝑛−𝑘
𝑎1 0 𝐴𝑃 𝐷(𝑎1 , 𝑎2) ... 𝐴𝑃 𝐷(𝑎1 , 𝑎𝑛−𝑘)
𝑎2 𝐴𝑃 𝐷(𝑎2 , 𝑎1) 0 ... 𝐴𝑃 𝐷(𝑎2 , 𝑎𝑛−𝑘)
... ... ... ... ...
𝑎𝑛−𝑘 𝐴𝑃 𝐷(𝑎𝑛−𝑘 , 𝑎1) 𝐴𝑃 𝐷(𝑎𝑛−𝑘 , 𝑎2) ... 0

sources {𝐷 𝐼 𝑆𝑗 |𝐷 𝐼 𝑆𝑗 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑗 = 1, 2, 3,
, 𝑚} are going to be deleted. Then, attribute set will be 𝐴′ = 𝐴−𝐴𝑑 𝑒𝑙

nd the MSDIS will be MSDIS’={𝐷 𝐼 𝑆𝑡|𝐷 𝐼 𝑆𝑡 = {𝑈 , 𝐴′, 𝐷 , 𝑉𝐴′ , 𝑓𝐴′ , 𝑉𝐷,
𝑓𝐷}, 𝑡 = 1, 2, 3,… , 𝑛 − 𝑚}.

Deal with removed information sources. The method to remove
information sources is same as the method mentioned in Section 4.3.
We have to delete AEMs corresponding to removed DIS in MSDIS.

Deal with removed attributes. With the attributes to be deleted,
we will firstly delete the rows corresponding to the removed attributes
in the former MSDIS’s AEMs. To better explain the state of the AEM

hen the number of attributes decreases, the 𝐴𝐸 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑 is shown
n Table 8. Next, we can reformulate the APDM using 𝐴𝐸 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑 . The
ethod of reformulating the APDM is similar to the method introduced

in Section 3.2. As the preference function 𝑃 (𝑥) is defined when using
tatic feature selection method, the same preference function 𝑃 (𝑥)
hould be used while formulate 𝐴𝑃 𝐷 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑 in dynamic cases. With
he preference function 𝑃 (𝑥), 𝐴𝑃 𝐷(𝑎, 𝑏) of every 𝑎, 𝑏 ∈ 𝐴′ can be cal-

culated. Since the number of attributes decreases, the shape of APDM
changes. To better explain the shape of APDM when the number of
attributes decreases, the 𝐴𝑃 𝐷 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑 is shown in Table 9. According
o Table 9, we can generate an 𝐴𝑃 𝐷 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑 using 𝐴𝑃 𝐷(𝑎, 𝑏) of every
, 𝑏 ∈ 𝐴′.

Finally, we calculate the net flow with Eqs. (18)–(20) and rank all
attributes by the net flow. The information fusion and feature selection
algorithm with the deletion of attributes and information sources is
shown in the Algorithm 4.

In Algorithm 4, the time complex of step 1–3 is 𝑂(𝑚). The time
complex of step 4–6 is 𝑂(𝑛). The time complex of step 7–13 is 𝑂(|𝐴′

|×
|𝐴′

|×𝑛× |𝑈∕𝑅𝐷|). The time complex of step 14–17 is 𝑂(|𝐴′
|× |𝐴′

|). The
time complex of step 18–21 is 𝑂(𝑛−𝑚). In conclusion, the time complex
of Algorithm 4 is 𝑂(𝑚 + |𝐴′

| × |𝐴′
| × 𝑛 × |𝑈∕𝑅𝐷|).

4.5. Dynamic information fusion and feature selection in case of deletion
of attributes and addition of sources

In this section, we will first deal with removed attributes and then
with added information sources. Since the method of deal with re-

oved attributes and added information sources is told in Sections 4.2
and 4.4, we will not explain the details of these methods in this section.

Given a MSDIS = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 =
, 2, 3,… , 𝑛}, some attributes 𝐴𝑑 𝑒𝑙 = {𝑎1, 𝑎2,… , 𝑎𝑘} are going to be
eleted, and some information sources {𝐷 𝐼 𝑆𝑗 |𝐷 𝐼 𝑆𝑗 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴,
𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑗 = 1, 2, 3,… , 𝑚} are tend to add to the MSDIS. Then,

the attributes set will be 𝐴′ = 𝐴 − 𝐴𝑑 𝑒𝑙 and the MSDIS will be
MSDIS’={𝐷 𝐼 𝑆𝑡|𝐷 𝐼 𝑆𝑡 = {𝑈 , 𝐴′, 𝐷 , 𝑉𝐴′ , 𝑓𝐴′ , 𝑉𝐷, 𝑓𝐷}, 𝑡 = 1, 2, 3,… , 𝑛 + 𝑚}.

