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A B S T R A C T

In the burgeoning landscape of big data analytics, interval-valued datasets are indispensable for modeling
uncertainty and vagueness, with significant implications for sectors such as healthcare and environmental
science. Feature selection, a linchpin in data mining, is paramount for streamlining data processing and
bolstering predictive models. However, the literature on feature extraction within interval-valued information
systems is notably sparse. This paper proposes a groundbreaking feature selection framework that skillfully
addresses the complexities of interval-valued data. The method innovatively utilizes a fully connected weighted
undirected graph to encapsulate interval data, combining graph-theoretic insights with granular-rectangular
neighborhood rough set theory. By evaluating the significance of each attribute based on its importance to the
entire information system, and applying matrix power series to accelerate computations, the framework ensures
both robust classification performance and the elimination of redundancy, marking a significant advancement
in this field. Through comparative experiments on 12 public datasets with 7 other algorithms, theoretical
analysis, and experimental results demonstrate that the proposed method not only exhibits high effectiveness in
handling interval-valued data but also further improves efficiency and classification performance. In addition,
the method also shows significant advantages in reducing the dependence on prior knowledge and improving

the interpretability of the model, which fully proves its applicability and reliability in large-scale data analysis.
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1. Introduction

As big data and artificial intelligence technologies advance, the
significance of interval values and interval analysis in data science
nd machine learning is escalating. Interval-valued data, characterized
y its representation of each data point as a range between a lower
nd upper limit, offers a nuanced approach to capturing the intrinsic
ariability and uncertainty inherent in measurements, as exemplified
y weather forecasts and medical diagnostics. This form of data is
specially prevalent in sectors where precision is inherently constrained
r data collection is fraught with uncertainty, such as environmental
cience, engineering, and economic analysis. The aggregation of such
ata into interval-valued information systems (IVIS) [1] has emerged as
 burgeoning area of interest within the broader study of uncertainty
n artificial intelligence [2,3]. With the ongoing enhancements in data

acquisition and computational power, feature selection leveraging in-
erval values is poised to expand its reach, becoming increasingly vital
n fields that contend with high levels of data uncertainty.

Feature selection [4] stands as a pivotal area of inquiry within
he realms of machine learning and data mining, dedicated to dis-
erning the most salient subset of features from expansive datasets.
his endeavor is instrumental in amplifying the efficiency of model

earning, curtailing their intrinsic complexity, and fortifying their ca-
acity for generalization. Beyond bolstering computational expedience,
eature selection is paramount for augmenting the models’ predictive
idelity by expunging extraneous or supererogatory features, thus cir-
umventing the pitfalls of overfitting. Conventional feature selection
ethodologies, often marred by a dearth of interpretability, presup-
ose an underpinning of exact numerical data. Yet, in the context of
nterval-valued data, a paradigm shift is imperative, necessitating the
ecalibration or conceptual reengineering of these techniques to align
ith the nuances of imprecise datasets.

Pawlak’s Rough Set Theory (RST) [5] is recognized as a power-
ful mathematical tool for addressing uncertainty and vagueness. It
is renowned for its ability to interpretably handle incomplete, im-
precise, and inconsistent datasets without requiring prior knowledge.
RST has garnered significant attention in the artificial intelligence
community, with its applications expanding to key areas such as pattern
recognition [6] and decision-making analysis [7,8]. The use of RST
or knowledge discovery in interval-valued datasets has also attracted

growing interest [9–11]. However, since the original RST is primarily
tailored for discrete datasets, researchers have introduced neighbor-
ood relations to extend its applicability, resulting in interval-valued
eighborhood rough set models [12,13]. Despite these advancements,

reducing the computational complexity of these methods remains an
rgent issue to address.

Graph-based methods offer a compelling solution, as they can cap-
ure and leverage structural features within data to reduce computa-
ional overhead [14,15]. However, graph-based feature selection meth-

ods still face a significant challenge: how to effectively minimize their
dependence on prior knowledge [16,17]. In many studies, these meth-
ods often require substantial prior knowledge to construct the graph,
which becomes especially problematic when data uncertainty is high
and prior knowledge is limited.

