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A B S T R A C T

Feature selection in multi-source ordered decision-making information systems is an underexplored domain
that poses unique challenges. This paper introduces a novel approach to fill this research gap by integrating
the preference function from the Preference Ranking Organization Method for Enrichment Evaluation method
into a feature selection framework. Our method diverges from traditional single-source focused techniques,
providing a tailored solution for the intricacies of multi-source environments, especially those characterized
by ordered information. We propose an algorithm that synergizes rough set theory with the preference function
to quantitatively assess and rank the relevance of features for decision-making. This is achieved through the
construction of preference index matrices, which encapsulate the attribute bias order relationships within
the multi-source sequential decision-making information system. To validate the efficacy of our method, we
conducted comprehensive experiments on 12 diverse and complex University of California, Irvine public
datasets. The results indicate that our feature selection method surpasses existing approaches in terms of
accuracy and efficiency, while also providing enhanced insights into the decision-making processes within
multi-source ordered information systems.
1. Introduction

Feature selection, which is also called as attribute reduction, plays
an major role in the processing and application of big data. As so-
ciety progresses, the scale and complexity of data have escalated,
necessitating the development of more sophisticated feature selec-
tion methodologies. More and more feature selection algorithms are
being researched in various fields and validated in applications. A
Bommert et al. propose filter based feature selection method and
applied the method to mathematical calculations in high-dimensional
data (Bommert et al., 2020); Rao H, Shi X, Rodrigue A K, et al. propose
a novel feature selection method based on bee colony and gradient
boosting decision tree (Rao et al., 2019); Chen R C et propose a
machine learning-based feature selection method (Chen et al., 2020);
MA et al. propose a class-specific feature selection method based on
the fuzzy information-theoretic metrics (Ma et al., 2024); Qian’s team
propose a novel multi-label feature selection algorithm via considering
importance of related labels with each sample (Qian et al., 2024) etc.
So from above research,it can be obtained that feature selection plays
a crucial role in the age and society.

Rough set, building upon the existing relation theory and set the-
ory, have been used to handle the uncertainty computing and in-
complete data, which understands knowledge as the partitioning of
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data. It classify the elements in the set via equivalence relationships.
And the equivalence relationship constitutes the division of the data
space. The approximate space can be established based on the undis-
tinguished equivalent classes. Under the approximate space, the upper
approximation and under approximation are used to approximate a
boundary-fuzzy set.

As a pivotal topic within the domain of rough set theory, feature
selection serves a dual purpose. It streamlines datasets by eliminat-
ing redundant attributes while preserving those with analytical value,
thereby enhancing the efficacy of subsequent computational processes.
Since the inception of rough set theory by Pawlak (Pawlak and Pawlak,
1998), the field has garnered considerable attention (Modrzejewski,
1993; Swiniarski and Skowron, 2003; Zhong et al., 2001), particularly
for its capacity to elucidate feature selection outcomes. As we face
increasingly complex data forms and diverse data types, scholars have
now proposed more novel feature selection algorithms based on rough
sets. About the improvement of rough set, Qiu et al. propose a hier-
archical feature selection based on the fuzzy rough set approach using
the Hausdorff distance (Qiu and Zhao, 2022); Zhang et al. constructed
a feature selection method based on neighborhood rough set for hetero-
geneous data (Zhang et al., 2022a), Jain et al. even raise a new feature
selection method via using intuitionistic fuzzy set theory to get better
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effect (Jain et al., 2020). On the different types of data, a matrix-based
eature selection method was proposed for ordered data (Xu and Yang,

2023); And one for interval-ordered data (Li et al., 2022) and so on.
From previous research, it can be seen that a considerable number of
eature selection theory methods have been proposed and studied, and
pplied to different scenarios for data of different types.

In practical applications, certain information systems exhibit re-
lationships that transcend binary interactions, manifesting instead as
preference or advantageous relationships. These systems, termed or-
dered information systems, encapsulate inherent advantageous rela-
tionships among entities. Utilizing these relationships, Scholars have
proposed many feature selection methods for ordered data in differ-
ent data situations: the feature selection for interval-valued ordered
data (Li et al., 2022) and for dynamic ordered data (Sang et al., 2020),
even for dynamic interval-valued ordered data (Sang et al., 2021).
It could be seen that the feature selection of ordered data has been
extensively and deeply studied in rough sets, through the hidden partial
order relationships in ordered data.

However, in the realm of real-world data, we frequently encounter
cenarios that extend beyond single two-dimensional information sys-
ems. Often, we are tasked with amalgamating multiple such systems
o unearth a trove of valuable information. For instance, comprehen-
ive assessments of institutions like schools or hospitals may integrate

diverse perspectives, such as those of a city, region, or patients, un-
derscoring the significance of a holistic approach. Via the author’s
review on research for multi-source information systems, the main
study results focus on information fusion. Xu and Yu came up with a
novel information fusion based on triangular fuzzy information granule
computing (Xu and Yu, 2017); Che et al. addressed the problem of
nformation fusion and characterization for multi-source information
ystem based on combination of evidence theory, probability theory
nd information entropy (Che et al., 2018); And a new information

infusion model for outliers detection was studied (Zhang et al., 2023);
scholars had also reviewed the information fusion related for rough
et theory of multi-source information systems (Zhang et al., 2021). A

considerable amount of research on multi-source information systems
focuses more on information fusion and its application in the context
f big data.

But what this paper really wants to stress is not the research on in-
formation fusion in multi-source information systems. After reviewing
the research on feature selection and multi-source information systems,

urrent scholarly efforts in multi-source information systems have pre-
ominantly focused on information fusion (Xu and Yu, 2017; Che et al.,

2018; Zhang et al., 2023, 2021; Guo et al., 2024), with feature selec-
tion receiving comparatively less attention, especially in multi-source
rdered decision information systems. The existing information fusion
ethods mostly converted multi-source information systems into single

ource information systems by extracting important information from
ifferent sources (Xu et al., 2022a; Zhang et al., 2022b; Saadi et al.,

2018; Guo et al., 2023), where information loss is inevitable. In this
paper, all information sources will be considered in feature selection.

For existing feature selection, uncertainty measure is a common
ethod (Yuan et al., 2024, 2023), which is constructed by granularity

computing (Jensen, 2008; Anaraki and Eftekhari, 2013) such as fea-
ure selection based on weighted neighborhood rough set (Pan et al.,

2023), feature selection based on k-nearest-neighbor rough set (Hu
t al., 2022) and feature selection using composite entropy based
ncertainty (Xu et al., 2022b). Deng et al. found a new feature se-

lection using two-step multi-association information granule and apply
it to identify schizophrenia (Ju et al., 2024). And divergence-based
fuzzy rough sets was also used in the feature selection (Jiang et al.,
2022). Uncertainty is also used in the proposed feature selection al-
orithm. The uncertainty measure, degree of approximation is used
s the evaluation of attributes. Then what is used for feature selec-
ion in multi-source ordered decision information system is mainly a
2 
decision-making method, Preference Ranking Organization Method for
Enrichment Evaluation(PROMETHEE) (Brans et al., 1986).

Since PROMETHEE method was proposed, it have been used in
many yields of society (Behzadian et al., 2010): Ranking of sustain-
able Medical Tourism Destinations was studied by combined fuzzy
WARA-PROMETHEE approach (Ghasemi et al., 2021); Optimization

model based on combination of classic mean–variance approach and
PROMETHEE method was used for portfolio of palm producers
Ahmadi and Peivandizadeh, 2022); Ghasemi Peiman and Ehsan Talebi
rijani propose a integrated approach which combines the Fuzzy An-

alytical Hierarchy Process and PROMETHEE for selecting the best
flexible Manufacturing System (Ghasemi and Talebi Brijani, 2014);
ROMETHEE was used in the GIS-based crisis management too
Choukolaei et al., 2023); Also the PROMETHEE play a role in the
ncomplete multi-scale data (Deng et al., 2022). It can be seen that

PROMETHEE decision-making method have been applied in many
aspects of society and many studies focus more on the combination
of the PROMETHEE with other theoretical methods (Gul et al., 2018;
Bogdanovic et al., 2012). This paper also uses the PROMETHEE to apply
it to feature selection, which will be classified in the subsequent paper

From the review for the whole related work and for addressing the
ssue of few algorithms for multi-source information systems, this paper

propose a feature selection algorithm for multi-source ordered decision
nformation system. About the novelty for study of this paper, the paper
ainly use the combination of the tool of uncertainty-measure and
ROMETHEE to sort attributes for feature selection which are regarded
s objects that need decision-making via the construction of attribute
valuation matrix and attributes preference matrix. Specifically, the
pproximation of rough set is used as an element to construct the
ttribute evaluation matrix. And PROMETHEE generates the preference
atrix based on the attribute evaluation matrix.