Deal with removed attributes. The method to remove attributes is
introduced in Section 4.4. We have to remove the rows corresponding
to the removed attributes in AEM and calculate a 𝐴𝑃 𝐷 𝑀𝑓 𝑜𝑟𝑚𝑒𝑟 by the
new AEM.
 t
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Algorithm 4: The information fusion and feature selection algo-
rithm with the deletion of attributes and information sources

Input: 𝑀 𝑆 𝐷 𝐼 𝑆 = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 =
1, 2, 3, ..., 𝑛}; 𝐴𝑑 𝑒𝑙 = {𝑎1, 𝑎2, ..., 𝑎𝑘}; 𝑀 𝑆 𝐷 𝐼 𝑆𝑑 𝑒𝑙 =
{𝐷 𝐼 𝑆𝑗 |𝐷 𝐼 𝑆𝑗 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑗 = 1, 2, 3, ..., 𝑚};
𝐴𝐸 𝑀𝑔 𝑟𝑜𝑢𝑝 = {𝐴𝐸 𝑀𝑖, 𝑖 ∈ {1, 2, ..., 𝑛}};

Output: 𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡 = {𝑈 , 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡, 𝐷 , 𝑉𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑓𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑉𝐷, 𝑓𝐷}
1 for each 𝐷 𝐼 𝑆𝑗 ∈ 𝑀 𝑆 𝐷 𝐼 𝑆𝑑 𝑒𝑙 do
2 𝐴𝐸 𝑀𝑔 𝑟𝑜𝑢𝑝 ⇐ 𝐴𝐸 𝑀𝑔 𝑟𝑜𝑢𝑝 − 𝐴𝐸 𝑀𝑗
3 end
4 for each 𝐴𝐸 𝑀𝑖 ∈ 𝐴𝐸 𝑀𝑔 𝑟𝑜𝑢𝑝 do
5 Delete the rows corresponding to removed attributes in

𝐴𝐸 𝑀𝑖
6 end
7 𝐴𝑃 𝐷 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑 ⇐ ∅
8 for each 𝑎𝑝 ∈ 𝐴′ do
9 for each 𝑎𝑞 ∈ 𝐴′ do
10 calculate 𝐴𝑃 𝐷(𝑎𝑝, 𝑎𝑞)
11 𝐴𝑃 𝐷 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑 [𝑖, 𝑗] ⇐ 𝐴𝑃 𝐷(𝑎𝑝, 𝑎𝑞)
12 end
13 end
14 for each 𝑎𝑝 ∈ 𝐴′ do
15 calculate 𝛼𝑛𝑒𝑡(𝑎𝑝) by 𝐴𝑃 𝐷 𝑀𝑚𝑜𝑑 𝑖𝑓 𝑖𝑒𝑑
16 end
17 rank the attributes by the net flow 𝛼𝑛𝑒𝑡(𝑎𝑝) and choose the top

few as 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡
18 𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 ⇐ {𝑈 , 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡, 𝐷 , 𝑉𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑓𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑉𝐷, 𝑓𝐷}, 𝑖 =

1, 2, 3, ..., 𝑛 − 𝑚}
19 𝑀 𝑆 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 ⇐ {𝐼 𝑆𝑖|𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝑉𝐴, 𝑓𝐴}, 𝑖 = 1, 2, 3, ..., 𝑛 − 𝑚}
20 𝑉 ⇐

∑𝑛
𝑖=0 𝐼 𝑆𝑖∕(𝑛 − 𝑚)

21 𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡 ⇐ 𝑎𝑟𝑔 𝑚𝑖𝑛𝐷 𝐼 𝑆𝑖
𝐿(𝑉 , 𝐼 𝑆𝑖), 𝑖 = 1, 2, ..., 𝑛 − 𝑚

Deal with added information sources. Its method is introduced
n Section 4.2. Briefly, we calculate the APDM of added information

sources and use Eq. (26) in order to get 𝐴𝑃 𝐷 𝑀𝑓 𝑖𝑛𝑎𝑙. Then, we calculate
the net flow with Eqs. (18)–(20) and rank all attributes by the net flow.

The information fusion and feature selection algorithm with the
eletion of attributes and the addition of information sources is shown

in the Algorithm 5.
In Algorithm 5, the time complex of step 1–3 is 𝑂(𝑚). The time

complex of step 4–10 is 𝑂(|𝐴′
|× |𝐴′

|×𝑛× |𝑈∕𝑅𝐷|). The time complex of
step 11–12 is 𝑂(𝑚× |𝐴′

|× |𝑈∕𝑅𝐷|× |𝑈 |× |𝑈 |+ |𝐴′
|× |𝐴′

|×𝑚× |𝑈∕𝑅𝐷|).
he time complex of step 13–16 is 𝑂(|𝐴′

| × |𝐴′
|). The time complex of

tep 17–20 is 𝑂(𝑛+𝑚). In conclusion, the time complex of Algorithm 5
is 𝑂(𝑚+ |𝐴′

|× |𝐴′
|× 𝑛× |𝑈∕𝑅𝐷|+𝑚× |𝐴′

|× |𝑈∕𝑅𝐷|× (|𝑈 |× |𝑈 |+ |𝐴′
|)).

