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In the realm of multi-label feature selection, the intricacy of data structures and semantics has 
been escalating, rendering traditional single-label feature selection methodologies inadequate for 
contemporary demands to meet contemporary demands. This manuscript introduces an innovative 
neighborhood rough set model that integrates 𝛿-neighborhood rough sets with 𝑘-nearest neighbor 
techniques, facilitating a transition from single-label to multi-label learning frameworks. The 
study delves into the attribute dependency concept within rough set theory and proposes a novel 
importance function based thereon, which can effectively quantify the significance of features 
within multi-label decision-making contexts. Building on this theoretical foundation, we have 
crafted a feature selection algorithm specifically tailored for imbalanced datasets. Extensive 
experiments conducted on 12 datasets, coupled with comparative analyses with 10 cutting-edge 
methods, have substantiated the superior performance of our algorithm in managing imbalanced 
datasets. This research not only offers a fresh theoretical perspective but also has significant 
practical implications, particularly in scenarios involving imbalanced datasets with multiple 
labels.

1. Introduction

Currently, the preponderance of research is centered on single-label problems, where each data sample is linked to a solitary class 
label. However, in multi-label learning [1], each sample may be associated with multiple labels simultaneously, adding complexity to 
the problem. Multi-label learning needs to consider not only the relationship between features and individual labels but also capture 
the interactions between features and multiple labels [2]. Moreover, This complexity is further exacerbated in the presence of data 
imbalance.

In traditional single-label learning, feature selection methods typically assume a uniform distribution of samples across the feature 
space. However, in multi-label learning, sample distribution may be highly imbalanced, with some regions being overly dense while 
others are sparse. This imbalance is further exacerbated by the coexistence of multiple labels, which increases the complexity of the 
feature space. Traditional single-label methods perform poorly in multi-label scenarios primarily because global feature importance-

based selection may ignore local features that are crucial for multi-label classification. Moreover, the imbalanced feature distribution 
makes it difficult to select meaningful features in sparse regions. The coexistence of multiple labels complicates the feature-label 
interaction [3], which traditional methods fail to capture effectively. Additionally, sparse regions may contain noisy features, which 
traditional methods struggle to distinguish from important features. To address these challenges, this paper proposes a multi-label 
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feature selection method based on neighborhood rough sets. By characterizing new neighborhood structures, the method captures key 
features in sparse regions and reduces noise interference, thereby improving classification accuracy. Additionally, by integrating label 
dependencies and neighborhood granularity optimization mechanisms, the method enhances the adaptability of feature selection for 
multi-label dataset.

Pawlak’s rough set theory, proposed in 1982 [4], has been widely applied in various domains, including feature selection, owing to 
its advantages in addressing uncertainty and its ability to operate without external prior knowledge [5]. However, traditional rough 
set theory has limitations in handling diverse data types because it primarily relies on equivalence relations, thus making it suitable 
only for discrete data. In real-world applications, where most data are continuous, the data often needs to be discretized. However, 
discretization step may lead to information loss, thereby impacting the effectiveness of feature selection. To overcome this limitation, 
Lin introduced similarity relations [6] and the neighborhood rough set model [7], which extends and expands Pawlak’s classical rough 
set theory. By incorporating distance and neighborhood radius, the neighborhood rough set model refines the definition domain of 
each sample and establishes interconnections among samples [8]. This approach comprehensively captures the data by considering 
sample proximity and neighborhood structure, overcoming the constraint of rough set theory’s applicability to discrete data [9]. Hu 
conducted further research on the application of rough set theory in discovering knowledge from mixed data and proposed a more sys-

tematic neighborhood rough set model, providing strong theoretical support for the development of multi-label neighborhood rough 
set methods [10]. In recent years, the extended research of the neighborhood rough set model has received widespread attention, 
including neighborhood-based decision-theoretic rough sets [11], local neighborhood rough sets [12], fuzzy neighborhood rough 
sets [13], neighborhood multi-granulation rough sets [14], pseudo-labeled neighborhood rough sets [15], soft neighborhood rough 
sets [16], noise-resistant multi-label fuzzy neighborhood rough sets [17]. Researchers have also explored different ways to measure 
uncertainty [18], further broadening the applicability of rough set theory. For example, [19] used a Zentropy-based uncertainty mea-

sure for multi-granularity data analysis, demonstrating its value in robust feature selection. This work emphasizes the importance of 
considering multiple perspectives in data. Following this, [20] developed Ze-HFS, a Zentropy-based method for heterogeneous feature 
selection and knowledge discovery, demonstrating its ability to handle diverse data types. These studies highlight the potential of 
Zentropy for feature selection. Additionally, [21] further explored Zentropy-based uncertainty measurement for feature selection. 
These investigations contribute to the expanding research on uncertainty measures in feature selection. These studies greatly en-

rich and improve the theoretical framework of neighborhood rough set theory [22]and provide a solid theoretical foundation and 
methodological support for solving practical problems in various domains [23].

Recent multi-label feature selection advances include diverse strategies. Ebrahimi et al. [24] used deep learning to integrate 
feature selection by extracting meta-label-specific features and capturing inter-label relationships. This data-driven approach demon-

strates deep learning’s effectiveness. Cai et al. [25] developed a fuzzy rough set-based algorithm with metric learning and label 
enhancement to capture label dependencies and optimizing distance measures. This knowledge-driven approach refines fuzzy rough 
set methodology, improving accuracy and efficiency. These studies highlight the potential of both data-driven (deep learning [26]) 
and knowledge-driven (fuzzy rough sets) paradigms.

In real-world multi-label learning scenarios, the idealized assumption of a uniformly distributed sample space rarely holds true. 
Data often exhibits significant spatial and label imbalances, where some regions densely populated while others are sparsely pop-

ulated, and some labels being significantly less frequent than others or appearing in rare combinations. This combined spatial and 
label imbalance poses substantial challenges for multi-label learning algorithms. Specifically, the spatial imbalance can lead to biased 
models that are overly influenced by dense regions, resulting in poor performance in sparse regions. Simultaneously, the label im-

balance complicates learning due to the complex interplay of label dependencies and varying label frequencies. Traditional methods 
for addressing class imbalance, such as oversampling and undersampling, primarily focus on balancing the number of instances or 
labels independently and are not well-suited to handle the combined spatial and label imbalances inherent in multi-label data. These 
methods often fail to capture the complex relationships among spatial distribution, label co-occurrence, and feature dependencies. For 
example, oversampling rare label combinations in sparse regions might amplify noise, whereas undersampling frequent labels in dense 
regions might discard crucial information about the local data structure. Consequently, these methods may not effectively address 
the challenges posed by spatially and label-imbalanced multi-label data, thus motivating the need for more specialized techniques 
that explicitly consider both spatial context and label dependencies.

This non-uniformity in spatial distribution presents a challenge for traditional rough set theories such as 𝛿-neighborhood rough 
sets [10] and 𝑘-nearest neighbor rough sets [27], as these methods may not perform well in classification tasks when dealing with 
imbalanced data. However, research findings indicate that when dealing with certain types of imbalanced data distributions, 𝛿
neighborhood rough sets and 𝑘-nearest neighborhood rough sets demonstrate their respective strengths. 𝛿 neighborhood rough sets 
perform exceptionally well in sparse data distributions because in sparse data, the distances between data points are large, and using a 
fixed distance 𝛿 value to define neighborhoods ensures that data points within each neighborhood are relatively independent, thereby 
reducing overlap between neighborhoods. This independence and discrimination are crucial for sparse data because it helps models 
to more accurately identify data boundaries, thereby enhancing classification accuracy.

In contrast, 𝑘-nearest neighborhood rough sets are more suitable for dense data distributions. In dense data, data points are close 
to each other, and defining neighborhoods based on a fixed number 𝑘 of the nearest neighbors can better capture the local structure 
of the data. Since the data points are dense, even considering only the nearest 𝑘 points can contain enough information to describe 
the characteristics of the neighborhood of a point. This neighborhood definition is more stable when dealing with dense data because 
it does not change dramatically with minor fluctuations in data points.

𝛿 neighborhood rough set model is based on the neighborhood definition with a fixed radius, determining the neighborhood 
relationships between objects by setting a threshold (𝛿). This model is suitable for dense data distribution because in such datasets, 
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the distances between objects are usually small, and a fixed radius can effectively capture the similarity between objects. The 𝛿
neighborhood rough set model can simplify the data structure of large-scale datasets, reduce computational complexity, and maintain 
the local characteristics of objects in dense datasets, thus making it suitable for data mining and pattern recognition.

In short, for sparse data with the large intervals between points, 𝛿 neighborhood rough sets are more suitable for maintaining 
the clarity and discrimination of neighborhoods; for dense data, due to the small intervals between points, 𝑘-nearest neighborhood 
rough sets are more suitable for ensuring the richness and stability of information within neighborhoods. This choice reflects the 
adaptability and flexibility of rough set models under different data distribution characteristics. 𝛿 neighborhood rough sets and 𝑘-

nearest neighborhood rough sets each exhibit unique advantages under different data distribution characteristics, and their features 
are complementary. Integrating these two models can create a new model that dynamically adjusts the definition of neighborhoods 
based on the local density and distribution characteristics of the data, thereby better adapting to different data distribution scenar-

ios. This integrated model will combine the fixed-radius advantage of 𝛿 neighborhood rough sets and the dynamic neighborhood 
advantage of 𝑘-nearest neighborhood rough sets, providing a new, more flexible, and effective method for dealing with imbalanced 
datasets.

