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Abstract
In numerous real-world applications, data tends to be ordered and partially labelled, predominantly due to the constraints
of labeling costs. The current methodologies for managing such data are inadequate, especially when confronted with the
challenge of high-dimensional datasets, which often require reprocessing from the start, resulting in significant inefficiencies.
To tackle this, we introduce an incremental semi-supervised feature selection algorithm that is grounded in neighborhood
discernibility, and incorporates pseudolabel granular balls and matrix updating techniques. This novel approach evaluates the
significance of features for both labelled and unlabelled data independently, using the power of neighborhood distinguishability
to identify the most optimal subset of features. In a bid to enhance computational efficiency, especially with large datasets, we
adopt a pseudolabel granular balls technique, which effectively segments the dataset into more manageable samples prior to
feature selection. For high-dimensional data, we employ matrices to store neighborhood information, with distance functions
and matrix structures that are tailored for both low and high-dimensional contexts. Furthermore, we present an innovative
matrix updating method designed to accommodate fluctuations in the number of features. Our experimental results conducted
across 12 datasets-including 4 with over 2000 features-demonstrate that our algorithm not only outperforms existing methods
in handling large samples and high-dimensional datasets but also achieves an average time reduction of over six fold compared
to similar semi-supervised algorithms. Moreover, we observe an average improvement in accuracy of 1.4%, 0.6%, and 0.2%
per dataset for SVM, KNN, and Random Forest classifiers, respectively, when compared to the best-performing algorithm
among the compared algorithms.

Keywords Granular ball · Incremental algorithm · Neighbourhood discernibility degree · Matrix update methodx ·
Ordered partially labelled data set

1 Introduction

In the modern, data-driven age, the surge of large-scale and
high-dimensional data sets is a direct result of enhance-
ments in data collection technologies. Feature selection [1,
2], the process of extracting a subset of the most effective
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features from a data set, has become indispensable in data
mining for managing vast volumes of data. Particularly, we
encounter dynamic data sets where the number of features
grows over time, necessitating specialized feature selection
techniques. The incremental feature reduction algorithm [3,
4] is a prevalentmethod for such evolving data sets. However,
real-world data, such as medical diagnosis records, often
come in ordered sequences with partial labeling due to the
high costs of comprehensive labeling. For example, medical
indicators like blood pressure and blood sugar levels remain
unlabelled until amedical professional interprets themwithin
the context of a diagnosis. This ordered and partially labelled
nature is typical for many data types. The dimensions of a
patient’s sample expand when a doctor identifies a complex
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condition, necessitating further examination of the lesion
using sophisticated instruments. Unfortunately, the labeling
of such detailed patient data is often limited, with only a
small portion being labelled due to the associated expenses
and labor. Thus, the analysis of partially labelled, dynamic,
ordered data is not only inevitable but also critical in practi-
cal scenarios. Despite this, research on feature selection for
these complex data types remains underdeveloped. Current
studies have largely focused on either ordered or partially
labeled data in isolation, failing to tackle their combined chal-
lenges. Furthermore, existing algorithms often struggle with
the computational demands of large-scale, high-dimensional
data. In light of these challenges, our team has initiated a
study aimed at developing feature selection algorithms that
are both efficient and effective for the complex and nuanced
nature of partially labeled, dynamic, ordered data.

Rough set theory, a prominent data mining technique, is
effective in partitioning datasets to reveal underlying rela-
tionships and patterns among attributes. It has been widely
adopted in data mining [5], pattern recognition [6, 7], and
knowledge discovery [8, 9], particularly excelling in scenar-
ios involving incomplete, uncertain, or fuzzy data. In the
context of partially labelled datasets with numerous missing
labels, rough set theory proves highly effective in eliminat-
ing redundant features and assessing attribute significance.
Among various models, the neighborhood rough set model
is particularly noteworthy for data analysis due to its ability
to operate without requiring any prior knowledge. Neigh-
bourhood rough set [10, 11] is more robust in the face of
noisy data and outliers as it measures the similarity or differ-
ence between attributes through the neighbourhood space.
This capability allows the model to more effectively pre-
serve valuable features while disregarding noisy ones during
the feature selection process [12, 13]. Therefore, this paper
introduces the neighborhood rough set model as a powerful
tool for data analysis.

In addition, when tackling feature selection for partially
labelled data, semi-supervised feature selection algorithms
undoubtedly serve as powerful tools. With the growing
prevalence of partially labelled data, more scholars are delv-
ing into research on semi-supervised feature selection. For
example, Liu et al. [14] explored an attribute reduction
based on neighborhood rough set over partially labelled
data. Shu et al. [15] presented a neighbourhood discernibil-
ity degree-based semi-supervised feature selection algorithm
and applies the granular ball technique can be used to pro-
cess mixed types of partially labelled data. Huang et al. [16]
proposed a semi-supervised attribute reduction for partially
labelled categorical data which predict unlabelled data by
means of the conditional probability. A supervised informa-
tion granulation strategy is proposed by Liu et al. [17], which
uses intra-class radius and extra-class radius to add or delete

samples from the neighborhood. Gao et al. [18] presented a
rough set-based semi-supervised attribute reduction method
for partially labelled data. By studying the aforementioned
literature, it is evident that the majority of semi-supervised
feature selection algorithms are tailored for staticmixed-type
data, with limited attention given to ordered data. This gap
highlights the urgent need for a feature selection algorithm
that can effectively manage dynamically evolving, partially
labelled ordered dataąła challenge that this paper aims to
address as its primary contribution.

Dynamic feature selection algorithms are primarily empl-
oyed to process streaming data or datasets that evolve over
time. Their main objective is to adapt to changing data and
environments by dynamically selecting relevant attributes
throughout the training process. In recent years, there has
been substantial research focused on dynamic feature selec-
tion, reflecting the growing importance of these algorithms
in handling continuously changing data landscapes. Pan
et al. [19] developed an incremental approach to feature
selection using theweighted dominance-based neighborhood
rough sets. Xu’s team [20] described a matrix-based feature
selection approach which can handle ordered data set with
time-evolving features by conditional entropy. Yang et al.
[21] built a feature selection framework based on discerni-
bility score and proposed an incremental feature selection
method using sample selection and feature-based accelera-
tor. Yang’s team [4] presented a novel incremental attribute
reduction based on quantitative dominance-based neighbor-
hood self-information for dynamic hybrid ordered decision
system. Cai et al. [22] provided the incremental algorithms
for updating reducts bymaking full use of the existing results
from dynamic covering decision information systems. After
collating and studying the aforementioned algorithms, we
found that there are very few that address partially labelled
ordered data within the context of dynamic feature selection.
Therefore, this paper aims to bridge this gap by developing
a dynamic feature selection algorithm specifically designed
to handle partially labelled ordered datasets.

Feature evaluation criterion is a measure of the contri-
bution or importance of a feature to the performance of a
machine learning model. In rough set theory, these criteria
can be divided into three main categories: consistency-based
feature evaluation criteria [23, 24], information theory-based
feature evaluation criteria [20, 25, 26] and discernibility
viewpoint-based feature evaluation criteria [27, 28]. Among
them, the discernibility degree, as an important concept of
rough sets, is used to measure the ability to distinguish
between two categories under specific conditions. This con-
cept has gained significant attention and has been widely
applied in recent years. Lin et al. [29] introduced a recur-
sive method to gradually construct the multiple discernibility
matrix by composing the refined discernibility matrix and
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incremental discernibilitymatrix based on previousmatrices.
An attribute reduction with variable precision is proposed by
Li et al. [30] which demonstrated the concepts of both indis-
cernibility and discernibility relations involving uncertain or
imprecise information. By applying an information updat-
ing tool, Liu et al. [27] proposed the discernibility matrix
based incremental feature selection algorithm, which greatly
reduces the computation time. Inspired by the aforemen-
tioned article, this paper applies a dominant neighbourhood
discernibility degree to a partially labelled ordered dataset,
aiming to identify high-performance features within the
dataset.

To improve the efficiency of feature selection, various
techniques have been employed to mitigate the time com-
plexity of the algorithm. Granular balls have captured our
interest as a novel method to expedite feature selection. The
concept of granular balls was initially introduced by Xia et
al. They devised a sample segmentation method named gran-
ular ball, capable of completing the information granulation
process without relying on any parameters [31, 32]. Addi-
tionally, Xia et al. [33] extended the granular ball model to
neighborhood rough sets, enabling the generation of different
neighborhoods for each object in an adaptive fashion. They
further devised a corresponding feature selection algorithm
based on this extension. From this point of view, Shu et al.
[15] proposed a pseudolabelled granular ball generation algo-
rithm to speed up the feature selection process. Chen et al.
[34] constructed an granular ball guided selector attribute
reduction algorithm by stepwise generation of granular balls.
In this study, we introduce a pseudolabelled granular ball
generation algorithm used to divide the overall sample into
individual granular balls and use these granular balls to filter
out a subset of features with the best performance in the form
of integrated voting. Besides, Yang et al. [20] built a matrix
- based dominant relation reduction method and Zhang et al.
[35] used the Euclidean distancematrix to store and calculate
the distance between samples in each neighbourhood. Draw-
ing inspiration from theirwork, this paper introduces amatrix
updating method that effectively leverages initial calculation
results to accelerate the feature selection process.

This paper’s primary contributions include:

(1) Introduction of a dominant neighborhood discernibility
degree to evaluate the significance of candidate features
for partially labelled ordered data.

(2) Development of the pseudolabelled granular ball tech-
nique and a matrix updating method effectively speed
up the feature selection process compared to the four
algorithms mentioned in the paper.

(3) Proposition of two feature selection algorithms tailored
for partially labelled ordered data: a static algorithm
NGM and a dynamic attribute algorithm with dynam-
ically increasing features INGM-A.

(4) Presentation of extensive experimental results and sta-
tistical analyses demonstrating the superiority of the
proposed algorithm over others in terms of computa-
tional time, classification accuracy, and feature subset
size.

The remainder of this paper consists of the following
sections. In Section 2, some basic concepts about neighbour-
hood rough sets and the definition of dominance relations are
briefly introduced. A distance function to measure similarity
and difference between samples is presented, along with the
introduction of the related concept of amatrix to simplify cal-
culations. In Section 3, introduce a dominant neighborhood
discernibility degree to evaluate the significance of candidate
features for partially labelled ordered data. In Section 4, a fea-
ture selection algorithm based on dominant neighbourhood
discernibility degree via a pseudolabel granular ball selec-
tor and distance matrix updating methods is constructed for
the ordered partially labelled decision system. In Section 5,
a dynamic incremental feature selection algorithm for data
dimensionality increase over time is established based on the
theoretical foundation of the previous sections. In Section 6,
a series of experiments on datasets such as those from UCI
and Kaggle were conducted to demonstrate the effectiveness
and feasibility of the proposed algorithm. The conclusions
are presented in Section 7. The framework of the article is
shown in Fig. 1.

2 Preliminaries

In this section, firstly, some fundamental concepts such as
neighbourhoods, partially labelled ordered data, dominance
relations etc., are briefly introduced. Relevant knowledge can
be found in [8, 10, 20].

