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Rough set is a data mining method based on approximate 
reasoning. It involves analyzing and reducing dataset fea-
tures to mine patterns and rules. Pawlak introduced rough 
set in 1982 as a means to handle data uncertainty and fuzzi-
ness [2]. As researchers increasingly focus on rough set, 
numerous models based on Pawlak’s rough set have been 
proposed. Neighborhood rough set theory [3, 4] is built on 
the relationship between domains for data processing and 
analysis.Neighborhood rough set supports various tasks 
such as feature selection [5], classification [6], clustering 
[7], and association rule mining [8]. Ziarko [9] proposes a 
variable precision rough set model allowing the use of dif-
ferent precision levels in the computation process The pri-
mary advantage of variable precision rough set is its flexible 
adjustment of precision levels according to different prob-
lems, enhancing decision-making accuracy.

Attribute reduction is very important in the application 
of rough set theory [10]. In neighborhood rough set, attri-
bute reduction is widely used in data analysis and knowl-
edge extraction tasks. Ye et al. [11] introduced a novel 

1 Introduction

Due to the advancements in artificial intelligence and life 
sciences, assisted medical diagnosis has emerged as a cru-
cial application in the field of medicine. Assisted diagnosis 
aids doctors in diagnosing diseases more rapidly and accu-
rately, thereby enhancing the precision of diagnosis and 
treatment outcomes. By analyzing a substantial volume of 
medical data, artificial intelligence can uncover potential 
associations and patterns, assisting doctors in predicting 
diseases and evaluating risks [1].
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fuzzy rough set model with fuzzy neighborhood operators. 
Xu et al. [12] introduced a similarity measure based on 
shared neighborhoods and proposed the shared neighbors 
rough set. Xu et al. [13] achieved attribute approximation 
by performing dynamic updates on local generalized multi-
granularity neighborhood rough sets. Chen et al. [14] devel-
oped an accelerator based on the random sampling. In the 
variable precision rough set, the importance of attributes 
can be measured using different precision levels [15]. Chen 
et al. [16] proposed an incremental algorithm for attribute 
approximation based on variable precision rough sets.

Game theory is the study of the strategies and outcomes 
adopted by decision makers in their interactions, and it 
emphasizes the interaction and interdependence between 
participants [17, 18]. The study of game theory has found 
wide applications in the fields of economics [19], politi-
cal science [20], management [21], as well as in computer 
science in artificial intelligence [22], machine learning 
[23], multi-intelligent body systems [24], and other areas. 
Through the analysis of game theory, decision makers can 
better understand the advantages and disadvantages of dif-
ferent strategies and how to optimize the decision-making 
process and results. An ensemble classifier is a machine 
learning method that combines multiple base classifiers 
(such as decision trees [25], SVM [26], KNN [27], etc.) to 
improve overall predictive performance. Ensemble classi-
fiers perform particularly well in handling complex data 
and addressing model uncertainty. Applying game theory to 
ensemble classifiers can simulate competition or coopera-
tion between different classifiers, optimizing the integration 
strategy [28]. Each classifier can be viewed as a player in 
the game, making decisions collectively through strategy 
choices (such as weight adjustments and result combina-
tion) to achieve more accurate classification. This approach 
is especially useful for resolving conflicts between classi-
fiers and enhancing classification robustness.

This study provides a comprehensive exploration of 
neighborhood rough sets and variable precision rough 
sets, which have garnered substantial interest in the field. 
Focusing on the inherent high dimensionality and attribute 

relevance within oncogene data, we introduce an attribute 
approximation algorithm termed Novel Variable Precision 
Rough set-based Neighborhood (NVR). The algorithm is 
founded on domain rough set theory and variable precision 
rough set theory, employing a calculated measure of cor-
relation and information gain between attributes to adeptly 
identify and eliminate redundancy. The NVR algorithm 
adeptly leverages attribute interconnections, enhancing the 
data’s utility by refining attribute selection. The framework 
diagram illustrating the relevance of this study to existing 
research is shown in Fig. 1. The main contributions of this 
paper are as follows:

 ● To address the inherent high dimensionality and attri-
bute correlations in oncogene data, a novel attribute 
approximation algorithm based on the newly proposed 
Neighborhood Variable Precision Rough Set (NVR) is 
introduced.

 ● Leveraging the inherent interpretability of cooperative 
game theory, we propose an ensemble classifier model 
(GEC).

 ● Several tumor gene datasets were selected for experi-
mental validation, and comparisons were made with 
various state-of-the-art attribute reduction algorithms 
and ensemble classifier models to verify the superiority 
and effectiveness of the proposed algorithm and model 
in this paper.

The remainder of this paper is structured as follows: Section 
2 establishes the theoretical foundation by introducing the 
basic concepts of Pawlak rough sets, neighborhood rough 
sets, and variable precision rough sets. Building on this, 
Section 3 presents our attribute reduction method. Section 4 
advances the discussion by proposing a dynamic ensemble 
classifier model based on cooperative game theory. Section 
5 provides empirical validation and analysis of the pro-
posed algorithm framework, highlighting its practical utility 
and effectiveness in medical diagnostic assistance. Finally, 
Section 6 offers a brief summary of our work and outlines 
potential avenues for future research exploration.

Fig. 1 A framework diagram of the 
connections between this study and 
existing research
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2 Preliminaries

This section commences with an overview of classic Pawlak 
rough sets. Subsequently, it delves into detailed discussions 
on neighborhood rough sets and variable precision rough 
sets. Building upon this foundation, a brief introduction to 
classifiers is provided, followed by an introduction to coop-
erative game theory.

2.1 Neighborhood rough set

An information system I can be characterized as a tuple 
(U, N), where N denotes the attribute set, which is com-
prised of the attribute set for conditions C and the attri-
bute set for decisions D. Specifically, N is represented as 
N = C ∪ D. Given any  and a ∈ N , the notation  
is applied to indicate the value of the attribute a for the 
object . In the scenario where all the attributes in set C are 
numeric, the information system I is commonly known as a 
proximity information system. This terminology is used in 
the context of Pawlak’s rough set theory [29].

In neighborhood rough set theory, the neighborhood 
between two objects  and  within an attribute set N ′ ⊆ N  
is measured using a distance function ∆. According to Xu et 
al. [30], the distance function ∆ can be expressed as follows:

 (1)

A cover of the domain U, known as the neighborhood infor-
mation granule, can be defined using the distance function 
∆. This cover, denoted as , is expressed as follows:

 (2)

Definition 1 Consider a dataset I = (U, N), where N rep-
resents the attribute set and U represents the domain of 
discourse. Assume that δ represents the size of the neigh-
borhood, and  denotes the neighboring clusters based 
on the proximity relation RNi  that is applied to the subset 
Ni ⊆ N . Given every subset X ⊆ U, the lower and upper 
approximations of X within RNi  can be defined as follows

 (3)

2.2 Variable precision rough set

Variable precision rough set theory is a development of 
Pawlak’s rough set theory that introduces an extra parameter 

known as precision β. By varying the value of β, the preci-
sion of the rough set approximation can be adjusted. This 
modification allows for a more flexible way of analyzing 
data than Pawlak’s rough set theory.

The relative misclassification rate between two subsets 
Y and Z of a universe U is represented by the subsequent 
equation:

c(Y, Z) =
{

1 − |Y ∩ Z|/|Y |, |Y | > 0;
0, |Y | = 0.  (4)

This rate measures the extent to which Y is misclassified 
with respect to Z. Note that the relative misclassification 
rate is defined only when Y is non-empty.