Based on the above analysis, overcoming the limitations of fea-
ure selection in interval-valued information systems (IVIS) requires
ddressing two key challenges currently faced by this field:

(1) The challenge of extracting valuable information from
uncertainty-laden interval-valued data while maintaining the au-
thenticity and comprehensiveness of the information, reducing
reliance on prior knowledge, and ensuring interpretability.

(2) In the context of rapidly increasing data volume and dimensional-
ity, there is an urgent need to effectively reduce data dimension-
ality, improve computational efficiency, and alleviate time com-
plexity to meet the application demands of large-scale datasets.
2 
To address these challenges, this paper proposes a feature selection
strategy specifically designed for IVIS, designed to navigate these com-
plexities. It initiates by scrutinizing the pivotal role of attributes within
the broader information system, influenced by dual determinants. The
first is the attribute’s contribution to the classification prowess of the
IVIS, quantified through granular rectangular neighborhood rough set
theory. The second is the attribute’s uniqueness, where independence
from other IVIS attributes signifies non-redundancy. This framework
ulminates in the construction of a weighted undirected fully con-
ected graph, transmuting IVIS data into an adjacency matrix informed

by these criteria. The matrix power series (MPS) is then ingeniously
harnessed to demystify the computational intricacies.

Based on the analysis above, our research contributions are three-
fold:

(1) We improved the accuracy and interpretability of the feature se-
lection method, making it adept at handling interval-valued data
and leveraging its inherent uncertainty. By integrating granular-
rectangular neighborhood rough sets, we utilized the granular-
ity and hierarchical structure of the data to construct equiva-
lence classes through space partitioning, thereby enhancing the
model’s interpretability. This strategy enhances the model’s gen-
eralization ability, reduces the risk of overfitting, and improves
interpretability.

(2) We engineer a reduction in computational complexity, infusing
our feature selection process with graph-based methodologies and
granular-rectangular neighborhood rough sets. The construction
of a weighted undirected fully connected graph, coupled with the
MPS, streamlines the computational workflow, facilitating rapid
model execution even with large-scale datasets.

(3) We reduced the reliance on prior knowledge by constructing a re-
lationship graph between features, while ensuring
non-redundancy and high classification capability in the feature
selection process.

The overarching structure of our research is delineated in Fig. 1.
This work is meticulously structured into seven comprehensive sec-
tions. Section 2 provides a detailed overview of related work. Section 3
explores foundational studies related to Interval-Valued Information
Systems (IVIS), Granular-Rectangular Rough Sets (GRRS), Matrix Power
Series (MPS), and graph-theoretic concepts. In Section 4, based on the
xioms of relevance and non-redundancy, we have constructed a graph

tailored for IVIS and designed a novel supervised feature selection
method. Section 5 introduces the algorithmic formulation of our Graph-
based Local Search Feature Selection (GLSFS) approach. Section 6
substantiates the efficacy and applicability of our proposed method
through an array of rigorous experiments. The paper culminates in Sec-
tion 7, synthesizing our findings recognizing limitations, and charting
athways for future research efforts.

2. Related work

The information on various studies omitted in the introduction will
be elaborated in detail in this section.

Feature selection methods based on RST have been widely applied
o single-point datasets [18–21], with some researchers extending its

application to interval-valued data. Jensen et al. [22] proposed an
interval-valued fuzzy-rough set model for datasets with missing values.
i et al. [23] introduced a feature selection method based on interval

dominance relations for interval-valued ordered data systems. To ac-
commodate a wider range of data types, Lin and Yao [12] were the
irst to combine rough sets with neighborhood systems, elucidating

the connection with fuzzy sets. Yao [13] further explored granular
structures from the perspective of rough sets and neighborhood sys-
tems. Building on Lin’s foundational neighborhood model [12], Hu
et al. [24] proposed a Neighborhood Rough Set (NRS) model based
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Fig. 1. The overarching structure of our research.
on neighborhood relations instead of equivalence relations, facilitating
the handling of continuous data and leading to the development of
interval-valued neighborhood rough set models. Zhang et al. [25] pro-
posed a high-dimensional interval-valued feature selection algorithm
based on a weighted interval-valued neighborhood rough set model.
Sang et al. [26] investigated incremental feature selection methods
for interval-valued ordered data using fuzzy dominance neighborhood
rough sets.