In rough set theory, data can usually be represented by an
information system I S = (U , A, V , f ), where

(1) U = {x1, x2, ..., xn} denotes the set of objects and con-
tains all the samples or examples;

(2) A = {a1, a2, ..., am} denotes the set of features, which
contains all the properties that describe an object, where
a j represents a single feature;

(3) V = ∪a∈AVa is the collection of all feature values,where
Va j is the set of possible values for feature a j ;

(4) f : U × A −→ V is an information function. ∀x ∈
U , a ∈ A, the relation function f gives the value of x
for a j , f (x, a) ∈ Va .

More specifically, if the feature set in the aforemen-
tioned information system satisfies A = C ∪ D and C ∩
D = ∅, the information system is a decision system
DS = (U , A=C ∪ D, V , f ), where C = {a1, a2, . . . , am}
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Fig. 1 Framework diagram of
the article

represents the set of condition features, and D = d denotes
the decision feature. For ∀B ⊆ C , the feature subset deter-
mines an equivalence relation, which is denoted by I N DB =
{(x, y) ∈ U × U | ∀b ∈ B, f (x, b)= f (y, b)}. The equiva-
lence relation I N DB partitions U into multiple equivalence
classes, denoted byU/I N D(B)={

X1, X2, . . . , X j
}
, where

Xi (1 ≤ i ≤ j) is the equivalence class.
If U = Ul ∪ Uu , where Uu represents the collec-

tion of unlabelled objects, which means that for ∀x ∈
Uu, f (x, d) = ∗; Ul is the collection of decision label
objects. Then the decision system is called the partially
labelled decision system LDS=(U =Ul ∪Uu, A=C ∪ D,

V , f ).
In everyday life, many features are inherently ordered,

and it is through this ordering that we can assess the quality
of an item and categorize it. For instance, doctors evaluate
a patient’s health based on factors such as blood pressure,
blood sugar, and pulse rate, all of which are ordered features.
In a partially labelled decision system, when the domain of
a feature is arranged in ascending or descending order and
all features are criteria, an ordered partially labelled deci-
sion system (OLDS) is formed, denoted by OLDS≥ =(
U = Ul ∪Uu, A = C ∪ D, V , f

)
.

Let OLDS≥ = (
U = Ul ∪Uu, A = C ∪ D, V , f

)
be

an ordered partially labelled decision system, ∀B ⊆ C, B �=
∅, the conditional relation with ascending order OB (also
called dominance relation) can be defined as

OB = {(x, y) ∈ U ×U : f (x, a) ≥ f (y, a),∀a ∈ B} . (1)

and the relational sets of x called B-dominated sets is defined
as

OB(x) = {y ∈ U : xOB y} . (2)

Example 1 In the following, an ordered partially labelled
decision system on patient diagnosis is shown in Table 1. In
this table, there are eight patients examined for breast cancer,
i.e., U = {x1, x2, x3, x4, x5, x6, x7, x8} denotes the collec-
tion of objects, where Uu = {x2, x3, x4, x6} is a set of unla-
belled objects, and Ul = {x1, x5, x7, x8} is a set of labelled
objects, where there are two classes, namely Healthy and
Patient . Since the condition feature set {BMI(unit: kg/m2 ),
Glucose(unit: mg/dL), Insulin(unit:μU/mL), HOMA, Lep-
tin(unit: ng/mL) } has the numerical feature values, and the
feature values in the parentheses are normalized into [0, 1],
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i.e, C = {a1, a2, a3, a4, a5}. Based on the partially labelled
dataUu andUl , let B = C , the dataset can be further divided
by the dominance relation OB to obtain the following results.
OUl

B (x1) = {x1}; OUl

B (x5) = {x1, x5, x8}; OUl

B (x7) =
{x1, x7, x8}; OUl

B (x8) = {x8}; OUu

B (x2) = {x2, x3, x4, x6};
OUu

B (x3) = {x3}; OUu

B (x4) = {x4, x6}; OUu

B (x6) = {x6} .

Given an ordered partially labelled decision system
OLDS≥ = (

U = Ul ∪Uu, A = C ∪ D, V , f
)
, for ∀B ⊆

C , the neighbourhood relation N RB can be defined as

N RB = {(x, y) ∈ U ×U | 
B(x, y) ≤ δ} , (3)

where
B(x, y)denotes a distance function thatmeasures the
similarity of two objects. δ called the neighbourhood radius.

N RB has the following properties, when it is a neighbour-
hood relation in an information systems.

(1) Reflexive: ∀x ∈ U , then xN RBx ;
(2) Symmetric: ∀x, y ∈ U , let xN RB y, then yN RBx ;
(3) Non-transitive: ∀x, y, z ∈ U , let xN RB y and yN RBz,

then xN RBz cannot be taken as true;

The neighbourhood relation induces a set of coverage of
the universe U . For U = {x1, x2, . . . , xn} , B ⊆ C , the
classification induced by the universeU under the neighbour-
hood relation N RB is U/N RB = {∂B (x1) , ∂B (x2) , . . . ,

∂B (xn)}, where ∂B(x) = {y ∈ U | (x, y) ∈ N RB} denotes
the neighbours of each object within a given range on feature
set B. For simplicity, U/N RB will be replaced by U/B.

In data analytics mining and machine learning, it’s cru-
cial to understand the degree of dissimilarity among various
data entities and subsequently assess their distance and cat-
egorization. Drawing inspiration from Hu et al. [36], we
introduced amethod to quantify the distance between objects
in an ordered partially labelled decision system, which is
defined as follows.

Let OLDS≥ = (
U = Ul ∪Uu, A = C∪D, V , f ) be an

ordered partially labelled decision system. For each a ∈ C
and x, y ∈ U the distance between x and y w.r.t. the feature

a is defined as

da(x, y) = f (x, a) − f (y, a)

maxa −mina
, f (x, a) ≥ f (y, a), (4)

wheremaxa andmina are themaximumandminimumvalues
of feature a, respectively.

It iswidely acknowledged thatwhen two objects are closer
in proximity, they are more likely to be similar and belong to
the same object class. In [37], Yuan et al. introduced a hetero-
geneous Euclidean-overlap metric to handle numerical data.
Building upon the heterogeneous Euclidean-overlap metric
method, the computational framework for calculating the dis-
tance between homogeneous data is constructed as follows.

Definition 1 Let OLDS≥ = (
U = Ul ∪Uu, A = C ∪

D, V , f ),C = {a1, a2, ..., al} be an ordered partially
labelled decision system where l is the total number of
features in C . For each x, y ∈ U and al ′ ∈ B ⊆
C

(
l ′ ∈ {1, 2, .., l}) the Euclidean distance metric (EDM)

on feature al ′ is defined as

EDMB(x, y)=

⎧
⎪⎪⎨

⎪⎪⎩

{√
1
l

∑l ′
l ′=1 d

2
al′ (x, y), y∈OB(x)

1, y /∈OB(x)
, x �= y

0, x= y

(5)

where l ′ is the number of features and |B| = l ′, l is the total
number of features and |C | = l, | ∗ | represents the cardinality
of a set, dal′ (x, y) is the distance between objects x and y
under the feature al ′ .

Based on Definition 1, (EDMB)M = (EDMB(x, y))n×n
is called Euclidean distance metric matrix of feature a can
be easily calculated.

Example 2 (Continued from Example 1). For the ordered
partially labelled decision system in Table 1, let B = C ,
the distances between x1 and x2 w.r.t. ai (i = 1, 2, 3, 4, 5)
are computed as follows. da1(x2, x1) = 0.42, da2(x2, x1) =
0.98, da3(x2, x1) = 1, da4(x2, x1) = 1, da5(x2, x1) = 0.97,

Table 1 An ordered partially
labelled decision system for
patient diagnosis (normalized
results)

Sample BMI a1 Glucose a2 Insulin a3 HOMA a4 Leptin a5 Class d

x1 23.5 (0.22) 70 (0.00) 2.707 (0.00) 0.467 (0.00) 8.807 (0.03) Healthy

x2 27.7 (0.64) 196 (0.98) 51.814 (1.00) 25.050 (1.00) 70.882 (1.00) *

x3 23.1 (0.18) 91 (0.16) 4.498 (0.04) 1.010 (0.02) 17.939 (0.17) *

x4 23.0 (0.17) 83 (0.10) 4.952 (0.05) 1.014 (0.02) 17.127 (0.16) *

x5 31.3 (1.00) 199 (1.00) 12.162 (0.19) 5.970 (0.22) 18.131 (0.17) Patient

x6 22.7 (0.13) 77 (0.05) 4.690 (0.04) 0.891 (0.02) 6.964 (0.00) *

x7 29.7 (0.84) 85 (0.12) 14.649 (0.24) 3.071 (0.11) 26.517 (0.31) Patient

x8 21.4 (0.00) 77 (0.05) 3.226 (0.01) 0.613 (0.01) 9.883 (0.05) Healthy
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and so on. Then, the Euclidean distance metric matrix of the
decision system can be calculated as follows.

(EDMB)M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 1 1 1 1 1 1
0.90 0 0.83 0.84 1 0.89 1 0.91
1 1 0 1 1 1 1 0.11
1 1 1 0 1 0.08 1 0.09

0.59 1 0.54 0.56 0 0.59 1 0.63
1 1 1 1 1 0 1 1

0.33 1 1 0.32 1 0.36 0 0.41
1 1 1 1 1 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

In the above, we give a distance function to measure the
similarity and difference between two objects. According
to (3), we know that when the distance between two objects is
less than the radius of the neighbourhood δ, these two objects
satisfy the neighbourhood relationship and can be classified
into the same class. In other words, we have represented the
similarity between these eight patients with a distance matrix
through the B feature set. Given a neighbourhood radius δ,
it is possible to know what are the other patients with similar
conditions to the patient.

By Definition 1, the value of the EDM is bounded
between 0 and 1, so the value domain of the neighbourhood
radius δ should also belong to [0, 1]. Therefore, in the ordered
partially labelled decision system, the new neighbourhood
relationship can be defined as follows.

Definition 2 Given an ordered partially labelled decision
system OLDS≥ = (

U = Ul ∪Uu, A = C ∪ D, V , f
)
, let

∀B ⊆ C, δ ∈ [0, 1], and for ∀x, y ∈ U , a neighbourhood
relation can be defined by

N δ
B = {(x, y) ∈ U ×U : EDMB(x, y) ≤ δ} . (6)

Thus the neighbourhood relation N δ
B of U can be repre-

sented by a relation matrix (N RB)M = (N RB(x, y))n×n ,
where

(N RB) (x, y) =
{
1, EDMB(x, y) � δ,

0, else.
(7)

Proposition 1 Let OLDS≥ =(U =Ul ∪Uu, A=C∪D, V ,

f ) be an ordered partially labelled decision system. Given
B1, B2 ⊆ C, δ1, δ2 ∈ [0, 1], neighbourhood relation N δ

B ,the
system then has the following properties:

(1) If B1 ⊆ B2, then N δ
B2

(x) ⊆ N δ
B1

(x).

(2) If δ1 ≤ δ2, then N δ1
B (x) ⊆ N δ2

B (x).

The above two properties are fundamental in neighbour-
hoods and the proof is obvious.