Assume that 0 ≤ β < 0.5. In this situation, the predomi-
nant inclusion relation is expressed as follows

Y
β

⊆ Z ⇔ c(Y, Z) ≤ β.  (5)

When β is defined as the fraction of the classification error, 
it ranges from 0 ≤ β < 0.5. If β is defined as the proportion 
of accurate categorization, it will span from 0.5 < β ≤ 1. 
In this paper, we define β representing the ratio of accurate 
categorization, then β will range from 0.5 < β ≤ 1.

Definition 2 [31] Consider an information system 
I = (U, N), where N = C ∪ D represents the attribute set, 
consisting of the conditional attribute set C and the decision 
attribute set D. Let B denote a subset of C. For any X ⊆ U, 
β in (0.5, 1], the upper and lower approximations Rβ(X) 

and Rβ(X) of the equivalence classes of X in relation to B 
are specified as follows

 (6)

Consequently, the boundary region of the variable precision 
rough set can be characterized as

BON (X) = Rβ(X) − Rβ(X)  (7)

2.3 Cooperative game

The field of game theory delves into the study of individual 
decision-making processes amidst interdependence and 
influence [32]. It focuses on the interactions and strategic 
choices between parties in a multi-party decision-making 
process.
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3.1 Attribute reduction based on Pawlak’s rough 
sets

In Pawlak’s rough set, let U is a nonempty limited domain 
of discourse, A and B are subsets of C, that is, A, B ⊆ C. 
We can obtain dependence, importance, and relative impor-
tance as follows

dep(A, B) = |Pos(A) ∩ Pos(B)|
|Pos(B)|  (9)

Here, Pos(A) represents the lower approximation set of 
attribute A and Pos(B) denotes the lower approximation set 
of attribute B. |Pos(A) ∩ Pos(B)| according to the simul-
taneous quantity of samples satisfy the attributes A and B.

imp(A) = |Pos(D) − Pos(D\A)|
|Pos(D)|  (10)

Here, Pos(D) denotes the lower approximation set derived 
from the entire decision table, and Pos(D\A) denotes the 
lower approximation set associated with the decision table 
after removing attribute A. |Pos(D) − Pos(D\A)| said 
after removing property A variation of the lower approxi-
mation set.

rel- imp(A, B) = imp(A)
imp(A) + imp(B) − imp(A ∪ B)  (11)

Among them, the imp(A) and imp(B) respectively the degree 
of significance of attribute and attribute B imp(A ∪ B) said 
attributes A and B and set the importance. rel- imp(A, B) 
said the importance magnitude of attribute relative to attri-
bute B values range between [0, 1]. Based on the relative 
importance, attribute reduction can be carried out to select 
the best attribute subset.

3.2 Attribute reduction based on neighborhood 
rough set and variable precision rough set

Because neighborhood rough set and variable precision 
rough set are extensions of Pawlak’s rough set theory, the 
process of attribute reduction in these approaches is similar 
to that of Pawlak’s rough set.

Attribute reduction in neighborhood rough set theory is car-
ried out by analyzing the correlation between attributes [7].

Definition 3 In a heterogeneous information system 
I = (U, C ∪ D, ∆Ci

D ), we can define the lower approxima-
tion of a condition attribute ci ∈ C or a decision attribute 

Game theory utilizes a tuple (Y, w) to characterize a 
cooperative game, where Y represents the involved players, 
and w signifies the total payoff or utility function attained by 
players through collaboration.

More precisely, the set of players is represented by 
Y = {1, 2, . . . , n}, and w(S) denotes the payoff or utility 
value obtained by the subset of players S ⊆ Y . In other 
words, w(S) represents the total benefit that a player can 
receive when the set of players is S. Also, w(∅) = 0 means 
that the total benefit is zero when the set of participants is 
empty.

In a cooperative game, players collaborate and negoti-
ate to determine a cooperative plan that maximizes the total 
benefit. This cooperative plan can be represented as a vector 

, where  represents the payoff or utility 
of player i. In order for the cooperation scheme  to be ratio-
nal, the following two conditions need to be satisfied:

 (8)

The initial equation in (8) indicates that the sum of the pay-
offs or utilities of all players is equal to the total benefit 
obtained, while the second formula expresses that the pay-
offs or utilities of the players are non-negative.

In the context of cooperative games, a cooperative solu-
tion x is regarded as a core solution if it fulfills the following 
two criteria:

1.No player can gain more revenue or utility by leaving 
the cooperative scheme.

2.No player can gain more revenue or utility by joining 
the cooperative scheme.

The core solution can be seen as a reasonable and just 
allocation scheme that does not leave any players feeling 
deprived or unfair. Therefore, the core solution is usually 
considered to be the optimal solution in cooperative games.

3 Attribute reduction based on 
neighborhood rough set and variable 
precision rough set

The process of attribute reduction involves removing irrele-
vant or unimportant attributes from a knowledge base, while 
retaining the ability to classify data without any changes 
[33]. In attribute reduction, the goal is to identify the most 
representative subset of features from the original dataset, 
with the aim of eliminating unnecessary redundant attri-
butes and enhancing the effectiveness of data mining. This 
can be achieved while ensuring that the essential character-
istics of the data set remain intact.
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decreases when the value of that attribute is known. The 
extent of the information gain indicates the impact of an 
attribute on the classification outcome. Specifically, a higher 
information gain implies a greater influence of the attribute 
on the classification result.

Both neighborhood rough set and variable precision 
rough set take into account attribute importance and similar-
ity, but they employ different methods to achieve this goal. 
Neighborhood rough set theory assesses the significance of 
attributes by utilizing neighborhood information. In con-
trast, variable precision rough set theory leverages informa-
tion gain to assess the significance of attributes, while also 
considering the accuracy and roughness of attribute sets to 
determine their quality. The intersection of the two methods 
can comprehensively consider the importance and similarity 
of attributes, and obtain more accurate and comprehensive 
attribute reduction results.

Example 1 Table 1 showcases a heterogeneous informa-
tion system, with δ = 0.1 and β = 0.5. The universe of 
discourse we study is  and 
conditional attributes a1, a2, a3, a4, a5 represent Hyperten-
sion, BMI, Blood Glucose Level(Glucose), Hemoglobin 
A1c(HbA1c) and Family History of Diabetes, respectively. 
The decision attribute represents  Whether the Sample Has 
Diabetes or Not.