Meanwhile, graph-based methods have garnered increasing atten-
tion for their unique advantages in data structure modeling and feature
interaction analysis, and have been progressively applied to feature
selection problems. Akhiat et al. [14] constructed a weighted graph
with single features and feature pairs, using iterative partitioning and
graph structure optimization for feature selection. Roffo et al. [15]
proposed a feature filtering method that treats the feature set as paths
within a graph. Xie et al. [16] enhanced feature selection by jointly
learning graph structures and latent representations. Tang et al. [17]
studied unsupervised feature selection methods involving multi-graph
fusion. Ke et al. [27] proposed an adaptive disentangled representation
learning method based on graph structural information. Dong et al. [28,
29] improved the performance and efficiency of graph neural net-
works through techniques such as injection aggregation and principal
component analysis for denoising.

Table 1 provides a classification and summary of the existing litera-
ture based on different methods and application scenarios. We can ob-
serve that several current feature selection methods exhibit significant
limitations when dealing with uncertainty and complex data. First, the
traditional rough set theory still difficult to deal with interval valued
data effectively and has high computational complexity, which limits
its application to large-scale data sets. Second, neighborhood rough
set theory expands the application of classical rough sets by introduc-
ing distance metrics. However, the upper and lower approximations
in these methods consist of sample points rather than equivalence
classes, resulting in weaker model interpretability. Furthermore, the
reliance on distance metrics leads to instability across different types
of datasets. Finally, graph-based methods, when constructing feature
relationships, are heavily dependent on prior knowledge and initial
graph partitioning. This increases the reliance on prior information and
results in high computational complexity, particularly when handling
3 
high-dimensional data.
The proposed GLSFS feature selection method effectively addresses

the gaps and limitations of current research. It enhances the descrip-
tion and interpretability of uncertain knowledge in interval-valued
information systems while significantly reducing dependency on prior
knowledge and computational complexity. Table 2 summarizes the
related works that provide valuable references and support for this
study.

3. Preliminaries

In this section, we embark on an introduction to IVISs, subse-
quently delving into a review of pivotal definitions within the realms
of Graph Theory, Granular-Rectangular Rough Set (GRRS), Spearman
Rank Correlation Coefficient (SRCC), and the Matrix Power Series
(MPS).

3.1. Interval-valued information system

Interval-valued data refers to the collection of interval-valued at-
tributes that describe objects or instances in an information system.
Each object is characterized by a set of interval-valued attributes rather
than exact values. Interval-valued data allows for the representation of
uncertainty and imprecision in the information system.

Let 𝐼 𝑉 𝐼 𝑆 = (𝑈 , 𝐴𝑇 , 𝑓 ) be an information system, where 𝑈 =
{𝑥1, 𝑥2,… , 𝑥𝑚} is a non-empty finite set of objects, 𝐴𝑇 = {𝑎1, 𝑎2,… , 𝑎𝑛}
is a non-empty finite set of attributes, and ∀𝑥𝑖 ∈ 𝑈 , 𝑎𝑘 ∈ 𝐴𝑇 ,
the 𝑓 (𝑥𝑖, 𝑎𝑘) yields an interval-valued number, specifically denoted as
𝑓 (𝑥𝑖, 𝑎𝑘) = [𝑎𝐿𝑘 (𝑥𝑖), 𝑎𝑅𝑘 (𝑥𝑖)]. 𝑎𝐿𝑘 (𝑥𝑖) and 𝑎𝑅𝑘 (𝑥𝑖) are respectively referred
to as the left and right boundaries of this interval, and they can also
be symbolized as 𝑎𝐿𝑖𝑘 and 𝑎𝑅𝑖𝑘 for brevity. Notably, in the context of
such an interval-valued framework, if the left and right boundaries
coincide, i.e., 𝑎𝐿𝑘 (𝑥𝑖) = 𝑎𝑅𝑘 (𝑥𝑖), then 𝑓 (𝑥𝑖, 𝑎𝑘) simplifies to a single-valued
output, thereby illustrating that a single-valued decision system is but
a particular manifestation of the broader IVIS paradigm.