The preceding discussion underscores the significance and necessity
of feature selection within multi-source ordered information systems.
This paper introduces a novel approach to achieve this goal, employing
the upper and lower approximations from the rough set model within
dominant domains to evaluate and rank features. The ranking is fur-
her refined using the PROMETHEE method, which serves as a robust
ramework for assessing feature quality. The principal contributions of

this work are outlined as follows:
(1) The paper use the approximation of attributes to labels as an

evaluation of attributes, and use this to assess the relative importance
f attributes.

(2) We propose a feature selection method based on the
ROMETHEE decision-making method and attribute evaluation matrix
or multi-source ordered decision system, which helps addressing the
ssue of lack of feature selection for multi-source decision information
ystem.

(3) To validate our approach, we conducted experiments on 12
datasets from the UCI Machine Learning Repository. Our method
ielded satisfactory outcomes across all datasets, substantiating its
ffectiveness and generalizability.

The structure of this paper is as follows: Section 2 of the pa-
per mainly describes the preparation of the feature selection method,
and makes some definitions of the Ordered Decision Information Sys-
tem (ODIS) and Multi-source Ordered Decision Information System
(MSODIS), while Section 3 of the paper mainly describes how the
ROMETHEE method can be applied to the feature selection of multi-

source ordered information system. The specific process of feature
extraction is demonstrated through examples. The Section 4 of the
paper gives the performance results of the proposed method on 12
datasets, which verifies the validity of the proposed method in this
paper. The Section 5 summarizes the work of this paper and looks
forward to the future direction of the work.

2. Preliminaries

In the following sections of this chapter, some definitions and
symbols are given for understanding the forthcoming discussion.
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Table 1
An ordered decision information system.
𝑈 𝑎1 𝑎2 𝑎3 𝑎4 𝑑

𝑥1 0.92 0.90 0.93 0.95 1
𝑥2 0.82 0.84 0.85 0.86 1
𝑥3 0.79 0.81 0.82 0.80 1
𝑥4 0.72 0.73 0.75 0.76 2
𝑥5 0.68 0.67 0.64 0.69 2

2.1. Multi-source ordered decision information system

A tuple 𝑆 = (𝑈 , 𝐴𝑇 ∪ 𝑑 , 𝑉 , 𝑓 ), where 𝑈 = {𝑥1, 𝑥2,… ..., 𝑥𝑛} is an
universe, 𝐴𝑇 = {𝑎1, 𝑎2,… ..., 𝑎𝑚} is a finite non empty set of attributes
and U/d = {𝑑1, 𝑑2,… ..., 𝑑𝑟} is the is a decision partition of U for d,
nd 𝑈 = ∪𝑟=1𝑑𝑟. it is generally believed that if the label values of
he samples are the same, then these samples belong to the same
lass.𝑉 = ∪𝑎∈𝐴𝑇 𝑉𝑎, 𝑉𝑎 is the value domain of attribute 𝑓 : 𝑈 × 𝐴𝑇 → 𝑉
s the function of the information system, where 𝑓 (𝑥, 𝑎) ∈ 𝑉𝑎,∀𝑎 ∈ 𝐴𝑇

and ∀𝑥 ∈ 𝑈 . The tuple 𝑆 can be defined as a decision information
system(DIS).

If a domain of a certain attribute in a DIS is sorted by increasing
r decreasing preference, then that attribute is called a criterion. If all

attributes are criteria, then the decision information system is called
an ordered decision information system(ODIS), it can be expressed as
𝑆≥ = (𝑈 , 𝐴𝑇 ∪ 𝑑 , 𝑉 , 𝑓 ).

In a multi-source ordered decision information system(MODIS),
ifferent information sources have different values for 𝑈 under the
valuation criteria set 𝐴𝑇 , It can be written as 𝐼≥ = {𝑈 , {𝐴𝑇 ∶
{𝑎11, 𝑎12,… , 𝑎𝑝𝑗 ,… , 𝑎𝑠𝑚}𝑝 = 1, 2,… ..., 𝑠, 𝑘 = 1, 2,… ..., 𝑚} ∪ 𝑑 , {𝑉 𝑝

𝑘 ∶ 𝑝 =
1, 2,… ..., 𝑠, 𝑘 = 1, 2,… ..., 𝑚}, 𝑓𝑝}, Where 𝑉 𝑝

𝑗 represents the value of the
𝑘th attribute under the 𝑝th information source, 𝑈 is an universe, and 𝑑
is the label attribute of 𝑈 . 𝑓𝑝(𝑥, 𝑎𝑝𝑗 ) ∈ 𝑉 𝑝

𝑗 ,∀𝑎 ∈ 𝐴𝑇 𝑝 and ∀𝑥 ∈ 𝑈 , where
𝐴𝑇 𝑝 is the attribute set of the 𝑝th information source.

Given a 𝑆≥ = (𝑈 , 𝐴𝑇 ∪ 𝑑 , 𝑉 , 𝑓 ), for ∀𝐹 ∈ 𝐴𝑇 and neighborhood
radius parameter 𝛽, the dominance neighborhood relation 𝑅𝛽

𝐹 follow
as

𝑅𝛽
𝐹 = {(𝑥, 𝑦) ∈ 𝑈×𝑈 ∶ 𝑓 (𝑥, 𝑎) ≥ 𝑓 (𝑦, 𝑎) ∧𝑓 (𝑥, 𝑎) −𝑓 (𝑦, 𝑎) ≤ 𝛽 ,∀𝑎 ∈ 𝐹 }. (1)

Given 𝑆≥ = (𝑈 , 𝐴𝑇∪𝑑 , 𝑉 , 𝑓 ) as a ODIS, ∀𝐹 ∈ 𝐴𝑇 , 𝐹 ≠ ∅, the two sets
of relationships derived from 𝑥 are called F-dominating neighborhood
sets and F-dominated neighborhood sets, they are written as

𝑅𝛽+
𝐹 (𝑥) = {𝑦 ∈ 𝑈 , 𝑦𝑅𝐹 𝑥}, (2)

𝑅𝛽−
𝐹 (𝑥) = {𝑦 ∈ 𝑈 , 𝑥𝑅𝐹 𝑦}. (3)

Example 2.1. As shown in Table 1, Table 1 represents an ordered
ecision information system, where 𝑎1, 𝑎2, 𝑎3, and 𝑎4 represent criteria

1, 2, 3, and 4, and 𝑥1−𝑥5 represent five samples. And 𝐹 = {𝑎1, 𝑎2, 𝑎3, 𝑎4},
𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}, Here, we take the dominance neighborhood
radius parameter 𝛽 = 0.1.

Based on the dominance neighborhood radius parameters we have
determined, we can get the F-dominance neighborhood sets for each
sample: 𝑅+

𝐹 (𝑥1) = {𝑥1}, 𝑅+
𝐹 (𝑥2) = {𝑥1, 𝑥2}, 𝑅+

𝐹 (𝑥2) = {𝑥2, 𝑥3}, 𝑅+
𝐹 (𝑥4) =

{𝑥3, 𝑥4}, 𝑅+
𝐹 (𝑥5) = {𝑥4, 𝑥5}.

𝑆≥ = (𝑈 , 𝐴𝑇 ∪ 𝑑 , 𝑉 , 𝑓 ) is given as an ODIS, For any 𝐹 ∈ 𝐴𝑇 , 𝑑𝑛 ∈ 𝑑,
he upper and lower approximations of 𝑑𝑛 are respectively like this

𝑅𝛽+
𝐹 (𝑑𝑛) = {𝑥 ∈ 𝑈 , 𝑅+

𝐹 (𝑥) ∈ 𝑑𝑛 ∧ 𝑥 ∈ 𝑑𝑛}, (4)

𝑅𝛽+
𝐹 (𝑑𝑛) = {𝑥 ∈ 𝑈 , 𝑅+

𝐹 (𝑥) ∧ 𝑑𝑛 ≠ ∅ ∧ 𝑥 ∈ 𝑑𝑛}. (5)

So, the degree of approximation for 𝑑𝑛 in the attribute set F can be
alculated as

𝛾𝛽 (𝑑𝑛) =
|𝑅𝛽+

𝐹 (𝑑𝑛)|
. (6)
𝐹

|𝑅𝛽+
𝐹 (𝑑𝑛)|

3 
Example 2.2. From Table 1, 𝑈∕𝑑 = {{𝑥1, 𝑥2, 𝑥3}, {𝑥4, 𝑥5}},where 𝑑1 =
{𝑥1, 𝑥2, 𝑥3}, 𝑑2 = {𝑥4, 𝑥5},Then the degree of approximation for 𝑑1𝑎𝑛𝑑 𝑑2
can be obtained :