Definition 4 In heterogeneous information systems 
I = (U, C ∪ D, ∆C

D, IG), for any of the heterogeneous 
information condition attribute ci ∈ C, di ∈ D, given a 
threshold δ, then its lower approximation can be defined as 
follows

 (16)

again, an attribute reduction can be obtained

Red(C) = {ci ∈ C|∆ci

di
≤ δ, IG(ci) ≥ β}  (17)

di ∈ D given a threshold δ. The symbol ∆Ci

D  denotes the 
dependency degree or correlation between a specific condi-
tion attribute ci in the condition attribute set C and the deci-
sion attribute set D. In particular, let E = E1, E2, E3, ..., En 
be a collection of condition attributes such that E ⊆ C. 
Then, the lower approximation of ci or di can be expressed 
in the following manner

Rδ,B(D) = card
(

ρci,di
> δ

)
 (12)

where ρ is the Person correlation coefficient, which ranges 
from [−1, 1], and the larger the value, the stronger the corre-
lation. And card denotes the number of elements in a set. By 
calculating the correlation between the attributes, identify-
ing the pertinent attributes and performing attribute reduc-
tion is accomplished.
In variable precision rough set theory, the attribute reduc-
tion process relies on the importance of individual attri-
butes. Attribute significance is a measure of the contribution 
of an attribute to the classification of a dataset, and infor-
mation gain is an important calculation method of attribute 
importance, as follows

IG(A) = H(D) − H(D|A)  (13)

 (14)

 (15)

Among them, A for attributes, D for the data set, P  for 
probability, entropy H(D) is A data set, H(D|A) for under 
the condition of known properties of A data set D of con-
ditional entropy. The significance of an attribute in vari-
able precision rough set theory is determined by the degree 
to which the uncertainty of the classification outcome 

Table 1 A heterogeneous information systems of medical samples

1 3

Page 5 of 21   788 



W. Xu, X. Zhao

Neighborhood rough set and variable precision rough 
set models can be used to implement attribute reduction 
techniques based on attribute correlation and significance. 
These methods utilize the concept of information increas-
ing entropy to identify which attributes are highly correlated 
and significant in a given dataset. By reducing the number 
of attributes under consideration, these techniques can 
improve the efficiency and accuracy of data analysis tasks.

Example 3 In heterogeneous information system Table 1, 
we set the threshold δ = 0.1, β = 0.5, according to the cor-
relation coefficient obtained in Table 3, the domain rough 
set is used for attribute reduction to obtain Table 4, and 
then according to Table 3, the sorted attribute sequence is 
obtained by sorting the attributes from largest to smallest 
information gain: a2 ≻ a1 ≻ a3 ≈ a4 ≻ a5. The attribute 
a2 is selected as the initial reduction attribute and Table 
5 is obtained.Finally, the reduced attribute set {a2, a5} is 
obtained.

There is an Algorithm 1 for attribute reduction using 
neighborhood rough set with attribute relevance and vari-
able precision rough set with attribute significance based on 
information gain for heterogeneous information systems.

In Algorithm 1, two thresholds δ, β are set. Firstly, for 
the non-binary condition attributes, the correlation with the 
decision attribute is calculated by using the Person correla-
tion coefficient. The correlation coefficient of a Bernoulli 
variable can be utilized to compute the association between 
a binary condition attribute and a decision attribute. Then, 

The symbol ∆ci

di
 denotes the dependency degree or corre-

lation between a specific condition attribute ci in the con-
dition attribute set C and each attribute di in the decision 
attribute set D.

In order to simplify data comparison and analysis, we uti-
lize the min-max normalization technique [34] to standard-
ize the data provided in Table 1. The resulting normalized 
data is illustrated in Table 2.

Example 2 According to Table 2, calculating the attribute 
correlation from the correlation coefficient, we can obtain 
the conditional attribute sequence Table 3 of the decision 
attribute relevance. The attribute importance sequence Table 
3 can be obtained by calculating the attribute importance 
degree according to the information gain of the attribute.

For binary attributes in heterogeneous information sys-
tems, the ordinary Person correlation coefficient is not suit-
able for correlation calculation, because binary variables do 
not meet the continuity and normal distribution assumptions, 
so we can treat binary variables as random variables obey-
ing Bernoulli distribution, and then use the correlation coef-
ficient of Bernoulli variables to calculate their correlation.

Table 2 A normalized heterogeneous information systems for medical samples

Table 3 Conditional attribute sequence of the decision attribute rel-
evance and attribute importance sequence based on information gain

ca1 ca2 ca3 ca4 ca5

∆cai

D
0 0.48 0.65 0.56 0.41

H(D|cai) 0.93 0.98 0.96 0.96 1

IG(cai) 0.04 0.1 0.02 0.02 0

Table 4 Attribute reduction based on attribute correlation in neighborhood rough set
a1 a2 a3 a4 a5 Red(A)

∆ai

D 0 0.48 0.65 0.56 0.41 {a2, a3, a4, a5}

a2 a1 a3 a4 a5

POS {a1, a2, a3, a4} {a1, a2} {a2, a3} {a2, a4} {a2, a5}
BND {a1, a2, a3, a4} {a1, a2, a3, a4} {a1, a2, a3, a4} {a1, a2, a3, a4} {a1, a2, a3, a4, a5}
RED ✗ ✗ ✗ ✔

Table 5 Variable precision rough 
set attribute reduction based on 
information gain
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information gain for each property. Calculating informa-
tion gain requires traversing the entire dataset, resulting in 
a complexity of O(n). The sorting of information gain has a 
complexity of O(nlogn), where n is the number of attributes.
The third loop evaluates whether the conditional attribute is 
present in the attribute set with high information gain and 
includes it in the attribute reduction set under specific con-
ditions. This loop performs constant-time judgments and 
attribute set operations, resulting in a complexity of O(n).
In summary, the algorithm’s complexity primarily depends 
on the traversal of the attribute set and the calculation of 
information gain, resulting in O(nlogn). Here, n represents 
the number of attributes.

the conditional entropy and information increase entropy 
of the attribute were calculated. Next, the upper and lower 
approximations for each condition attribute are computed. 
Finally, the attribute reduction is obtained.

Complexity analysis The process of standardizing data and 
grouping attributes can be viewed as linear overall, resulting 
in a complexity of O(n), where n is the number of attributes. 
The initial iteration traverses the attribute set, conducting 
distinct computations for binary and non-binary attributes. 
For binary attributes, the iteration calculates the relative 
frequency, while for non-binary attributes, it computes the 
covariance. The complexity of both computations is O(n), 
as they involve traversing the entire dataset.The second 
loop iterates through the set of properties, computing the 
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is a classification technique that combines multiple base 
classifiers to improve the accuracy and robustness of the 
classification process. Integrated classifiers utilise the 
advantages of different base classifiers, which can effec-
tively improve the classification accuracy and increase 
the adaptability of the classifiers to data errors and 
uncertainties. Game theory primarily focuses on effec-
tive decision-making and coordination among interacting 
decision-makers. The strategies and concepts from game 
theory can enhance the classification strategy of the inte-
grated classifier, making it more rational, accurate, and 
interpretable. Based on these ideas, we can get the gen-
eral framework of the model (Fig. 2).

In Fig. 2, we initiate the process by preprocessing the 
data through the domain and variable precision rough set 
attribute reduction method, as proposed in the preceding 
section, resulting in the reduced data I ′. Subsequently, 
the reduced data is fed into the base classifiers to obtain 
individual classifier results. Using these results, we con-
struct the ensemble classifier by selecting pertinent base 

4 Game-theoretic dynamic ensemble  
classifiers based on neighborhood and  
variable precision rough sets

This section outlines the comprehensive framework for 
game-theoretic dynamic ensemble classifiers, leveraging 
neighborhood and variable precision rough sets. Subse-
quently, the dynamic alterations in the ensemble classifier 
and the cooperative game strategy are elucidated. Finally, 
we present a game-theoretic dynamic ensemble classifier 
model grounded in neighborhood and variable precision 
rough sets.