Drawing upon the existing literature [30], let us consider an
interval-valued ordered information system denoted as 𝐼 𝑉 𝐼 𝑆⪯ =
(𝑈 , 𝐴𝑇 , 𝑓 ), ∀𝐴 ⊆ 𝐴𝑇 , the dominance relation 𝑅⪯

𝐴 is defined as
⪯ 𝐿 𝐿 𝑅 𝑅
𝑅𝐴 = {(𝑥𝑖, 𝑥𝑗 ) ∈ 𝑈 × 𝑈 ∣ (∀𝑎𝑘 ∈ 𝐴)[𝑎𝑘 (𝑥𝑖) ≤ 𝑎𝑘 (𝑥𝑗 ), 𝑎𝑘 (𝑥𝑖) ≤ 𝑎𝑘 (𝑥𝑗 )]}.
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Table 1
The summary of existing methods.

Methods Categories Disadvantages

Rough set theory For single-valued datasets
[18–21]

Not applicable to interval-valued datasets.

Using attribute significance
for interval-valued datasets
[22,23]

The computational cost is high.

Neighborhood
rough set theory

Domain relations using
distance measures
[12,13,24]

The lower and upper approximations consist
of sample points, rather than equivalence
classes, and thus lose interpretability. And it
relies on distance metrics.Using weighed

neighborhood rough set
[25]

Utilizing conditional
entropy [26]

The computational cost is high.

Graph theory
Build a weighted graph
[14,15]

Depends on the initial partition of the
graph.

A priori information about
the graph structure is used
to construct the feature
space [16,17,27]

The dependence on prior knowledge is high.

Graph neural network
denoising based on PCA
[28,29]

High computational complexity and
excessive memory consumption.
Table 2
Summary of related works supporting the research.

Authors Research content Reference

Roffo et al. The weighted graph was constructed for feature selection. [15]
Qian et al. Interval ordered information systems. [30]
Hu et al. Neighborhood rough set for feature selection. [31]
Xia et al. The granular ball neighborhood rough set. [32,33]
Xia et al. The granular-rectangular rough set. [34]
Fieller et al. Tests for rank correlation coefficients. [35]
r
t
h
N
s
d
N
l
t

Afterwards, we can use the dominance relationship to determine the
ordinal position of objects with respect to attributes.

3.2. Graph theory

As reported in the literature [15], by constructing a weighted undi-
ected complete graph 𝐺 = ⟨𝑉 , 𝐸⟩, the interval-valued information

system can be described, where the nodes in the graph represent fea-
ures 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑛} and the edges 𝐸 formed represent relationships
etween features. Setting a weight function 𝑤(𝑖, 𝑗) on the edges between
eature 𝑎𝑖 and 𝑎𝑗 , and generating the adjacency matrix 𝑄 based on this
eight function 𝑤(𝑖, 𝑗). The graph 𝐺 employs its adjacency matrix 𝑄 as

a means to encapsulate the intricate relationships between nodes and
the information they convey. Each entry 𝑄(𝑖, 𝑗) within this matrix is
expressed through a corresponding weight function denoted as 𝑤(., .),
facilitating a nuanced representation of the interconnections.

𝑄(𝑖, 𝑗) = 𝑤(𝑖, 𝑗).

The weight function 𝑤(., .) captures the relationship between feature
𝑎𝑖 and 𝑎𝑗 by incorporating a weighted linear combination of two
evaluation metrics, defined as

𝑤(𝑖, 𝑗) = 𝛼 𝑅𝑖𝑗 + (1 − 𝛼)𝑁𝑖𝑗 . (1)

where 𝑅𝑖𝑗 represents the significance of features to the information
system, describing their contribution to the classification problem.
Meanwhile, 𝑁𝑖𝑗 represents the lack of correlation between pairs of
features. Therefore, the weight function 𝑤(𝑖, 𝑗) can be utilized to as-
sess the importance of features to the information system and the
non-redundancy among features.
4 
3.3. Granular-rectangular rough set

Neighborhood rough set (NRS) [31] are an extension of traditional
ough set theory, which primarily relies on exact equivalence relations
o partition data. However, NRS introduces the concept of neighbor-
oods, allowing for a certain degree of uncertainty and ambiguity.
RS uses neighborhood relations to describe the relationships between

amples. These neighborhood relations are derived entirely from the
ata distribution and do not require any prior knowledge. Additionally,
RS can directly handle continuous data. However, since the upper and

ower approximations in NRS are composed of sample points rather
han equivalence classes, it loses interpretability.