In an information system, there is often inconsistency between the information conveyed by features and labels, which reveals 
the limitations of feature descriptive power for labels and also reflects the uncertainty present in the data. To quantitatively analyze 
this uncertainty, the concept of positive region was introduced within the framework of rough set theory. However, traditional 
feature selection theories based on neighborhood rough sets primarily rely on positive regions. These theories assess the importance 
of features in the information system by observing variations in the positive region’s scope through feature addition or removal. 
The positive region represents all deterministic rules in an abstract form, with the count of positive regions effectively denoting the 
collective count of deterministic rules, accounting for duplicated rules. Nevertheless, the efficacy of positive regions as a deterministic 
criterion is not significantly pronounced in algorithmic applications [28]. To address this limitation, this study introduces the notion 
of dependency function [29], which quantifies the proportion of deterministic rules within the comprehensive rule set, thereby 
numerically measuring the consistency between labels and feature sets. Building upon the theoretical foundations of positive regions 
and dependency, this research further advances a measure of feature importance and applies it to multi-label information systems. This 
measure employs a forward greedy algorithm to sequentially evaluate the relevance of individual features. Through this measure, we 
are able to quantitatively gauge the capacity of features to depict labels and employ it as a basis for feature selection. In conclusion, 
the introduction of the feature importance measure provides an effective strategy for conducting feature selection on multi-label 
datasets. This approach not only addresses the incongruity between features and labels but also furnishes a valuable framework for 
enhancing the performance and accuracy of information systems.

The practical significance of this integration lies in its ability to simultaneously capture key features in local neighborhoods and 
adapt to the distribution characteristics of sparse regions, thereby enhancing the robustness and accuracy of feature selection. In 
real-world applications, imbalanced data are ubiquitous. For instance, in text classification, the number of documents for some topics 
is significantly lower than others, leading to an uneven distribution in the feature space. In bioinformatics [30], gene expression 
data often exhibit high-dimensional sparsity, with sample distributions being highly imbalanced across different classes. The model 
proposed in this paper, by combining 𝛿-neighborhood rough sets and 𝑘-nearest neighbor techniques, can effectively address these 
issues. In text classification, the model can identify key features of sparse topics to improve classification performance. In bioinformat-

ics, it can select features related to minority classes from high-dimensional sparse data, aiding in disease diagnosis or gene function 
prediction. This integration not only enhances the theoretical value of the model but also provides strong support for its widespread 
application in real-world scenarios.

As a cognitive process, Concept Cognition Learning (CCL) emphasizes the structured expression of data and systematic cognitive 
understanding, aiming to extract valuable information from data [31]. Although CCL has achieved significant success in single-label 
classification tasks, its application in multi-label learning faces substantial challenges. The main difficulties lie in the imbalanced 
distribution of samples in the feature space and the failure of existing methods to effectively utilize the structural relationships 
between feature concepts and multi-label concepts. Key features in sparse regions are often overlooked, making it difficult for models 
to fully capture the complex structure of multi-label data. The method proposed in this paper addresses the issue of imbalanced 
sample distribution by integrating 𝛿-neighborhood rough sets and 𝑘-nearest neighbor techniques, thereby indirectly alleviating the 
limitations of CCL in multi-label learning. The feature selection capability under imbalanced data provides potential support for the 
application of CCL in multi-label learning and lays the foundation for solving the problem of structural relationships between feature 
concepts and multi-label concepts.

Given the challenges posed by imbalanced data distribution in multi-label classification tasks, this study aims to propose a novel 
multi-label neighborhood rough set model and develop a dedicated feature selection algorithm based on this model to address this 
crucial problem. The main contributions of this paper are as follows:

1) A novel 𝑘-nearest neighbor multi-label rough set model is proposed, integrating the multi-label 𝛿-neighborhood approach with 
the 𝑘-nearest neighbor algorithm to specifically address challenges associated with imbalanced multi-label data.

2) To enhance the descriptive capability of positive regions in handling uncertainty, the concept of dependency is introduced. 
Furthermore, a crucial feature importance evaluation function is developed for accurate characterization of features, demonstrating 
superior performance in selecting high-performing features for multi-label classification compared to certain existing techniques.

3) Building upon prior research, this paper develops an innovative multi-label feature selection algorithm tailored for imbal-

anced datasets. The proposed algorithm significantly improves adaptability and accuracy, particularly in scenarios with extreme class 
distribution imbalances.
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4) The proposed multi-label feature selection algorithm was extensively compared with fourteen mainstream algorithms using 
twelve datasets from the 𝑀𝑢𝑙𝑎𝑛 repository. A comprehensive evaluation framework, comprising metrics for reduction capability, 
classification accuracy, and effectiveness, was designed to assess the algorithm.

5) Experimental investigations were conducted to analyze the impact of neighborhood granularity parameters 𝛿 and 𝑘 on the 
algorithm’s performance. The experimental results clearly indicate the excellent performance of the proposed algorithm in addressing 
multi-label feature selection problems.

This paper is organized as follows:In the second part of this paper, we provide an overview of the definitions of 𝛿 neighborhood 
rough set and 𝑘-nearest neighbor rough set. We then delve into the concepts of neighborhood rough set in the context of multi-label 
frameworks, with a detailed comparison to the single-label information system. The third part introduces an improved multi-label 
𝑘-nearest neighbor rough set model that aims to address the issue of data imbalance. We further derive the construction of the 
approximate space for this new model and propose a novel measure of feature importance. In the fourth part, we present the design 
of a specialized multi-label feature selection algorithm called 𝐾𝑁𝑀𝑅𝑆 . The fifth part showcases the experimental comparisons and 
performance results of the proposed algorithm with existing algorithms. Finally, the sixth part summarizes the research findings of 
this paper and provides an outlook on future research directions.

2. Related work and foundations

In this section, we will introduce the basic theory of 𝛿 neighborhood rough sets and 𝑘-nearest neighbor rough sets in detail. 
To overcome the inconvenience encountered by classical rough sets in processing numerical attribute datasets, we introduce the 
neighborhood rough set model. The core of this model lies in the different definitions of the concept of the neighborhood concept [13], 
from which a variety of distinctive neighborhood rough set models are derived.

2.1. Neighborhood rough set (NRS)

Neighborhood rough sets use the distance formulas to evaluate the similarity between different samples. The Euclidean distance is 
a classic metric used to assess the dissimilarity between samples. When dealing with two sets of random samples, each characterized 
by continuous real-valued attributes, the Euclidean distance between them can be determined using the following mathematical 
formula:

𝐷𝑖𝑠(𝑥𝑖, 𝑥𝑗 ) =
√∑

𝑎∈𝐶

(𝑎𝑖 − 𝑎𝑗 )2.

Here, 𝐶 is a subset of the conditional attribute set, and 𝑎 is one of the conditional attributes. 𝑎𝑖 corresponds to the specific value of 
𝑥𝑖 on attribute 𝑎.

We commonly use NDS = (𝑈,𝐴,𝐷,𝐷𝑖𝑠, 𝛿) to describe the Neighborhood Decision System. In this system, 𝑈 represents the set 
consisting of all sample, the set 𝐴 corresponds to the conditional attributes, and the set 𝐷 contains the decision attributes, which 
are crucial labels used for classification or prediction of the sample points. The distance metric, denoted as 𝐷𝑖𝑠, is calculated based 
on the relation 𝑅𝐶 and is commonly computed using the Euclidean distance. Additionally, the neighborhood radius parameter 𝛿
determines the size of the neighborhood, thereby influencing the definition of the sample point’s neighborhood and the accuracy of 
the decision-making process.

In the Neighborhood Decision System, we select a subset of features, denoted as C, and define the similarity relation on C as 
follows:

𝑁𝑅𝛿(𝐶) = {(𝑥𝑖, 𝑥𝑗 ) ∈𝑈 ×𝑈 |𝐷𝑖𝑠𝐶 (𝑥𝑖, 𝑥𝑗 ) ≤ 𝛿}.

Accordingly, the definition of the neighborhood class for 𝑥𝑖 can be determined as follows:

𝛿𝐶 (𝑥𝑖) = {𝑥𝑗 ∈𝑈 |𝐷𝑖𝑠(𝑥𝑖, 𝑥𝑗 ) ≤ 𝛿}. (1)

2.2. K-nearest neighborhood rough set (KNNRS)

In the Neighborhood Decision System (NDS), given a subset of conditional attributes 𝐶 , the 𝑘-nearest neighborhood [32] of sample 
𝑥𝑖 based on attribute subset 𝐶 can be defined as follows:

𝜅(𝑥𝑖) = {𝑥1
𝑖
, 𝑥2

𝑖
,… , 𝑥𝑘

𝑖
|𝐷𝑖𝑠𝐶 (𝑥𝑗 , 𝑥𝑖) >𝐷𝑖𝑠𝐶 (𝑥𝑖, 𝑥

𝑡
𝑖
),

𝑥𝑗 ≠ 𝑥𝑠
𝑖
, 𝑠, 𝑡 = 1,2,… , 𝑘}.

(2)

𝜅𝐶 (𝑥) is the set of 𝑘 samples that are nearest neighbors to sample 𝑥. The concept of “nearest neighbor” mentioned here refers 
to proximity in terms of distance. In other words, for any given sample 𝑥𝑖 , its corresponding set 𝜅𝐶 (𝑥𝑖) contains exactly 𝑘 samples, 
which are the closest to 𝑥𝑖 in a certain metric space.

Therefore, we can define the relationship between samples in the 𝑘-nearest neighborhood as

𝐾𝑛𝑛𝐶 = {(𝑥𝑖, 𝑥𝑗 ) ∈𝑈 ×𝑈 |𝑥𝑗 ∈ 𝜅(𝑥𝑖)}.
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Table 1
A toy example of single-label 
task.

𝑈 𝑎1 𝑎2 𝑎3 𝐷

𝑥1 -2 3 0 𝑙1
𝑥2 1 0 1 𝑙1
𝑥3 1 1 1 𝑙2
𝑥4 4 2 -1 𝑙3

Table 2
A toy example of multi-label 
task.

𝑈 𝑦𝑖

𝑥1 𝑙1 , 𝑙2
𝑥2 𝑙2
𝑥3 𝑙1 , 𝑙3
𝑥4 𝑙2 , 𝑙3

Table 3
Binary representation of multi-

label task.

𝑈 𝑙1 𝑙2 𝑙3

𝑥1 1 1 0 
𝑥2 0 1 0 
𝑥3 1 0 1 
𝑥4 0 1 1 

the 𝐾𝑛𝑛𝐶 relation evidently possesses reflexivity. However, this relation does not exhibit symmetry or transitivity properties.

2.3. Multi-label neighborhood rough set (MNRS)

The paper delves into an in-depth analysis of how the theoretical transition from single-label to multi-label learning frameworks 
can be achieved within the framework of rough set theory. This theoretical shift not only forms the focal point of this section but is 
also crucial for theoretical construction of the multi-label feature selection algorithm proposed in this paper.