4.1 The overall framework of the model

Attribute approximation techniques in Neighbourhood 
Rough Set and Variable Precision Rough Set theory can 
simplify the data set, reduce the data dimensions, extract 
necessary data information and improve the efficiency 
and accuracy of data mining. The integrated classifier 

Fig. 2 The general framework of the proposed 
model. For all input data, attribute reduction is per-
formed based on correlation and information gain, 
eliminating redundant attributes. The resulting 
new data is then used as input for the subsequent 
ensemble classifier. The ensemble classifier is 
composed of selected base classifiers
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The payoff function can be measured by performance evalu-
ation metrics of the ensemble classifier such as accuracy and 
F1 score. For example, for a given validation dataset D, the 
payoff functions can be defined as:

vaccuracy(S) = accuracy(D, S)

vF1(S) = F1_score(D, S)

where accuracy(D, S) denotes the accuracy of the subset S 
on the dataset D, and F1_score(D, S) denotes the F1 score 
of the subset S on the dataset D.

Shapley value, originating from cooperative game the-
ory, is used to fairly allocate the total payoff among players 
in a cooperative game. In ensemble classifier optimization, 
we use Shapley values to evaluate the contribution of each 
classifier in different combinations, thereby determining its 
weight in the final ensemble model. The Shapley value is 
calculated using the formula:

ϕi(v) =
∑

S⊆C\{Ci}

|S|!(|C| − |S| − 1)!
|C|!

[v(S ∪ {Ci}) − v(S)]  (18)

where |S| denotes the size of subset S, and |C| denotes the 
total number of classifiers.

The specific calculation steps are as follows: 

1. For each classifier Ci, enumerate all subsets S that do 
not contain Ci.

2. Calculate the marginal contribution of classifier Ci to 
the subset S: v(S ∪ {Ci}) − v(S).

3. Calculate the Shapley value for each classifier based on 
the formula.

The implementation of the Shapley value algorithm is 
shown as follows.

The time complexity of this Shapley value calculation 
algorithm is mainly influenced by two factors: the number 
of classifiers n and the number of subsets that need to be 
iterated. For each classifier, the algorithm iterates through 
all subsets of the remaining n − 1 classifiers, which results 
in 2n−1 subsets. During each iteration, it computes the 
performance difference ∆v, adding additional computa-
tional overhead. Therefore, the overall time complexity is 
O(n · 2n · Tv), where Tv  is the time to compute the perfor-
mance difference.

classifiers. Finally, the reduced data I ′ is input into the 
ensemble classifier to yield the ultimate classification 
result.

4.2 Dynamic changes of ensemble classifiers and 
cooperative game strategies

An ensemble classifier is a machine-learning technique 
that leverages the combination of prediction results from 
multiple classifiers to enhance classification accuracy. 
Common ensemble classifiers include random forests 
[35], AdaBoost [36], gradient boosted trees [37], among 
others. However, these ensemble classifiers are typi-
cally static and lack dynamic adaptability. They struggle 
to cope with changing data and experience a decline in 
accuracy when faced with data shifts. Furthermore, their 
generalization ability tends to decrease with an increase 
in the volume of data.

Ensemble classifiers, by combining the predictive 
results of multiple individual classifiers, can significantly 
enhance the performance of machine learning models. 
However, in practical applications, optimizing the com-
bination and weights of each classifier to maximize over-
all performance remains a challenge. Cooperative game 
theory provides a mathematical framework for studying 
how multiple participants can cooperate to maximize 
their common benefits. This chapter proposes an ensem-
ble classifier optimization method based on cooperative 
game theory, dynamically adjusting the combination and 
weights of classifiers through Shapley value and syn-
ergy effect analysis to improve the model’s accuracy and 
stability.

4.2.1 Cooperative game theory model

In the context of ensemble classifier problems, we regard 
each individual classifier as a player in the game, with the 
model performance (specifically accuracy and F1 score in 
this context) acting as the payoff function. The specific defi-
nition is as follows:

 ● Player Set: C = {C1, C2, . . . , Cn}, where Ci represents 
the i-th classifier.

 ● Payoff Function: v(S), where S ⊆ C represents a subset 
of classifiers, and v(S) represents the performance of the 
classifier subset.
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3. Gradually add other classifiers and continue to calculate 
and update the overall performance, ensuring that each 
added classifier exhibits positive synergy and can fur-
ther improve the model’s performance.

This method of selecting classifier combinations based on 
synergy analysis not only improves model performance but 
also enhances the stability and robustness of the model.

To ensure the stability and balance of the ensemble 
model, we introduce the concept of the core from coop-
erative game theory. The core is a stable set of classifier 
combinations where no subset of classifiers can achieve a 
higher payoff by reorganizing. Ensuring that the model is in 
a core state prevents any single classifier from dominating 
the overall decision, maintaining stability and balance. The 
core is defined as a set of payoff distributions in a coopera-
tive game where the total payoff of the grand coalition (i.e., 
the set of all classifiers) cannot be exceeded by any sub-
coalition’s payoff distribution. Formally defined as follows:

Core(v) =

{
ϕ ∈ Rn |

∑
i∈C

ϕi = v(C),
∑
i∈S

ϕi ≥ v(S) ∀S ⊆ C

}
 (20)

where ϕ represents the payoff distribution, v(C) represents 
the total payoff of the grand coalition, and v(S) represents 
the payoff of the subset S.

To ensure that the ensemble model is in the core state, we 
use a linear programming approach to calculate the payoff 
distribution scheme. The steps are as follows: 

1. Construct the linear programming model with the 
objective function of maximizing the total payoff of all 
classifiers: 

max
∑
i∈C

ϕi

To further optimize the selection of classifier combina-
tions, we analyze the synergy between classifiers to deter-
mine which combinations provide the best performance 
improvements. Synergy analysis involves comparing the 
performance of different classifier combinations to identify 
pairs of classifiers that exhibit strong synergy. The steps are 
as follows: 

1. For each pair of classifiers, calculate their performance 
on the validation set. Specifically, for any two classi-
fiers Ci and Cj , calculate their individual performance 
v(Ci) and v(Cj) on the validation set, as well as their 
combined performance v({Ci, Cj}).

2. Calculate the synergy for each pair of classifiers. The 
synergy E(Ci, Cj) can be defined as: 

E(Ci, Cj) = v({Ci, Cj}) −
(

v(Ci) + v(Cj)
2

)
 (19)

  where v({Ci, Cj}) represents the performance of the 
combination of classifiers Ci and Cj , and v(Ci)+v(Cj)

2  
represents the average of their individual performances. 
If E(Ci, Cj) > 0, then classifiers Ci and Cj  exhibit 
positive synergy, indicating that their combined perfor-
mance is better than their individual performances.

3. Record the synergy values for each classifier combina-
tion and construct a synergy matrix for further analysis.

Based on the results of the synergy analysis, prioritize the 
selection of classifier combinations with strong synergy to 
construct the optimal performance ensemble model. The 
steps are as follows: 

1. Sort the synergy matrix and select the classifier combi-
nations with the highest synergy values.

2. Construct the initial ensemble model and calculate its 
overall performance on the validation set.
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contribution in the current scenario. This step ensures that 
each classifier’s contribution is evaluated based on the 
most recent data, thereby improving the model’s accuracy. 
Weights are assigned based on the Shapley values to con-
struct a weighted ensemble model, where classifiers with 
higher contributions receive higher weights, and those with 
lower contributions receive lower weights. The weight 
adjustment formula is as follows:

wi = ϕi(v)∑n
j=1 ϕj(v)  (21)

where wi is the weight of classifier Ci, and ϕi(v) is the 
Shapley value of classifier Ci.