The classical NRS model requires computing the neighborhood for
each sample, resulting in relatively low efficiency. The GBNRS (Gran-
ular Ball Neighborhood Rough Set) [32,33] model proposes a new
neighborhood model that partitions the dataset using the computation
approach of granular balls, where all samples within each granular
ball share the same neighborhood. Iterative refinement of these gran-
ules, by controlling either the quality of the granules or a threshold
on the number of samples within them, results in the formation of
robust granules with a purity of one. The center of a granular ball
is defined as a generated positive region. Granules with a purity of
less than one are considered boundary regions. Additionally, its up-
per and lower approximations are described by equivalence classes,
maintaining interpretability.

The GRRS [34] divides the data set into multiple subspaces using
spatial partitioning, each of which corresponds to a specific range in
the data, defined as

Definition 1. 𝐼 𝑆 = (𝑈 , 𝐴𝑇 , 𝐷) is given as a decision information sys-
tem, ∀𝐴 ⊆ 𝐴𝑇 and 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑚}, 𝑆 is used as the spatial partition
of the attribute set 𝐴 on the target sample, 𝑆 = {𝑆 , 𝑆 ,… , 𝑆 }. The
1 2 𝑛
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subspace 𝑆𝑘(0 < 𝑘 < 𝑛) is represented as {𝑥𝑘 ∣ 𝑎1𝑘− ≤ 𝑥𝑘1 < 𝑎1𝑘+ , 𝑎2𝑘− ≤
𝑥𝑘2 < 𝑎2𝑘+ ,… , 𝑎𝑚𝑘− ≤ 𝑥𝑘𝑚 < 𝑎𝑚𝑘+}, where 𝑥𝑘𝑚 denotes the value of 𝑥𝑘
in the 𝑚th dimension, and 𝑎𝑚𝑘− and 𝑎𝑚𝑘+ denote the upper and lower
bounds of that space. S is a granular-rectangular space partition.

Parent granular spaces possess a coarser granularity compared to
heir child granular spaces, and as the space is refined, the upper and
ower bounds of each granular rectangle become increasingly tight.
hese subspaces are interconnected, forming a hierarchical tree struc-
ure. Within this structure, each node represents a subspace, and the
onnections between nodes depict the relationships between child and
arent spaces. This hierarchical layout allows for a clear visualization
f data distribution, facilitating quick localization of specific subspaces
ased on attributes. Similar to GBNRS, the tree structure formed by
he division in GRRS ensures that all data points within a subspace
hare the same neighborhood. The shared neighborhood aids in distin-
uishing between internal and boundary points within each subspace.
nlike traditional NRS and GBNRS, which use Euclidean distance,
RRS employs a unique method for defining neighborhood radius. In
RRS, the neighborhood radius is no longer a continuous variable but is

ransformed into a discrete value. Specifically, the neighborhood radius
s defined by ascending from a leaf node up to its parent space, increas-
ng by one with each level ascended. This discretization simplifies the
omputational process and aligns the definition of neighborhoods more

closely with practical application needs.

3.4. Spearman rank correlation coefficient

Spearman rank correlation coefficient [35] is a statistic used to
measure the nonlinear relationship between two variables. It is based
on the ranks or orders of variables, rather than the actual numerical
values of variables.

Given 𝛿 as the SRCC between two vectors 𝑎 and 𝑏, where

𝛿 = 1 − 6
∑𝑚
𝑖=1 𝑑

2
𝑖

𝑚(𝑚2 − 1) . (2)

the sample size is denoted by 𝑚, while 𝑑 signifies a specific type of
difference sequence between 𝑎 and 𝑏.

The value of SRCC ranges from −1 to 1. When the absolute value of
he coefficient approaches 1, it indicates a strong correlation between

the two variables, 𝑎 and 𝑏. Conversely, when the absolute value of
the coefficient is close to 0, it indicates that there is almost no linear
relationship between the two variables.