Within the context of multi-label learning, we utilize a triplet (𝑈,𝐴,𝐷) to denote the multi-label decision information system [33], 
where 𝑈 corresponds to the set of samples, 𝐴 represents the set of features, and 𝐷 = {𝑙1, 𝑙2,… , 𝑙𝑚} signifies the set of labels. In MNRS, 
if 𝑥𝑖 corresponds to a value of 1 for a decision attribute, it signifies that 𝑥𝑖 has the corresponding label, whereas a value of 0 indicates 
that 𝑥𝑖 does not possess that particular label. For sample 𝑥1, we use 𝑦1 to represent its corresponding label set.

As depicted in Tables 2 and 3, considering the fact that the first two decision attribute values of 𝑥1 are 1, and the third value is 
0, it indicates that 𝑥1 possesses the labels 𝑙1 and 𝑙2, while not having the label 𝑙3. Mathematically, this can be expressed as 𝑦1 = {𝑙1, 
𝑙2}, representing the labels that 𝑥1 possesses. 

In the domain of single-label learning, the neighborhood decision-making system employs the lower approximation of the neigh-

borhood rough set to precisely represent the classification ability of the attribute set towards the samples. In multi-label learning, we 
define the attribute set as being able to clearly classify samples across different labels. The ability in each label category is expressed 
in the form of a lower approximation of neighborhood rough sets in multi-label learning.

Definition 2.1 (Approximate space of MNRS). In the multi-label neighborhood decision-making system 𝑀𝑁𝐷𝑇 = (𝑈,𝐴,𝐷), the label 
set 𝐷𝑝 represents the set of all samples with labels 𝑙𝑝 , while 𝐷𝑖 refers to the set of labels owned by sample 𝑥𝑖 . When the feature subset 
𝐶 ⊆𝐴, the upper approximation and lower approximation of MNRS [34] can be defined as follows:

𝑁𝐶𝐷 = {𝑥𝑖 ∈𝑈 |∀𝑙𝑝 ∈𝐷𝑖,𝑁
𝛿
𝐶
(𝑥𝑖) ∈𝐷𝑝},

𝑁𝐶𝐷 = {𝑥𝑖 ∈𝑈 |∀𝑙𝑝 ∈𝐷𝑖,𝑁
𝛿
𝐶
(𝑥𝑖) ∩𝐷𝑝 ≠ ∅}.

In the single-label information system illustrated in Table 1, the universe of discourse 𝑈 comprises four sample objects, and their 
neighborhood classes based on the conditional attribute subset 𝐶 are presented in Table 4. Following the classical rough set theory, 
we can compute lower approximation set based on 𝐶 as 

𝑁𝐶𝐷 = {𝑥2} ∪ {𝑥4} = {𝑥2, 𝑥4}.
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Table 4
A toy example of neighborhoods 
about C.

𝑥𝑖 𝛿𝐶 (𝑥𝑖)

𝑥1 𝑥1, 𝑥2, 𝑥3
𝑥2 𝑥1, 𝑥2
𝑥3 𝑥1, 𝑥3
𝑥4 𝑥4

Fig. 1. The performance of 𝛿-neighborhood and 𝑘-nearest neighborhood under imbalanced data distribution. 

But it is different in multi-label learning (as shown in Table 3). Taking 𝑥1 as an example, its neighborhood class is

𝛿𝐶 (𝑥1) = {𝑥1, 𝑥2, 𝑥3}.

And the label owned by the neighborhood class is

𝑦1 = {𝑙1, 𝑙2}, 𝑦2 = {𝑙2}, 𝑦3 = {𝑙1, 𝑙3}.

The target set formed by the labels involved is

𝐷1 = {𝑥1, 𝑥3},𝐷2 = {𝑥1, 𝑥2, 𝑥4},𝐷3 = {𝑥3, 𝑥4}.

Based on 𝛿𝐶 (𝑥1) ⊄𝐷1 ∧ 𝛿𝐶 (𝑥1) ⊄𝐷2, we can conclude that 𝑥1 is not an element of 𝑁𝐶𝐷.

Under the given evaluation method, we can determine whether other sample objects belong to the lower approximation set. This 
can be expressed as follows:

𝛿𝐶 (𝑥2) ⊂𝐷2 ⇒ 𝑥2 ∈𝑁𝐶𝐷,

𝛿𝐶 (𝑥3) ⊄𝐷1 ∧ 𝛿𝐶 (𝑥3) ⊄𝐷3 ⇒ 𝑥3 ∉𝑁𝐶𝐷,

𝛿𝐶 (𝑥4) ⊂𝐷2 ∧ 𝛿𝐶 (𝑥4) ⊂𝐷3 ⇒ 𝑥4 ∈𝑁𝐶𝐷.

Through the above derivation, we draw the conclusion be represented as 𝑁𝐶𝐷 = {𝑥2, 𝑥4}. This implies that 𝑥2, 𝑥4 can be considered 
as members of the lower approximation set of 𝐷

𝑁𝐶𝐷 can also be referred to as the positive region of multi-label classification under the knowledge level given by attribute C, 
and is recorded as 𝑃𝑂𝑆(𝐷).

Definition 2.2 (Information measurement of MNRS). In the framework of multi-label learning, we commonly use dependency to mea-

sure the importance of feature subsets. For 𝐶⊆𝐴, the dependence is defined as

𝛾𝐶 (𝐷) =
|𝑃𝑂𝑆𝐶 (𝐷)||𝑈 | =

|𝑁𝐶 (𝐷)||𝑈 | .

3. KNN-based multi-label rough set theory for imbalanced data

3.1. Balancing 𝛿-neighbors and 𝑘-nearest neighbors: a comparative analysis

Taking a simple binary classification problem as an example, let’s assume the sample space consists of two classes, represented as 
‘ + ’ and ‘-’, corresponding to positive and negative samples, respectively. Here, the 𝛿-neighborhood is depicted by blue circles, while 
the 𝑘-nearest neighbors of the samples are indicated by black circles surrounding them. 

In Fig. 1a, it can be observed that sample 𝑥1 is situated within a region of high density, and its 𝛿-neighborhood, denoted as 𝛿(𝑥1), 
encompasses some samples from the positive and negative classes. According to the theory of 𝛿-neighborhood rough sets, sample 𝑥1
may be classified into the boundary region based on the majority voting principle. However, in practice, if we consider the five nearest 
neighbors, we may be able to identify the class label of 𝑥1 more accurately. The 𝑘-nearest neighbor strategy reduces the selection 
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of samples in high-density regions, thereby narrowing the range of the neighborhood. This promotes greater consistency among the 
samples within the neighborhood, effectively reducing the risk of misclassification and ensuring the accuracy of the classification 
results.

Considering another scenario, the 𝑘-nearest neighbor strategy also exhibits similar limitations when dealing with samples in 
sparsely distributed regions. For example, as illustrated in Fig. 1b, if we set the number of nearest neighbors for 𝑥2 to be 5 (5−𝑁𝑁), 
its neighborhood will contain five samples, including three positive samples that are distant from 𝑥2 and two closer negative samples. 
According to the majority voting principle, this may result in incorrectly assigning 𝑥2 a ‘ + ’ label. However, in the case, the 𝛿(𝑥2) can 
better classify 𝑥2 as a negative class label and overcome this limitation of the 𝑘-nearest neighbor strategy.

The KNMRS algorithm achieves an effective balance between dense and sparse distributions when handling imbalanced data by 
integrating 𝛿-neighborhood and 𝑘-nearest neighbor techniques. Specifically, the 𝑘-nearest neighbor technique is suitable for dense 
regions, where a fixed number of neighboring points (𝑘) is used to capture local features, ensuring stable selection of key features in 
densely distributed areas. However, in sparse regions, 𝑘-nearest neighbor may fail due to a lack of neighboring points, leading to the 
neglect of important features. In such cases, the 𝛿-neighborhood dynamically adjusts the neighborhood range by setting a distance 
threshold (𝛿), ensuring that key features can still be captured even in sparsely distributed areas. This dual-mechanism design enables 
KNMRS to automatically adjust its strategy based on the density of data distribution: relying on 𝑘-nearest neighbor for stability and 
efficiency in feature selection in dense regions, and on 𝛿-neighborhood for enhanced adaptability and robustness in sparse regions. 
For example, in the Computer and Health datasets, KNMRS effectively addressed the imbalance in feature distribution across different 
regions by dynamically switching between 𝑘-nearest neighbor and 𝛿-neighborhood strategies. This trade-off not only resolves the issue 
of poor performance of traditional methods in sparse regions but also avoids the limitations of a single strategy when dealing with 
complex distributions. By combining the strengths of both techniques, KNMRS achieves more comprehensive and accurate feature 
selection in imbalanced data, providing deeper insights into algorithm design choices and enhancing its flexibility and reliability in 
practical applications.

3.2. K-nearest neighborhood multi-label rough set

Building upon a thorough analysis of Fig. 1a and 1b, this research uncovers the inherent limitations of the 𝛿 neighborhood and KNN 
methods when addressing the challenge of imbalanced sample distribution within the sample space [35]. Furthermore, it highlights 
their respective advantages in certain extreme scenarios. Based on these findings, we expanded the traditional neighborhood rough 
set theory and proposed a dedicated multi-label neighborhood rough set model [36]. The primary objective of this model is to 
effectively mitigate the issue of data imbalance by comprehensively considering the characteristics of sample distribution, optimizing 
classification performance, and ensuring robust and accurate prediction results across diverse data distribution conditions.

Definition 3.1 (𝐾 -nearest neighbor multi-label decision system). In traditional multi-label neighborhood decision systems, the influ-

ence of 𝛿 on decision-making is typically considered. In contrast, in the 𝑘-nearest neighbor multi-label decision system KNMDS =
(𝑈,𝐴,𝐷, 𝛿, 𝑘), we introduce a key parameter 𝑘, which is used to determine the 𝑘 nearest sample points to a given point 𝑥𝑖.