The above provides a detailed introduction to both the static and
ynamic feature selection and information fusion algorithms. Next, we
ill provide a brief summary of the proposed algorithms to help readers
asily locate the corresponding methods.

∙ Algorithm 1 is the static feature selection and information fusion
algorithm.

Algorithms 2–5 are dynamic feature selection and information fu-
sion algorithms, each corresponding to a dynamic scenario as shown in
Fig. 2:

∙ Algorithm 2 handles the case where both the number of attributes
and sources increase.

∙ Algorithm 3 addresses the case where the number of attributes
ncreases while the number of sources decreases.

∙ Algorithm 4 deals with the scenario where both the number of
attributes and sources decrease.

∙ Algorithm 5 is used when the number of attributes decreases while
he number of sources increases.
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Algorithm 5: The information fusion and feature selection with
the deletion of attributes and the addition of information sources

Input: 𝑀 𝑆 𝐷 𝐼 𝑆 = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 =
1, 2, 3, ..., 𝑛};𝐴𝑑 𝑒𝑙 = {𝑎1, 𝑎2, ..., 𝑎𝑘};
𝑀 𝑆 𝐷 𝐼 𝑆𝑎𝑑 𝑑{𝐷 𝐼 𝑆𝑗 |𝐷 𝐼 𝑆𝑗 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑗 =
1, 2, 3, ..., 𝑚}; 𝐴𝐸 𝑀 = {𝐴𝐸 𝑀𝑖, 𝑖 ∈ {1, 2, ..., 𝑛}};

Output: 𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡 = {𝑈 , 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡, 𝐷 , 𝑉𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑓𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑉𝐷, 𝑓𝐷}
1 for each 𝐴𝐸 𝑀𝑖 ∈ 𝐴𝐸 𝑀 do
2 Delete the rows corresponding to removed attributes in

𝐴𝐸 𝑀𝑖.
3 end
4 𝐴𝑃 𝐷 𝑀𝑓 𝑜𝑟𝑚𝑒𝑟 ⇐ ∅
5 for each 𝑎𝑝 ∈ 𝐴′ do
6 for each 𝑎𝑞 ∈ 𝐴′ do
7 calculate 𝐴𝑃 𝐷(𝑎𝑝, 𝑎𝑞)
8 𝐴𝑃 𝐷 𝑀𝑓 𝑜𝑟𝑚𝑒𝑟[𝑝, 𝑞] ⇐ 𝐴𝑃 𝐷(𝑎𝑝, 𝑎𝑞)
9 end
10 end
11 calculate 𝐴𝑃 𝐷 𝑀𝑎𝑑 𝑑 in 𝑀 𝑆 𝐷 𝐼 𝑆𝑎𝑑 𝑑
12 𝐴𝑃 𝐷 𝑀𝑓 𝑖𝑛𝑎𝑙 ⇐ 𝐴𝑃 𝐷 𝑀𝑓 𝑜𝑟𝑚𝑒𝑟 + 𝐴𝑃 𝐷 𝑀𝑎𝑑 𝑑
13 for each 𝑎 ∈ 𝐴′ do
14 calculate 𝛼𝑛𝑒𝑡(𝑎𝑖) by 𝐴𝑃 𝐷 𝑀𝑓 𝑖𝑛𝑎𝑙
15 end
16 rank the attributes by the net flow 𝛼𝑛𝑒𝑡(𝑎𝑝) and choose the top

few as 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡
17 𝑀 𝑆 𝐷 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 ⇐ {𝑈 , 𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡, 𝐷 , 𝑉𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑓𝐴𝑠𝑒𝑙 𝑒𝑐 𝑡 , 𝑉𝐷, 𝑓𝐷}, 𝑖 =

1, 2, 3, ..., 𝑛 + 𝑚}
18 𝑀 𝑆 𝐼 𝑆𝑠𝑒𝑙 𝑒𝑐 𝑡 ⇐ {𝐼 𝑆𝑖|𝐼 𝑆𝑖 = {𝑈 , 𝐴, 𝑉𝐴, 𝑓𝐴}, 𝑖 = 1, 2, 3, ..., 𝑛 + 𝑚}
19 𝑉 ⇐

∑𝑛
𝑖=0 𝐼 𝑆𝑖∕(𝑛 + 𝑚)

20 𝐷 𝐼 𝑆𝑏𝑒𝑠𝑡 ⇐ 𝑎𝑟𝑔 𝑚𝑖𝑛𝐷 𝐼 𝑆𝑖
𝐿(𝑉 , 𝐼 𝑆𝑖), 𝑖 = 1, 2, ..., 𝑛 + 𝑚

5. Experiment and results

In this section, some experiment are done to prove the effect of
ur static method and the compare between the static method and
he dynamic method. The data set we use are shown on Table 10. All

the experiment this time are run by personal computer, the operating
environment is listed in Table 11. Because the MSDIS is hard to find,
o we use some method to turn DIS to MSDIS.