𝛾𝛽𝐹 (𝑑1) =
|𝑅𝛽+

𝐹 (𝑑1)|

|𝑅𝛽+
𝐹 (𝑑1)|

= 0.75 𝛾𝛽𝐹 (𝑑2) =
|𝑅𝛽+

𝐹 (𝑑2)|

|𝑅𝛽+
𝐹 (𝑑2)|

= 0.5

Multi-source ordered decision information system(MODIS) 𝐼≥
 {𝑈 , {𝐴𝑇 𝑝

𝑘 ∶ 𝑝 = 1, 2,… ..., 𝑠, 𝑘 = 1, 2,… ..., 𝑚} ∪ 𝑑 , {𝑉 𝑝
𝑘 ∶ 𝑝 =

, 2,… ..., 𝑠, 𝑘 = 1, 2,… ..., 𝑚}, 𝑓} is given. Let 𝑀𝑝 = (𝑚𝑝
𝑖𝑗 )𝑛∗𝑚 be the 𝑝th

nformation source 𝐼 𝐹𝑝, and 𝑉 = (𝑣𝑖𝑗 )𝑛∗𝑚 represents the center of the
ODIS, then the consensus degree (Shen et al., 2023) of 𝑀𝑝 is defined

as

𝑊 𝐶 𝐷𝑝 = 1 − 1
𝑚𝑛

𝑑(𝑀𝑝, 𝑉 ). (7)

where 𝑑(𝑀𝑝, 𝑉 ) is the Manhattan distance between 𝑀𝑝 and V

𝑑
(

𝑃 𝑘, 𝑉 )

=
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1

|

|

|

𝑚𝑝
𝑖𝑗 − 𝑣𝑖𝑗

|

|

|

. (8)

The calculation for information source center is
𝑉 =

∑

𝑖𝑝∈IN

𝑀𝑝

|IN|
. (9)

where |∙| represents the number of information sources in IN, IN is the
set of all information sources, 𝑝 ∈ 𝑅.

2.2. PROMETHEE method

In this subsection, the following PROMETHEE-methods will be
riefly reviewed and how they can be applied to the ODIS.

The PROMETHEE technique, recognized for its prevalence, has gar-
ered extensive application across various decision-making scenarios,
ielding commendable empirical outcomes. Central to the PROMETHEE
pproach is the formulation of a preference framework that delineates

the comparative advantage of one option over another, thereby facil-
tating an informed decision-making process. The brief steps of the
ethod are following
step1: Determine the generalized criteria to be studied.
step2: Establish the preference function 𝑃 within the context of the

eneralized criterion.
step3: Weighting the preference functions under different criteria.
step4: Compute the matrix of multi-criteria preference indices.
step5: Determine the outflow and inflow based on the preference

indices.
step6: Derive the net flow from the outflow and inflow figures.
step7: A partial order can be deduced using the outflow and inflow

ata.
step8: A complete order can be established based on the outflow

nd inflow information.
The PROMETHEE methodology encompasses two distinct

pproaches, namely PROMETHEE I and PROMETHEE II, corresponding
o the processes outlined in Steps 7 and 8, respectively. For the purposes

of this paper, the focus is placed on the application of PROMETHEE II.
Since the PROMETHEE II method is ultimately applied to the at-

tribute evaluation matrix defined in Definition 3.1 to compare the
attributes in this thesis, there is no need to consider whether Step 1
in Table 2 is real-valued or not, the key to using PROMETHEE II is to
define the appropriate preference function 𝑃 .

It is an ODIS with real-valued information is given. Under the
eneralized criterion, according to Rao et al. (2019) and Chen et al.

(2020), for any two objects, the preference function is as follows

𝑃 ∶ 𝑈 × 𝑈 → (0, 1). (10)

Given that the preference function serves to measure the disparity
between the assessment values of a pair of entities, the juxtaposition
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of abject 𝑎 and object 𝑏 in the context of a specific criterion 𝑎𝑚 can be
articulated as follows.

If the criterion 𝑎𝑗 is benefit, then

𝐻𝑗 = 𝑃 (𝑓 (𝑎, 𝑎𝑗 ) − 𝑓 (𝑏, 𝑎𝑗 )). (11)

If the criterion 𝑎𝑗 is benefit, then

𝐻𝑗 = 𝑃 (𝑓 (𝑏, 𝑎𝑗 ) − 𝑓 (𝑎, 𝑎𝑗 )). (12)

It is essential to ascertain a decision-maker’s preference for one
ntity, denoted as ‘𝑎’, in contrast to another, referred to as ‘𝑏’. This
scertainment is achieved by aggregating the comparative outcomes of

‘𝑎’ in relation to ‘𝑏’ across all evaluative dimensions. Concurrently, it is
imperative to quantify the significance of each criterion 𝐶𝑗 within the
synthesis process, which pertains to the assignment of criterion weights.
Should the decision-maker regard all criteria with uniform importance,
then the weights can be distributed evenly. Conversely, if the decision-
maker perceives the criteria with varying degrees of importance, the
weights must reflect this disparity. Therefore, when calculating, we
need to consider the weight of each criterion, and the summary formula
for the preference index is as follows:

P(𝑎, 𝑏) =
𝑚
∑

𝑗=1
𝐻𝑗 × 𝜔𝑗 . (13)

The aggregate of all benefits that an object holds over every other
bject is denoted by the term ‘‘leaving flow’’

𝜂+(𝑎) =
∑

𝑏∈𝑈
P(𝑎, 𝑏). (14)

The leaving flow is an aggregate measure of the superiority that an
object possesses over every other object across all evaluative criteria.

The sum of all the advantages of other objects relative to one object
s given as entering flow

𝜂−(𝑎) =
∑

𝑏∈𝑈
P(𝑏, 𝑎). (15)

The entering flow is the cumulative advantage that all other objects
ave over a particular object across the full spectrum of criteria.

From Eqs. (14) and (15), the net flow is called as the total advantage
f an object in the entire decision-making system, which is

𝜂(𝑎) = 𝜂+(𝑎) − 𝜂−(𝑎). (16)

In this paper, the preference function is defined as a linear prefer-
ence function, which is

𝑃𝑗 (𝑎, 𝑏) =
⎧

⎪

⎨

⎪

⎩

0 𝑑 𝑖𝑠(𝑎, 𝑏) ≤ 0
𝑑 𝑖𝑠(𝑎,𝑏)
𝑑 𝑖𝑠𝑗𝑚𝑎𝑥 0 < 𝑑 𝑖𝑠(𝑎, 𝑏) < 𝑑 𝑖𝑠𝑗𝑚𝑎𝑥
1 𝑑 𝑖𝑠(𝑎, 𝑏) ≥ 1.

(17)

In the Eq. (17), where

𝑑 𝑖𝑠(𝑎, 𝑏) = 𝑓 (𝑎, 𝑎𝑗 ) − 𝑓 (𝑏, 𝑎𝑗 ), (18)

And the 𝑑 𝑖𝑠𝑚𝑎𝑥 is given as following

𝑑 𝑖𝑠𝑗𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑓 (𝑥, 𝑎𝑗 )) − 𝑚𝑖𝑛(𝑓 (𝑥, 𝑎𝑗 )), (19)

And the rule that the preference function is a linear preference function
has also been used in subsequent experiments.

3. PROMETHEE-based feature selection for multi-source ordered
nformation systems

In this section, this paper will provide how to evaluate the given
attributes based on the relevant definitions in the previous text, and
how to rank the attributes to achieve the purpose of feature selection.
In general, the whole process of the method is shown in Fig. 1.
4 
3.1. The feature selection for ODIS

In this subsection, some necessary concepts of feature selection
method will be defined, and how to specifically perform feature selec-
tion on ODIS is presented by giving a example.