Definition 3.2 (𝐾 -nearest multi-label neighborhood). In KNMDS, if we arbitrarily select a subset of conditional attributes C, then this 
new neighborhood class of sample 𝑥𝑖 can be described as follows:

𝜓𝐶 (𝑥𝑖) = {𝑥𝑗 |𝑥𝑗 ∈ 𝛿𝐶 (𝑥𝑖) ∩ 𝜅𝐶 (𝑥𝑖)}. (3)

𝑘-nearest multi-label neighborhood class 𝜓𝐶 (𝑥𝑖) is defined as a combination of the 𝛿-neighborhood and the 𝑘-nearest-neighborhood of 
the data point 𝑥𝑖. Therefore, the 𝑘-nearest multi-label neighborhood successfully combines the advantages of both approaches while 
avoiding their inherent limitations. This approach is particularly effective in handling sample spaces with uneven sample densities. It 
overcomes the challenges faced by traditional classification algorithms in such cases, thereby improving the accuracy and efficiency 
of classification tasks.

Definition 3.3 (Approximate space of KNMDS). The KMNRS algorithm is based on the theory of neighborhood rough sets, whose core 
concepts include the upper approximation set and the lower approximation set. These two sets describe the boundary of a concept 
from different perspectives.

In KNMDS, where ∀𝐶 ⊆ 𝐴. Within this framework, the neighborhood relation on C is denoted as 𝑁𝐶
𝜓

𝐶
. For any sample 𝑥𝑖 ∈ 𝑈 , 

𝑁𝐶
𝜓

𝐶
(𝑥𝑖) characterizes the neighborhood of 𝑥𝑖 determined by C. Consequently, the upper and lower approximations of the domain 

𝑈 based on the 𝐶 can be defined as:

𝑁
𝜓

𝐶
𝐷 = {𝑥𝑖 ∈𝑈 |∀𝑙𝑝 ∈𝐷𝑖,𝑁

𝜓

𝐶
(𝑥𝑖) ∈𝐷𝑝},

𝑁
𝜓

𝐶
𝐷 = {𝑥𝑖 ∈𝑈 |∀𝑙𝑝 ∈𝐷𝑖,𝑁

𝜓

𝐶
(𝑥𝑖) ∩𝐷𝑝 ≠ ∅}.

By employing the aforementioned definitions, we can derive the positive region of KNMDS:

𝑃𝑂𝑆
𝜓

𝐶
(𝐷) =𝑁

𝜓

𝐶
𝐷.
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Definition 3.4 (Information measurement of KNMDS). The dependency function is an important concept in rough set theory, used to 
measure the significance of features. The KNMRS algorithm introduces the dependency function to select the most relevant feature 
subset.

𝛾
𝜓

𝐶
(𝐷) =

|𝑃𝑂𝑆
𝜓

𝐶
(𝐷)||𝑈 | =

|𝑁𝜓

𝐶
(𝐷)||𝑈 | . (4)

The higher the value of the dependency function 𝛾𝜓

𝐶
(𝐷), the greater the dependency of the feature subset C on the decision 

attribute D, indicating that the features in C are more important. The KNMRS algorithm calculates the dependency function values 
for different feature subsets and selects the subset with the maximum dependency function value as the final feature selection result. 
Based on this function, the importance of features can be further quantified, providing a systematic approach to feature selection in 
multi-label classification tasks.

The importance of conditional attribute 𝑎 ∈𝐴-𝐶 relative to decision attribute set 𝐷𝑞 = {𝑙1,… , 𝑙𝑞} based on conditional attribute 
set 𝐶 is

𝑠𝑖𝑔𝜓
𝛾
(𝑎𝑖,𝐶,𝐷) = 𝛾

𝜓

𝐶∪{𝑎𝑖}
(𝐷) − 𝛾

𝜓

𝐶
(𝐷). (5)

If 𝑠𝑖𝑔(𝑎𝑖,𝐶,𝐷) = 0, it indicates that the attribute 𝑎 has no statistically significant correlation with the studied information system. In 
such cases, we can exclude this attribute from KNMDS to simplify the model and improve its computational efficiency.

4. Multi-label feature selection algorithm in KNMDS

Algorithm 1 The feature selection algorithm using 𝐾 -Nearest Neighborhood Multi-label Rough Set (KNMRS).

1: Input: KNMDS = (𝑈,𝐴,𝐷, 𝛿, 𝑘), 𝛿 and 𝑘 are adjustable hyperparameters;

2: Output: A feature selection subset 𝑟𝑒𝑑𝑢𝑐𝑡 .

3: Initialize 𝐶 ← ∅, 𝑟𝑒𝑑𝑢𝑐𝑡← ∅;

4: for 𝑎𝑘 to 𝐴− 𝑟𝑒𝑑𝑢𝑐𝑡 do 
5: 𝑟𝑒𝑑𝑢𝑐𝑡← 𝑟𝑒𝑑𝑢𝑐𝑡 ∪ 𝑎𝑘

6: for 𝑥𝑖 to 𝑈 do 
7: Calculate the 𝛿(𝑥𝑖), 𝜅(𝑥𝑖) by Equation (1) and (2)

8: Calculate the 𝜓(𝑥𝑖) by Equation (3)

9: if ∀𝑙𝑝 ∈𝐷𝑖, 𝛿(𝑥𝑗 ) ⊂𝐷𝑝 then 
10: 𝑃𝑂𝑆

𝜓

𝑟𝑒𝑑𝑢𝑐𝑡∪𝑎𝑘

(𝐷)← 𝑃𝑂𝑆
𝜓

𝑟𝑒𝑑𝑢𝑐𝑡∪𝑎𝑘

(𝐷) ∪ 𝑥𝑗

11: end if

12: end for

13: Calculate 𝛾𝜓

𝐶
(𝐷) by Equation (4)

14: Calculate 𝑠𝑖𝑔𝜓
𝛾 (𝑎𝑘,𝐶,𝐷) by Equation (5)

15: 𝑠𝑖𝑔(𝑎𝑙,𝐶,𝐷)←𝑚𝑎𝑥(𝑠𝑖𝑔𝜓
𝛾 (𝑎𝑘,𝐶,𝐷))

16: if 𝑠𝑖𝑔
𝜓
𝛾 (𝑎𝑙,𝐶,𝐷)> 0 then 

17: 𝑟𝑒𝑑𝑢𝑐𝑡← 𝑟𝑒𝑑𝑢𝑐𝑡 ∪ 𝑎𝑙

18: else 
19: return 𝑟𝑒𝑑𝑢𝑐𝑡

20: end if

21: end for

22: return 𝑟𝑒𝑑𝑢𝑐𝑡

4.1. KNMDS algorithm flow description

The algorithm comprises three main stages. The first stage initializes the feature subset 𝐶 and the final feature subset 𝑟𝑒𝑑𝑢𝑐𝑡. The 
second stage consists of two steps. First, the method identifies the most relevant features from the multiple attributes to construct 
a temporary decision information system. Within this system, 𝛿-neighborhood classes and 𝜅-neighborhood classes are calculated for 
all samples, subsequently determining the derived 𝜓 -neighborhood classes and their corresponding positive regions. This process 
is specifically designed to mitigate data imbalance issues by combining the strengths of 𝛿 neighborhood rough sets and 𝑘-nearest 
neighborhood rough sets, thus offering a novel approach to handling imbalanced datasets. Second, the algorithm calculates the 
feature dependency, monitors changes in feature importance, and ultimately selects a feature subset with high importance and strong 
discriminative power as the final result. The KNMRS algorithm’s independence from data distribution, high accuracy, adaptability, 
and effective feature selection capabilities make it well-suited for handling multi-label data.

In a multi-label information decision system containing N instances, L labels, and M feature attributes, the time complexity analysis 
of the KNMRS algorithm involves three key steps. First, calculating the 𝛿 neighborhood and 𝑘-nearest neighborhood for each sample 
involves comparing distances with all other samples, resulting in a time complexity of O(N). Second, iterating through different subsets 
of features adds a time complexity of O(M). Finally, assessing the consistency of sample instances within the neighborhood for each 
label results in the final positive region, giving a time complexity of O(NL). Combining these steps, the overall time complexity of 
the KNMRS algorithm is O(MN2L).
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4.2. Comparison of KNMDS with traditional methods for addressing data imbalance

The KNMRS algorithm proposed in this paper demonstrates several significant advantages over traditional oversampling and 
undersampling methods in addressing imbalanced data:

1) Dynamic Adaptation to Data Density: Traditional oversampling and undersampling methods are typically effective for specific 
data densities but may perform poorly for others. In contrast, the KNMRS algorithm combines the strengths of 𝛿-neighborhood 
and 𝑘-nearest neighbor techniques to dynamically adjust the neighborhood structure based on the local density and distribution 
characteristics of the data. This flexibility enhances the model’s adaptability and accuracy in handling extreme data distributions, 
effectively mitigating the impact of data imbalance.

2) Reduction of Information Loss and Enhancement of Classification Accuracy: Oversampling and undersampling methods 
often involve modifications to the data, which can introduce noise or lead to information loss, thereby affecting classification 
accuracy. The KNMRS algorithm directly utilizes the original data without modification, thereby minimizing information loss 
and improving classification accuracy.

3) Avoidance of Overfitting: Oversampling methods can increase the number of samples, potentially leading to overfitting and 
reduced generalization ability. The KNMRS algorithm avoids this issue by not increasing the sample size, thereby enhancing 
the model’s generalization capability. Traditional oversampling and undersampling methods balance datasets by increasing the 
number of minority class samples or reducing the number of majority class samples, which can lead to information loss or the 
introduction of noise. The KNMRS algorithm performs feature selection directly on the original data, avoiding the potential issues 
associated with data resampling.

4) Consideration of Feature and Label Dependencies: Traditional oversampling and undersampling methods primarily focus on 
the distribution of sample numbers and often overlook the dependencies between features and labels. The KNMRS algorithm 
introduces a dependency function that effectively quantifies the significance of features in a multi-label decision environment, 
enabling more accurate feature selection and improved classification performance.

5) Applicability to Multi-Label Learning Scenarios: Traditional oversampling and undersampling methods are mainly designed 
for single-label learning scenarios. In contrast, multi-label learning scenarios are more complex because samples may belong to 
multiple classes simultaneously. The KNMRS algorithm is specifically designed for multi-label learning scenarios, eliminating the 
need to transform the problem into a single-label one. By directly handling multi-label data, KNMRS preserves the correlations 
between labels, resulting in a more accurate model.