The method is discussed below. Given a 𝐷 𝐼 𝑆 = {𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴,
𝑉𝐷, 𝑓𝐷}, Firstly, standardization and normalization are used to DIS in
order to make the values in DIS between 0 to 1. Next, we generate 𝑛
random numbers 𝑟 = {𝑟1, 𝑟2,… , 𝑟𝑛} satisfy the normal distribution N(0,
0.1),where 𝑛 is the quantity of samples. Let 𝑖 be the number of DIS
in MSDIS and 𝑗 be the number of sample in 𝑈 , the value of sample 𝑥
on attribute 𝑎 in 𝐷 𝐼 𝑆𝑖 is 𝑓𝐴𝑖(𝑥, 𝑎) = 𝑓𝐴(𝑥, 𝑎) ∗ (1 + 𝑟𝑗 ), 𝑥 ∈ 𝑈 , 𝑎 ∈ 𝐴.
Additionally, the value of sample 𝑥’s decision attribute is 𝑓𝐷 𝑖(𝑥, 𝑑) =
𝑓𝐷(𝑥, 𝑑), 𝑥 ∈ 𝑈 , 𝑑 ∈ 𝐷. Then we can get a 𝑀 𝑆 𝐷 𝐼 𝑆 = {𝐷 𝐼 𝑆𝑖|𝐷 𝐼 𝑆𝑖 =
{𝑈 , 𝐴, 𝐷 , 𝑉𝐴, 𝑓𝐴, 𝑉𝐷, 𝑓𝐷}, 𝑖 = 1, 2, 3,… , 𝑛}.

In the experiment, the preference function of information source 𝑘
in column 𝑌𝑗 𝑃 (𝑥)𝑘𝑌𝑗 defined as follow.

𝑃 (𝑥)𝑘𝑌𝑗 =

⎧

⎪

⎨

⎪

⎩

0, 𝑥 < 0
𝑥

𝑚𝑘
𝑌𝑗

, 0 < 𝑥 < 𝑚𝑘
𝑌𝑗

1, 𝑥 > 𝑚𝑘
𝑌𝑗

,

where 𝑚𝑘
𝑌𝑗

= max𝐴𝑃𝑅𝐴(𝑎)(𝑌𝑗 ) − min𝐴𝑃𝑅𝐴(𝑏)(𝑌𝑗 ), 𝑎, 𝑏 ∈ 𝐴.

5.1. Experiment design

5.1.1. The comparative experiment of effectiveness of parameters in feature
election and information fusion method

In this subsection, we will analysis the effectiveness of the static
information fusion and feature selection method. We will divide the
10 
subsection into two parts. In the first part, We vary the threshold value
lpha from 0.05 to 0.5 with a step size of 0.05 and observe the accuracy
f attributes selected under different alpha values in the KNN, SVM
nd DT algorithm for classification on various datasets. We need to
ontrol the number of selected features in order to explore the impact
f different alpha values on classification accuracy. Choosing an overly
arge feature selection ratio makes it difficult to observe the effect of
eature selection, while selecting too small a ratio significantly affects
he original data structure and classification accuracy. Therefore, we
hoose 0.5 as the feature selection rate for this part of the experiment.
n the second part, we set the threshold value alpha to 0.2. If the alpha
alue is too large or too small, the feature selection effectiveness of
ough set theory will be relatively low, as can be observed from Fig. 3.

We vary the attribute selection rate from 0.1 to 1 with a step size of
0.1 and observe the accuracy after classification using the KNN, SVM
and DT algorithm under different attribute selection rates for different
datasets. The Fig. 3 and Fig. 4 show the results of the experiment. The
classification accuracy obtained in the experiment is the result of taking
he average of five runs.

5.1.2. The comparative experiment of classification results with four other
algorithms

In this section, we will compare the proposed static multi-source
eature selection algorithm (RST-P) with other feature selection algo-
ithms in order to analyze the effectiveness of the proposed algorithm.

Since there are currently few multi-source feature selection algorithms,
we have selected a total of four single-source feature selection algo-
ithms for comparison with the proposed algorithm. The four selected

algorithms are CE [40], WD [41], OD-KNN [9], FCM [10].
In this comparative experiment, for each dataset, we randomly

enerated a total of 10 information sources using the aforementioned
ethod of source generation. For the selected four single-source feature

election algorithms, we sequentially input the 10 generated informa-
ion sources into the single-source feature selection algorithms, yielding
0 feature selection results. These 10 feature selection results are then
ombined using the following method:

∙ Intersection: We take the intersection of the 10 feature selection
results in sequence to obtain the final feature selection result for the
multi-source information system. This method can identify features that
are important in every information source, thereby ensuring the high
quality of the selection results.

∙ Union: We take the union of the 10 feature selection results in
sequence to obtain the final feature selection result for the multi-
source information system. This method can identify all features that
are important across the various information sources, thereby ensuring
the comprehensiveness of the feature selection results.

Using the proposed information fusion method, the 10 generated
information sources are fused into one source. Based on the results
obtained from the single-source feature selection algorithm applied to
the fused source, several features are selected from the result, thereby
generating the data to be input into the classification algorithm.