Design a weighted average prediction function based on 
adjusted weights, aggregating the predictions of multiple 
classifiers into a final prediction. The implementation of the 
prediction function is as follows:

2. Add constraints to ensure that the payoff of each subset 
is not less than the actual payoff of that subset: 

∑
i∈S

ϕi ≥ v(S) ∀S ⊆ C

3. Use a linear programming solver to calculate the opti-
mal payoff distribution scheme ϕ, ensuring that the 
model is in the core state.

4.2.2 Dynamic ensemble classifier model based on 
cooperative game

To adapt to the dynamically changing input data in practi-
cal applications, we propose a dynamic ensemble strategy 
based on cooperative game theory. This strategy dynami-
cally adjusts the combination and weights of classifiers 
by calculating the Shapley value in real-time to maximize 
model performance.

Dynamically calculate the Shapley value for each clas-
sifier based on the current input data to assess its marginal 

Table 6 Description of the medical diagnosis dataset
Nos Data sets |U| |A| Types
Set1 DLBCL (DL) 77 7129 Bin
Set2 Lung Cancer (Lung1) 181 12533 Bin
Set3 Nervous System (NS) 60 7129 Bin
Set4 Prostate Cancer (PC1) 102 12600 Bin
Set5 Colon Cancer (CC) 62 2000 Bin
Set6 Prostate Cancer (PC2) 102 5966 Bin
Set7 Lymphatic Cancer (LC) 96 4026 Multi
Set8 Lung Cancer (Lung2) 203 3312 Multi
Set9 GLIOMA (GL) 50 4434 Multi

The complexity of the "dynamic ensemble prediction 
function" algorithm is mainly determined by the Shap-
ley value calculation step, and its time complexity is 

exponential O(n · 2n). Subsequent weight calculation and 
prediction function execution are relatively efficient, with 
time complexity of O(n) and O(n · T ), respectively. Over-
all, the time complexity of the algorithm is O(n · 2n).

5 Application and experimental analysis of 
the model to oncogene diagnosis

In this section, we evaluate the effectiveness of the pro-
posed model by applying it to various datasets for onco-
gene diagnosis. Subsequently, we analyze the experimental 
results to glean insights into the model’s performance and 
its potential applications in real-world oncogene diagnosis 
scenarios.

1 3
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For the hyperparameters in the comparison models, we 
implemented two measures. For the machine learning mod-
els, we used a grid search hyperparameter tuning method, 
which involves exhaustively evaluating specified parameter 
combinations and calculating the performance of each set 
of parameters on the validation set, ultimately selecting the 
combination that performs the best. For the deep learning 
models, we continuously adjusted the hyperparameters by 
monitoring the loss function to ensure its convergence.

5.2 Datasets introduction

We used nine different oncogene diagnosis datasets, each 
with numerous attributes. There are six binary categori-
cal type datasets and three multivariate categorical datas-
ets. Table 6 lists the details of the datasets we used, along 
with some related information. The nine datasets used in 
this paper are all from UCI (UC Irvine Machine Learning 
Repository), kaggle and other databases, and all data types 
are numerical. Each dataset was split into training and test-
ing sets with a 7:3 ratio.

DLBCL [39]: The study was published by Margaret A. 
Shipp et al in the journal Nature Medicine in 2002. The data-
set contained gene expression profile data from patients with 
diffuse large B-cell lymphoma (DLBCL). Diffuse large B-cell 
lymphoma (DLBCL) has two classifications, consisting of 58 
DLBCL samples and 19 FL samples, and 7,129 distinct gene 
expression attributes. These data were obtained using high-
throughput gene expression analysis techniques, covering the 
expression levels of multiple genes. This dataset demonstrates 
the potential for gene expression profiling to be used in medi-
cal research, especially in predicting cancer prognosis. By 
using machine learning techniques, the researchers were able 
to extract valuable information from gene expression data to 
support the development of personalized treatment plans.

Lung Cancer1 [40]: The study was conducted by 
researchers from the Department of Thoracic Surgery and 
other related departments at Brigham and Women’s Hospi-
tal, Harvard Medical School. The dataset contained 181 tis-
sue samples, including 31 malignant pleural mesothelioma 
(MPM) samples and 150 lung adenocarcinoma (ADCA) 
samples, and 12,533 gene expression attributes were avail-
able for each sample. The samples were collected from 
patients who had surgery at Brigham and Women’s Hospi-
tal between 1993 and 2001. This dataset demonstrates the 
potential of gene expression ratios in cancer diagnosis.

Nervous System [41]: The data set, based on an article 
published in the journal Nature, used 245 surgical speci-
mens collected from patients who had surgery at Brigham 
and Women’s Hospital (BWH) between 1993 and 2001. To 
distinguish malignant pleural mesothelioma (MPM) from 
lung adenocarcinoma (ADCA) by gene expression ratio. The 

5.1 Basic introduction

In the medical field, the analysis and auxiliary diagnosis of 
medical data has become an important work. The variety 
and quantity of medical data are constantly increasing, and 
medical workers need effective means to process and ana-
lyze these data to improve medical efficiency and quality. In 
this regard, the application of auxiliary diagnostic models 
has become a trend and achieved remarkable results [38].

In the field of cancer gene diagnosis, precise attribute 
reduction of data is crucial as it not only significantly reduces 
the costs associated with expensive genetic testing but 
also enhances the efficiency and accuracy of data process-
ing. Focusing on datasets related to cancer gene diagnosis 
aids physicians in more accurately identifying biomarkers 
associated with specific types of cancer, thereby providing 
patients with more personalized treatment options. More-
over, this approach simplifies data management, acceler-
ates research progress, and fosters the development of new 
diagnostic techniques and treatment methods, profoundly 
impacting the future of cancer treatment. Therefore, attri-
bute reduction and focused examination of cancer gene data 
are key steps in improving treatment success rates.

The oncogene diagnosis model is an algorithm model 
based on machine learning and artificial intelligence, which 
can automate the diagnosis and prediction of patient dis-
eases by analyzing medical data. Compared with the tradi-
tional doctor’s diagnosis, the oncogene diagnosis model has 
higher accuracy and efficiency, which can help doctors make 
correct diagnosis and treatment decisions more quickly.

In this study, we establish the thresholds as δ = 0.1 and 
β = 0.5, respectively. For these two hyperparameters, we 
employed the grid search hyperparameter tuning method, 
which exhaustively evaluates specified parameter combi-
nations. We calculated the performance of each combina-
tion on the validation set and ultimately selected 0.1 and 
0.5 as the optimal values. All algorithm implementations 
were implemented in the pycharm software using python3 
language and device configuration using Intel(R) Core(TM) 
i7-12700H@2.30 GHz and 16.0 GB of memory.

Table 7 The set of condition attributes after attribute reduction
Data sets |C| |Red| |C| − |Red|
Set1 7129 122 7007
Set2 12533 740 11793
Set3 7129 953 6176
Set4 12600 1229 11371
Set5 2000 218 1782
Set6 5966 930 5036
Set7 4026 765 3261
Set8 3321 1171 2150
Set9 4434 3603 831
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expression attributes, which has important clinical signifi-
cance for colon cancer gene screening. The data set from  h t t 
p  s : /  / j u n  d o  n g l  . g i t  h u b  . i o  / s c  i k i  t - f e  a t  u r e / d a t a s e t s . h t m l .

Prostate Cancer2: This dataset is a prostate cancer gene 
expression dataset, with a total of 102 objects divided into 
two categories (50,52), and each object contains 5966 gene 
expression attributes, which has important clinical signifi-
cance for prostate cancer gene screening. The data set from  
h t t p  s : /  / j u n  d o  n g l  . g i t  h u b  . i o  / s c  i k i  t - f e  a t  u r e / d a t a s e t s . h t m l .