6) Rough set theory for feature selection: The KNMRS algorithm leverages rough set theory for feature selection, which enables 
it to handle uncertainties and ambiguities in the data. Through rough set theory, the algorithm selects features most relevant to 
the decision attributes while eliminating redundant and noisy features. This not only enhances the model’s performance but also 
increases its robustness.

5. Experimental analysis

In this section, to demonstrate the superiority of the KNMRS algorithm in the domain of feature selection, we devised a series of 
comparative experiments.

5.1. Experimental preparation

This paper selected 12 publicly available multi-label datasets, covering multiple domains including text, biology, music, and 
images. From a theoretical perspective, Data imbalance is common in these domains. For example, in text datasets, the number of 
documents for some topics may be significantly lower than others. In biological datasets, certain gene function labels may be rare. 
Additionally, these datasets vary in sample size, feature dimensions, and label quantities to ensure that the experiments cover data 
from different fields and scales.

Experimental data show that the LC (average label cardinality) values of the datasets vary significantly, ranging from 1.014 to 
4.237, indicating substantial differences in the average number of labels per sample. The LC value reflects the distribution of samples 
in the feature space to some extent. Samples with higher LC values may require more features to represent multiple labels, leading 
to a more dispersed distribution in the feature space. Moreover, some datasets have low LD (label density) values. For example, the 
LD value of the Birds dataset is only 0.053, indicating that the proportion of labels per sample is low relative to the total number of 
labels, which may also imply a sparser distribution of samples in the feature space.

More importantly, the imbalance rate (avgIR) of the datasets varies significantly, ranging from 1.254 to 653.531, which further 
corroborates the imbalance in the distribution of samples in the feature space. For instance, Dataset A has an avgIR as high as 653.531, 
indicating an extremely uneven distribution of samples in the feature space. Some samples may occupy the majority of the feature 
space, while others are confined to very limited regions. In contrast, Dataset Scene has a lower avgIR of 1.254, suggesting a relatively 
more uniform distribution of samples in the feature space. However, even datasets with lower avgIR values may still face issues 
of imbalance in feature space distribution if they have high LC or LD values. For example, Dataset Yeast has an LC value of 4.237, 
indicating that samples on average possess a larger number of labels. If the feature expressions of these labels are unevenly distributed 
in the feature space, it can still lead to difficulties for models in learning effective feature representations.
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Table 5
Description of the twelve multi-label datasets.

No. Datasets S F L LC LD avgIR Domain 
1 Art 5000 462 26 1.63 0.27 94.7 text 
2 Computer 5000 681 159 1.50 0.04 176.6 text 
3 Yeast 2417 103 14 4.23 0.30 7.197 Biology 
4 Health 5000 612 32 1.63 0.05 653.5 text 
5 Emotions 593 72 6 1.86 0.31 1.478 Music 
6 Reference 5000 793 33 1.16 0.03 461.8 text 
7 Scene 2407 294 6 1.07 0.17 1.254 Image 
8 Recreation 5000 606 22 1.42 0.06 12.20 text 
9 Birds 645 260 19 1.01 0.05 5.407 text 
10 Education 5000 550 33 1.46 0.04 168.1 text 
11 Science 5000 743 40 1.45 0.03 52.63 text 
12 Social 5000 1047 39 1.27 0.03 257.70 text 

We believe that this imbalance in feature space distribution poses challenges for multi-label learning, such as difficulties in learning 
effective feature representations or susceptibility to noise features. Therefore, studying the imbalance of multi-label data distribution 
in the feature space is of significant theoretical and practical importance. Detailed information on the datasets is provided in Table 5. 
For each dataset we provide a short description as well as some characterization metrics. It includes the number of samples (S), number 
of features (F), number of labels (L), label cardinality (LC), label density (LD), and average Imbalance Ratio per label (avgIR).

To objectively evaluate the results of feature selection, this study adopted the widely recognized multi-label 𝑘-nearest neighbor 
(MLKNN) classifier in the realm of multi-label learning. In the experimental setup of MLKNN, we used the default smoothing parameter 
𝜎=1 and set the 𝑘-nearest neighbors parameter to 10. In the evaluation process, we employed a technique called 10-fold cross-

validation. In our experiments, the primary focus was on comparing the relative performance of different feature selection methods in 
multi-label classification tasks, rather than achieving the absolute optimal performance of MLKNN under specific parameter settings. 
Therefore, we opted to use the commonly recommended default parameter setting of 𝑘=10. While the choice of 𝑘 does influence 
the performance of MLKNN, our emphasis was on comparing the performance of different feature selection methods under the same 
classifier and parameter configuration. To ensure consistency and fairness in our experiments, all tests were conducted using the 
unified parameter setting of 𝑘=10. Additionally, researchers experimentally observed the impact of varying 𝑘 within a certain range 
(e.g., 𝑘=5,8,12,15,20) on the results and found that the relative ranking of the performance of different feature selection methods 
remained largely unchanged. In each iteration, based on the results of the feature selection algorithm, we trained the classifier using 
the training set. After training, we evaluated the performance of the trained classifier on the corresponding test set. By averaging the 
evaluation results across all test sets, we obtained the final classification performance metrics.

In the context of multi-label classification problems, the evaluation metric system [37] comprehensively reflects the performance 
of algorithms from multiple dimensions. This paper adopts Hamming loss as a sample-based metric for evaluating the performance of 
multi-label classifiers, which measures the effectiveness of classifiers by calculating the difference between the predicted label set and 
the actual label set. In terms of label-based metrics, this paper decomposes the multi-label problem into single-label measurements, 
uses all metrics applicable to single-label problems, and averages the measurement results for each label, specifically using macro-

averaging and micro-averaging to achieve this process. In addition, this paper also adopts metrics based on ranking and prediction, 
including Average Precision (AP), Ranking Loss (OE), Coverage (CV), and Ranking Loss (RL), which focus more on evaluating the 
accuracy and ranking quality of the predicted label set. Additionally, the number of selected features (N) serves as an indicator 
reflecting the level of feature reduction. Among these metrics, higher scores in MacF1, MicF1 and AP indicate more remarkable 
algorithm performance, while lower scores in CV, OE, RL, and HL also signify superior algorithm performance. These evaluation 
metrics reveal the comprehensive performance of multi-label classification algorithms from different perspectives, providing a strong 
basis for algorithm optimization and selection. In the table below, “↑” indicates metrics where higher values are better, while “↓” 
indicates metrics where lower values are better. The optimal performance for each evaluation metric will be presented in bold format.

5.2. The comparative results between KNMRS and other multi-label feature selection algorithms

In the domain of multi-label learning, each sample can be associated with multiple categories simultaneously, in contrast to single 
label learning where a sample is assigned to a single category. A key challenge in multi-label learning arises from the potential influ-

ence of label ordering on model performance evaluation. Hence, disregarding the label ordering can result in misleading assessments 
of the model’s performance. The primary objective of the first part of this section is to assess the performance of our proposed KN-

MRS algorithm in relation to ranking-based multi-label classification metrics, namely AP, CV, OE, RL, and N. To accomplish this, we 
conduct a thorough comparison between the KNMRS algorithm and cutting-edge methods in multi-label classification, which include:

We compared our proposed KNMRS algorithm against several existing multi-label feature selection methods to assess its effective-

ness. The comparison included:

• Multi-Label Naive Bayes (MLNB [38]): MLNB, a straightforward multi-label classification method, uses the Naive Bayes as-

sumption. While computationally efficient, it can struggle with complex label relationships and may not perform well with 
imbalanced data due to its sensitivity to how features are distributed.
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Table 6
The experimental results of ten algorithms on the Computer dataset.

Methods N↓ AP↑ CV↓ OE↓ RL↓ 
MLKNN 681 0.633 4.416 0.437 0.092 
MLNB 345 0.635 4.553 0.434 0.095 
MDDM_proj 18 0.598 4.88 0.481 0.105 
MDDM_spc 23 0.599 4.847 0.48 0.103 
ARMLNRS_imp 132 0.633 4.419 0.443 0.091 
ARMLNRS_opt 132 0.623 4.421 0.422 0.089 
ARMLNRS_pes 102 0.622 4.311 0.472 0.089 
ML-ReliefF 387 0.6305 4.467 0.4392 0.0929 
NMIFS 200 0.6318 4.466 0.447 0.0915 
KNMRS 155 0.6541 4.27 0.422 0.0824

Average 217.5 0.6259 4.505 0.4477 0.0931 

• Multi-label Dimensionality Reduction via Data-Driven and Structure Preserving Projections (MDDM_proj, MDDM_spc 
[39]): MDDM aims to reduce the dimensionality of multi-label data by learning projections that preserve both data-driven and 
structure-preserving information. While effective for dimensionality reduction, its performance on imbalanced multi-label data 
isn’t thoroughly examined in the original work. Its primary focus is dimensionality reduction, not directly addressing feature 
selection or imbalance.

• Adaptive Rough Set-Based Multi-Label Neighborhood Reduction (ARMLNRS [40]): ARMLNRS uses rough set theory for 
multi-label feature selection. Different versions (imp, opt, pes) represent different strategies within the ARMLNRS framework. 
While rough sets are inherently suited for handling uncertainty, ARMLNRS’s performance on imbalanced multi-label data isn’t 
the main focus of the cited paper. Also, the computational cost of rough set-based methods can be a concern.

• Multi-Label ReliefF (ML_ReliefF [41]): ML-ReliefF adapts the ReliefF algorithm for multi-label data. ReliefF is known for 
identifying relevant features based on instance-based learning. However, like other instance-based methods, ML-ReliefF can be 
sensitive to noise and may not be optimal with significant class imbalance. It can also be challenged by high-dimensional data.

• Neighborhood Mutual Information Feature Selection (NMIFS [34]): NMIFS uses neighborhood mutual information to select 
relevant features. It aims to capture the relationships between features and labels. While NMIFS can be effective, its performance 
on imbalanced multi-label data and its computational demands are important factors to consider.