For the proposed feature selection method, the 10 generated infor-
mation sources are directly input to obtain the final feature selection
result. Similarly, by using the proposed information fusion algorithm,
we can apply the feature selection results to the fused information
source, thereby obtaining the final data to be input into the clas-
sification algorithm. Since our algorithm is capable of ranking the
eatures and selecting different numbers of features, we select 40%,

60%, and 80% of the features for comparison with the other four
eature selection algorithms. The selection of these feature selection

rates is based on the experimental results shown in Fig. 4. From the
nalysis of Fig. 4, we determined that the optimal feature selection rate

for our algorithm is 0.6. Therefore, we conducted experiments with
three feature selection rates close to this value. Additionally, based
on Fig. 3 and the corresponding analysis, we selected a moderate alpha
value of 0.2 as the alpha parameter for this experiment.
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Table 10
The description of data sets.
No. Data sets Abbreviation Samples Attributes Classes

1 Abalone Abalone 4177 8 3
2 Avila Avila 20 867 10 12
3 Connectionist Bench(Sonar, Mines vs. Rocks) CB 208 60 2
4 Ecoli Ecoli 336 7 8
5 Musk Musk 476 168 2
6 Period Changer PC 90 1177 2
7 QSAR QSAR 1055 41 2
8 Waveform Waveform 5000 21 3
9 Wine Wine 178 13 3
Fig. 3. Classification accuracy of input feature selection results of three algorithms under changes in alpha.
Table 11
Operating ambient.

Name Model Parameter

CPU 12th Gen Intel(R) Core(TM) i7-12700H 2.30 GHz
Platform Python 3.9
System Windows11 64bit
Memory DDR5 16 GB;4800MKz
Hard Disk Micron MTFDKBA512TFH 477 GB

We compare these feature selection algorithms based on classifi-
cation accuracy. Additionally, we use three classification algorithms
(KNN, Support Vector Machine (SVM) and Decision Tree (DT))to clas-
sify the data, thereby obtaining a more comprehensive result. Addition-
ally, we used a 5-fold cross-validation method to input the feature-
selected data into three different classifiers. The final classification
accuracy is calculated as the average of the results from the 5-fold cross-
validation. Since using the intersection as the fusion method for the
11 
feature selection results of the single-source feature selection algorithm
can result in an empty set, we have marked such occurrences with a ’∖’
symbol. The results of this experiment are displayed in Tables 12–17
(see Tables 13–16).

5.1.3. The comparative experiment of the efficiency of dynamic information
fusion and feature selection method

In this subsection, we analysis the efficiency of dynamic information
fusion and feature selection method. Because every case have different
dynamic method, we will analysis the efficiency in four cases. The 𝛼 is
choose to be 0.2. As shown in Fig. 3, if the alpha value is either too high
or too low, the effectiveness of feature selection using rough set theory
will be significantly reduced. We selected 20%, 40%, 60%, 80%, and
all features to explore the performance of the dynamic feature selection
and information fusion algorithm under small-scale, medium-scale, and
large-scale feature conditions. Similarly, we selected 12, 14, 16, 18,
and 20 information sources to investigate the algorithm’s performance
with a small, medium, and large number of sources. The number of
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Fig. 4. Classification accuracy of input feature selection results of three algorithms under changes in select rate.
Table 12
The comparison of classification results with different algorithms on KNN classifier in the case of using intersection method to combine feature
selection results of single-source feature selection algorithms.

raw ∩CE ∩WD ∩OD-KNN ∩FCM RST-P (40%) RST-P (60%) RST-P (80%)

abalone 0.5204 0.4537 0.4764 0.4858 0.5083 0.5010 0.5002 0.5177
avila 0.6073 0.5194 0.5175 0.5219 0.5248 0.4857 0.5066 0.5668
CB 0.7884 \ 0.6317 \ 0.6893 0.7247 0.7891 0.7803
ecoli 0.8299 0.8297 0.8274 0.8219 0.7488 0.6065 0.6953 0.7612
musk 0.8013 0.5520 0.6513 0.6374 0.7774 0.8340 0.8378 0.8252
PC 0.6644 0.7000 0.6854 0.6644 0.6975 0.7067 0.6956 0.6489
QSAR 0.8427 0.6973 0.7994 \ 0.8328 0.8580 0.8298 0.8402
waveform 0.8119 0.7851 0.7652 0.8129 0.7682 0.6594 0.7560 0.8166
wine 0.9527 0.8055 0.6281 0.8935 0.8999 0.9382 0.9527 0.9639
Table 13
The comparison of classification results with different algorithms on KNN classifier in the case of using union method to combine feature
selection results of single-source feature selection algorithms.