Lymphatic Cancer: This dataset is a lymphoma gene 
expression dataset, with a total of 96 objects divided into 9 
categories (46, 10, 9, 11, 6, 6, 4, 2, 2), and each object contains 
4026 gene expression attributes, which has important clinical 
significance for lymphoma gene screening. The data set from  
h t t p  s : /  / j u n  d o  n g l  . g i t  h u b  . i o  / s c  i k i  t - f e  a t  u r e / d a t a s e t s . h t m l .

Lung Cancer2: This dataset is a lung cancer gene expres-
sion dataset, with a total of 203 objects divided into 5 

dataset contained 181 tissue samples, of which 31 were MPM 
samples and 150 were ADCA samples, and each sample con-
tained 7129 gene expression attributes. It can be used for 
early and accurate diagnosis of MPM and lung cancer, and 
has potential applications in other clinical scenarios as well.

Prostate Cancer1 [42]: The dataset is published in the 
journal Cancer Cell. The research team used microarray 
expression analysis to collect gene expression data from 
52 prostate tumor samples and 50 normal prostate samples. 
The samples were taken from patients who underwent radi-
cal prostatectomy between 1995 and 1997. Each sample 
was reviewed by a pathologist who determined the Gleason 
score and other pathological features. It can be used to pre-
dict the prognosis of patients after prostatectomy.

Colon Cancer: This dataset is a colon cancer gene 
expression dataset, with a total of 62 objects divided into 
two categories (40,22), and each object contains 2000 gene 

Table 8 Classification accuracy (%) of different attribute reduction algorithms based on KNN classifier on different data sets
Data sets KNN M-ARMA-KNN AGAFL-KNN tri-level-KNN GA-RBF-KNN MGWO-KNN WDNRS-KNN NVR-KNN
Set1 85.83 86.23 85.96 86.25 87.02 91.20 85.39 87.50
Set2 98.72 98.36 98.63 97.21 97.08 98.66 98.84 97.30
Set3 61.39 65.32 62.35 64.58 64.66 65.70 65.47 66.67
Set4 77.86 80.36 85.34 82.98 86.27 90.38 89.66 90.48
Set5 77.69 85.32 86.38 83.57 85.07 88.73 85.39 86.15
Set6 75.95 85.36 88.65 88.07 86.79 88.65 88.37 89.05
Set7 65.00 70.37 71.25 72.66 72.14 71.33 72.66 73.75
Set8 86.71 88.36 88.27 87.18 88.69 90.67 88.94 89.63
Set9 47.12 60.59 50.47 58.64 60.24 60.44 59.54 60.50

Table 9 Classification accuracy (%) of different attribute reduction algorithms based on SVM classifier on different data sets
Data sets SVM M-ARMA-SVM AGAFL-SVM tri-level-SVM GA-RBF-SVM MGWO-SVM WDNRS-SVM NVR-SVM
Set1 85.00 86.26 88.65 87.29 88.57 76.03 89.74 90.83
Set2 98.00 97.63 98.35 98.55 99.01 97.07 99.35 99.44
Set3 60.23 66.56 65.24 68.57 66.89 67.02 71.25 70.33
Set4 86.91 88.14 86.95 89.24 88.58 89.95 89.58 90.14
Set5 81.15 84.02 85.36 82.47 86.21 84.38 86.29 87.69
Set6 86.91 88.06 87.98 88.50 89.66 92.63 90.22 91.91
Set7 93.00 90.26 94.22 95.04 92.56 94.11 95.20 95.25
Set8 90.15 90.56 91.39 92.24 92.04 93.15 93.14 94.63
Set9 59.14 62.35 62.87 59.68 63.87 70.92 65.21 59.50

Table 10 Classification accuracy (%) of different attribute reduction algorithms based on RNN classifier on different data sets
Data sets RNN M-ARMA-RNN AGAFL-RNN tri-level-RNN GA-RBF-RNN MGWO-RNN WDNRS-RNN NVR-RNN
Set1 81.25 83.47 85.97 84.08 86.22 85.00 86.88 87.50
Set2 97.66 98.36 98.50 98.98 97.57 98.21 98.94 98.37
Set3 58.33 65.80 68.33 68.09 60.21 70.76 71.25 75.00
Set4 90.48 90.68 91.20 90.57 91.27 93.87 92.74 93.83
Set5 87.76 88.05 87.35 89.30 88.47 90.27 91.27 90.33
Set6 90.78 91.00 91.57 90.97 91.87 92.16 92.07 93.55
Set7 80.37 83.81 82.66 84.37 85.14 87.09 86.22 86.58
Set8 95.06 96.07 95.98 97.24 96.37 95.47 97.68 98.69
Set9 82.51 83.77 82.97 83.22 83.04 82.96 85.47 84.27

1 3

Page 13 of 21   788 

https://jundongl.github.io/scikit-feature/datasets.html.
https://jundongl.github.io/scikit-feature/datasets.html.
https://jundongl.github.io/scikit-feature/datasets.html.
https://jundongl.github.io/scikit-feature/datasets.html.
https://jundongl.github.io/scikit-feature/datasets.html.
https://jundongl.github.io/scikit-feature/datasets.html.


W. Xu, X. Zhao

Step 1. Data Processing: Oncogene datasets frequently 
include a substantial amount of character data, requiring 
conversion into numerical values for analysis. Furthermore, 
for experiment simplification and result comparability, data 
standardization is essential. To achieve this, we utilize the 
Min-Max Normalization method to normalize the data, pro-
ducing a standardized dataset conducive to analysis.

Step 2. Attribute Reduction: Oncogene data often possess 
numerous attributes, and effective attribute reduction plays 
a crucial role in disease diagnosis. Employing Algorithm 1, 
we conduct attribute reduction on the processed dataset to 
extract key attributes. The reduced attributes for each data-
set are presented in Table 7.

Step 3. Utilizing Algorithm 3, we conduct a classification 
experiment on the dataset after attribute reduction.

5.3.1 Effectiveness of attribute correlation based 
neighborhood rough set and information gain based 
variable precision rough set attribute reduction algorithm 
(NVR)

To validate the effectiveness of our proposed attribute 
approximation algorithm (NVR), we compared it with other 

categories (139,17,21,20,6), and each object contains 3312 
gene expression attributes, which has important clinical sig-
nificance for lung cancer gene screening. The data set from  
h t t p  s : /  / j u n  d o  n g l  . g i t  h u b  . i o  / s c  i k i  t - f e  a t  u r e / d a t a s e t s . h t m l .

GLIOMA: This dataset is a glioma gene expression 
dataset, with a total of 50 objects divided into 4 categories 
(14,7,14,15), and each object contains 4434 gene expres-
sion attributes, which has important clinical significance for 
glioma gene screening. The data set from  h t t p s :   /  / j u n d o  n g  l  . g 
i  t h u   b .   i o /  s c i k   i t -  f e  a t  u r e / d a t a s  e t s . h t m l .

5.3 Experimental results and analysis

To validate the effectiveness of the proposed model, we 
conducted experiments on different oncogene diagnostic 
datasets using the theoretical framework and algorithms 
outlined in this paper. The experiments aim to evaluate the 
performance of the model in terms of classification accu-
racy and resistance to noise interference, while comparing 
it to other deep learning and state-of-the-art machine learn-
ing classification methods. And, we also conducted ablation 
experiments to validate the effectiveness of each part of the 
algorithm.