3.5. Matrix power series

Let 𝐴0, 𝐴1, 𝐴2,… , 𝐴𝑘,… be a sequence of matrices, where 𝐴𝑘 =
(𝑎(𝑘)𝑖𝑗 ) ∈ 𝐶𝑚×𝑛, then the sum formula 𝐴0 + 𝐴1 + 𝐴2 + ⋯ + 𝐴𝑘 + ⋯ is
alled an MPS [36], which can be written as ∑∞

𝑘=0 𝐴𝑘
For any positive integer 𝑁 , let 𝐵(𝑁) =

∑𝑁
𝑘=0 𝐴𝐾 be the partial sum

of the matrix series. If the matrix sequence {𝐵(𝑁)}, which is made of
(𝑁) =

∑𝑁
𝑘=0 𝐴𝐾 , converges [37] and has a limit, that is, lim𝑁→∞ 𝐵(𝑁) =

, then the matrix series ∑∞
𝑘=0 𝐴𝑘 converges, and let call S the sum of

his matrix series, that is, 𝑆 =
∑∞
𝑘=0 𝐴𝑘.

Proposition 1. If the partial sums of a matrix sequence ∑𝑁
𝑘=0 𝐴𝑘 converge

to a matrix 𝐵 as 𝑁 → ∞, then the series of each element ∑∞
𝑘=0 𝑎

(𝑘)
𝑖𝑗 in the

atrix also converges, and it converges to the corresponding element 𝐵𝑖𝑗 of
atrix 𝐵.

Proof. Assume that the partial sums of the matrix sequence ∑𝑁
𝑘=0 𝐴𝑘

onverge to the matrix 𝐵, i.e., lim𝑛→∞
∑𝑁
𝑘=0 𝐴𝑘 = 𝐵. The convergence of

he matrix implies that each of its elements also converges according to
ts index. Therefore, the element 𝑎(𝑘)𝑖𝑗 of matrix 𝐴𝑘: lim𝑛→∞

∑𝑁
𝑘=0 𝑎

(𝑘)
𝑖𝑗 =

𝐵𝑖𝑗 . This indicates that the partial sum sequence of each element
∑𝑁 𝑎(𝑘) converges to the corresponding element 𝐵 of matrix 𝐵. Since
𝑘=0 𝑖𝑗 𝑖𝑗 w

5 
the partial sum of each element converge, we can infer the convergence
of the infinite series: ∑∞

𝑘=0 𝑎
(𝑘)
𝑖𝑗 = lim𝑛→∞

∑𝑁
𝑘=0 𝑎

(𝑘)
𝑖𝑗 = 𝐵𝑖𝑗 . Therefore, the

nfinite series ∑∞
𝑘=0 𝑎

(𝑘)
𝑖𝑗 of each element 𝑎(𝑘)𝑖𝑗 converges to 𝐵𝑖𝑗 .

Employing the convergence properties of MPS substantially stream-
lines the computation process when summing up certain specialized
matrix series.

4. The graph-based local search feature selection (GLSFS) model

Our feature selection method, GLSFS, evaluates the importance of
attributes in the entire information system, as illustrated in Fig. 2.

The method consists of three main parts. First, we construct a
eighted undirected fully connected graph based on graph theory,
here the original attributes are represented as nodes and the re-

ationships between attributes are represented as edges, with weight
unctions assigned to the edges to intuitively reflect the interrelation-
hips among the attributes. Second, the calculation of the weights is
nfluenced by two key factors: on one hand, the contribution of each at-
ribute to classification ability is assessed using the GRRS, reflecting the
elevance of the attribute to the information system and its importance;

on the other hand, the non-redundancy among attributes is measured
by calculating the SRCC after sorting the interval-valued data, ensuring
that the selected features are both significant and redundant. Finally,
these two factors are transformed into the adjacency matrix of the
graph, and the MPS is applied to compute the feature ranking from the
adjacency matrix. The optimal feature subset is obtained by flexibly
setting the cutoff proportion to truncate the ranking sequence.