Definition 3.1. An ordered decision information system(ODIS) is given
as 𝑆≥ = (𝑈 , 𝐴𝑇 ∪ 𝑑 , 𝑉 , 𝑓 ), where 𝑈 = {𝑥1, 𝑥2,… ..., 𝑥𝑛} is a universe,
𝐴𝑇 = {𝑎1, 𝑎2,… ..., 𝑎𝑚}, 𝑈∕𝑑 = {𝑑1, 𝑑2,… ..., 𝑑𝑟} is the decision partition
of 𝑈 for 𝑑, 𝑑 = {𝐷1, 𝐷2,… ..., 𝐷𝑟} is the set of labels. As shown, the ODIS
is a matrix 𝑆𝑛×𝑚 with 𝑟 labels, so the attribute evaluation matrix of the

ODIS is matrix 𝐸𝑚×𝑟, where 𝐸𝑥𝑦 = 𝛾𝛽𝑎𝑥 (𝑑𝑦) =
|𝑅𝛽+

𝑎𝑥 (𝑑𝑦)|

|𝑅𝛽+
𝑎𝑥 (𝑑𝑦)|

, 𝑥 = 1, 2,… .., 𝑚; 𝑦 =

1, 2,… , 𝑟.
So according to Definition 3.1, It can obtain an attribute evaluation

matrix 𝐸𝑚×𝑟 from an ordered information decision-making system 𝑆𝑛×𝑚.
In the attribute evaluation matrix, the value 𝑒𝑚𝑟 in the 𝑚th row and rth
column represents the approximation value of the 𝑚th attribute under
he rth label and is used as the performance score of the 𝑚th attribute

under the rth label.
According to Eqs. (13) to (17), afterwards, we can obtain the pref-

erence index matrix between attributes, According to Eq. (13), when
calculating the preference value of one attribute for another attribute,
it is necessary to consider the weight of each class label. We define the
label weight as follows, as shown in Eq. (20)

𝜔𝑟 =
|𝑑𝑟|

∑𝑟
𝑦=1 |𝑑𝑦|

. (20)

By Eq. (20), it can be concluded that the number of class label samples
etermines the weight of the label.

Definition 3.2. An ordered decision information system(ODIS) is given
as 𝑆≥ = (𝑈 , 𝐴𝑇 ∪ 𝑑 , 𝑉 , 𝑓 ), where 𝑈 = {𝑥1, 𝑥2,… ..., 𝑥𝑛} is a universe,
𝐴𝑇 = {𝑎1, 𝑎2,… ..., 𝑎𝑚}, 𝑈∕𝑑 = {𝑑1, 𝑑2,… ..., 𝑑𝑟} is the decision partition
of 𝑈 for 𝑑, 𝑑 = {𝐷1, 𝐷2,… ..., 𝐷𝑟} is the set of labels. The attribute
evaluation matrix can be obtained as𝐸𝑚×𝑟. From the attribute evalua-
tion matrix, the preference index matrix of ODIS is can be expressed as
P𝑚×𝑚, where P𝑥𝑦 = P(𝑎𝑥 ,𝑎𝑦)according to the Eqs. (13) to (17) for attribute
valuation matrix 𝐸𝑚×𝑟.

Then from Eq. (16), the net inflow sequence for the attribute set 𝐴𝑇
can be calculated as 𝜂(𝐴𝑇 ) =
[𝜂+(𝑎1) − 𝜂−(𝑎1), 𝜂+(𝑎2) − 𝜂−(𝑎2), 𝜂+(𝑎3) − 𝜂−(𝑎3),… ....., 𝜂+(𝑎𝑚) − 𝜂−(𝑎𝑚)].

Next, This paper will provide an example to demonstrate how to
calculate the net inflow of each attribute under an ODIS.

Example 3.1. As shown in Table 2, It is a ordered decision information
ystem(ODIS), In this example, 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7}, 𝐴𝑇 =

{𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5}, 𝑑 = {1,2}, 𝑈∕𝑑 = {{𝑥1, 𝑥2, 𝑥3, 𝑥5},{𝑥3, 𝑥6, 𝑥7}}. Then,
According to Eqs. (11) to (17), and make 𝛽 = 0.25, the preference index
matrix of Table 2 can be obtained in Table 3. Then, by the Eq. (20), the

eights of two labels 1 and 2 in Table 2 can also be calculated as

𝑤𝑑1 = 4
7
, 𝑤𝑑1 = 3

7
.

After that, the attribute evaluation matrix is obtained in Table 4 ac-
ording to Definition 3.1 and the Eq. (13). Afterwards, based on the
ntering inflows and leaving flows proposed in Eqs. (14) through (16)

we end up with the preference index matrix with net inflows and net
utflows in Table 5. Finally the net inflow for each attribute is obtained
ccording to Eq. (16) as follows

𝜂 = [−0.0616, 2.5918,−0.0616,−0.0616,−2.4079].
According to the net inflows in descending order are
[𝑎2, 𝑎1, 𝑎3, 𝑎4, 𝑎5],
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Fig. 1. The process of the feature selection.
Table 2
An ODIS is given.
𝑈 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑑

𝑥1 0.8571 0.8718 0.2551 0.4227 0.6003 1
𝑥2 0.9229 0.8954 0.3879 0.9432 0.2178 1
𝑥3 0.7013 0.5007 0.3607 0.2257 0.5482 1
𝑥4 0.8242 0.9239 0.7609 0.1821 0.6731 2
𝑥5 0.4926 0.5887 0.9059 0.9469 0.4217 1
𝑥6 0.1075 0.3597 0.5401 0.3826 0.1103 2
𝑥7 0.7149 0.1034 0.7537 0.5618 0.5388 2

Table 3
Attribute evaluation matrix of Table 2.
𝑈 𝑑1 𝑑2
𝑎1 0.33 0.20
𝑎2 0.40 0.40
𝑎3 0.33 0.20
𝑎4 0.33 0.20
𝑎5 0.16 0.16

where 𝑎2 is the attribute with the best approximation, followed by
𝑎1, 𝑎3, 𝑎4 and the worst approximation is 𝑎5After that, according to
the need of selecting the number of attributes, starting from attribute
𝑎5, the number of attributes that satisfy the quantity requirement is
selected, and then the purpose of feature extraction is achieved.

With Example 3.1, the process of feature extraction for a single
source has been described clearly, essentially this paper uses the degree
of approximation to give a score to the attributes and then uses a
preference function to compare the attributes with each other and
finally uses the net inflow of each attribute as the basis for ranking
the attributes.

3.2. The feature selection for MODIS

According to Example 3.1, the process of ODIS feature selection for
a single source has been described clearly, this paper mainly focuses on
how to carry out MODIS feature selection under the condition of multi-
source, this subsection will be based on the feature selection method
for a single ODIS in the previous section to describe how to carry out
MSODIS feature selection under the condition of multi-source.
5 
Table 4
The preference index matrix of Table 2.
𝑈 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5
𝑎1 0 0 0 0 0.4693
𝑎2 0.5306 0 0.5306 0.5306 1
𝑎3 0 0 0 0 0.4693
𝑎4 0 0 0 0 0.4693
𝑎5 0 0 0 0 0

Table 5
The preference index matrix of Table 2.
𝑈 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝜂+

𝑎1 0 0 0 0 0.4693 0.4693
𝑎2 0.5306 0 0.5306 0.5306 1 2.5918
𝑎3 0 0 0 0 0.4693 0.4693
𝑎4 0 0 0 0 0.4693 0.4693
𝑎5 0 0 0 0 0 0
𝜂− 0.5306 0 0.5306 0.5306 2.4079

Definition 3.3. A multi-source ordered decision information sys-
tem(MODIS) is given as 𝐼≥ = {𝑈 , {𝐴𝑇 𝑝

𝑘 ∶ 𝑝 = 1, 2,… ..., 𝑠, 𝑘 =
1, 2,… ..., 𝑚} ∪ 𝑑 , {𝑉 𝑝

𝑘 ∶ 𝑝 = 1, 2,… ..., 𝑠, 𝑘 = 1, 2,… ..., 𝑚}, 𝑓𝑝}, Where
𝑉 𝑝
𝑘 represents the value of the 𝑘th attribute under the 𝑝th information

source, 𝑈 is a universe, and 𝑑 is the label attribute of 𝑈 .𝐴𝑇 𝑝
𝑘 =

{𝑎11, 𝑎12, 𝑎13,… ., 𝑎𝑝𝑘,… , 𝑎𝑠𝑚−1, 𝑎𝑠𝑚}, 𝑎
𝑝
𝑘 represents the 𝑘th attribute under the

𝑝th source, It is worth noting that the division of class labels 𝑈∕𝑑
by object 𝑈 is the same under any source. For the MOIDS, E𝑚×𝑟 are
the attribute evaluation matrices. For each ordered decision-making
information system an attribute evaluation matrix is obtained according
to Definition 3.1, so the attribute evaluation matrices for MODIS can be
written as E𝑚×𝑟 = {𝐸1

𝑚×𝑟, 𝐸2
𝑚×𝑟,… ..., 𝐸𝑠

𝑚×𝑟}, where 𝐸𝑠
𝑚×𝑟 is the attribute

evaluation matrix under the 𝑝th source.

Definition 3.4. For multi-source ordered decision information sys-
tem(MODIS), we define its 𝑝th source as 𝐼 𝐹𝑝, and 𝐼 𝐹 is a single
ODIS,in other words MODIS is set of multiple ODIS that can be writ-
ten as {𝐼 𝐹1, 𝐼 𝐹2,… ..., 𝐼 𝐹𝑝,… ..., 𝐼 𝐹𝑠}, where 𝐼 𝐹𝑝 represents the 𝑝th
information source.