Example 3 (Continued from Example 2). According to
Definition 1 and 2, let B = {a1, a2, a3, a4, a5}, in order to
make the examplemore concise andwithout toomany neigh-
bourhood elements in each sample, set δ = 0.35, then

(EDMB)M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 1 1 1 1 1 1
0.90 0 0.83 0.84 1 0.89 1 0.91
1 1 0 1 1 1 1 0.11
1 1 1 0 1 0.08 1 0.09

0.59 1 0.54 0.56 0 0.59 1 0.63
1 1 1 1 1 0 1 1

0.33 1 1 0.32 1 0.36 0 0.41
1 1 1 1 1 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

�⇒ (N RB)M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

According to the above matrix, we can get N δ
B (x1) =

{x1}; N δ
B (x2) = {x2}; N δ

B (x3) = {x3, x8}; N δ
B (x4) =

{x4, x6, x8}; N δ
B (x5) = {x5}; N δ

B (x6) = {x6}; N δ
B (x7) =

{x1, x4, x7}; N δ
B (x8) = {x8}.

Therefore, U/N δ
B = {{x1} , {x2} , {x3, x8} , {x4, x6, x8} ,

{x5} , {x6} , {x1, x4, x7} , {x8}}, i.e. given a neighbourhood
radius δ = 0.35, eight patients can be classified into the
above groups. The reason (EDMB)M is not a symmetric
matrix is that the matrix is defined under the dominance rela-
tion OB(x). In this case, patients will prefer to be closer and
more similar to those with higher values of the five indica-
tors, and more distant from those with lower values of the
indicators.

The following is a brief introduction to the concept of gran-
ulation ball. The conceptwas initially introduced byXia et al.
They devised a sample segmentationmethod named granular
ball, capable of completing the information granulation pro-
cess without relying on any parameters [31, 32]. The relevant
definitions of granulation ball are as follows.

Definition 3 [33] (Granular ball) Given a decision system
DS = (U , A = C ∪ D, V , f ),∀B ⊆ C , let GBU

B =
{GB1,GB2, . . . ,GBn} be the collection of all granular balls
induced by B under U ,∀GBi ∈ GBU

B (1 ≤ i ≤ n) is rep-
resented by centre c and radius r . The centre c and radius r
can be defined as

c = 1

|GBi |
|GBi |∑

j=1

x j , (8)
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and

r = 1

|GBi |
|GBi |∑

j=1


 (
x j , c

)
, (9)

where c denotes the centre of gravity of all objects in GBi ,
and r is an average of the distances from all objects to c in
GBi . 


(
x j , c

)
is the distance between object x j in GBi and

the centre c under the feature subset B.

Furthermore, the purity of a granular ball is used to indi-
cate the percentage of the maximum number of objects with
the same label in the granular ball.

Definition 4 [31] (Purity) Given a decision system DS =
(U , A = C ∪ D, V , f ),∀B ⊆ C , a granular ball GBi ∈
GBU

B and GBi/D = {D1, D2, . . . , Dm}, the purity P of
GBi can be defined as

P = maxmj=1

∣∣Dj
∣∣

|GBi | (10)

3 Neighbourhood discernibility degree
for an OLDS

In this section, we will introduce the concept of neighbour-
hood discernibility degree to aid inmeasuring the importance
of candidate features. Sheng et al. [28] presented the concept
of neighbourhood discernibility degree by generalizing the
traditional discernibility degree under the information sys-
tem, and this paper extends it to ordered partially labelled
data.

Definition 5 (Neighborhood discernibility degree) Given an
ordered partially labelled decision system OLDS≥ =(
U = Ul ∪Uu, A = C ∪ D, V , f

)
,∀B ⊆ C , neighbour-

hood relation N δ
B andUu/N δ

B =
{
N δ
B (x1) , N δ

B (x2) , . . . N δ
B

(xm)} ,m = |Uu |, the neighbourhood discernibility degree
of feature subset B under the universe Uu is defined as

NDDUu
(B) = ∣∣Uu

∣∣2 −
m∑

i=1

∣∣N δ
B (xi )

∣∣ (11)

where | ∗ | represents the cardinality of a set.

The neighbourhood discernibility degree is a measure of
the ability of a subset of features B to distinguish between the
entire unlabelled data set. The larger value of NDDUu

(B)

indicates that there are fewer elements in the neighbourhood
of each unlabelled sample obtained through feature subset
B, i.e., feature subset B is more capable of dividing the unla-
belled sample.

Based on the neighbourhood discernibility degree, we can
further obtain the definition of the relative neighbourhood
discernibility degree.

Definition 6 (Relative neighborhood discernibility degree)
Let OLDS≥ = (

U = Ul ∪Uu, A = C ∪ D, V , f
)
be a

partially labelled decision system, ∀B ⊆ C , neighbourhood
relation N δ

B andUl/N δ
B =

{
N δ
B (x1) , N δ

B (x2) , . . . N δ
B (xT )

}
,

T = ∣∣Ul
∣∣, ∀x ⊆ Ul , [x]D represents the decision class of

object x under decision feature D, the relative neighbourhood
discernibility degree can be defined as

NDDUl
(B, D) =

T∑

i=1

∣∣N δ
B (xi )

∣∣ −
T∑

i=1

∣∣N δ
B (xi ) ∩ [xi ]D

∣∣

(12)

The relative neighbourhood discernibility degree is used
to denote the difference in the ability to classify samples by
feature subset B and decision attribute D. A smaller value
of NDDUl

(B, D) denotes a smaller difference in the sam-
ples classified by feature subset B and decision attribute D,
respectively, i.e., the more proximity between the roles of
feature subset B and decision attribute D.

Proposition 2 Given an ordered partially labelled decision
system OLDS≥ = (

U = Ul ∪Uu, A = C ∪ D, V , f ),
∀B ⊆ C , neighbourhood relation N δ

B , T = ∣∣Ul
∣∣, ∀x ⊆ Ul ,

[x]D represents the decision class of object x under decision
feature D, then NDDUu

(B) and NDDUl
(B, D) have the

following properties:

(1) 0 ≤ NDDUu
(B) ≤ |Uu | (|Uu | − 1);

(2) 0 ≤ NDDUl
(B, D) ≤ ∣∣Ul

∣∣2 − ∑T
i=1 |[xi ]D|;

Proof Let Uu/N δ
B = {{x1} , {x2} , . . . , {xm}}, the neighbor-

hood discernibility degree of Uu will reach its maximum
value NDDUu

(B) = |Uu | (|Uu | − 1). Let Uu/N δ
B =

{Uu,Uu, . . . ,Uu}, the neighborhood discernibility degree
ofUu will reach itsminimumvalue NDDUu

(B) = 0. There-
fore, 0 ≤ NDDUu

(B) ≤ |Uu | (|Uu | − 1). Similarly, we can

get 0 ≤ NDDUl
(B) ≤ ∣∣Ul

∣∣2 − ∑T
i=1 |[xi ]D|.

Examples of calculating NDDUu
(B) and NDDUl

(B, D)

are as follows.

Example 4 (Continued from Example 1). For the ordered
partially labelleddecision system inTable 1,Uu ={x2, x3, x4,
x6} ,Ul = {x1, x5, x7, x8}, let B = {a1, a2, a3, a4}. The
sample size was reduced compared to Example 3 because the
samples were divided into labelled and unlabelled samples
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for separate calculations. To prevent a sample from having
only itself in its neighbourhood, set δ = 0.85, then

(EDMB)U
u

M =

⎡

⎢⎢
⎣

0 0.85 0.87 0.89
1 0 1 1
1 1 0 0.04
1 1 1 0

⎤

⎥⎥
⎦

�⇒ (N RB)U
u

M =

⎡

⎢⎢
⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤

⎥⎥
⎦

(EDMB)U
l

M =

⎡

⎢⎢
⎣

0 1 1 1
0.81 0 1 0.82
0.57 1 0 0.60
1 1 1 0

⎤

⎥⎥
⎦

�⇒ (N RB)U
l

M =

⎡

⎢⎢
⎣

1 0 0 0
1 1 0 1
1 0 1 1
0 0 0 1

⎤

⎥⎥
⎦

Thus,

NDDUu
(B) = ∣∣Uu

∣∣2 −
m∑

i=1

∣∣N δ
B (xi )

∣∣

= 42 − (2 + 1 + 2 + 1)

= 10

NDDUl
(B, D) =

T∑

i=1

∣∣N δ
B (xi )

∣∣ −
T∑

i=1

∣∣N δ
B (xi ) ∩ [xi ]D

∣∣

= (1 + 3 + 3 + 1) − (1 + 1 + 1 + 1)

= 4

Example 4 demonstrates the ability to classify eight
patients by a subset of features B. NDDUu

(B) represents
the ability to classify four unknown categories of patients.
The larger the value of NDDUu

(B), the better the ability of
B to differentiate between these four patients. NDDUl

(B)

represents the ability to classify four known categories of
patients. The smaller the value of NDDUl

(B), the better the
ability of B to correctly determine whether or not the four
patients are sick.

The monotonicity of the neighborhood discernibility
degree for selecting candidate features is discussed next,
which is a crucial aspect guiding the feature selection search
process.

Proposition 3 (Monotonicity) Given an ordered partially
labelled decision system OLDS≥ = (

U = Ul ∪Uu, A =
C ∪ D, V , f ), for ∀B1, B2 ⊆ C , if B1 ⊆ B2, and
the same neighbourhood radius δ, then NDDUu

(B1) ≤
NDDUu

(B2), NDDUl
(B1, D) ≥ NDDUl

(B2, D).

Proof ∀x ∈ U , since B1 ⊆ B2, by Proposition 1, we can
easily obtain that N δ

B2
(xi ) ⊆ N δ

B1
(xi ). Suppose Uu/N δ

B1
={

N δ
B1

(x1) , N δ
B1

(x2) , . . . , N δ
B1

(xm)
}
and Uu/N δ

B2
=

{
N δ
B2

(x1) , N δ
B2

(x2) , . . . , N δ
B2

(xm)
}
, we have

∑m
i=1

∣∣∣N δ
B2

(xi )
∣∣∣≤

∑m
i=1

∣∣∣N δ
B1

(xi )
∣∣∣. Therefore, it is easy to get NDDUu

(B1)≤
NDDUu

(B2). Similarly, supposeUl/N δ
B1

=
{
N δ
B1

(x1) , N δ
B1

(x2) , . . . , N δ
B1

(xn)
}
,Ul/N δ

B2
=

{
N δ
B2

(x1) , N δ
B2

(x2) , . . . ,

N δ
B2

(xn)
}

and the decision class of x
(∀x ∈ Ul

)
under

decision feature D is [x]D . Thus, NDDUl
(B1, D) −

NDDUl
(B2, D) = ∑T

i=1

∣∣∣N δ
B1

(xi )
∣∣∣ − ∑T

i=1

∣∣∣N δ
B1

(xi )

∩ [xi ]D
∣∣∣ − ∑T

i=1

∣∣∣N δ
B2

(xi )
∣∣∣ + ∑T

i=1

∣∣∣N δ
B2

(xi ) ∩ [xi ]D
∣∣∣ =

∑T
i=1

∣∣∣N δ
B1

(xi )
∣∣∣ − ∑T

i=1

∣∣∣N δ
B2

(xi )
∣∣∣ −

(∑T
i=1

∣∣∣N δ
B1

(xi )

∩ [xi ]D
∣∣∣ − ∑T

i=1

∣∣∣N δ
B2

(xi ) ∩ [xi ]D
∣∣∣
)
. Since N δ

B2
(x) ⊆ N δ

B1

(x), then satisfy
∣∣∣N δ

B1
(x)

∣∣∣ −
∣∣∣N δ

B2
(x)

∣∣∣=
∣∣∣N δ

B1
(x) − N δ

B2
(x)

∣∣∣

and
∣∣∣N δ

B1
(x) ∩ [x]D

∣∣∣−
∣∣∣N δ

B2
(x) ∩ [x]D

∣∣∣ =
∣∣∣
(
N δ
B1

(x) − N δ
B2

(x)) ∩ [x]D|, so NDDUl
(B1, D) − NDDUl

(B2, D) =
∑T

i=1

(∣∣∣N δ
B1

(xi )−N δ
B2

(xi )
∣∣∣
)
−∑T

i=1

∣∣∣
(
N δ
B1

(xi )−N δ
B2

(xi )
)

∩ [xi ]D|≥0. Hence, NDDUl
(B1, D)≥NDDUl

(B2, D).