Table 12 Classification accuracy (%) of different algorithms
Data sets DT NB XGBoost SVC HVBFS RNN H-RNN LSTM ADMM LS-SVM NVRGEC
Set1 85.31 81.25 88.33 75.35 88.57 81.25 87.50 83.46 89.46 87.55 91.88
Set2 95.54 95.68 98.36 97.30 97.65 97.86 97.66 97.36 99.44 97.36 99.46
Set3 60.83 59.58 61.67 75.00 66.99 58.33 66.67 66.67 61.67 58.33 76.67
Set4 87.14 71.67 88.71 84.29 91.53 90.48 91.37 51.85 92.09 90.78 93.62
Set5 87.69 82.31 82.31 51.54 84.00 87.76 87.87 85.71 72.14 61.54 88.46
Set6 92.62 82.86 90.81 81.91 91.25 90.78 85.71 90.48 91.09 90.48 91.91
Set7 79.00 58.50 84.48 69.13 88.39 80.37 81.65 75.96 93.44 90.00 91.00
Set8 93.78 87.07 92.20 93.66 94.49 95.06 95.12 69.14 96.05 97.56 96.88
Set9 73.50 52.00 70.00 46.00 72.50 82.51 82.50 87.57 76.00 80.00 88.77

Table 13 Classification macro-F score (%) of different algorithms
Data sets DT NB XGBoost SVC HVBFS RNN H-RNN LSTM ADMM LS-SVM NVRGEC
Set1 76.66 64.65 77.44 42.86 86.88 44.83 79.49 70.37 80.78 80.46 85.77
Set2 91.46 91.10 97.36 95.82 97.33 95.20 95.37 95.23 98.84 95.25 99.15
Set3 44.06 53.40 47.97 73.33 67.38 36.84 55.56 40.00 56.94 49.58 68.23
Set4 86.36 70.40 88.62 83.54 91.43 90.28 90.66 38.10 92.03 90.28 92.81
Set5 82.83 80.23 75.77 51.34 82.73 85.36 86.25 82.36 80.16 61.54 84.82
Set6 91.87 81.92 89.02 81.48 90.99 89.90 85.18 89.90 91.02 89.90 91.13
Set7 52.48 24.17 64.41 43.55 83.99 61.94 59.56 46.84 91.70 82.08 90.64
Set8 84.18 68.29 82.52 91.04 93.37 94.55 92.44 65.85 94.29 94.55 94.89
Set9 67.32 46.45 65.67 39.93 66.92 79.64 80.33 84.39 71.61 75.59 86.35

Table 11 P value of the wilcoxon test
Classifiers M-ARMA AGAFL tri-level GA-RBF MGWO WDNRS NVR
KNN 0.0078 0.0078 0.0195 0.0117 0.0078 0.0117 0.0078
SVM 0.0342 0.0039 0.0039 0.0342 0.0039 0.0039 0.0039
RNN 0.0039 0.0078 0.0039 0.0039 0.0039 0.0039 0.0039
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5.3.2 Effectiveness of ensemble classifier based on game 
theory(NVRGEC)

In this paper, we have selected several deep learning 
approaches along with the latest machine learning classifier 
models for a comprehensive comparison with the models 
proposed in this study. The algorithms and models under 
comparison include DT [48], NB [49], XGBoost (2016) 
[50], SVC (2021) [51], HVBFS (2022) [52], ADMM (2023) 
[53], LS-SVM (2023) [54], as well as RNN, LSTM [55], 
and H-RNN (2023) [56]. We assessed the performance of 
these algorithms using classification accuracy and macro 
F-score metrics, with the results presented in Tables 12 and 
13.

To enhance the presentation of experimental results, we 
created line-bar charts illustrating accuracy and macro-F 
values, depicted in Fig. 3. These charts showcase the accu-
racy of various classifiers and the performance of macro-F 
scores across different datasets. By comparing the proposed 
algorithm’s performance with different classifiers on diverse 
datasets, we can further assess its effectiveness and appli-
cability. This comparative analysis offers valuable insights 
into the strengths and limitations of the proposed algorithm, 
helping identify specific data sets and problem domains 
where the algorithm excels.

According to the experimental results, we can see that 
the performance of the NVRGEC model surpasses not only 

rough set-based attribute reduction algorithms, namely 
M-ARMA [43], AGAFL [44], tri-level [45], GA-RBF [46], 
MGWO [47], and WDNRS [33]. The experimental results 
are shown in Tables 8, 9 and 10.

From the experimental results, it can be seen that the NVR 
algorithm can remove a large number of redundant attributes 
while retaining key attributes. In most cases, our proposed 
approximate algorithm (NVR) improves the classification 
performance of KNN, SVM, and RNN. As shown in Table 
8, NVR enhances the initial classification accuracy of KNN 
across all nine datasets, achieving optimal performance on six 
datasets. From Table 9, it is evident that NVR improves the ini-
tial classification accuracy of SVM on all datasets and reaches 
optimal performance on six of them. Finally, as shown in Table 
10, NVR not only boosts the performance of machine learn-
ing algorithms but also enhances the deep learning algorithm 
RNN, achieving the best accuracy on six datasets.

Table 11 presents the Wilcoxon test results used to evalu-
ate the relative performance and differences between NVR 
and six other algorithms. The significance level was set at 
0.05. If the p-value exceeds 0.05, it indicates that the perfor-
mance difference between the two algorithms is not signifi-
cant. Conversely, if the p-value is less than 0.05, it signifies 
that the performance difference is significant. As shown in 
the table, all p-values are less than 0.05, indicating that the 
performance differences between the NVR algorithm and 
the other six algorithms are statistically significant.

Fig. 3 Accuracy, Macro-F scores of each classifier on different datasets
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Table 14 Classification accuracy(%) of classifiers at a noise level of 0.1
Data sets DT NB XGBoost SVC HVBFS RNN H-RNN LSTM ADMM LS-SVM NVRGEC
Set1 84.06 72.19 87.08 56.25 78.81 81.25 75.00 81.25 82.86 87.50 91.25
Set2 92.70 91.49 96.46 72.97 89.58 95.14 94.59 97.29 87.92 94.59 99.32
Set3 60.83 55.00 54.44 58.33 63.00 75.00 75.00 50.68 70.39 66.67 76.17
Set4 82.14 66.19 85.80 63.81 79.03 90.48 80.95 85.71 85.36 90.24 90.95
Set5 83.08 76.54 80.77 36.15 77.50 61.54 63.26 62.36 80.48 61.05 87.69
Set6 87.62 76.91 86.19 60.48 84.03 76.19 80.95 90.48 90.18 85.71 91.43
Set7 77.75 57.50 86.50 43.50 80.89 45.00 48.36 75.35 83.56 75.69 89.63
Set8 90.61 80.00 90.35 71.46 83.42 73.17 68.29 92.68 88.29 87.81 95.12
Set9 64.50 44.00 68.00 46.49 55.00 72.50 60.18 50.17 80.46 70.25 76.62