It’s crucial to understand that these methods can perform differently depending on the specific dataset characteristics, such as the 
degree of imbalance, the number of labels, and the presence of noise or irrelevant features. Furthermore, the cited works don’t always 
explicitly address the challenges of imbalanced multi-label data. This underscores the need for specialized techniques like KNMRS, 
which are specifically designed to handle the complexities of both multi-label learning and data imbalance.

To perform the performance comparison with these nine methods on the five multi-label evaluation metrics, we selected the 
Computer, Health, Yeast, Art, Scene, Recreation, Emotions, Reference, Birds, and Recreation datasets from Table 5 as the experimental 
data. Figs. 2-5 illustrate the performance variation of six algorithms across various levels of feature reduction. The X-axis represents 
the number of selected features, while the Y-axis displays the performance values for four specific metrics. Since the subplots within 
the same figure group use the same plotting methods and data encoding, the legend is universal and representative. For the sake of 
conciseness, we only display the legend in the last subplot.

Fig. 2 demonstrates that, except for the Art and Recreation datasets, KNMRS exhibits the best AP performance among the other 
seven datasets. In the Computer, Health, Reference, and Birds datasets, KNMRS consistently outperforms other algorithms. In the 
Recreation dataset, the performance of KNMRS alternates with ARMLNRS as the number of features increases, and both outperform 
the other comparative algorithms. For the Art dataset, KNMRS performs best when approximately 160 features are selected, and 
its performance significantly declines as the number of features increases. However, this precisely indicates that KNMRS achieves 
efficient feature reduction while maintaining good AP performance on the Art dataset. Fig. 3 displays the CV performance of the six 
algorithms. In the Computer, Health, Recreation, Emotion, and Reference datasets, KNMRS significantly outperforms other algorithms. 
In the Scene and Birds datasets, KNMRS performs comparably to NMIFS and ML-ReliefF, and it outperforms the other four algorithms. 
In the Yeast and Emotion datasets, the NMIFS algorithm performs better than our proposed algorithm, but we achieve competitive 
or optimal performance when selecting a larger number of features, thanks to the integration of two neighborhood principles in our 
algorithm. In practical applications, the appropriate algorithm can be selected based on different requirements for feature reduction 
effectiveness and performance. Fig. 4 illustrates the advantage of KNMRS in the OE metric on the Computer, Recreation, and Reference 
datasets. In the Health dataset, KNMRS is only slightly inferior to MDDM_proj. In the Yeast and Art datasets, KNMRS demonstrates no 
significant difference in performance compared to other algorithms and still achieves optimal performance at a lower degree of feature 
reduction. For the Emotion and Birds datasets, KNMRS performs equally well as ARMLNRS and ML-ReliefF, and it outperforms the 
other datasets. Fig. 5 describes the performance of the six algorithms in the RL metric. KNMRS surpasses other algorithms significantly 
in the Art, Recreation, Scene, and Computer datasets. In the Health dataset, KNMRS does not surpass MDDM_proj. Furthermore, in 
other datasets, our algorithm demonstrates no significant difference compared to ARMLNRS and NMIFS, and it ranks highly in the 
experimental results. In conclusion, the KNMRS algorithm performs exceptionally well on the nine datasets.
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Table 7
The experimental results of ten algorithms on the Health dataset.

Methods N↓ AP↑ CV↓ OE↓ RL↓ 
MLKNN 612 0.681 3.305 0.421 0.061 
MLNB 289 0.667 3.555 0.425 0.068 
MDDM_proj 15 0.704 3.234 0.381 0.06 
MDDM_spc 81 0.647 3.704 0.453 0.071 
ARMLNRS_imp 83 0.685 3.358 0.401 0.063 
ARMLNRS_opt 81 0.6972 3.357 0.4023 0.0627 
ARMLNRS_pes 87 0.7111 3.358 0.4019 0.0661 
ML-ReliefF 286 0.6845 3.6213 0.4590 0.0685 
NMIFS 215 0.7034 3.363 0.4215 0.0624 
KNMRS 69 0.7441 3.121 0.379 0.06

Average 181.8 0.6924 3.397 0.4133 0.0642 

Table 8
The experimental results of ten algorithms on the Yeast dataset.

Methods N↓ AP↑ CV↓ OE↓ RL↓ 
MLKNN 103 0.751 6.809 0.25 0.176 
MLNB 28 0.736 6.693 0.256 0.187 
MDDM_proj 7 0.708 6.852 0.262 0.208 
MDDM_spc 20 0.712 6.879 0.254 0.206 
ARMLNRS_imp 23 0.734 6.605 0.253 0.190 
ARMLNRS_opt 26 0.729 6.607 0.2543 0.1833 
ARMLNRS_pes 31 0.731 6.611 0.2493 0.1871 
ML-ReliefF 16 0.732 6.6759 0.2551 0.1919 
NMIFS 76 0.741 6.5462 0.2437 0.1819 
KNMRS 83 0.7681 6.5132 0.2381 0.1794

Average 41.3 0.73421 6.67913 0.25155 0.18906 

Table 9
The experimental results of ten algorithms on the Art dataset.

Methods N↓ AP↑ CV↓ OE↓ RL↓ 
MLKNN 462 0.5093 5.4453 0.6327 0.152 
MLNB 228 0.5098 5.4917 0.629 0.153 
MDDM_proj 120 0.4895 5.4943 0.6633 0.1543 
MDDM_spc 120 0.4808 5.6612 0.6791 0.1599 
ARMLNRS_imp 115 0.5156 5.3211 0.616 0.1468 
ARMLNRS_opt 120 0.5155 5.3371 0.6132 0.1492 
ARMLNRS_pes 114 0.5116 5.3561 0.6377 0.1479 
ML-ReliefF 267 0.4959 5.3451 0.6982 0.1481 
NMIFS 142 0.5101 5.4371 0.6257 0.1512 
KNMRS 157 0.5313 5.2937 0.6026 0.1417

Average 184.5 0.50694 5.41827 0.63975 0.15041 

Table 10

The experimental results of ten algorithms on the Scene dataset.

Methods N↓ AP↑ CV↓ OE↓ RL↓ 
MLKNN 294 0.8494 0.5686 0.3928 0.0931 
MLNB 200 0.8145 0.6941 0.3971 0.099 
MDDM_proj 250 0.8167 0.6962 0.2988 0.119 
MDDM_spc 250 0.8138 0.6991 0.3067 0.1183 
ARMLNRS_imp 243 0.8312 0.6328 0.3917 0.1075 
ARMLNRS_opt 243 0.8386 0.6017 0.3901 0.1025 
ARMLNRS_pes 243 0.8109 0.6893 0.3857 0.177 
ML-ReliefF 205 0.8155 0.6413 0.4662 0.1105 
NMIFS 200 0.8433 0.6179 0.2954 0.1029 
KNMRS 79 0.8519 0.5877 0.2944 0.0909

Average 220.7 0.82858 0.64287 0.36189 0.11207 
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Table 11

The experimental results of ten algorithms on the Recreation dataset.

Methods N↓ AP↑ CV↓ OE↓ RL↓ 
MLKNN 606 0.4644 5.1483 0.7737 0.1928 
MLNB 204 0.4367 5.0523 0.6924 0.1893 
MDDM_proj 194 0.4361 5.2076 0.7372 0.1977 
MDDM_spc 196 0.4372 5.2161 0.7212 0.1979 
ARMLNRS_imp 228 0.5214 4.8702 0.6797 0.1819 
ARMLNRS_opt 228 0.4915 4.8702 0.6714 0.1833 
ARMLNRS_pes 245 0.4931 4.8702 0.6743 0.1837 
ML-ReliefF 109 0.4065 5.3173 0.7466 0.2244 
NMIFS 203 0.4814 5.1020 0.6637 0.1905 
KNMRS 323 0.5284 4.4779 0.6533 0.1661

Average 253.6 0.46967 5.01321 0.70135 0.19076 

Table 12

The experimental results of ten algorithms on the Emotion dataset.

Methods N↓ AP↑ CV↓ OE↓ RL↓ 
MLKNN 72 0.781 1.92 0.332 0.173 
MLNB 25 0.753 2.074 0.376 0.205 
MDDM_proj 3 0.669 0.649 0.4059 0.3164 
MDDM_spc 6 0.748 2.2134 0.3956 0.226 
ARMLNRS_imp 30 0.79 1.964 0.2769 0.1741 
ARMLNRS_opt 33 0.785 1.959 0.2777 0.1749 
ARMLNRS_pes 29 0.79 2.011 0.2773 0.2095 
ML-ReliefF 42 0.7512 1.9801 0.3521 0.3999 
NMIFS 29 0.7415 1.9255 0.3517 0.2033 
KNMRS 59 0.7931 1.9119 0.276 0.1701

Average 32.8 0.76018 1.86079 0.33212 0.22522 

Table 13

The experimental results of ten algorithms on the Reference dataset.

Methods N↓ AP↑ CV↓ OE↓ RL↓ 
MLKNN 793 0.583 3.813 0.532 0.102 
MLNB 400 0.623 3.431 0.47 0.089 
MDDM_proj 400 0.611 3.446 0.489 0.089 
MDDM_spc 400 0.613 3.44 0.484 0.089 
ARMLNRS_imp 190 0.605 3.963 0.564 0.105 
ARMLNRS_opt 174 0.609 3.8763 0.564 0.106 
ARMLNRS_pes 188 0.601 3.992 0.559 0.105 
ML-ReliefF 68 0.5834 3.7497 0.5080 0.0982 
NMIFS 212 0.6312 3.408 0.4653 0.0858 
KNMRS 276 0.642 3.224 0.4403 0.0847

Average 310.1 0.61016 3.6343 0.50756 0.09537 

Table 14

The experimental results of ten algorithms on the Birds dataset.

Methods N↓ AP↑ CV↓ OE↓ RL↓ 
MLKNN 260 0.695 3.399 0.39 0.125 
MLNB 131 0.697 3.458 0.365 0.128 
MDDM_proj 13 0.626 3.564 0.523 0.141 
MDDM_spc 19 0.643 3.616 0.489 0.139 
ARMLNRS_imp 104 0.719 3.421 0.344 0.123 
ARMLNRS_opt 109 0.7201 3.422 0.3477 0.123 
ARMLNRS_pes 122 0.7255 3.425 0.3598 0.124 
ML-ReliefF 128 0.702 3.5111 0.3741 0.129 
NMIFS 99 0.682 3.7462 0.3781 0.1381 
KNMRS 145 0.7364 3.4611 0.3241 0.123

Average 113 0.6946 3.50234 0.38948 0.12931 
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Fig. 2. The performance variation of six algorithms in terms of 𝐴𝑃 across nine datasets. 