raw ∪CE ∪WD ∪OD-KNN ∪FCM RST-P (40%) RST-P (60%) RST-P (80%)

abalone 0.5204 0.5347 0.5247 0.5219 0.5103 0.5010 0.5002 0.5177
avila 0.6073 0.5392 0.5193 0.5247 0.5259 0.4857 0.5066 0.5668
CB 0.7884 0.7934 0.6902 0.8232 0.7633 0.7247 0.7891 0.7803
ecoli 0.8299 0.8291 0.8202 0.8094 0.7501 0.6065 0.6953 0.7612
musk 0.8013 0.7832 0.7866 0.7803 0.7799 0.8340 0.8378 0.8252
PC 0.6644 0.6511 0.6652 0.6756 0.6682 0.7067 0.6956 0.6489
QSAR 0.8427 0.8398 0.8398 0.8358 0.8400 0.8580 0.8298 0.8402
waveform 0.8119 0.7874 0.7756 0.8108 0.7701 0.6594 0.7560 0.8166
wine 0.9527 0.9573 0.9571 0.9574 0.9562 0.9382 0.9527 0.9639
features and sources in each configuration can also be adjusted as
long as they meet the conditions of different cases, allowing us to
explore the algorithm’s performance under various scenarios. Just in
this subsection, we chose these specific parameters for our experiments.
12 
case a. Addition of attributes and information sources
We make five different configurations from the data set and per-

formed both static and dynamic feature selection and information
fusion algorithms on them. The specific steps are as follows:
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Table 14
The comparison of classification results with different algorithms on SVM classifier in the case of using intersection method to combine feature
selection results of single-source feature selection algorithms.

raw ∩CE ∩WD ∩OD-KNN ∩FCM RST-P (40%) RST-P (60%) RST-P (80%)

abalone 0.5503 0.5071 0.5076 0.5114 0.5476 0.5378 0.5390 0.5522
avila 0.5337 0.5106 0.5264 0.5049 0.4833 0.4727 0.4941 0.5754
CB 0.8058 \ 0.6844 \ 0.6136 0.7288 0.8018 0.7933
ecoli 0.8506 0.8416 0.8429 0.8362 0.7703 0.6750 0.7501 0.7845
musk 0.8685 0.5693 0.6753 0.6676 0.7711 0.8643 0.8727 0.8685
PC 0.7400 0.7000 0.7144 0.7000 0.7026 0.7444 0.7289 0.7222
QSAR 0.8510 0.7282 0.7846 \ 0.8292 0.8353 0.8408 0.8400
waveform 0.8606 0.8205 0.8245 0.8428 0.8010 0.7078 0.7970 0.8561
wine 0.9797 0.8279 0.5942 0.8922 0.9043 0.9538 0.9551 0.9742
Table 15
The comparison of classification results with different algorithms on SVM classifier in the case of using union method to combine feature
selection results of single-source feature selection algorithms.

raw ∪CE ∪WD ∪OD-KNN ∪FCM RST-P (40%) RST-P (60%) RST-P (80%)

abalone 0.5503 0.5503 0.5367 0.5421 0.5484 0.5378 0.5390 0.5522
avila 0.5337 0.5237 0.5324 0.5106 0.4833 0.4727 0.4941 0.5754
CB 0.8058 0.7923 0.6942 0.7941 0.7963 0.7288 0.8018 0.7933
ecoli 0.8506 0.8434 0.8400 0.8345 0.7697 0.6750 0.7501 0.7845
musk 0.8685 0.8264 0.8467 0.8009 0.8029 0.8643 0.8727 0.8685
PC 0.7400 0.7156 0.6924 0.7089 0.7103 0.7444 0.7289 0.7222
QSAR 0.8510 0.8451 0.8521 0.8440 0.8482 0.8353 0.8408 0.8400
waveform 0.8606 0.8320 0.8326 0.8560 0.7999 0.7078 0.7970 0.8561
wine 0.9797 0.9799 0.9820 0.9606 0.9686 0.9538 0.9551 0.9742
Table 16
The comparison of classification results with different algorithms on DT classifier in the case of using intersection method to combine feature
selection results of single-source feature selection algorithms.

raw ∩CE ∩WD ∩OD-KNN ∩FCM RST-P (40%) RST-P (60%) RST-P (80%)

abalone 0.4863 0.4346 0.4413 0.4487 0.4723 0.4603 0.4636 0.4813
avila 0.6357 0.4816 0.4862 0.4792 0.4749 0.4540 0.4727 0.5754
CB 0.7413 \ 0.5427 \ 0.5999 0.7146 0.7232 0.7231
ecoli 0.7548 0.7376 0.7529 0.7452 0.7012 0.5590 0.6797 0.6982
musk 0.7420 0.5185 0.5974 0.6071 0.7395 0.7408 0.7496 0.7336
PC 0.5778 0.6733 0.6488 0.6133 0.6243 0.6000 0.6178 0.5622
QSAR 0.7945 0.6900 0.7350 \ 0.7816 0.7989 0.7900 0.7992
waveform 0.7387 0.7301 0.7394 0.7422 0.6989 0.6056 0.6946 0.7437
wine 0.9113 0.7440 0.6148 0.8449 0.8765 0.8696 0.8707 0.9261
Table 17
The comparison of classification results with different algorithms on DT classifier in the case of using union method to combine feature selection
results of single-source feature selection algorithms.