With Proposition 3, it is easy to construct a metric for
evaluating the importance of features in the feature selection
process, which is defined as follows.

Definition 7 (Inner and outer significance) Given an ordered
partially labelleddecision systemOLDS≥ =(

U = Ul ∪Uu,

A = C ∪ D, V , f ) ,∀B ⊆ C , the inner significance of fea-
ture b can be defined as

SIGU
in(b, B, D)= NDDUl

(B− {b}, D)− NDDUl
(B, D)

+NDDUu
(B) − NDDUu

(B − {b})
(13)

The inner significance can delete some redundant features
from the candidate features. When SIGU

in(b, B, D) = 0, it
means that feature b is a redundant feature.

And given an ordered partially labelled decision system
OLDS≥ = (

U = Ul ∪Uu, A = C ∪ D, V , f ),∀B ⊆ C
and b ∈ C − B, the same reasoning can be used to obtain the
outer significance of feature b

SIGU
out (b, B, D)= NDDUl

(B, D)− NDDUl
(B ∪ {b}, D)

+NDDUu
(B ∪ {b}) − NDDUu

(B)

(14)

Similarly, the outer significance can sift out important fea-
tures from the feature set in the universe U to be added to
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the candidate feature set. If SIGU
out (b, B, D) > 0, feature

b is deemed non-redundant and should be included in the
candidate features. With the above definitions in place, we
can deduce the conditions required for completing feature
selection as follows.

Proposition 4 Let OLDS≥ =(U =Ul ∪Uu, A=C ∪ D,

V , f ) be an ordered partially labelled decision system, ∀B ⊆
C , the feature subset B selected by outer and inner signif-
icance to become a selected feature subset needs to satisfy
the following conditions:

(1) NDDUl
(C, D) = NDDUl

(B, D), NDDUu
(C) =

NDDUu
(B);

(2) ∀b ∈ B, NDDUl
(B, D) < NDDUl

(B − {b}, D),
NDDUu

(B − {b}) < NDDUu
(B);

The first condition states that the selected subset of fea-
tures B has the same discriminability as the entire set of
conditional features C to infer and the entire set of decision
features D.

The second condition ensures that the selected features
subset B is minimal and no redundant features exist.

4 Feature selection for ordered partially
labelled data via pseudolabel granular ball
and distancematrix updatingmethods

4.1 Pseudolabel granular ball

In this subsection, we introduce a pseudolabel granular
ball generation algorithm. When dealing with large sample
datasets, granular balls can effectively partition the dataset,
consolidate information, and simplify computations to some
extent.

Since the generation of granular balls requires labelled
data, pseudolabeling techniques are crucial to apply them on
partially labelled ordered datasets. Pseudolabeling tags data
with a pseudolabel based on the information available in the
partially labelled dataset itself. The specific definitions are
as follows.

Definition 8 Given a decision system DS = (U , A =
C ∪ D, V , f ), the ordered partially labelled decision sys-
tem labelled with pseudolabels can be defined as

OLDS≥PL =
(
U = Ul ∪Uu,C, D, DPL , f

)
, (15)

where DPL is the pseudolabel decision feature. ∀x ∈
U , f

(
x, DPL

C

)
represents the pseudolabel for object x ,

which can be generated from the learning method based on

feature subset C . This paper adopts a known k-means clus-
tering method to obtain pseudolabels.

With the introduction of the pseudolabeling technology,
the purity of the granular ball was redefined as follows.

Definition 9 (Pseudolabel purity) Let OLDS≥PL =(
U =Ul

∪Uu,C, D, DPL , f
)
be a pseudolabel decision system,

∀B ⊆ C , a granular ball GBi ∈ GBU
B and GBi/DPL

C ={
DPL
1 , DPL

2 , . . . , DPL
m

}
, the purity PPL of GBi is defined

as

PPL =
maxmj=1

∣∣∣DPL
j

∣∣∣

|GBi | (16)

After the above definition, we can obtain a pseudolabel gran-
ular ball generation algorithm applied to partially labelled
ordered datasets as detailed below.

Algorithm 1 Pseudolabel Granular Ball Generation Algo-
rithm for Ordered Partially Labelled Data ( PGA algorithm).
Input:An ordered partially labelled decision system OLDS≥ = (U =
Ul ∪Uu , A = C ∪ D, V , f );
Output: A pseudolabel granular ball set GBU

C .

1: Let GBU
C = ∅

2: Obtain the pseudolabel of the object by using k-means clustering
and replace the original label in the data with the pseudolabel

3: Consider the entire universe U as an initial granular ball
4: Decompose eachpseudolabel granular ball byusing two-means clus-

tering
5: Compute the purity of each pseudolabel granular ball byDefinition 9
6: if the purity of each pseudolabel granular ball reaches a given thresh-

old then
7: Put each pseudolabel granular ball into GBU

C
8: else
9: Return to Step 4
10: end if

The time complexity of the PGA algorithm can be derived
from the time complexity of k-means clustering, whose time
complexity is O(Nkt) [31], where N represents the size of
objects in the data, k represents the size of clustering, and t
represents the number of iterations. In the process of generat-
ing granular balls, the time complexity of generating granular
balls is close to O(|U |) as the k-means algorithm generally
has a fast convergence rate and can be considered to be close
to linear.Moreover,weneed to calculate the distance between
two objects whose time complexity is O(K ×|U |×|C |). So,
after analysing it is known that the time complexity of PGA
is O(K × |U | × |C |).

The following example illustrates how to generate a col-
lection of pseudolabel granule balls.

Example 5 (Continuation of Example 1). An ordered par-
tially labelled decision system is shown in Table 1, where
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U = {x1, x2, . . . , x8} , B = {a1, a2, a3, a4, a5}. Assuming
that the given threshold is 0.7, the sample data is classified
into two classes using the 2-means clustering algorithm since
the number of labelled species in the original data is 2, which
are {x2, x3, x4, x6, x7, x8} and {x1, x5}, respectively. Setting
the pseudolabel of {x2, x3, x4, x6, x7, x8} to 0 and the pseu-
dolabel of {x1, x5} to 1.U = {x1, x2, . . . , x8} is regarded as
an initial pseudolabel granular ball.

According to Step 3, obtain two pseudolabel granular balls
{x2, x3, x4, x6, x7, x8} and {x1, x5}.

According to Step 4, the purity of pseudolabel granular
balls {x2, x3, x4, x6, x7, x8} and {x1, x5} is 1 .

According to Step 5, the purity of pseudolabel granular
balls {x2, x3, x4, x6, x7, x8} and {x1, x5} reaches the given
threshold, and a pseudolabel granular ball set GBU

C =
{{x2, x3, x4, x6, x7, x8} , {x1, x5}} is obtained.

4.2 A distancematrix updatingmethods

Akey point in the algorithm that saves time is how to save the
result of a previous calculation and how to update it for sub-
sequent calculations. This paper uses (EDMB)UM to save the
results of previous calculations. First, we describe in detail
how the (EDMB)UM is updated when features are added.

Proposition 5 Given an ordered partially labelled decision
systemOLDS≥ = (

U = Ul ∪Uu, A = C ∪ D, V , f
)
,∀B

⊆ C and al ′ ∈ (C − B)
(
l ′ ∈ {1, 2, . . . , n}), for each x, y ∈

U ,
(
EDMB∪al′

)U
M can be calculated as follows:

EDMB∪al′ (x, y)=
⎧
⎨

⎩

√
EDM2

B(x, y)+ 1
l · d2al′ (x, y), y∈OB(x)

√
EDM2

B(x, y) + 1, y /∈OB(x)

(17)

Proposition 5 gives how to update the (EDMB)UM matrix
when features are added, and the equation reveals the rela-
tionship between the newly added features and the originally
selected features. This forms the basis for subsequent feature
incremental algorithms. Here is an example of how to update
(EDMB)UM .

Example 6 (ContinuationofExample4).Let B={a1, a2, a3,

a4} and al ′ = a5, δ = 0.85,then

(
(EDMB)U

u

M

)2 =

⎡

⎢⎢
⎣

0 0.7211 0.7512 0.7984
1 0 1 1
1 1 0 0.0012
1 1 1 0

⎤

⎥⎥
⎦

(
EDMB∪al′

)Uu

M =

⎡

⎢⎢
⎣

0 0.9265 0.9448 0.9992
1 0 1 1
1 1 0 0.0794
1 1 1 0

⎤

⎥⎥
⎦

�⇒ (
N RB∪al′

)Uu

M =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤

⎥⎥
⎦

Thus,

NDDUu
(B ∪ al ′) = ∣∣Uu

∣∣2 −
m∑

i=1

∣∣∣N δ
B∪al′ (xi )

∣∣∣

= 42 − (1 + 1 + 2 + 1)

= 11

where the parts highlighted in red represent the changes
updated with the addition of the a5 feature. As can be seen
from the example, with the addition of the a5 feature, patients
x1 and x2 no longer belong to the same class with the same
neighbourhood radius. It means that the feature subset B is
more capable of distinguishing between the samples.

Similar to the Proposition 5, the updating principle of
(EDMB)UM in the case of reducing features is as follows.

Proposition 6 LetOLDS≥ = (
U = Ul ∪Uu, A = C ∪ D,

V , f ) be an ordered partially labelled decision system,

∀B ⊆ C and al ′ ∈ B, for each x, y ∈ U ,
(
EDMB−{al′ }

)U

M
can be calculated as follows:

EDMB−{al′ }(x, y)=
⎧
⎨

⎩

√
EDM2

B(x, y)− 1
l · d2al′ (x, y), y∈OB(x)

√
EDM2

B(x, y) − 1, y /∈OB(x)

(18)

Proposition 6 clearly shows how the (EDMB)UM matrix
is updated when redundant features need to be removed. The
above two propositions can help us to reduce many repetitive
computations, particularly beneficial when dealing with a
large number of features in the dataset.

Even so, we still encounter challenges with high-
dimensional ordered data. As the number of features in the
sample data increases, there will be fewer and fewer samples
satisfying the dominance relation OB(x). Consequently, a
significant amount of valid information may be lost. There-
fore, when confronted with high-dimensional samples, we
adjust the definition of the distance function da(x, y) and
matrix computation EDMB(x, y) as follows, while ensur-
ing balanced data distribution.