Figs. 2-5 provide an intuitive presentation of the comparative results for algorithm performance. To accurately assess the effective-

ness of the KNMRS algorithm, it is necessary to comprehensively compare the various quantified evaluation metrics of all algorithms 
on each dataset. We evaluated the performance of various algorithms using nine different feature selection methods on the aforemen-

tioned feature selection methods, and the results are listed in Tables 6-14. MLKNN (using all features) serves as the benchmark for 
comparison, and KNMRS achieved significant performance improvements across several key metrics, especially in terms of Average 
Precision (AP), where it showed significant improvement compared to the original dataset. Across most datasets, with the exception 
of Scene, although the N index of KNMRS is not the lowest, its AP value is the highest. On the Computer and Yeast datasets, as 
shown in Tables 6 and 8, KNMRS significantly outperforms algorithms such as MLNB, ML-ReliefF, MDDM_proj, and MDDM_spc in 
terms of AP, and it also demonstrated superior performance compared to the other four algorithms. KNMRS also achieves the best 
results in terms of CV, OE, and RL metrics. On the Health dataset (see Table 7), KNMRS significantly reduces the number of selected 
features compared to MLNB, ML-ReliefF, and NMIFS, while slightly increasing it compared to other algorithms. KNMRS excels in AP 
and CV, although its OE and RL metric values are slightly lower than MDDM_proj, they are still better than all other methods. In 
the Art, Recreation, and Reference datasets, KNMRS achieves improvements in all evaluation metrics, outperforming all comparative 
algorithms. As shown in Table 6, on the Computer dataset, KNMRS performs the best in terms of AP, OE, and RL metrics, and it is 
the only algorithm that achieves a significant improvement in AP. Although the CV metric is slightly lower than ARMLNRS_pes, it 
still far surpasses other algorithms. Table 8 demonstrates that on the Yeast dataset, all feature selection algorithms result in a de-

crease in AP compared to the original dataset. However, our KNMRS algorithm successfully improves AP during the feature selection 
process, and it performs excellently in other metrics, except for the RL metric, where it achieves optimal results compared to the 
comparative algorithms. The performance of KNMRS in RL is also superior to the original data by a marginal margin. In Table 10, 
the Scene dataset demonstrates a unique situation. MLKNN, which represents the original data without feature selection, performs 
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Fig. 3. The performance variation of six algorithms in terms of 𝐶𝑉 across nine datasets. 

extremely well. This may be related to the characteristics of the dataset: for ideally distributed and smoothly fluctuating datasets, 
feature selection may reduce performance because each feature may be closely related to the stability of the information system. 
Nevertheless, the performance of KNMRS is almost consistent with MLKNN, and it even achieves steady improvements in OE and 
RL. For the remaining datasets, our algorithm not only achieves improvements in AP but also performs exceptionally well in other 
metrics. The comprehensive analysis indicates that the KNMRS algorithm performs exceptionally well in ranking-based evaluation 
metrics. However, considering that KNMRS is based on the combination of two neighborhood rough sets, the attribute reduction 
criteria used during feature selection are more stringent, which limits the algorithm’s ability to achieve extensive attribute reduction. 
Additionally, the KNMRS algorithm is particularly suitable for handling imbalanced data, which makes its performance improvement 
particularly significant on sparse datasets such as Computer, Health, Recreation, Art, and Reference. This aspect is clearly reflected 
in the comparative data presented in Tables 6-14. The second part of this study aims to evaluate the performance of our proposed 
KNMRS algorithm on the classification performance metric called Hamming Loss (HL). In the field of multi-label learning, Hamming 
Loss plays a crucial role as a metric that accurately reflects the performance of the classifier. Furthermore, it assists the model in 
handling the complexity and sparsity inherent in multi-label data. These two aspects are the key perspectives for evaluating the per-

formance of multi-label learning models. Fig. 6 depicts the performance of six comparison algorithms and our KNMRS algorithm on 
the Hamming Loss (HL) metric across nine different datasets as the number of selected features varies. The results show that none of 
the comparison algorithms outperforms KNMRS in all conditions. Our algorithm demonstrates excellent performance in most cases, 
particularly at specific values of the feature count N, where KNMRS achieves the best performance among all the algorithms. Even on 



Information Sciences 715 (2025) 122220

16

W. Xu and Y. Li 

Fig. 4. The performance variation of six algorithms in terms of 𝑂𝐸 across nine datasets. 

the challenging Scene dataset, which poses the greatest challenge to KNMRS, the algorithm maintains a leading position, highlighting 
its robustness and superiority. To objectively evaluate the performance of the algorithms, this study conducted a quantitative analysis 
of the performance of six different algorithms on the HL metric, as shown in Table 15. The research demonstrates that, except for the 
balanced Scene dataset, KNMRS algorithm consistently exhibits excellent performance on imbalanced datasets. Particularly notewor-

thy is its significant reduction in Hamming Loss when handling raw data, which fully demonstrates the efficiency of our algorithm 
in addressing imbalanced data distributions. 

The third part of this study aims to evaluate the performance of our proposed KNMRS algorithm on label-based performance 
metrics, Macro-F1 and Micro-F1. Macro-F1 and Micro-F1 are important in multi-label learning as they provide a comprehensive 
evaluation of model performance from different perspectives. Macro-F1 focuses on the performance of individual labels, while Micro-

F1 emphasizes the consistency in handling the overall samples. In Tables 16 and 17, we provide a detailed comparison between the 
KNMRS algorithm and five leading multi-label learning algorithms: PPT-CHI, MIFS, MDMR, SCLS, and LRFS. To comprehensively 
evaluate the performance of these algorithms, we selected six large-scale datasets with significant sample distribution imbalance and 
sparse characteristics, namely Enron, Art, Science, Social, Education, and Reference, as shown in Table 5. Comprehensive comparisons 
with existing methods indicate that KNMRS does not blindly pursue the intensity of attribute reduction in multi-label feature selection 
tasks, but rather focuses more on preserving local features and samples with sparse distributions. Although this may result in selecting 
a larger number of features, these features can more comprehensively reflect the local structure and key information of the data, 
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Fig. 5. The performance variation of six algorithms in terms of 𝑅𝐿 across nine datasets. 

Table 15

Hamming loss (↓) of the ten algorithms on the nine datasets.

Datasets MLKNN MLNB MDDM 
_proj 

MDDM 
_spc 

ARMLNRS 
_imp 

ARMLNRS 
_opt 

ARMLNRS 
_pes 

ML 
_ReliefF NMIFS KNMRS Average 

Computer 0.041 0.094 0.044 0.043 0.040 0.053 0.049 0.0407 0.0401 0.0352 0.048 
Health 0.046 0.044 0.041 0.048 0.043 0.0436 0.0426 0.0852 0.0452 0.041 0.0479 
Yeast 0.201 0.208 0.229 0.229 0.215 0.215 0.215 0.204 0.235 0.204 0.2155 
Art 0.0612 0.0604 0.0621 0.0614 0.0605 0.0603 0.0603 0.0616 0.0604 0.0591 0.0607 
Scene 0.099 0.1026 0.0983 0.0968 0.1014 0.1075 0.1104 0.0953 0.0867 0.0989 0.0996 
Recreation 0.0623 0.0644 0.0638 0.0642 0.0634 0.0641 0.0641 0.0658 0.0637 0.0597 0.0635 
Emotions 0.214 0.245 0.3139 0.2441 0.2258 0.2347 0.2264 0.2382 0.2496 0.214 0.2405 
Reference 0.033 0.03 0.031 0.032 0.031 0.033 0.0320 0.0344 0.033 0.028 0.0317 
Birds 0.054 0.052 0.068 0.067 0.052 0.053 0.0510 0.0534 0.0529 0.051 0.0554 
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Fig. 6. The performance variation of six algorithms in terms of 𝐻𝐿 across nine datasets. 

Table 16

Macro-f1↑ (Mean ± Std) of six algorithms on six datasets.

Datasets PPT-CHI MIFS MDMR SCLS LRFS KNMRS 
Enron 0.062±0.016 0.074±0.017 0.105±0.033 0.114±0.041 0.091±0.033 0.119±0.045 
Art 0.041±0.032 0.065±0.037 0.036±0.012 0.035±0.026 0.045±0.029 0.061±0.039 
Science 0.034±0.031 0.031±0.026 0.037±0.019 0.011±0.003 0.037±0.029 0.069±0.032 
Social 0.084±0.031 0.034±0.016 0.074±0.032 0.035±0.014 0.073±0.031 0.092±0.019 
Education 0.032±0.026 0.029±0.017 0.034±0.025 0.029±0.015 0.051±0.028 0.061±0.041 
Reference 0.042±0.018 0.053±0.024 0.042±0.021 0.041±0.017 0.052±0.021 0.068±0.029 

thereby providing more stable support for subsequent classification tasks. For example, in the Computer and Health datasets, KNMRS 
dynamically adjusts the neighborhood granularity by integrating 𝛿-neighborhood rough sets and 𝑘-nearest neighbor techniques, 
effectively capturing key features in sparse regions and significantly improving classification performance. In contrast, traditional 
methods, due to excessive reduction or ignoring local features, perform poorly on imbalanced data. The advantage of KNMRS lies 
in its ability to adapt to sparse distributions, model label dependencies, and enhance robustness through dynamic neighborhood 
optimization, thereby addressing the limitations of traditional methods in capturing local features and label interactions when dealing 
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Table 17

Micro-f1↑ (Mean ± Std) of six algorithms on six datasets.