raw ∪CE ∪WD ∪OD-KNN ∪FCM RST-P (40%) RST-P (60%) RST-P (80%)

abalone 0.4863 0.4795 0.4781 0.4765 0.4732 0.4603 0.4636 0.4813
avila 0.6357 0.4864 0.4967 0.4827 0.4745 0.4540 0.4727 0.5754
CB 0.7413 0.7488 0.5827 0.7597 0.7507 0.7146 0.7232 0.7231
ecoli 0.7548 0.7595 0.7554 0.7542 0.6792 0.5590 0.6797 0.6982
musk 0.7420 0.7390 0.7479 0.7618 0.7517 0.7408 0.7496 0.7336
PC 0.5778 0.6044 0.5938 0.5889 0.5843 0.6000 0.6178 0.5622
QSAR 0.7945 0.7983 0.7900 0.7917 0.7896 0.7989 0.7900 0.7992
waveform 0.7387 0.7300 0.7376 0.7409 0.6974 0.6056 0.6946 0.7437
wine 0.9113 0.9055 0.9090 0.9224 0.9044 0.8696 0.8707 0.9261
d
i

The five configurations of the data are:
∙ First configuration: 20% of attributes with 12 sources of data
∙ Second configuration: 40% of attributes with 14 sources of data
∙ Third configuration: 60% of attributes with 16 sources of data
∙ Fourth configuration: 80% of attributes with 18 sources of data
∙ Fifth configuration: All attributes with 20 sources of data
For the dynamic scenario, we recorded the time required for com-

putations by inputting data from the first configuration to the fifth
onfiguration sequentially into the dynamic algorithm. For the static

scenario, we separately calculated these five configurations using a
tatic feature selection and information fusion algorithm and recorded
he time taken. Finally, we compared the time taken for static and
ynamic computations for the same configurations and represented the
esults in a bar chart. The result of experiment is shown in Fig. 5. This

chart is designed to show a comparison of the time consumption for
13 
dynamic and static feature selection and information fusion algorithms
as the number of attributes and information sources increases.

case b. Addition of attributes and deletion of information sources
The same as case a, we make five different configurations from the

ata set and performed both static and dynamic feature selection and
nformation fusion algorithms on them.

The five configurations of the data are:
∙ First configuration: 20% of attributes with 20 sources of data
∙ Second configuration: 40% of attributes with 18 sources of data
∙ Third configuration: 60% of attributes with 16 sources of data
∙ Fourth configuration: 80% of attributes with 14 sources of data
∙ Fifth configuration: All attributes with 12 sources of data
The result of experiment is shown in Fig. 6. This chart is designed

to show a comparison of the time consumption for dynamic and static
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Fig. 5. The time Static and Dynamic methods use in case of addition of attributes and sources.
feature selection and information fusion algorithms as the number of
attributes increases and number of information sources decreases.

case c. Deletion of attributes and information sources
The five configurations of the data are:
∙ First configuration: All of attributes with 20 sources of data
∙ Second configuration: 80% of attributes with 18 sources of data
∙ Third configuration: 60% of attributes with 16 sources of data
∙ Fourth configuration: 40% of attributes with 14 sources of data
∙ Fifth configuration: 20% attributes with 12 sources of data
The result of experiment is shown in Fig. 7. This chart is designed

to show a comparison of the time consumption for dynamic and static
feature selection and information fusion algorithms as the number of
attributes and information sources decreases.

case d. Deletion of attributes and addition of information sources
The five configurations of the data are:
∙ First configuration: All of attributes with 12 sources of data
∙ Second configuration: 80% of attributes with 14 sources of data
∙ Third configuration: 60% of attributes with 16 sources of data
∙ Fourth configuration: 40% of attributes with 18 sources of data
∙ Fifth configuration: 20% attributes with 20 sources of data
The result of experiment is shown in Fig. 8. This chart is designed

to show a comparison of the time consumption for dynamic and static
feature selection and information fusion algorithms as the number of
attributes decreases and the number of information sources increases.

5.2. Experiment results

5.2.1. The analysis of effectiveness of parameters in feature selection and
information fusion method

From Fig. 3 and Fig. 4, we can see that for most datasets, the optimal
range for the alpha value for feature selection is between 0.05 and 0.2.
14 
From the experimental results, it is evident that selecting an alpha value
that is too large or too small leads to a decline in the final feature
selection performance. This can be explained theoretically: When the
alpha value is too small, different samples become independent of each
other, and the algorithm is unable to identify relationships between
the samples. As a result, it cannot leverage these relationships to
identify the best-performing features. When the alpha value is too large,
all samples become interconnected, making it impossible to separate
samples into distinct classes, similar to how classification attributes
divide samples. Without these class distinctions, the algorithm cannot
find optimal features based on classification relationships. For feature
selection rate, it can be observed from the images that the accuracy for
most datasets increases with an increase in the number of attributes.
Additionally, for most datasets, there is a clear distinction at a feature
selection rate of 0.4: when the feature selection rate is less than 0.4,
the decrease in classification accuracy is more noticeable compared to
when the feature selection rate is greater than 0.4. Therefore, consid-
ering both classification performance and runtime, a feature selection
rate of 0.6 is considered optimal. Meanwhile, this to some extent
reflects the significant impact of the first few features selected using
feature selection method and source selected using information fusion
method on classification accuracy, reflecting the effectiveness of our
information fusion and feature selection method.