Definition 10 LetOLDS≥ = (
U = Ul ∪Uu, A = C ∪ D,

V , f ), C = {a1, a2, ..., al} be an ordered high-dimensional
partially labelled decision system, where l is the total num-
ber of features in C . For each x, y ∈ U and al ′ ∈ B ⊆
C

(
l ′ ∈ {1, 2, .., l}) the distance between x and y w.r.t. the
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feature a and the Euclidean distance metric (EDM) on fea-
ture al ′ is defined as

da(x, y) =
{

f (x,a)− f (y,a)
maxa −mina

, f (x, a) ≥ f (y, a)

0, else
(19)

EDMB(x, y) =
⎧
⎨

⎩

√
1
l

∑l ′
l ′=1 d

2
al′ (x, y), x �= y

0, x = y
(20)

Correspondingly, Propositions 5 and 6 similarly need to be
changed along with the new EDMB(x, y) matrix computa-
tion.

The information within high-dimensional ordered data
can be harnessed more effectively through Definition 10.
Although it introduces some level of error in extreme cases,
these errors are deemed acceptable within a balanced dataset.

4.3 An accelerating semi-supervised feature
selection algorithm for ordered partially
labelled data based on neighbourhood
discernibility degree with pseudolabel granular
balls and distancematrix updatingmethods

By introducing the granular balls and the distance matrix
updating methods, we can solve the following problems:

(1) When the number of samples in each category of the
dataset is unbalanced, important features of different cat-
egories may be unfairly considered;

(2) The algorithmcan be very time-consumingwhen dealing
with large samples and high-dimensional datasets;

When using pseudolabel granular balls, a subset of sam-
ples with relatively balanced distributions can be obtained
from the unbalanced samples by adjusting the threshold
value of granular balls. And when facing high-dimensional
datasets, since our algorithm is to judge one by one whether
the features can be added to the candidate feature subset.
Using distance matrix updating methods allows us to use the
result of the previous calculation, reducing a lot of repeated
calculations and thus saving a lot of time. Therefore, based on
Proposition 4, a new semi-supervised feature selection algo-
rithm for partially labelled ordered datasets is constructed by
introducing the granular ball and distance matrix updating
methods.

A problem is encountered when candidate features are
selected by granular balls using integrated voting - granular
balls containing different sample sizes vote with the same
importance. For example, a GBj containing 1000 samples
and a GBk containing 10 samples are both equally important
in selecting candidate features. This is clearly not the result
we want. Therefore, we redefined the weights of the features
selected by each granular ball based on the number of sam-
ples contained in it. In this paper,weuse the SIGout

U (b, B, D)

defined in Definition 7 and the set of pseudolabel granu-
lar balls defined in Definition 8 to construct an importance
weight belonging to each feature. Specific definitions are as
follows.

Definition 11 Given an ordered partially labelled decision
system OLDS≥ = (

U = Ul ∪Uu, A = C ∪ D, V , f
)
, let

B = ∅, b ∈ C , let GBU
B = {GB1,GB2, . . . ,GBn} be

the collection of all granular balls induced by B under
U ,∀GBi ∈ GBU

B (i ∈ [1, n]), the importance weight
belonging to each feature b can be defined as:

ω(b, B, D,GBi ) = SIGout
GBi

(b, B, D) · |GBi |
|U | (21)

By Definition 11, we can use the mechanism of inte-
grated voting more rationally to select candidate features.
The detailed description of the feature selection algorithm
based on the neighborhood discernibility degree using the
pseudolabel granular ball selector and distance matrix updat-
ing methods is presented in Algorithm 2.

Algorithm 2 Neighbourhood Discernibility Degree Based
Feature Selection Algorithm via Pseudolabel Granular Ball
Selector and Distance Matrix Updating Methods (Algorithm
NGM).
Input:An ordered partially labelled decision system OLDS≥ = (U =
Ul ∪Uu , A = C ∪ D, V , f ) and neighbourhood radius δ;
Output: A feature subset Red.
1: Let Red ← ∅;
2: Calculate pseudolabel granular balls using the PGA algorithm;
3: Select the pseudolabel granular balls set GBU

C =
{GB1,GB2, . . . ,GBn};

4: Compute NDDUl
(C, D) and NDDUu

(C);
5: repeat
6: A set of candidate features AT ← ∅;
7: for each i ∈ [1, n] do
8: ∀a ∈ C − Red, compute SIGout

GBi
(a, Red, D);

9: Select the feature b that satisfies SIGout
GBi

(b, Red, D) =
max{SIGout

GBi
(a, Red, D) : ∀a ∈ C − Red};

10: Let ωb ← SIGout
GBi

(b,Red,D)·|GBi |
|U | , add {b : ωb} into AT ;

11: end for
12: Summing the ωb of the same feature in AT ;
13: Select the feature b with the maximal ωb in AT ;
14: Red ← Red ∪ {b};
15: Compute NDDUl

(Red, D) and NDDUu
(Red) based on

Proposition 5;
16: until NDDUl

(Red, D) ≤ NDDUl
(C, D) and NDDUu

(Red) ≥
NDDUu

(C)

17: for ∀a ∈ Red do
18: Compute SIGU

in(a, Red, D) based on Proposition 6;
19: if SIGU

in(a, Red, D) = 0 then
20: Red ← Red − {a}
21: end if
22: end for
23: return Red
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Fig. 2 NGM algorithm framework

The specific framework of the new algorithm is shown
in Fig. 2. (1) label the partially labelled dataset via pseudo-
label strategy and then divide the dataset by using two-means
clustering to generate pseudolabel granular balls, (2) find
the feature b that has the largest SIGout value in each GBi
add it to AT , (3) assign weights based on the number of
samples contained in each GB and select candidate features
by integrated voting, (4) determine whether the subset of
candidate features has satisfied the constraints, if so remove
the redundant features through SIGin and output the results,
otherwise, return to (2).

Step 2-3 calculate pseudolabel granular balls by the
Algorithm 1, whose time complexity is O(K × |U | × |C |).
To obtain NDDUl

(C, D) and NDDUu
(C), we need to

calculate the distance between two objects which costs
O

(|U |2|C |). Steps 5-16 iterate through all the granu-
lar balls, selecting the most important features of each
granular ball. This is achieved by integrating the vot-
ing form and weighting it according to the number of
samples. The corresponding most important features are
then selected and added to the Red until the termina-
tion condition is met. The time complexity of this pro-
cess is O

(∑n
i=1 |GBi |2 (|C | + |C | − 1 + . . . + 1)

) = O(∑n
i=1|GBi |2

(|C|2+|C|)
2

)
.

Similarly, steps 19-24 is to delete the redundant features in

Red and the time complexity is O

(∑n
i=1|U |2(|Red|2+|Red|)

2

)
.

Consequently, the time complexity of the NGM algorithm

is O

(∑n
i=1|GBi |2

(|C|2+|C|)
2

)
. The asymptotic time complex-

ity of NGM is O
(∑n

i=1 |GBi |2 |C |2).

5 Incremental feature selectionmechanism
based on pseudolabel granular balls under
multi-feature adding with ordered
partially labelled data

In our daily life, the features of a sample change over time,
and it is time-consuming to import all the features of the
sample into the algorithm and recalculate them each time.
Therefore, in this section we propose feature incremental
algorithms to cope with these situations, which can use a
subset of features obtained from previous feature selection
combined with new feature samples for further selection.

When new sample features are added, a crucial question
arises: howdowecompare the importance of the newly added
features with the original features that have already been
screened for sample classification? Addressing this question
assists us in identifying a relative globally optimal subset of
features in the incremental algorithm.With Definition 11, we
can easily compare the importance of each feature for classi-
fication, so when a new feature is added to a sample, we can
first compare the importance of the new feature with that of
the original feature. Subsequently, we remove the features in
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Algorithm3 Incremental Feature SelectionAlgorithm based
on Neighbourhood Discernibility Degree via pseudolabel
Granular Ball Selector and Distance Matrix Updating Meth-
ods when adding feature (Algorithm INGM-A).
Input:(1) An ordered partially labelled decision system OLDS≥ =
(U = Ul ∪Uu , A = C ∪D, V , f )whereC = {a1, a2, . . . , al } ,C+ =
{al+1, al+2, . . . , al+m}and neighbourhood radius δ;
(2)The original reduced subset of features Red on U ;
Output: A new reduct feature subset Red ′.
1: Let Red ′ ← Red, C ′ ← C ∪ C+ and Red ← ∅ ;
2: Recalculate pseudolabel granular balls using the PGA algorithm;
3: Select the pseudolabel granular balls set GBU

C =
{GB1,GB2, . . . ,GBn};

4: A set of feature importance weights W ← ∅;
5: for each i ∈ [1, n] do
6: ∀a ∈ C ′, compute SIGout

GBi
(a, Red, D)

7: Compute ω(a, Red, D,GBi ), add {a : ωa} into W ;
8: end for
9: Summing the ωa of the same feature in W ;
10: for ∀a ∈ Red ′ do
11: for ∀a′ ∈ C+ do
12: if ωa ≤ ωa′ then
13: Red ′ ← Red ′ − {a};
14: end if
15: end for
16: end for
17: Compute NDDUl

(Red ′, D) and NDDUu
(Red ′);

18: Compute NDDUl
(C ′, D) and NDDUu

(C ′);
19: while NDDUl

(Red ′, D) ≤ NDDUl
(C ′, D) and

NDDUu
(Red ′) ≥ NDDUu

(C ′) do
20: A set of candidate features AT ← ∅;
21: for each i ∈ [1, n] do
22: ∀a ∈ C ′ − Red ′, compute SIGout

GBi
(a, Red ′, D) based on

Proposition 5;
23: Select the feature b that satisfies SIGout

GBi
(b, Red ′, D) =

max{SIGout
GBi

(a, Red ′, D) : ∀a ∈ C ′ − Red ′};
24: Compute ω(b, Red ′, D,GBi ), add {b : ωb} into AT ;
25: end for
26: Summing the ωb of the same feature in AT ;
27: Select the feature b with the maximal ωb in AT ;
28: Red ′ ← Red ′ ∪ {b};
29: Compute NDDUl

(Red ′, D) and NDDUu
(Red ′);

30: end while
31: for ∀a ∈ Red ′ do
32: Compute SIGU

in(a, Red ′, D) based on Proposition 6;
33: if SIGU

in(a, Red ′, D) = 0 then
34: Red ′ ← Red ′ − {a};
35: end if
36: end for
37: return Red ′

the original feature subset that are deemed less important than
the new feature, and then conduct feature selection again.

Based on Definition 11, an algorithm(INGM-A) for incre-
mental feature selection when adding feature is proposed,
which proceeds as follows.

In INGM-A algorithm, after the new features are added,
the set of pseudolabel granule balls is first recalculated and
generated. Then the importance of each feature is calcu-
lated and the features in the original feature subset with

less importance than the added features are deleted. After-
ward, the condition NDDUl

(Red ′, D) ≤ NDDUl
(C ′, D)

and NDDUu
(Red ′) ≥ NDDUu

(C ′) is checked to determine
if it is satisfied. If satisfied, the algorithm proceeds directly
to deleting the redundant feature portion of the feature sub-
set. If not satisfied, the new (EDMC )UM and (N RC )UM are
computed using Proposition 5, allowing for the selection of
the new feature with the largest SIGout

GBi
(a, Red ′, D) value.

Subsequently, the process of removing redundant features is
repeated.