Datasets PPT-CHI MIFS MDMR SCLS LRFS KNMRS 
Enron 0.351±0.019 0.372±0.027 0.474±0.049 0.488±0.037 0.389±0.054 0.501±0.035 
Art 0.092±0.056 0.132±0.079 0.097±0.023 0.103±0.066 0.112±0.053 0.172±0.032 
Science 0.114±0.055 0.125±0.053 0.126±0.071 0.039±0.037 0.092±0.031 0.184±0.072 
Social 0.443±0.108 0.286±0.106 0.475±0.106 0.323±0.12 0.142±0.116 0.517±0.061 
Education 0.121±0.085 0.075±0.039 0.126±0.061 0.077±0.061 0.173±0.046 0.273±0.092 
Reference 0.345±0.074 0.351±0.101 0.356±0.069 0.264±0.033 0.401±0.131 0.411±0.049 

Fig. 7. The changing trend of Hamming loss affected by parameters 𝛿 and 𝑘 on nine data sets. 

with imbalanced data. This emphasis on local features not only improves the model’s performance but also enables it to excel in 
practical applications where imbalanced data are common, such as text classification and bioinformatics.

5.3. Parameter classification performance analysis under MLKNN

In this paper, we propose a new algorithm called KNMRS, which includes two neighborhood parameters used to control their 
respective neighborhood ranges. The parameter 𝛿 is used to adjust the size of the 𝛿-neighborhood class, while the parameter 𝑘 is used 
to control the size of the 𝑘-nearest neighbor neighborhood class. To study the role of these two parameters in feature selection, we 
conducted experiments on nine datasets and analyzed their parameter sensitivity.
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Fig. 8. Parameter combination. 

In the mentioned graphical analysis, the X-axis represents the number of nearest samples to 𝑥𝑖. The Y-axis represents the radius 
size of the 𝛿-neighborhood. The Z-axis measures the Hamming Loss. The Hamming Loss is a key metric for measuring classification 
performance, and its impact on algorithm performance is particularly significant in our experimental study.

In this round of experiments, the range of 𝛿 values was set to [0.05, 1], and the range of 𝑘 values was set to [0.02 N, 0.1 N], 
where N represents the number of samples. Fig. 7 illustrates the performance variation of KNMRS in terms of Hamming Loss under 
different parameter combinations. We can observe that the performance does not consistently improve with increasing parameter 
values. Instead, it exhibits fluctuations, and we observed the best performance in specific parameter combinations. Hence, it can 
be inferred that the parameters have a notable impact on the performance of the proposed algorithm. The varying combinations of 
parameters also affect the results of feature selection.

For commonly occurring sparse datasets such as Recreation and Reference, it is more likely to encounter situations similar to those 
shown in Fig. 1b, where the best performance occurs with smaller values of the parameter 𝑘. However, for matrices that exhibit dense 
states only at certain points, such as Computer and Health, the parameter 𝑘 needs to be larger to compensate for the shortcomings of 
the 𝛿-neighborhood rough set. Thus, the results shown in Fig. 7 corroborate our underlying principles.

Based on the preceding parameter analysis, this paper further explores the impact of different parameter combinations (𝑘 and 𝛿) 
on the performance of the KNMRS algorithm, particularly how to select appropriate parameters for different data distribution char-

acteristics. The number of neighbors in 𝑘-nearest neighbors (𝑘) and the distance threshold in 𝛿-neighborhood (𝛿) are key parameters 
of the algorithm, and their combination directly affects the algorithm’s performance on imbalanced data. We summarize four typical 
scenarios, analyzing the strengths and limitations of each in imbalanced data, as well as their impact on feature selection and classi-

fication tasks. Fig. 8 detailedly demonstrates the characteristics, advantages, and disadvantages of different parameter combinations, 
as well as their applicable scenarios. Through the above analysis, this paper provides more comprehensive theoretical support for the 
parameter selection of the KNMRS algorithm and, combined with experimental results, offers clear guidance for parameter tuning.

5.4. Statistical analysis

To rigorously evaluate the statistical performance of the comparative algorithms across various evaluation metrics, we employed 
the Friedman test followed by the Bonferroni-Dunn post-hoc test. The formulas for these tests are presented below.

𝜒2
𝐹
= 12𝑇 

𝑠(𝑠+ 1)

(
𝑠 ∑

𝑖=1 
𝑅2

𝑖
− 𝑠(𝑠+ 1)2

4 

)
,

𝐹𝐹 =
(𝑇 − 1)𝜒2

𝐹

𝑇 (𝑠− 1) − 𝜒2
𝐹

Let T represent the total number of datasets, s denote the number of methods, and 𝑅𝑖 be the average ranking of method i across 
all datasets. The Friedman test statistic (𝐹𝐹 ) follows an F-distribution with degrees of freedom (𝑠 − 1) and (𝑠− 1)(𝑇 − 1). If the null 
hypothesis is rejected based on the Friedman test, subsequent post-hoc tests, such as the Bonferroni-Dunn test, are conducted to further 
analyze the classification performance of the compared methods. The significant differences between methods can be described by 
the critical difference defined as follows:

The classification performance of each algorithm across all datasets for different classification metrics is ranked, with the best 
performance assigned a rank of 1, the second-best a rank of 2, and so on. Furthermore, we utilize the Critical Difference (CD) diagram 
to visually display the correlations between different algorithms. The average ranking of each algorithm’s performance is plotted 
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Fig. 9. Bonferroni-Dunn test results for 10 methods under MLKNN classification. 

Table 18

Statistical results of five evaluation indicators.

AP CV OE RL HL 
𝜒𝐹 24.7641 21.7544 28.3843 18.0924 13.5397 
𝐹𝐹 7.4501 6.5562 3.7501 3.5653 2.1786 

along the coordinate axis, with the best ranking value positioned on the right side of the axis. When the average rankings of different 
algorithms are equivalent within the error range, they are connected by a thick line; if not within the error range, it is considered 
that there are significant differences between these algorithms. 

𝐶𝐷𝛼 = 𝑞𝛼

√
𝑠(𝑠+ 1)
6𝑇 

𝑞𝛼 represents the critical value from the statistical table, which is used to determine the significance of differences between 
methods. 𝛼 is the importance level in the Bonferroni-Dunn test.

The average rankings of the KNMRS algorithm and nine other comparative algorithms—MLKNN, MLNB, MDDMM_proj, 
MDDM_spc, ARMLNRS, ML_Relief and NMIFS on five evaluation metrics, corresponding to two evaluation indicators (XF and FF), 
are listed in Table 18 based on experimental data from Tables 6 to 15. The corresponding CD diagram is shown in Fig. 9. At 𝛼=0.1, 
𝑞𝛼=2.216, CD = 2.45, s=10, T=12. Fig. 9 demonstrates RFNMIFS significantly outperforms six algorithms across all metrics. In AP, 
CV, and RL, RFNMIFS outperforms MLKNN, MLNB, MDDM_proj, MDDM_spc, ARMLNRS, and ML_Relief, matching NMIFS. In OE and 
HL, RFNMIFS outperforms MLKNN, ML_Relief, MDDM_proj, and MDDM_spc, matching ARMLNRS and NMIFS. The KNMRS algorithm 
demonstrates excellent performance in statistical analysis, reaffirming its superior efficacy in multi-label classification.

6. Conclusions and future work

In this study, we introduced KNMRS, a novel multi-label feature selection algorithm designed to address the challenges of high 
dimensionality and data sparsity prevalent in complex real-world datasets. The core innovation of KNMRS lies in its unique integration 
of 𝛿-neighborhood and 𝑘-nearest neighbor concepts. This hybrid approach empowers the algorithm to dynamically adapt to the local 
density and distribution characteristics of the data, effectively mitigating the adverse effects of sparsity and enhancing its capacity 
to discern relevant features. Unlike traditional methods that often falter in the face of uneven data distributions, KNMRS’s adaptive 
neighborhood mechanism enables it to capture nuanced relationships within the data, leading to improved feature selection accuracy.

Extensive experiments conducted on a diverse suite of 12 multi-label datasets, spanning various domains and scales, validated 
the effectiveness of the KNMRS algorithm. The results demonstrate that KNMRS exhibits superior performance compared to several 
state-of-the-art multi-label feature selection methods, particularly in handling sparse data. For instance, on the Computer dataset, 
KNMRS achieved a 2.1% improvement in Average Precision (AP) compared to MLKNN, while also reducing the Hamming Loss 
by 0.58%. Furthermore, on the Recreation dataset, KNMRS attained the best performance in terms of Coverage (CV), exhibiting a 
0.67% reduction compared to MLKNN. These improvements can be attributed to KNMRS’s ability to effectively identify and prioritize 
informative features, even in regions characterized by limited data points, and its robustness in handling noisy or irrelevant features 
often encountered in sparse datasets. Moreover, the algorithm’s computational efficiency and stability make it a practical and valuable 
tool for multi-label feature selection.

Specifically, considering the challenges and opportunities presented by the increasing availability of multi-label data in bioin-

formatics, KNMRS can be instrumental in tasks such as gene function prediction and disease subtyping. By accurately identifying 
relevant features from complex gene expression profiles, KNMRS can aid in uncovering critical biological insights. Furthermore, in 
the realm of image classification, where images are often associated with multiple labels depicting various objects or scenes, KNMRS 
can facilitate the development of more precise and comprehensive image understanding systems. Future research directions include 
extending the proposed method to other data types such as images, audio, and time series to verify its generality. Additionally, 
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combining the method with techniques like ensemble learning, cost-sensitive learning, or Generative Adversarial Networks (GANs) 
can further enhance model performance on imbalanced data. Dynamic neighborhood granularity optimization methods could also be 
explored to adaptively adjust neighborhood granularity to better fit different data distribution characteristics. These directions will 
promote further development and application of the method in the field of imbalanced data processing.

While the KNMRS algorithm demonstrates promise for imbalanced multi-label data, certain limitations remain. Its strict attribute 
reduction criteria may hinder scalability in high-dimensional feature spaces. Future work will explore alternative reduction strategies, 
such as information-theoretic measures or ensemble approaches, to enhance efficiency. Furthermore, the algorithm’s current focus on 
imbalanced data and specific matrix structures may limit broader applicability. Research will investigate extending its capabilities to 
diverse data distributions, potentially through adaptive parameter tuning. Finally, while KNMRS demonstrates improved performance, 
further hyperparameter optimization could yield additional gains. Future research will explore automated tuning techniques like 
Bayesian optimization. These efforts aim to enhance scalability, broaden applicability, and optimize performance for diverse multi-

label applications.
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