Fig. 4 The confusion matrices of NVRGEC across different datasets
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Table 15 Classification accuracy(%) of classifiers at a noise level of 0.2
Data sets DT NB XGBoost SVC HVBFS RNN H-RNN LSTM ADMM LS-SVM NVRGEC
Set1 75.31 73.12 80.83 63.75 65.48 81.25 81.25 87.50 77.86 81.25 90.62
Set2 83.24 83.11 95.46 66.76 75.05 93.75 90.28 95.82 87.87 75.68 97.84
Set3 58.33 56.67 53.33 45.00 60.00 66.67 75.36 66.67 55.61 75.06 74.17
Set4 73.57 64.29 82.90 75.24 67.64 85.71 80.95 80.95 77.45 80.95 90.00
Set5 73.85 73.85 81.54 45.39 81.02 69.23 76.92 61.26 75.95 65.39 86.92
Set6 77.86 72.14 81.42 51.43 75.42 85.71 90.48 85.71 79.46 76.19 89.52
Set7 73.75 54.00 81.50 24.50 66.25 25.00 50.16 70.36 73.22 70.44 86.50
Set8 85.97 76.22 90.24 38.54 75.40 73.17 78.05 87.81 78.66 65.85 92.93
Set9 62.00 40.00 66.17 16.11 65.23 50.00 70.33 60.70 74.05 50.83 71.00

Table 16 Classification accuracy(%) of classifiers at a noise level of 0.3
Data sets DT NB XGBoost SVC HVBFS RNN H-RNN LSTM ADMM LS-SVM NVRGEC
Set1 70.31 59.06 74.17 46.88 55.71 81.25 75.00 87.50 65.18 81.25 85.63
Set2 79.46 75.40 87.09 66.49 65.19 90.60 94.60 95.82 73.36 72.97 95.68
Set3 56.67 51.67 52.78 52.50 59.50 58.33 58.33 50.00 61.67 50.00 73.00
Set4 61.19 59.29 80.97 55.71 66.67 76.19 80.95 71.43 73.82 66.67 89.52
Set5 64.62 73.08 79.23 43.85 68.00 69.23 76.92 60.61 56.67 46.15 83.08
Set6 63.81 69.52 85.71 60.95 70.28 85.71 76.19 90.48 69.00 76.19 90.00
Set7 67.25 50.50 77.00 20.50 58.04 35.00 50.00 55.79 64.33 55.58 84.53
Set8 79.02 65.12 87.32 32.93 56.80 78.05 70.73 84.57 67.26 78.05 91.71
Set9 55.00 38.50 62.78 24.32 55.99 50.00 30.67 60.00 64.29 40.00 67.18

Table 17 Ablation experiment
Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9

ACC GEC 91.25 98.92 70.00 89.52 86.92 90.48 90.47 95.37 85.62
NVRGEC 91.88 99.46 76.67 93.62 88.46 91.91 91.00 96.88 88.77

macro-F GEC 84.89 97.99 54.47 88.77 82.56 89.64 88.13 92.96 83.26
NVRGEC 85.77 99.15 68.23 92.81 84.82 91.13 90.64 94.89 86.35

Fig. 5 Classification accuracy of classifiers at different noise levels
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According to the results of ablation experiments, both of 
our proposed algorithms are effective.

Through all the above experiments, the experimental 
results show that the model proposed in this paper has higher 
classification accuracy and macroscopic scores compared to 
other classifier models. On most of the datasets, our model 
has higher accuracy and macro f-scores. Although it is not 
as good as other models on individual datasets, the overall 
performance is better than other models. In addition, our 
model performs better in noise interference experiments.

We chose nine different oncogene diagnosis datasets, 
including both binary and multiclassification cases. Given 
the attribute-rich nature of the oncogene diagnosis datasets, 
our algorithmic model performs well in identifying the key 
attributes of disease diagnosis. It offers significant advan-
tages and performance gains over other models. This makes 
it valuable in medical aid diagnosis.

5.4 In the application of tumor genetic diagnosis

The algorithms and models presented in the paper can be 
applied to tumor genetic diagnosis. The following is an 
explanation of how this algorithm directly benefits clinical 
practice and assists clinical decision-making:

 ● Improving Diagnostic Accuracy: By reducing the at-
tributes in tumor genetic data, redundant and irrelevant 
features are removed while retaining the most represen-
tative characteristics. This enhances the accuracy of the 
diagnostic model, allowing physicians to more accurate-
ly identify tumor types and the extent of lesions.

 ● Optimizing the Diagnostic Process: The dynamic en-
semble classifier model leverages the strengths of multi-
ple base classifiers and optimizes their combination and 
weighting using cooperative game theory, improving 
overall predictive performance. This makes the diag-
nostic process more efficient and reliable, reducing the 
likelihood of misdiagnosis and missed diagnosis.

 ● Supporting Clinical Decision-Making: This model can 
analyze large volumes of genetic data to discover po-
tential associations and patterns, assisting physicians in 
predicting disease progression and assessing risks. This 
provides a scientific basis for developing personalized 
treatment plans, enhancing treatment outcomes.

 ● Reducing Diagnostic Costs: Through precise attribute 
reduction, the number of genes that need to be analyzed 
is minimized, thereby lowering the costly gene testing 
expenses. This makes efficient tumor genetic diagnosis 
more feasible and economical in clinical settings.

This approach not only demonstrates its superiority theoreti-
cally but also validates its effectiveness through experiments 

machine learning algorithms but also deep learning algo-
rithms. As shown in Table 12, the NVRGEC model achieves 
the best classification accuracy on seven datasets. From 
Table 13, we can see that the NVRGEC model performs 
optimally on five datasets. This indicates that the proposed 
algorithm is effective for oncogene diagnosis tasks and has 
the potential to outperform other state-of-the-art techniques 
in this field. Considering both evaluation metrics, our pro-
posed model achieves better overall performance. Addition-
ally, to verify the effectiveness of the model, we conducted 
confusion matrix experiments, as shown in Fig. 4. The 
experimental results illustrate the correct and incorrect 
classifications of the NVRGEC model across various cat-
egories. By observing the values along the diagonal (True 
Positives and True Negatives), we can assess the accuracy 
of the model’s classifications across different datasets. The 
confusion matrix results for the NVRGEC algorithm on dif-
ferent datasets demonstrate its strong classification capabili-
ties, particularly when handling complex, high-dimensional 
gene diagnosis data.

5.3.3 Anti-noise interference capability

To assess the model’s resistance to noise interference, we 
introduced three distinct noise levels (0.1, 0.2, and 0.3). In 
our experiments, noise was introduced into the training labels 
using a custom function. This function randomly selects a 
certain proportion of training samples and alters their labels. 
We assessed the model’s performance at different noise lev-
els. The results were compared with specific benchmarks by 
calculating the average accuracy over multiple runs to evalu-
ate the model’s robustness under various noise conditions.
The experimental results are presented in Tables 14, 15, and 
16. Meanwhile, we show it in a more visual form in Fig. 5.

The experimental results indicate that classification 
accuracy decreases as the noise level increases. However, 
compared to other models, our model demonstrates better 
stability, maintaining the highest accuracy in most datas-
ets. As shown in Table 14, when the noise level is 0.1, the 
NVRGEC model achieves optimal classification accuracy 
on eight datasets. From Table 15, we can see that even at 
a noise level of 0.2, the NVRGEC model still achieves the 
best classification accuracy on six datasets. According to the 
results in Table 16, even when the noise level reaches 0.3, 
the NVRGEC model continues to achieve the best classifi-
cation accuracy on six datasets.

5.3.4 Ablation experiment

In order to verify that both of our proposed algorithms are 
effective, we conducted ablation experiments, the results of 
which are shown in Table 17.
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