Step 2-3 recalculate pseudolabel granular balls by the
Algorithm 1, whose time complexity is O(K × |U | ×
|C |). The time complexity of steps 4-16 can be approx-
imated to be equal to the time complexity of computing
the SIGout

GBi
(a, Red, D), thus it is O

(∑n
i=1 |GBi |2 |C ′|).

In steps 17ÍC18, we need to calculate the NDDUl
(C ′, D)

and NDDUu
(C ′), whose time complexity is O

(|U |2|C ′|).
Then, steps 19ÍC30 is the process of filtering out representa-
tive features from the remaining features, whose worst case

time complexity is O

(∑n
i=1|GBi |2

(|C ′−Red ′|2+|C ′−Red ′|)
2

)

.

Similarly, steps 31-36 is to delete the redundant features in

Red, the time complexity is O

(∑n
i=1|U |2

(|Red ′|2+|Red ′|)
2

)

.

Therefore, the time complexity of the INGM-A algorithm is

O

(∑n
i=1|GBi |2

(|C ′−Red ′|2+|C ′−Red ′|)
2

)

.

6 Experimental analysis

In this section, we will experiment with the previously pro-
posed algorithm to test and evaluate its performance. The
experimental results are reported and analyzed in detail.
Extensive experiments are carried out on a PC with Win-
dows 10, 16 GB of RAM and a 2.60 GHz i7-10750H CPU.
The programming language is Python.

6.1 Datasets and experimental settings

There are 12datasets used for experiments in this paper, seven
of which are from the UCI machine learning repository [38],
four datasets on scikit-feature1 and one on Kaggle. Table 2
shows the details of these datasets.

Before using the dataset, each numerical feature of the
dataset needs to be normalised to between 0 and 1. In the
experiment, the dataset was divided into training and test
sets in the ratio of 80% and 20%. In order to better validate
the performance of the algorithm, this paper adopts a ten-

1 Data sources: https://jundongl.github.io/scikit-feature/
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Table 2 Description of the 12 datasets

ID Datasets Objects Features Classes

1 Wine 178 13 2

2 Wholesale customers 440 7 2

3 Pima Indians Diabetes 768 8 2

4 Breast Cancer(wdbc) 569 31 2

5 Image Segmentation 2310 18 7

6 Rice 3180 7 2

7 Gas Sensor Array-7 3613 128 6

8 Dry Bean 13611 16 7

9 warpAR10P 130 2400 10

10 warpPIE10P 210 2420 10

11 pixraw10P 100 10000 10

12 orlraws10P 100 10304 10

fold cross-validation approach and chooses three classifiers,
SVM,KNN andRandomForest to examine the classification
accuracy of the selected features. The kernel function of the
SVM is a linear kernel, the k value of the KNN is set to 3,
and the number of trees in the Random Forest model is set
to 100. The following experimental predictive performance
is validated by the average accuracy across the 10 folds.

6.2 Baselines

To validate the efficiency of the proposed NGM and INGM-
A algorithm, four classic feature selection algorithms are
compared, including supervised, semi-supervised and incre-
mental attribute ones. All methods concerned are briefly
introduced as follows.

(1) SFSS [39]: A supervised fast and robust feature selection
based on the separability in fuzzy decision systems.

(2) HAR-A [20]: An incremental feature selection algo-
rithm based on matrix and using conditional entropy for
ordered data set with time-evolving features.

(3) SemiFREE [24]: A semi-supervised feature selection
with fuzzy relevance and redundancy.

(4) FScNCE[25]:A supervisedheterogeneous feature selec-
tion based on neighborhood combination entropy.

The following experiments are divided into four aspects:

(i) Comparison of algorithm performance at different
pseudolabel granular ball purity thresholds.

(ii) Comparison of classification accuracy of NGM algo-
rithmwith different neighbourhood radius δ and labelled
data rate.

(iii) Comparisons among the NGMand INGM-A algorithm
and the other four algorithms at different labelling
ratios.

(iv) Statistical comparison of NGM, INGM-A algorithms
and four other algorithms on multiple datasets.

6.3 Comparison of algorithm performance
at different pseudolabel granular ball purity
thresholds

From the Algorithm 1, it is known that the number of granule
ball generated is closely related to the purity threshold. And
the number of granule ball is an important factor that affects
the calculation time of the algorithm. Thus, the primary goal
in this subsection is to find a relatively optimal purity thresh-
old that allows the algorithm to have a high performance
without loss of accuracy.

When the purity threshold is too small, the number of gran-
ule ball and the purity of the samples inside themwill be low;
when the purity threshold is too high, there will be very few
samples inside certain granule ball. Therefore, we will set
{0.5, 0.6, 0.7, 0.8} as the purity thresholds for each dataset
to see its impact on the performance of the Algorithm 2. 10%
of the data in each dataset were randomly selected to retain
their labels as labelled data, with the rest designated as unla-
belled data and the current relatively optimal neighbourhood
radius δ is selected for each dataset. We tested the selected
subset of features on SVM,KNN and Random Forest respec-
tively. Since the overall trends of the three classifiers are
roughly the same, only the trend of classification accuracy of
SVM with purity threshold is shown. The results are shown
in Table 3. The following conclusions can be drawn from the
experimental data:

(1) The pseudolabel granular ball strategy did not work well
on the binary classification dataset. Mostly, the granule
ball purity reached 1 after the first split, so the number
of granule ball was 2.

(2) In most cases, the higher the purity threshold and the
greater the number of granule ball, the shorter the com-
putational time of the algorithm. This is also consistent
with the time complexity of the Algorithm 2 obtained in
Section 4, indicating that the pseudolabel granular ball
strategy can indeed reduce the computational time of the
feature selection algorithm.

(3) Most of the optimal purity thresholds are found to be dis-
tributed between 0.6 and 0.7. Setting the purity threshold
too high can actually result in decreased classification
accuracy. This may be due to poor feature selection
because some high-purity granule balls contain too small
a sample size.
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Table 3 SVM Classification
accuracy (%) and computational
time in relation to the four purity
threshold (Better values are in
bold)

Dataset Radius δ Purity Threshold GB num SVM Accuracy (%) Time (s)

Wine 0.10 0.50 2 98.30 2.99

0.60 2 98.30 2.99

0.70 3 98.30 2.56

0.80 3 98.30 2.99

Wholesale customers 0.007 0.50 2 87.27 5.56

0.60 2 87.27 5.56

0.70 2 87.27 5.56

0.80 2 87.27 5.56

Diabetes 0.005 0.50 2 77.09 22.46

0.60 2 77.09 22.46

0.70 2 77.09 22.46

0.80 2 77.09 22.46

Wdbc 0.02 0.50 2 96.48 66.08

0.60 2 96.48 66.08

0.70 2 96.48 66.08

0.80 2 96.48 66.08

Segmentation 0.012 0.50 5 90.65 311.00

0.60 6 90.65 284.30

0.70 7 90.65 256.90

0.80 37 90.65 280.00

Rice 0.003 0.50 2 92.89 570.00

0.60 2 92.89 570.00

0.70 2 92.89 570.00

0.80 2 92.89 570.00

Batch 0.01 0.50 5 96.40 7417.00

0.60 5 96.40 7417.00

0.70 6 95.27 5990.00

0.80 31 95.55 4033.00

Dry Bean 0.001 0.50 5 89.47 7637.00

0.60 7 89.47 6462.00

0.70 7 89.47 6462.00

0.80 7 89.47 6462.00

warpAR10P 0.01 0.50 6 92.31 691.14

0.60 6 92.31 691.14

0.70 10 88.46 469.02

0.80 10 88.46 469.02

warpPIE10P 0.0025 0.50 6 95.24 1158.28

0.60 10 97.14 976.55

0.70 16 97.14 768.25

0.80 21 97.14 769.57

pixraw10P 0.008 0.50 6 85.00 474.15

0.60 9 97.00 499.23

0.70 10 89.00 417.20

0.80 10 89.00 417.20
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Table 3 continued Dataset Radius δ Purity Threshold GB num SVM Accuracy (%) Time (s)

orlraws10P 0.004 0.50 7 88.00 622.21

0.60 9 88.00 546.24

0.70 12 94.00 552.23

0.80 13 88.00 520.22

The best results are highlighted in bold and underline entities in these tables

6.4 Comparison of classification accuracy
with different neighbourhood radius
and labelled data rate

In this subsection, we explore the effect of NGM on classi-
fication accuracy for different neighbourhood radius δ and
different labelled data rates. Our objective is to determine
the optimal neighborhood radius δ and optimal labelled data
rate for each dataset. {10%, 20%, 30%, 40%} of the data in
each dataset were randomly selected to retain their labels as
labelled data, with the rest designated as unlabelled data.

We roughly determine an optimal neighborhood radius
and then select some other radius values around that radius
to observe how it affects the classification accuracy. Since the
overall trends of the three classifiers SVM, KNN, and Ran-
domForest are not substantially different fromeach other, the
following only presents trend graphs illustrating the classifi-
cation accuracy of SVM with varying neighborhood radius
and labelled data rate.

Analysing Fig. 3 we can get the following conclusion:

(1) For most datasets, the optimal neighbourhood radius of
the NGM algorithm is between [0.001, 0.009].

(2) In most datasets, the NGM algorithm tends to perform
better with low labelled data rates. In Fig. 3(d) and (e),
NGM provides the highest classification accuracy using
only 10% labelled data rate. In Fig. 3(j) and (k), NGM
provides the highest classification accuracy using only
20% labelled data rate. This confirms the viability of the
pseudolabel granular balls method for selecting features
on datasets with low label rates.

6.5 Comparison with other algorithms

In this section, we evaluate the performance of the proposed
algorithm NGM and INGM-A compared with the other four
algorithms in terms of time consumption and classification
accuracy under different labelling ratios. For the INGM-
A algorithm, we substitute the last 20% of all features of
each dataset as added features to be calculated in the algo-
rithm. Substituting the relative optimal neighbourhood radius
δ (Given in Table 4) obtained in the previous subsection
for different labelled data rates into the NGM and INGM-A
algorithms for comparison with the other algorithms. Since
supervised algorithms cannot handle unlabelled data, for

supervised algorithms they use only labelled data in the
dataset for feature selection, i.e., {10%, 20%, 30%, 40%}
samples in the dataset, respectively. The results can be
obtained as shown in the Tables 4, 5, 6 and 7.

Tables 4-6 demonstrates the ten-fold cross validation
classification accuracy means for different algorithms with
labelled data rates of {10%, 20%, 30%, 40%} under the three
classifiers SVM, KNN and Random Forest. In addition, the
size of the feature subset selected by each algorithm is pro-
vided in Table 7. From the experimental data we can draw
the following conclusions.

(1) The NGM and INGM-A algorithms have better classi-
fication accuracies compared to the other algorithms in
most cases when the number of feature subsets being
selected is similar.

(2) In most cases, the classification accuracies and the size
of the feature subsets of the INGM-A and NGM algo-
rithms are not very different, so the experimental results
provide strong evidence that Definition 11 is useful for
incremental algorithms to search for globally optimal
solutions.

(3) The NGM and INGM-A algorithms have a clear advan-
tage over other classifiers for classification onKNN.This
is because the pseudolabel granular balls are generated
by theK-meansmethod, causing the algorithms to screen
out features that are more suitable for KNN classifiers.
Therefore, if youwant to improve the classification accu-
racy of the dataset on KNN, the NGM and INGM-A
algorithms can be good choices.