In other words, a preference index matrix between attributes is
obtained in each source, and how to take into account the information
of all sources to obtain a final preference index matrix is an important
issue.
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Table 6
An example of MODIS is given.

U 𝑎1 𝑎2 𝑎3 𝑎4 d

𝑎11 𝑎21 𝑎31 𝑎12 𝑎22 𝑎32 𝑎13 𝑎23 𝑎33 𝑎14 𝑎24 𝑎34
𝑥1 0.30 0.11 0.67 0.26 0.61 0.70 0.05 0.13 0.61 0.54 0.24 0.30 2
𝑥2 0.47 0.32 0.20 0.63 0.85 0.19 0.97 0.66 0.79 0.90 0.54 0.29 1
𝑥3 0.91 0.29 0.65 0.52 0.73 0.30 0.52 0.39 0.14 0.18 0.80 0.40 2
𝑥4 0.95 0.25 0.31 0.42 0.56 0.24 0.86 0.86 0.58 0.67 0.22 0.24 1
𝑥5 0.62 0.40 0.74 0.27 0.31 0.72 0.89 0.38 0.69 0.20 0.95 0.10 2
𝑥6 0.40 0.84 0.94 0.99 0.97 0.50 0.73 0.38 0.89 0.44 0.95 0.19 1
𝑥7 0.56 0.44 0.59 0.41 0.67 0.96 0.72 0.82 0.99 0.40 0.89 0.21 2
,

𝑎

t

w
t

i
a
c
i

o

f

m
w
f

Table 7
The attribute evaluation matrices for Table 6.

U 𝑑1 𝑑2
𝑖1 𝑖2 𝑖3 𝑖1 𝑖2 𝑖3

𝑎1 0.20 0.20 0.75 0.33 0.33 0.75
𝑎2 0.60 0.28 0 0.50 0 0.42
𝑎3 0.67 0.20 0 0.80 0.33 0.28
𝑎4 0.33 0.33 0 0.20 0.20 0.28

Definition 3.5. 𝐼≥ = {𝑈 , {𝐴𝑇 𝑝
𝑘 ∶ 𝑝 = 1, 2,… ..., 𝑠, 𝑘 = 1, 2,… ..., 𝑚} ∪

 , {𝑉 𝑝
𝑘 ∶ 𝑝 = 1, 2,… ..., 𝑠, 𝑘 = 1, 2,… ..., 𝑚}, 𝑓𝑝} is given as a MODIS. The

reference index matrices can be written as Pre = {𝑃 𝑟𝑒1, 𝑃 𝑟𝑒2,… ...,
𝑃 𝑟𝑒𝑠}. Here 𝑃 𝑟𝑒𝑝 is the preference index matrix of the 𝑝th information.

In order to get a comprehensive preference index matrix between
attributes of multi-source information system, all sources will have
a weight, and the final preference index matrix between attributes
satisfies the following equation

𝐏𝐫 𝐞 =
𝑠
∑

𝑝=1
𝜔𝑝 × 𝑃 𝑟𝑒𝑝, (21)

where 𝜔𝑝 is the weight of 𝑝th information source, 𝑃 𝑟𝑒𝑝 represents the
preference index matrix of 𝑝th information source.

In this paper we consider that the information contained in all
sources is of equal importance, in other words, all sources have equal

eights, i.e., 𝜔𝑝 =
1
𝑠 in Eq. (21), 𝑠 is the number of information sources.

Afterwards, using the same method applied to the single infor-
ation system ODIS, i.e., the net flow of each attribute is calcu-

ated according to Eqs. (14) to (16) to obtain the sequence of runoffs
for all attributes under the multi-source ordered decision information
system(MODIS), which is as following 𝜂(𝐴𝑇 ) =
[𝜂+(𝑎1) − 𝜂−(𝑎1), 𝜂+(𝑎2) − 𝜂−(𝑎2), 𝜂+(𝑎3) − 𝜂−(𝑎3),… ....., 𝜂+(𝑎𝑚) − 𝜂−(𝑎𝑚)].

The same as the ODIS, sort the attributes according to the net flow
from the largest to the smallest order to get the attribute sequence,
and finally select a certain number of attributes according to the
feature selection rate, and then complete the feature selection under
the multi-source ordered decision information system(MODIS).

The above is the whole process of feature selection under multi-
ource decision information system. Next, this paper will give a con-
rete example to illustrate how this method is used for feature selection
rom a multi-source information system.

Example 3.2. Table 6 is given as a MODIS, As shown in Table 6, which
has 4 attributes and 3 information sources 𝑎𝑝𝑗 represents the 𝑗th at-
tribute under the 𝑝th information source. According to the Definition 3.3
the multi-source attribute evaluation matrices for Table 6 can be
btained, which is shown in Table 7. Next from Table 7 for the four
ttributes of the three information sources we can get the preference
ndex matrix for each of the three information sources, which is shown
n Table 8, Table 8 shows the preference index matrix for each attribute

for different information sources. From Eq. (21), then, the final prefer-
ence index matrix between attributes in Table 6 can be obtained from
Table 8, which combines the information contained in each information
6 
source and shown in Table 9. Finally, It can be calculated from attribute
1 to attribute 𝑎4 the net flow of each attribute according to Eq. (16).

[0.50851212,−0.28351067, 0.33919995,−0.56420141].

After that, the attribute sequences are obtained based on the at-
tribute net flows sorted from largest to smallest as follows

[𝑎1, 𝑎3, 𝑎2, 𝑎4].
Finally the attributes are selected according to the number of at-

ributes to be selected to complete the feature selection. If the feature
selection rate is 0.5, which means the features selected in the first 50
percent of the number of attributes, i.e. a1 and a3 are the attributes
selected.

The above is the whole process of feature selection for MODIS,
hich focuses on the calculation of the upper and lower approximation,

he approximation is the evaluation of the attributes of this thesis is
good or bad indicators.

It is worth noting that, in the specific process, the number of objects
n each class will have a greater impact on the calculation of the upper
nd lower approximations, for example, if the number of objects in a
lass label is 1, then its approximation can only be calculated as 1, it
s clear that this way of evaluating the attributes is biased.

Next, we summarize the process of the feature selection method for
MODIS in the Algorithm 1

Algorithm 1 is a static algorithm based on the PROMETHEE method
for feature selection of MODIS. The time complexity of the main steps
f the algorithm is analyzed next: the time complexity for calculating

the attribute evaluation matrix is 𝑂(𝑠 × 𝑟 × 𝑚), the time complexity
or calculating the preference index matrix is 𝑂(𝑠 × 𝑚2), the time

complexity for calculating net flow is 𝑂(𝑠), the time complexity for
selecting features is 𝑂(𝛼 × 𝑠). So the total time complexity of Algorithm
1 is 𝑂(𝑠 × 𝑚2).

4. Experimental analysis

In this section a series of experiments are held to test the perfor-
ance of our feature selection method and to compare the FSPA-MODI
ith other algorithms. The datasets used to conduct the experiments

rom the UCI (https//archive.ics.uci.edu/datasets). Website are shown
in Table 10. The feature selection method in this paper was written
by python 3.7 in the environment of Pycharm 2022 and was run on
a 3.30 GHz AMD Ryzen 5 5600H with Radeon Graphics, 16.0 GB of
memory, 64-bit Windows 11 computer.

Data processing: To confirm the datasets that adopted could rep-
resent the multi-source ordered information decision system, some
operation about data processing will be described in the following:
(1): Firstly, all datasets will exclude non numeric features and retain
attributes that can be sorted in the domain.

(2): Make maximum minimum normalization on all datasets
(3): Since the dataset for this experiment is a single two-dimensional

table, this paper constructs the sources by adding white noise for 50%
data to combine the multi-source information systems, the specific con-

https://archive.ics.uci.edu/datasets


W. Xu and Z. Yang

i
s

r

1

o

p
b
t
c
t

f

f
c

Engineering Applications of Artiϧcial Intelligence 142 (2025) 109935 
Table 8
Multi-source preference index matrix for Table 6.

U 𝑎1 𝑎2 𝑎3 𝑎4
𝑖1 𝑖2 𝑖3 𝑖1 𝑖2 𝑖3 𝑖1 𝑖2 𝑖3 𝑖1 𝑖2 𝑖3

𝑎1 0 0 0 0 0.5714 0.8241 0 0 1 0.1269 0.2285 1
𝑎2 0.5260 0.2755 0 0 0 0 0 0.2755 0.1758 0.5306 0 0.1758
𝑎3 0.8730 0 0 0.3469 0.5714 0 0 0 0 0.8775 0.2285 0
𝑎𝑚 0.1224 0.4285 0 0 0.4959 0 0 0.4285 0 0 0 0
Table 9
The final preference index matrix of Table 6.
P 𝑎1 𝑎2 𝑎3 𝑎𝑚 𝜂+(𝑎)

𝑎1 0 0.4652 0.3333 0.4518 1.2503
𝑎2 0.2671 0 0.1504 0.2354 0.6531
𝑥3 0.2910 0.3061 0 0.3687 0.9658
𝑥4 0.1836 0.1653 0.1428 0 0.4918
𝜂−(𝑎) 0.7418 0.9366 0.6266 1.0560

struction method can be referred to Eq. (22). Specifically, white noise
s added to 50% of the dataset each time to construct a information
ource.