5.2.2. The comparative analysis of classification results with four other
algorithms

From Tables 12–17, we can observe that our feature selection
algorithm generally outperforms other feature selection algorithms,
providing more effective results in most cases. The table shows that
our method performs particularly well when the feature selection rate is
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Fig. 6. The time Static and Dynamic methods use in case of addition of attributes and deletion of sources.
between 60% and 80%, but its performance declines at a 40% selection
rate. This indicates that our feature selection method is more suited
for selecting over half of the original features, while it struggles when
fewer features are selected. During the experiments, we also observed
that using single-source feature selection algorithms to select features
from each source individually and then merging the results takes a
considerable amount of time. In comparison, our multi-source feature
selection method requires significantly less time while still outperform-
ing the aforementioned methods in most cases. This also demonstrates
that our method greatly enhances the efficiency of multi-source feature
selection.

5.2.3. The analysis of the efficiency of dynamic information fusion and
feature selection method

From Fig. 5-Fig. 8, it can be seen that our dynamic method can re-
duce program runtime to a certain extent. Comparing the performance
of the same dataset in four different scenarios, we can see that our
dynamic method’s effect is particularly evident in case c. The ratios
for the two larger datasets Avila and Waveform are relatively high,
indicating that the dynamic method’s effect is more pronounced when
the dataset has a larger sample size. However, observing the ratios for
datasets with many features like Pendigits, there are a few ratios less
than 1, indicating that the dynamic method may have a disadvantage
when dealing with datasets with many features but few samples.

6. Conclusion and contribution

In conclusion, we proposed a multi-source static and dynamic in-
formation fusion and feature selection method based on PROMETHEE.
For the static information fusion and feature selection method, we
15 
first defined the AEM to evaluate the merits of each attribute. Then,
we defined the APDM to merge the AEM of various sources, thereby
obtaining the preference degrees of each attribute relative to others.
Additionally, we defined the net flow, which comprehensively consid-
ers the preferences of each attribute for others, and used the net flow
to rank attributes, achieving the goal of feature selection. Finally, we
propose an information fusion method that calculates the source center
and uses it to find the optimal information source. For the dynamic
information fusion and feature selection method, we firstly introduce
the dynamic information fusion method. Then, we considered four
scenarios and provided dynamic algorithms for each scenario, enabling
us to handle changes in both attribute and source quantities.

The final experimental section evaluated our static and dynamic
information fusion and feature selection methods using nine datasets.
On the static side, we first fixed the threshold alpha for varying feature
selection rates and observed the algorithm’s performance by inputting
the results into KNN, SVM and DT. Additionally, we fixed the threshold
alpha for varying feature selection rates and also inputted the results
into KNN, SVM and DT to observe the outcome. We also compare our
method with other four feature selection methods with classification
accuracy to confirm the efficiency of our method. On the dynamic side,
we compared the runtime of the dynamic algorithms in four scenarios
with that of the static algorithm. From the comparison, we found
that our dynamic algorithm significantly improves feature selection
efficiency when source variations occur.

For the contribution, This paper’s theory addresses the problem
of multi-source feature selection. As mentioned in the introduction,
solving the multi-source feature selection problem is quite challenging
due to the limited availability of methods in this area. Our proposed
theory ensures that feature selection results are based on the original
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Fig. 7. The time Static and Dynamic methods use in case of deletion of attributes and sources.
-

data, saves a significant amount of time, and yields effective feature
selection outcomes. In real-world big data environments, multi-source
feature selection is also a common issue. For instance, when evaluating
something annually, each year’s data can serve as an information
source, forming a multi-source information system. If feature selection
and information fusion are needed for such a system, our static feature
selection and information fusion methods can be effectively applied.
Additionally, as the evaluation data for each year changes, our dynamic
feature selection and information fusion methods can greatly reduce the
time required, making them highly efficient for such scenarios.

7. Future work

In this section, we will discuss about the limitations and the future
work, which are listed below:

∙ Our static method is designed specifically for multi-source single-
value information systems. Further research is needed to address these
different forms of information systems which is common in practical
applications and develop appropriate feature selection methods tailored
to each type.

∙ Our dynamic method currently only accommodates changes in the
number of information sources and the number of attributes, while it
cannot handle changes in the number of samples. Therefore, our dy-
namic method requires further improvement to adapt to all variations
in information systems, including changes in the number of samples.

∙ In the dynamic experiments, we discovered that our dynamic
method did not perform well when handling datasets with many fea-
tures but few samples. Therefore, our next goal is to continue improving
the dynamic algorithm to ensure it performs well even with datasets
that have many features but few samples.
16 
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