(4) The NGM and INGM-A algorithms have extremely
obvious advantages in high-dimensional low labeling
rate datasets such as pixraw10P, orlraws10P . This
goes some way to prove that distance functions and
matrix updating methods changed for high-dimensional
data in Definition 10 is fruitful.

Table 8 visually compares the six algorithms at the time-
consuming level. Since the algorithm proposed in this article
is a semi-supervised feature selection algorithm, it is not of
the same order of magnitude as the datasets run by most of
the other supervised feature selection algorithms. Therefore,
in Table 8, only the runtimes for six large sample or high-
dimensional datasetswith a 40% labelled data rate are shown.
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Fig. 3 Classification accuracy
of NGM algorithm under SVM
with different neighbourhood
radius and labelled data rate

If the semi-supervised feature selection algorithm runs on
a dataset of size |U |, then the supervised feature selection
algorithm runs on a dataset of size 40%|U |. As can be seen
from Table 7, the HAR-A algorithm has little or no selection
ability for some high-dimensional datasets, and inmost cases
only one feature can be selected. Thereforewe do not show its
corresponding dataset running time in Table 8. By comparing
the data in the table we can get the following conclusions.

(1) At the time complexity level, the NGM and INGM-A
algorithms have a clear advantage over the other three
algorithms except SFSS.

(2) Our proposed algorithm saves nearly six times the time
compared to SemiFREE,which is also a semi-supervised
feature selection algorithm, when running the DryBean
dataset with a large amount of sample data. Compared to
the supervised feature selection algorithm(except SFSS),
the running time of our algorithm is also not much differ-
ent. Therefore, this experimental data is a goodvalidation
that pseudolabel granular balls are effective in saving the
running time of large sample size datasets.

(3) On high-dimensional datasets such as warpP I E10P
and pixraw10P with a large number of features, our
algorithmstill has a significant leadover SemiFree.How-
ever, comparing to other supervised feature selection
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Table 4 SVM Classification accuracy (%) in relation to the four labelling rates (Better values are in bold)

Dataset Radius δ Percentage Algorithm
NGM INGM-A SFSS SemiFREE HAR-A FScNCE

Wine 0.10 10.00% 98.30 98.30 95.56 97.19 96.67 96.11

0.12 20.00% 98.30 98.30 97.22 97.19 97.78 98.30

0.12 30.00% 98.30 98.30 97.22 97.19 97.19 96.08

0.10 40.00% 96.05 96.60 94.44 96.05 97.22 96.60

Wholesale Customers 0.007 10.00% 87.27 87.27 86.82 87.27 87.27 86.82

0.007 20.00% 87.27 87.27 86.82 87.27 85.23 86.82

0.007 30.00% 87.27 87.27 86.82 87.27 87.27 87.27

0.007 40.00% 87.27 87.27 86.82 87.27 87.27 87.27

Diabetic 0.005 10.00% 77.09 77.21 76.68 76.82 76.69 76.69

0.015 20.00% 77.08 77.21 75.63 76.82 76.69 76.69

0.020 30.00% 77.47 77.21 76.41 76.82 76.69 75.26

0.020 40.00% 77.21 77.21 76.41 76.82 76.69 76.69

Wdbc 0.020 10.00% 96.48 96.13 93.33 93.67 95.95 95.60

0.040 20.00% 95.60 95.60 93.68 93.67 96.31 96.66

0.050 30.00% 96.48 96.48 93.68 93.67 96.84 96.13

0.050 40.00% 95.96 96.13 93.68 93.67 96.49 95.96

Segmentation 0.012 10.00% 90.65 89.31 80.00 86.36 83.38 86.97

0.012 20.00% 90.26 90.04 80.00 81.26 87.32 88.27

0.010 30.00% 88.44 90.04 80.00 81.26 90.43 88.23

0.012 40.00% 90.56 90.04 80.00 81.26 87.32 90.13

Rice 0.002 10.00% 92.89 92.89 92.68 92.68 92.73 92.73

0.002 20.00% 92.89 92.89 92.68 92.70 92.60 92.70

0.002 30.00% 92.78 92.70 92.83 92.70 92.60 92.89

0.002 40.00% 92.78 92.70 92.68 92.70 92.97 92.89

Gas Sensor Array-7 0.030 10.00% 96.40 96.40 92.03 65.95 88.74 98.51

0.020 20.00% 96.54 95.16 93.25 73.45 43.29 99.50

0.020 30.00% 96.46 95.10 93.25 73.45 − 99.64

0.010 40.00% 96.76 92.50 93.25 81.53 − 99.78

Dry Bean 0.015 10.00% 84.26 84.04 84.20 84.11 85.25 84.26

0.002 20.00% 83.46 83.78 84.20 84.11 85.26 83.78

0.0025 30.00% 84.26 84.04 84.20 84.11 85.36 84.04

0.0025 40.00% 84.27 84.04 84.20 84.11 85.48 84.04

warpAR10P 0.010 10.00% 89.64 88.89 88.01 83.70 83.70 89.39

0.010 20.00% 90.12 88.89 87.53 83.70 85.80 91.36

0.008 30.00% 90.74 88.89 88.01 83.70 85.80 92.10

0.008 40.00% 91.23 88.89 88.01 83.70 85.80 89.63

warpPIE10P 0.0025 10.00% 87.07 87.07 83.89 86.04 86.04 88.78

0.0025 20.00% 87.56 87.07 83.89 86.04 86.04 88.29

0.0020 30.00% 88.29 87.07 83.89 86.04 86.04 87.32

0.0020 40.00% 89.27 87.07 83.89 86.04 86.04 88.05

pixraw10P 0.008 10.00% 76.00 77.00 74.00 74.50 73.50 78.00

0.010 20.00% 76.50 77.50 75.50 74.50 75.50 78.50
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Table 4 continued

Dataset Radius δ Percentage Algorithm
NGM INGM-A SFSS SemiFREE HAR-A FScNCE

0.006 30.00% 77.00 77.00 76.50 74.50 75.50 79.00

0.006 40.00% 77.50 78.00 77.50 74.50 75.50 79.50

orlraws10P 0.004 10.00% 78.50 77.00 77.50 74.50 74.50 75.50

0.005 20.00% 79.00 79.00 77.50 74.50 74.50 75.50

0.005 30.00% 79.50 79.00 78.50 74.50 74.50 75.50

0.005 40.00% 80.00 79.00 79.00 74.50 74.50 75.50

The best results are highlighted in bold and underline entities in these tables

Table 5 KNN Classification
accuracy (%) in relation to the
four labelling rates (Better
values are in bold)

Dataset Percentage Algorithm
NGM INGM-A SFSS SemiFREE HAR-A FScNCE

Wine 10.00% 97.75 97.75 93.82 94.97 93.24 93.86

20.00% 97.75 97.75 95.56 94.97 96.08 96.60

30.00% 97.75 97.75 95.56 94.97 95.49 94.97

40.00% 96.60 96.63 96.11 92.68 96.08 94.93

Wholesale Customers 10.00% 91.14 87.50 89.55 91.14 87.50 87.27

20.00% 91.14 87.50 89.55 91.14 87.50 87.27

30.00% 91.14 87.50 89.55 91.14 87.50 87.50

40.00% 91.14 87.50 89.55 91.14 87.50 87.50

Diabetic 10.00% 76.18 74.74 75.63 73.70 73.57 73.44

20.00% 74.74 74.47 75.77 73.70 73.57 73.57

30.00% 73.96 74.47 72.90 73.70 73.57 73.30

40.00% 74.74 74.74 72.90 73.70 73.57 73.57

Wdbc 10.00% 95.07 95.60 93.33 94.55 95.25 94.71

20.00% 96.13 96.13 93.86 94.56 94.72 95.77

30.00% 95.60 95.60 93.86 94.55 96.12 95.95

40.00% 95.95 94.72 93.86 94.55 95.77 94.90

Segmentation 10.00% 94.03 93.51 88.74 94.63 90.87 91.47

20.00% 93.59 93.51 88.74 88.83 91.69 92.99

30.00% 93.16 93.38 88.74 88.83 92.29 92.55

40.00% 94.03 93.38 88.74 88.83 91.69 92.03

Rice 10.00% 92.47 92.47 92.28 92.55 92.13 92.78

20.00% 92.47 92.47 92.28 92.18 92.13 92.36

30.00% 92.57 92.36 91.99 92.18 92.13 92.47

40.00% 92.57 92.36 92.28 92.18 92.15 92.47

Gas Sensor Array-7 10.00% 99.00 99.00 99.14 88.15 97.65 98.42

20.00% 99.09 98.31 99.20 93.55 41.96 99.47

30.00% 98.81 99.11 99.20 93.55 − 99.47

40.00% 99.25 98.39 99.20 96.02 − 99.47

Dry Bean 10.00% 88.44 82.60 85.20 85.87 74.49 85.19

20.00% 88.17 82.60 85.20 85.87 74.49 87.64

30.00% 88.73 82.60 85.20 85.87 89.22 87.64

40.00% 85.13 82.60 85.20 85.87 89.12 87.64
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Table 5 continued Dataset Percentage Algorithm
NGM INGM-A SFSS SemiFREE HAR-A FScNCE

warpAR10P 10.00% 54.62 59.23 53.85 43.85 20.00 49.23

20.00% 53.08 50.77 50.77 41.54 20.00 41.54

30.00% 65.38 53.85 50.00 40.77 20.00 50.77

40.00% 50.00 50.00 52.31 42.31 20.00 69.23

warpPIE10P 10.00% 81.43 83.33 87.14 89.52 19.05 84.76

20.00% 84.29 85.71 88.57 88.57 19.05 88.57

30.00% 84.76 84.76 80.00 85.24 19.05 85.24

40.00% 74.29 74.29 81.43 86.67 19.05 91.43

pixraw10P 10.00% 86.00 86.00 − 72.00 68.00 70.00

20.00% 88.00 88.00 80.00 70.00 68.00 96.00

30.00% 84.00 89.00 82.00 70.00 68.00 84.00

40.00% 82.00 81.00 88.00 78.00 68.00 95.00

orlraws10P 10.00% 80.00 85.00 24.00 77.00 59.00 65.00

20.00% 80.00 87.00 79.00 65.00 59.00 80.00

30.00% 84.00 82.00 80.00 57.00 59.00 82.00

40.00% 86.00 79.00 83.00 57.00 59.00 87.00

The best results are highlighted in bold and underline entities in these tables

Table 6 Random Forest Classification accuracy (%) in relation to the four labelling rates (Better values are in bold)