𝐹𝑖(𝑥, 𝑎) =
{

𝑓 (𝑥, 𝑎) + 𝑛𝑖, if 𝑥 in 𝑈𝑟𝑎𝑑 𝑜𝑚
𝑓 (𝑥, 𝑎), else , (22)

where, 𝑈𝑟𝑎𝑑 𝑜𝑚 is the set of 50% dataset, 𝑛𝑖 obey a normal distribution
with a mean of 0 and a variance of 0.1.

Parameters set: This paper sets two parameters: attribute selection
ate 𝛼, that is, how many attributes are selected after the attributes

are sorted, and we decide |𝐴𝑇 | × 𝛼 attributes are selected according
to attribute selection rate 𝛼; Neighborhood radius 𝛽, which is used to
calculate the approximation degree in Eq. (6). Set 𝛽 from 0.05 to 0.5
by step 0.5 and for each 𝛽 set 𝛼 from 0.1 to 1 by step 0.1. However,
for datasets with number of attributes less than 10, set 𝛼 from 1

|𝐴𝑇 | to
 by step 1

|𝐴𝑇 |

Obtaining classification accuracy: this paper classifies the
feature-selected dataset by three classifiers: KNN, SVM and DT, and
btains its mean accuracy under the 5-flod cross validation.
Selection of information source: There is another problem to

ay attention to that is how to classify after the feature selection,
ecause this paper deals with multi-source information system rather
han a single two-dimensional information system, which would not be
lassified by classifiers. So in the experiments will take into account
he problem, according to Eqs. (7)–(10) this paper in the experiments

through the introduction of the consensus degree to select the best
information source from multiple sources to follow up the classification
accuracy test part when the feature selection is complete.i.e

𝐼 𝐹𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝐼 𝐹𝑝𝑊 𝐶 𝐷𝑝, (23)

where 𝐼 𝐹𝑏𝑒𝑠𝑡 is the best information source in the multi information
system, and 𝐼 𝐹𝑝 is the 𝑝th information source.

From Eq. (23), the feature-selected 𝐼 𝐹𝑝 will be classified by the
three classifiers, and acquire the accuracy which will be evaluation for
eature selection.

4.1. Classification effect of KNN classifier for features-selected dataset

In this subsection, based on the determination of the parameters
in the previous section, this paper conducts KNN classification for the
MODIS after feature selection, and obtains the classification accuracy at
different 𝛽 and different attribute selection rates 𝛼, which is specifically
shown in each subfigure in Fig. 2. Through the observation of each
subgraph in Fig. 2, it can be found that most of the datasets have high
sensitivity to the change of parameters, and the change process of 𝛽
rom 0.05 to 0.5 in some datasets does not have much change in its
lassification accuracy, which indicates that 𝛽 should be set according
7 
Algorithm 1: An feature selection PROMETHEE II-based al-
gorithm for multi-source ordered decision information(FSPA-
MODI)

Input: MSODIS:𝐼≥ = {𝑈 , {𝐴𝑇 ∶ {𝑎11, 𝑎12, ..., 𝑎
𝑝
𝑗 , ..., 𝑎𝑠𝑚}𝑝 =

1, 2, ......, 𝑠, 𝑘 = 1, 2, ......, 𝑚} ∪ 𝑑 , {𝑉 𝑝
𝑘 ∶ 𝑝 = 1, 2, ......, 𝑠, 𝑘 =

1, 2, ......, 𝑚}, 𝑓𝑝},feature selection rate𝛼,neighborhood
radius𝛽,U/d = {𝑑1, 𝑑2, ......, 𝑑𝑟}

Output: features that selected𝐴𝑇𝑠𝑒𝑙 𝑒𝑐 𝑡𝑒𝑑
1 𝐸 𝑉 𝐴 ← {}
2 for 𝑝 = 1 to 𝑠 do
3 create zero matrix :𝐸𝑚×𝑟;
4 for 𝑡 = 1 to 𝑟 do
5 for 𝑗 = 1 to 𝑚 do
6 Calculate the degree of approximation

𝑒𝑗 𝑡 ← 𝛾𝛽𝑎𝑗 (𝑑𝑡) =
|𝑅𝛽+

𝐹 (𝑑𝑡)|

|𝑅𝛽+
𝐹 (𝑑𝑡)|

;

7 end
8 end
9 𝐸 𝑉 𝐴 ← 𝐸 𝑉 𝐴 ∪ {𝐸𝑚×𝑟};
10 end
11 𝑃 𝑟𝑒 ← {};
12 for 𝑖 = 1 to 𝑠 do
13 create zero matrix :𝑃𝑚×𝑚;
14 for 𝑗 = 1 to 𝑚 do
15 for 𝑡 = 1 to 𝑚 do
16 Calculate the preference index of the j-th attribute;

for the t-th attribute and use it as the j-th row
andt-th column element in the matrix:
𝑝𝑗 𝑡 ← P(𝑎𝑗 , 𝑎𝑡);

17 end
18 end
19 𝑃 𝑟𝑒 ← 𝑃 𝑟𝑒 ∪ {𝑃𝑚×𝑚};
20 end
21 calculate the final preference index matrix :P𝑚×𝑚 =

∑𝑠
𝑝=1 𝑃 𝑟𝑒[𝑝] × 𝜔𝑝,where 𝜔𝑝 =

1
𝑝 ;

22 𝜂𝑙 𝑖𝑠𝑡 ← {};
23 for each 𝑗 = 1 to 𝑠 do
24 Calculate the net flow of attribute𝑎𝑗 ; 𝜂𝑙 𝑖𝑠𝑡 ← 𝜂𝑙 𝑖𝑠𝑡 ∪ {𝜂(𝑎𝑗 )};
25 end
26 Arrange the 𝜂𝑙 𝑖𝑠𝑡 in descending order to get a new sequence of

attributes:𝐴𝑇 = {𝑎1, 𝑎2, 𝑎3, ......, 𝑎𝑚};
27 for 𝑝 = 1 to 𝛼 × 𝑠 do
28 𝐴𝑇𝑠𝑒𝑙 𝑒𝑐 𝑡𝑖𝑜𝑛 ← 𝐴𝑇𝑠𝑒𝑙 𝑒𝑐 𝑡𝑖𝑜𝑛 ∪ 𝐴𝑇 [𝑝];
29 end
30 return𝐴𝑇𝑠𝑒𝑙 𝑒𝑐 𝑡𝑖𝑜𝑛;

to the size of the change of data in the dataset to set up the range of
change of 𝛽 specifically for a better effect. Overall, it is necessary to find
a suitable combination of parameters in the process of feature selection.

The classification accuracy under different 𝛽 at half of the feature
selection rate and the classification accuracy without feature selection
are shown in Table 11, from which it can be seen that even with half
of the features selected, most of their classification accuracies under
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Fig. 2. The accuracy of different 𝛽 and 𝛼: (a) Wine, (b) Breast Cancer, (c) Abalone, (d) Dry Bean, (e) Magic gamma relescope, (f) Occupancy Detection, (g) Hill valley, (h)
DARWIN, (i) Parkinson’s Disease Classification, (j) Toxicity, (k) Maternal health risk, (l) Yeast.
Table 10
The summary of datasets

No. Datasets Samples Attributes Classes

Data1 Toxicity 171 1204 2
Data2 DARWIN 174 452 2
Data3 Wine 178 13 3
Data4 Breast Cancer 569 30 2
Data5 Hill valley 606 100 2
Data6 Parkinson’s Disease Classification 756 755 2
Data7 Maternal health risk 1014 6 3
Data8 Yeast 1484 8 10
Data9 Abalone 4177 8 3
Data10 Dry Bean 13 611 16 7
Data11 Magic gamma relescope 19 020 10 2
Data12 Occupancy detection 20 560 5 2

the appropriate 𝛽 are higher than the classification accuracy of the raw
data. In some datasets, the highest classification accuracy is lower than
that of the raw data under different values of 𝛽, such as Data11 and
Data12, but the difference between the two is very small.

From the data in Table 11, it can be seen that, on the one hand,
Algorithm 1 does select effective features in each dataset, and most of
the classification accuracies under half of the features are higher than
those of the raw data. On the other hand, the classification accuracies
under different 𝛽 are not the same, which again shows that Algorithm
1 is highly sensitive to the parameters, and it is necessary to choose the
appropriate parameters 𝛽 and 𝛼 when making feature selection.