Dataset Percentage Algorithm
NGM INGM-A SFSS SemiFREE HAR-A FScNCE

Wine 10.00% 96.11 96.11 97.78 96.67 96.67 96.08

20.00% 96.11 96.11 98.33 96.67 98.33 97.22

30.00% 96.11 96.11 98.33 96.67 97.22 96.08

40.00% 98.33 96.11 97.78 96.67 98.33 96.63

Wholesale Customers 10.00% 91.82 90.91 91.59 91.82 90.91 92.27

20.00% 91.82 90.91 91.59 91.82 92.05 92.27

30.00% 91.82 90.91 91.59 91.82 90.91 90.91

40.00% 91.82 90.91 91.59 91.82 90.91 90.91

Diabetic 10.00% 74.99 74.48 75.90 75.78 75.91 74.87

20.00% 74.48 74.48 76.29 75.78 75.91 75.91

30.00% 77.73 74.48 76.42 75.78 75.91 75.00

40.00% 74.48 74.48 76.42 75.78 75.91 75.91

Wdbc 10.00% 96.13 95.43 94.38 94.38 96.13 95.78

20.00% 95.26 95.26 94.38 94.73 97.01 95.78

30.00% 96.13 96.13 94.38 94.38 96.84 95.44

40.00% 95.26 96.31 94.38 94.38 96.66 95.08

Segmentation 10.00% 97.36 97.45 91.52 97.14 96.32 96.32

20.00% 97.27 97.66 91.52 92.77 97.45 97.79

30.00% 97.19 97.32 91.52 92.77 97.40 97.32

40.00% 97.32 97.32 91.52 92.77 97.45 97.32

Rice 10.00% 92.20 92.20 92.20 91.68 91.78 92.02

20.00% 92.20 92.10 92.20 91.50 91.73 91.57
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Table 6 continued

Dataset Percentage Algorithm
NGM INGM-A SFSS SemiFREE HAR-A FScNCE

30.00% 92.26 91.57 92.07 91.50 91.73 92.20

40.00% 92.26 91.57 92.20 91.50 91.97 92.20

Gas Sensor Array-7 10.00% 99.34 99.34 99.28 87.07 97.73 99.00

20.00% 99.39 98.87 99.45 93.99 37.72 99.81

30.00% 99.47 98.87 99.45 93.99 − 99.28

40.00% 99.45 97.65 99.45 96.18 − 99.36

Dry Bean 10.00% 86.53 59.45 76.34 68.72 67.14 80.69

20.00% 84.63 59.45 76.34 68.72 67.14 85.23

30.00% 86.04 59.45 76.34 68.72 83.88 85.23

40.00% 80.26 59.45 76.34 68.72 83.58 85.23

warpAR10P 10.00% 83.85 86.15 78.46 51.54 16.15 73.85

20.00% 81.54 86.92 80.00 52.31 16.15 82.31

30.00% 86.15 82.31 74.62 50.00 16.15 82.31

40.00% 79.23 79.23 76.15 50.77 16.15 83.85

warpPIE10P 10.00% 95.71 95.71 93.33 94.29 22.38 94.29

20.00% 97.62 97.14 95.24 95.24 22.38 95.71

30.00% 96.19 96.19 92.86 94.76 22.38 96.67

40.00% 96.19 96.19 93.81 93.81 22.38 99.52

pixraw10P 10.00% 100.00 97.00 − 88.00 71.00 98.00

20.00% 100.00 96.00 98.00 89.00 71.00 98.00

30.00% 98.00 99.00 93.00 82.00 71.00 98.00

40.00% 99.00 98.00 98.00 91.00 71.00 98.00

orlraws10P 10.00% 97.00 86.00 16.00 87.00 50.00 92.00

20.00% 96.00 90.00 91.00 91.00 50.00 95.00

30.00% 94.00 93.00 93.00 80.00 50.00 93.00

40.00% 91.00 89.00 90.00 81.00 50.00 95.00

The best results are highlighted in bold and underline entities in these tables

Table 7 Feature subset size in relation to the four labelling rates

Dataset Raw data Percentage Algorithm
NGM INGM-A SFSS SemiFREE HAR-A FScNCE

Wine 13 10.00% 9 9 11 10 10 9

20.00% 9 9 10 10 10 12

30.00% 9 9 10 10 11 11

40.00% 8 10 11 11 11 11

Wholesale customers 7 10.00% 5 7 7 6 6 6

20.00% 6 7 7 6 5 6

30.00% 6 7 7 6 7 7

40.00% 5 7 7 6 7 7

Diabetic 8 10.00% 5 5 5 7 8 7

20.00% 5 5 5 7 8 8

30.00% 5 6 5 7 8 6

40.00% 5 6 5 7 8 8
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Table 7 continued

Dataset Raw data Percentage Algorithm
NGM INGM-A SFSS SemiFREE HAR-A FScNCE

Wdbc 31 10.00% 7 12 15 15 14 9

20.00% 11 11 12 15 17 14

30.00% 13 13 12 15 20 13

40.00% 12 13 12 15 23 12

Segmentation 18 10.00% 8 7 10 9 12 7

20.00% 7 8 10 12 13 8

30.00% 9 8 10 12 14 9

40.00% 7 8 10 12 13 10

Rice 7 10.00% 4 4 4 4 3 4

20.00% 4 4 4 4 4 4

30.00% 3 4 5 4 4 4

40.00% 4 4 4 4 6 4

Gas Sensor Array-7 128 10.00% 12 12 10 12 5 13

20.00% 12 11 11 12 1 21

30.00% 12 11 11 12 1 27

40.00% 12 12 11 12 1 33

Dry Bean 16 10.00% 5 4 7 7 3 4

20.00% 5 4 7 7 3 14

30.00% 5 4 7 7 10 13

40.00% 5 4 7 7 11 14

warpAR10P 2400 10.00% 51 60 55 50 1 15

20.00% 48 55 40 43 1 48

30.00% 35 49 40 43 1 52

40.00% 34 34 35 43 1 33

warpPIE10P 2420 10.00% 36 32 40 36 1 35

20.00% 38 38 30 38 1 27

30.00% 29 29 30 32 1 23

40.00% 27 27 30 32 1 67

pixraw10P 10000 10.00% 14 15 − 16 1 11

20.00% 13 16 16 16 1 26

30.00% 13 15 16 16 1 13

40.00% 13 16 16 16 1 16

orlraws10P 10304 10.00% 25 23 26 25 1 20

20.00% 25 29 25 25 1 18

30.00% 26 26 25 25 1 30

40.00% 22 26 23 25 1 42
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Table 8 Time-consuming comparison of six algorithms(s)(Better values are in bold)

Algorithm Time Complexity Dataset(40%)
Gas-7 Dry Bean warpPIE warpAR pixraw orlraws

NGM O

(∑n
i=1|GBi |2

(|C |2+|C |)
2

)
4974 6050 549 704 549 434

INGM-A O

(∑n
i=1|GBi |2

(|C ′−Red ′|2+|C ′−Red ′|)
2

)

5398 3247 594 1054 634 730

SFSS O(|C |2|U ||U/D|) 42 17 856 1520 545 374

SemiFREE O(|U |2|C ||Red|) 29615 44727 4022 4782 5894 2887

HAR-A O
(
|U ||C+||C ′| + (|C ′| − |Red ′|)|U |2 + |B|2|U |2

) − 5403 − − − −
FScNCE O(|U |2|C |2) 11425 5743 4326 28296 7772 20530

The best results are highlighted in bold and underline entities in these tables

algorithms, our algorithm achieves a great reversal in
terms of runtime. Even when comparing to the SFSS
algorithm that only uses 40% of the sample size, our
algorithm’s runtime is comparable. This is strong evi-
dence that the distancematrix updatingmethod proposed
in Section 4.2 is extremely effective in reducing the run-
time for datasets with a large number of features.

6.6 Statistical comparisons over multiple datasets

In order to further analyse whether our proposed algo-
rithm is feasible or not, in this subsection we validate the
obtained results statistically. For this purpose, we introduce
the Friedman test and BonferroniÍCDunn test [40], which
are well known in the field of machine learning. The specific
Friedman test expressions are as follows.

χ2
F = 12N

K (K + 1)
[∑K

r=1 R
2
r − K (K+1)2

4

] (22)

FF = (N − 1)χ2
F

N (K − 1) − χ2
F

(23)

where N represents the number of datasets, K represents the
number of algorithms, and Rr represents the average ranking
of the r th algorithm.

In the experiments of this article, each dataset was exper-
imented with four labelling rates, and the classification
accuracy of each dataset on each algorithm was obtained
by averaging the classification accuracies of the four results
of each dataset. This results in K = 6 and N = 12, and
the Friedman test can be performed to obtain the results in
Table 9.

As observed from Table 9, the FF values for all three clas-
sifiers are greater than 2.38. Hence, at a significance level of
α = 0.05, the null hypothesis H0, stating that there is no sig-
nificant difference in the performance of all algorithms, can

be well rejected. That means there is a significant difference
between the algorithms.

In order to present a more intuitive picture of the dif-
ferences between each algorithm, we performed a Bon-
ferroniÍCDunn test as a post hoc test. Whether there is a
significant difference between the performance of the two
algorithms can be measured by the following critical differ-
ence:

CD = qα

√
K (K + 1)

6N
(24)

The value of qα is 2.576 when K = 6, N = 12 and α =
0.05, so by calculating we can get CD = 1.967. When the
difference between the average rankings of two algorithms is
greater than or equal to CD, it can be assumed that there is a
significant performancedifference between them.Visualising
the results gives a CD diagrams as in Fig. 4.

From Fig. 4, the following conclusions can be drawn:

(1) The NGM algorithm has the highest average ranking
among all the classifiers, which is a good indication that
the NGM algorithm has a very good performance among
these six algorithms, and the information contained in the
features it selects is much richer.

(2) On the KNN classifier, the largest differences between
algorithms were observed, with all algorithms being
divided into four categories. The NGM and INGM-A
algorithms remained in the top two positions. This fur-

Table 9 Classifier Friedman test and Critical values(α = 0.05)

Classifier FF Critical Values(F(5, 55))

SVM 11.15 2.38

KNN 7.18

Random Forest 3.66
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Fig. 4 Critical difference diagrams of average ranking of algorithms on different classifiers(α = 0.05)

ther shows that the pseudolabel granular balls approach is
helpful in improving the classification accuracy of KNN
classifiers.

(3) Statistically, the NGM algorithm is always signifi-
cantly different from SemiFREE, which is also a semi-
supervised feature selection algorithm. In terms of SVM
and KNN, it is significantly different from HAR-A and
SFSS too.At the same time, its performance is equivalent
to that of FScNCE and INGM-A algorithms.

7 Conclusion and future work

In this paper, we propose a semi-supervised feature selec-
tion algorithm NGM applied on partially labelled ordered
datasets. Meanwhile, an incremental algorithm INGM-A is
proposed on the basis of the NGM algorithm for the increase
of features over time. The novelty of the algorithms is that
firstly they both use pseudolabel granular balls method to
select more representative features by voting on each gran-
ular balls. Additionally, by the dividing of granular balls,
they effectively reduce the computation time for large sam-
ple datasets. Secondly, they both usematrix updatemethod to
reduce the computation time for datasets with large number
of features. Thirdly the INGM-A algorithm finds an approxi-
mate global optimal solution by comparing the importance of
the newly added features with the original features. Through
experiments and statistical analyses, it is evident that the
NGM and INGM-A algorithms significantly reduce compu-
tation time compared to other algorithms while still selecting
more informative features, resulting in a higher classification
accuracy.

So far, we have only investigated algorithms for the selec-
tion of numerical class features. In the future, we will further
refine our current work to deal with datasets with categorical
features and features with missing values. In addition, we
will study other feature measures such as fuzzy relevance,
conditional entropy, etc., to select the optimal feature subset
by the granular ball and matrix integration voting methods
proposed in this paper.
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