4.2. Classification effect of SVM classifier for features-selected dataset

The classification accuracy on SVM after feature selection is shown
in Fig. 3, which is the same as the results of KNN classification, most
of the datasets have high sensitivity to parameter changes, and some
datasets have no significant change in classification accuracy when 𝛽
8 
changes from 0.05 to 0.5. Overall, it is necessary to find a suitable
combination of parameters in the process of feature selection.

The classification accuracy of half of the features selected for each
𝛽 under SVM is also listed as shown in Table 12, which is different
from the KNN classification results, and the results of SVM classification
show that there are more datasets with better classification results than
those after feature selection, but the classification accuracy of the data
after feature selection is very small compared to that of the raw data
in this case. Also, there are some case that the classification accuracy
of feature-selected data is better than raw data.

The results from Table 12 show that under the SVM classifica-
tion results, the features that are effective under multiple sources of
information in each dataset are indeed selected by Algorithm 1.

4.3. Classification effect of DT classifier for features-selected dataset

The classification accuracy on DT after feature selection is shown in
Fig. 4, which is the same as the results of KNN and SVM classification,
most of the datasets have high sensitivity to parameter changes, and
some datasets have no significant change in classification accuracy
when 𝛽 changes from 0.05 to 0.5. Overall, it is necessary to find a
suitable combination of parameters in the process of feature selection.

In Table 13, the classification accuracy of DT under half of the
attribute selection rate under different 𝛽 and the classification accuracy
of the raw data are listed, in fact, through the results of Table 13 show
that DT’s classification results of the data after feature selection are
largely the same as SVM, there will be some datasets that will be better
classified on the raw data, but in this case, the classification accuracy
of the attributes that are selected only half of the attributes is actually
very similar to that of the with the raw data is very small.

The classification results of DT are consistent with those of KNN
and SVM, which show that Algorithm 1 can effectively select the
attributes with better classification effect, while on the other hand,
Algorithm 1 has parameter sensitivity, and it is necessary to determine
the appropriate parameters.
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Fig. 3. The accuracy of different 𝛽 and 𝛼: (a) Wine, (b) Breast Cancer, (c) Abalone, (d) Dry Bean, (e) Magic gamma relescope, (f) Occupancy Detection, (g) Hill valley, (h)
DARWIN, (i) Parkinson’s Disease Classification, (j) Toxicity, (k) Maternal health risk, (l) Yeast.

Fig. 4. The accuracy of different 𝛽 and 𝛼: (a) Wine, (b) Breast Cancer, (c) Abalone, (d) Dry Bean, (e) Magic gamma relescope, (f) Occupancy Detection, (g) Hill valley, (h)
DARWIN, (i) Parkinson’s Disease Classification, (j) Toxicity, (k) Maternal health risk, (l) Yeast.
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Table 11
The classification accuracy (%) of feature-selected datasets on KNN.

Dataset 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05 Raw

Data1 66.06 62.55 61.37 61.96 63.14 61.36 60.80 61.98 60.80 61.37 61.94
Data2 69.56 67.84 66.70 68.99 70.13 72.99 72.42 71.84 70.70 68.9 68.42
Data3 97.17 98.31 95.50 97.73 93.25 93.25 94.36 94.36 94.36 94.36 96.63
Data4 95.94 95.94 94.88 94.18 94.35 94.88 94.88 94.88 94.88 94.88 96.47
Data5 55.60 57.42 53.63 56.43 56.27 56.60 56.27 56.27 56.27 56.27 55.11
Data6 88.08 86.50 86.90 86.63 88.48 87.69 87.69 88.09 87.82 88.22 87.43
Data7 63.30 71.49 71.49 72.38 72.38 72.38 72.38 72.38 72.38 72.38 70.60
Data8 41.67 41.67 41.67 41.67 41.67 41.67 41.67 41.74 41.74 41.74 56.03
Data9 51.34 50.91 49.76 50.95 49.47 49.47 49.47 49.47 49.47 49.47 52.72
Data10 91.72 90.55 90.57 90.57 90.57 90.57 90.16 90.16 90.16 90.16 91.35
Data11 80.24 80.24 79.60 79.60 80.2 80.24 80.24 80.24 80.24 80.24 82.77
Data12 99.21 98.14 98.14 98.14 98.14 98.14 98.14 98.14 98.14 98.14 99.23
Table 12
The classification accuracy (%) of feature-selected datasets on SVM.

Dataset 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05 Raw

Data1 56.73 58.48 60.25 58.48 61.42 60.21 61.41 60.23 58.50 59.07 55.56
Data2 93.29 91.36 91.89 90.48 91.89 91.36 92.24 91.71 92.41 92.94 92.07
Data3 97.19 96.63 95.52 97.76 93.26 93.26 93.25 93.25 93.25 93.25 97.74
Data4 97.18 97.35 95.59 94.36 95.06 95.06 94.53 94.53 94.53 94.53 96.82
Data5 50.16 50.49 50.0 50.16 50.33 50.33 50.33 50.33 50.33 50.33 50.49
Data6 85.97 86.76 86.37 85.97 87.03 85.84 86.50 86.77 86.37 86.63 85.71
Data7 60.05 63.80 63.80 60.54 60.54 60.54 60.54 60.54 60.54 60.54 64.09
Data8 45.24 45.24 45.24 45.24 45.24 45.24 45.24 45.24 45.24 45.24 56.70
Data9 53.73 53.92 53.85 54.23 54.14 54.14 54.14 54.14 54.14 54.14 54.57
Data10 92.03 91.43 91.36 91.36 91.36 91.36 91.14 91.14 91.14 91.14 92.10
Data11 78.46 78.46 78.86 78.86 78.46 78.46 78.46 78.46 78.46 78.46 79.13
Data12 98.77 83.24 83.24 83.24 83.24 83.24 83.24 83.24 83.24 83.24 98.83
Table 13
The classification accuracy (%) of feature-selected datasets on DT.

Dataset 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05 Raw

Data1 62.55 54.90 59.59 61.36 59.02 60.78 59.07 56.67 61.36 61.94 60.20
Data2 82.01 80.55 79.76 80.29 80.02 81.08 79.23 80.42 79.63 78.83 80.82
Data3 90.98 90.44 93.84 93.84 92.71 92.69 92.15 92.71 92.71 91.03 90.46
Data4 93.29 91.36 91.89 90.48 91.89 91.36 92.24 91.71 92.41 92.94 92.07
Data5 57.09 57.42 55.44 59.40 56.43 60.06 58.24 59.24 57.92 58.08 58.90
Data6 82.01 80.55 79.76 80.29 80.02 81.08 79.23 80.42 79.63 78.83 80.82
Data7 69.62 78.99 79.38 80.07 80.46 80.66 80.37 80.56 80.56 80.46 84.51
Data8 38.57 38.90 39.04 39.11 39.51 39.11 38.90 39.17 38.91 38.70 50.50
Data9 47.55 48.13 45.92 47.94 48.13 47.43 47.67 47.50 47.53 47.74 49.90
Data10 89.39 88.31 88.90 88.92 88.82 88.97 88.17 88.29 88.16 88.31 89.50
Data11 78.51 78.56 77.97 78.05 78.59 78.34 78.60 78.54 78.29 78.53 81.79
Data12 98.99 97.33 97.29 97.39 97.26 97.32 97.33 97.33 97.41 97.32 99.13
c
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4.4. Comparison of experiments

In this subsection, because of few studies of feature selection for
multi-source information, the comparison of Algorithm 1 (FSPA-MODI)
with 3 current feature selection methods for single-source ordered
nformation: HAR (Xu and Yang, 2023), HFS-IVO (Sang et al., 2021),

WD-HAR (Pan et al., 2023) and 1 fusion model FS-MS (Xu et al., 2022a)
as conducted. But some work is done before comparison to make

ure the 4 algorithms could be applied on the multi-source ordered
nformation system. Here the more details will be classified about the
esigning of comparison:

(1): The parameters 𝜆 and radius of neighborhood 𝛿 of WD-HAR
algorithm are set to 0.25 and −0.1 partly.

(2): The parameter 𝑝 of HFS-IVO algorithm are set as 0.5.
(3): The parameter 𝛼 and 𝛽 of FS-MS algorithm are set as 0.4 and

0.5 partly.
(4): The parameter 𝛽 of FSPA-MODI is set as 0.25 while the at-

ribution reduction rate 𝛼 is set two values: 30%, 50%, 70% respec-
ively,namely FSPA-MODI(30%), FSPA-MODI(50%) and FSPA-MODI
70%)

(5): To illustrate the effectiveness of FSPA-MODI and other 4 al-
orithms, the datasets listed in Table 10 are used by the algorithms
 i
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after the process at the beginning of this section for the datasets. The
classification accuracy of the datasets after feature selection under three
lassifiers: KNN, SVM, DT, as well as the running time of our algorithm
ith four other algorithms. The mean value of 5-fold cross validation

or all classifiers is used as final accuracy.
(6): Attention. For information fusion algorithm FS-MS, the classifi-

ation accuracy of the fused data will be added into comparison with
ther algorithms

Firstly, the accuracy of three classifiers on the feature-selected
atasets under all algorithms is analyzed. The more detailed data are
hown in Tables 14–16. From Tables 14–16, it can be obtained that the
erformance of FSPA-MOID on the most features-selected datasets is
etter than other algorithms. For the whole 12 datasets on 3 classifiers,

there are 36 cases and HAR, WD-HAR, HFS-IVO, FS-MS, FSPA-MOID
perform best on the 1, 2, 5, 1, 21 cases. Also FSPA-MOID performance
best on the average accuracy. Generally speaking, from all accuracy of
features-selected datasets on three classifiers, FSPA-MOID is still best.

Then the run time of all algorithms is also listed in Table 17.
Some explanations about running time must be given. Because of the
comparison with algorithms for single source ordered information. The
running time of FSPA-MOID only calculated for one information source
n the MSODIS. In Table 17, the run time of FSPA-MOID is minimal on
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Table 14
The classification accuracy (0 − 1) of feature-selected datasets by reduction algorithms on KNN.

Dataset HAR WD-HAR HFS-IVO FS-MS FSPA-MODI (30%) FSPA-MODI (50%) FSPA-MODI (70%) Raw data

Data1 0.613 0.637 0.626 0.62 0.627 0.625 0.648 0.643
Data2 0.654 0.625 0.591 0.55 0.747 0.735 0.689 0.614
Data3 0.887 0.945 0.787 0.714 0.859 0.87 0.96 0.938
Data4 0.948 0.968 0.959 0.861 0.915 0.927 0.917 0.964
Data5 0.523 0.527 0.528 0.486 0.475 0.478 0.481 0.551
Data6 0.742 0.768 0.800 0.677 0.828 0.835 0.821 0.784
Data7 0.633 0.725 0.633 0.489 0.419 0.571 0.658 0.723
Data8 0.347 0.497 0.383 0.285 0.3774 0.469 0.54 0.521
Data9 0.489 0.517 0.509 0.427 0.466 0.48 0.519 0.519
Data10 0.668 0.723 0.761 0.138 0.865 0.902 0.902 0.827
Data11 0.825 0.833 0.763 0.693 0.735 0.782 0.791 0.824
Data12 0.748 0.859 0.925 0.81 0.755 0.893 0.944 0.922

Average 0.673 0.721 0.722 0.721 0.672 0.713 0.739 0.735
Table 15
The classification accuracy (0 − 1) of feature-selected datasets by reduction algorithms on SVM.

Dataset HAR WD-HAR HFS-IVO FS-MS FSPA-MODI (30%) FSPA-MODI (50%) FSPA-MODI (70%) Raw data

Data1 0.672 0.6724 0.479 0.672 0.607 0.555 0.567 0.532
Data2 0.717 0.706 0.757 0.551 0.827 0.816 0.833 0.786
Data3 0.904 0.938 0.787 0.769 0.871 0.888 0.96 0.956
Data4 0.964 0.973 0.964 0.883 0.922 0.926 0.933 0.968
Data5 0.498 0.504 0.499 0.496 0.498 0.509 0.511 0.504
Data6 0.784 0.843 0.824 0.746 0.855 0.861 0.862 0.808
Data7 0.552 0.592 0.552 0.453 0.462 0.559 0.612 0.64
Data8 0.398 0.458 0.452 0.349 0.317 0.397 0.511 0.559
Data9 0.534 0.539 0.535 0.511 0.509 0.511 0.541 0.495
Data10 0.782 0.834 0.858 0.535 0.864 0.912 0.913 0.861
Data11 0.79 0.789 0.755 0.717 0.748 0.781 0.798 0.791
Data12 0.794 0.974 0.987 0.987 0.768 0.837 0.838 0.986

Average 0.697 0.726 0.739 0.732 0.687 0.712 0.740 0.740
Table 16
The classification accuracy (0 − 1) of feature-selected datasets by reduction algorithms on DT.

Dataset HAR WD-HAR HFS-IVO FS-MS FSPA-MODI (30%) FSPA-MODI (50%) FSPA-MODI (70%) Raw data

Data1 0.549 0.553 0.62 0.561 0.567 0.543 0.52 0.596
Data2 0.708 0.626 0.722 0.534 0.741 0.77 0.712 0.699
Data3 0.904 0.876 0.826 0.658 0.876 0.809 0.904 0.887
Data4 0.943 0.882 0.936 0.822 0.867 0.903 0.894 0.919
Data5 0.547 0.572 0.518 0.534 0.524 0.531 0.553 0.553
Data6 0.73 0.752 0.769 0.693 0.794 0.789 0.761 0.75
Data7 0.686 0.804 0.686 0.541 0.455 0.592 0.681 0.805
Data8 0.32 0.49 0.399 0.315 0.287 0.345 0.401 0.496
Data9 0.455 0.493 0.477 0.482 0.441 0.444 0.497 0.495
Data10 0.377 0.569 0.493 0.124 0.827 0.868 0.872 0.56
Data11 0.778 0.815 0.713 0.619 0.686 0.735 0.759 0.817
Data12 0.682 0.87 0.848 0.813 0.728 0.87 0.922 0.834

Average 0.639 0.703 0.667 0.558 0.649 0.683 0.706 0.703
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9 datasets and average running time comparing with other algorithms.
So, overall, FSPA-MOID outperforms other feature selection algorithms
in terms of running time and classification performance.

The above are all the results of the experimental comparison.
From all the results, FSPA-MOID has excellent performance in feature
selection.

5. Conclusion

Multi-source ordered information decision systems, as prevalent
forms of information systems in everyday applications, warrant in-
reased scholarly focus. These systems offer a more nuanced and en-
iched representation compared to their single-source counterparts, as
hey encapsulate a greater breadth of information value.

For the theoretical aspect, this paper addresses the feature selection
challenge within multi-source ordered information decision systems by
 T

11 
elucidating the dominant domain relationships and the ensuing upper
and lower approximations inherent to ordered information systems. We
adopt the approximation degree as a metric for attribute discernibility
and harness the preference relations within the PROMETHEE method to
construct a preference index matrix among attributes, thereby making
feature selection via decision-making method. And for the practical
aspect, as mentioned in the introduction of this paper, multi-source
nformation systems are becoming increasingly common in real life
nder the context of big data. The feature selection method proposed
n this paper will have more opportunities to be applied in real life,
nd can effectively select weighty attributes in multi-source ordered
ecision information systems while considering all information sources
o achieve role of feature selection.

In our approach, each source within the multi-source ordered in-
ormation decision system yields a distinct preference index matrix.
hese matrices are then equally weighted and integrated to form a
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Table 17
The run time(s) of different algorithms for all datasets.

Dataset HAR WD-HAR HFS-IVO FS-MS FSPA-MODI

Data1 961.091 81 725.251 548.768 52.687 16.954
Data2 2349.73 83 345.681 165.488 20.113 7.157
Data3 4.644 9.973 0.081 0.504 0.112
Data4 214.874 443.8 2.385 8.895 2.179
Data5 753.451 16 285.402 35.97 22.23 8.14
Data6 2485.54 98 357.335 3836.354 240.196 97.877
Data7 24.479 79.257 1.7 3.269 1.24
Data8 31.12 791.71 4.658 8.387 7.515
Data9 123.49 3308.394 55.216 55.037 39.227
Data10 3373.022 261 818.306 965.371 1318.445 1383.148
Data11 4328.492 44 152.241 898.418 1394.789 857.449
Data12 3905.136 4687.692 439.966 775.949 398.429

Average 1546.255 49 583.753 571.198 325.041 232.626

comprehensive matrix that encapsulates the attribute set’s ordering for
he entire system. The contributions of this work are threefold: (1)

We introduce a novel feature selection methodology tailored for multi-
ource ordered information decision-making systems, grounded in the
ROMETHEE approach; (2) Our method fully considers the information
ncapsulated within each source of a multi-source ordered informa-
ion decision-making system; (3) Experimental validation on multiple
atasets substantiates the efficacy of our feature selection algorithm.

However, the current algorithm uniformly assigns equal weights
o each source, neglecting potential disparities in source significance,
hich could necessitate differential weighting. Future work will ex-
lore a more objective and scientifically rigorous method for source
eighting, aiming to refine and enhance our approach accordingly.
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