4.1. Graph building for IVIS

In the context of feature selection based on intervals, we establish
a weighted undirected complete graph 𝐺 = ⟨𝑉 , 𝐸⟩. Each node in
the graph represents a set of features 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑛}, and the
edges 𝐸 between nodes indicate relationships between the features.
Subsequently, we assign a weight function 𝑤(., .) to the edges, which
allows us to compute the element 𝑄(𝑖, 𝑗). Using this 𝑄(𝑖, 𝑗), we generate
an adjacency matrix 𝑄 that describes the importance of features in
the information system and the relationships between features in the
graph 𝐺. Each entry 𝑄(𝑖, 𝑗) within this matrix is expressed through a
corresponding weight function 𝑤(., .), defined as

𝑤(𝑖, 𝑗) = 𝛼 𝑅𝑖𝑗 + (1 − 𝛼)𝑁𝑖𝑗 . (3)

𝑅𝑖𝑗 represents the relevance of features, reflecting their importance
to the information system. Therefore, a larger value of 𝑅𝑖𝑗 is desirable,
denoting a higher importance of the feature. Its value is based on the
count of the positive domain in granular rectangles. In rough set theory,
the larger the positive domain, the better the classification capability
of the attribute set, 𝑖.𝑒. , 𝑅𝑖𝑗 = 𝑚𝑎𝑥(𝐼 𝑚𝑝(𝑎𝑖), 𝐼 𝑚𝑝(𝑎𝑗 )), where 𝐼 𝑚𝑝(𝑎𝑖)
refers to the positive domain ratio for feature {𝑎𝑖}. 𝑁𝑖𝑗 signifies the non-
redundancy between features. Following the principle of redundancy
minimization, we aim for as low redundancy as possible. Hence, to
ensure the monotonicity of criterion 𝑤(., .), the second term is set as
𝑁𝑖𝑗 = 1− ∣ 𝛿(ℎ𝑖, ℎ𝑗 ) ∣. This setup underscores the balance between
the significance of feature representation and the minimization of
redundancy within the feature set. 𝛼 is a parameter ∈ [0, 1]. The 𝛼
will be incrementally adjusted with a step size of 0.1 in subsequent
experiments. Its optimal value will be determined through a series of
five-fold cross-validation trials conducted during the training phase of
the classification task.

4.2. The calculation of weight functions

To facilitate the construction of graph theory, we provide detailed
escriptions of correlation indicators and redundancy metrics for the
eight function.
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Fig. 2. The mind map of GLSFS model. In the constructed graph, each node represents an original attribute, and edges between nodes indicate relationships with weights assigned
based on correlation and redundancy. The process of space division for weight calculation is illustrated in Fig. 3. The adjacency matrix is derived from these weights, and MPS is
used for feature ranking. The top 𝑝 percent of features are selected as the optimal subset, while the rest are discarded as less relevant.
4.2.1. The correlation indicator
Initially, we present the specific calculation method for the im-

portance of features based on the GRRS under an interval-valued
information system.

In traditional rough set theory, datasets are partitioned into several
equivalence classes where each class contains samples with identical
values across all attributes. However, this method is less effective
with continuous attributes due to the wide range of values, making it
challenging to find identical values. To address this, GRRS has proven
highly effective for feature selection with continuous data. Instead of
specific values, GRRS utilizes value ranges to segment the dataset into
subsets, where samples within each subset are consistent within a given
attribute range. This approach has been adapted to interval-valued in-
formation systems for feature selection. Most existing NRS models rely
on Euclidean distance metrics, which may fail when attribute weights
differ. To overcome this issue, the concept of granular-rectangular
neighborhoods is introduced, which eliminates the need for distance
metrics and reduces the search space for neighborhood radii, signif-
icantly enhancing the accuracy and efficiency of NRS. This method
constructs neighborhood radii by describing the relationship between
child and parent spaces without relying on any distance metrics. Specif-
ically, if two data points are close within the value range of each
attribute, falling within the same or adjacent granular rectangles, they
are considered to be in the same domain.

GRRS partitions the dataset into multiple subspaces. The parent
granular space has a coarser granularity than the child granular space.
As the space is continuously refined, the upper and lower bounds
of each dimension in each granular rectangle become increasingly
tight. Eventually, the space forms a tree-like structure, with the root
node containing all samples and all leaf nodes constituting a granular
rectangular space partition. First, we perform a spatial division of the
interval-valued information system. When sorting interval-valued data,
traditional sorting methods are inadequate for handling nested interval
values [36]. Therefore, a method for sorting interval values is proposed
to obtain an ordered set of all sample values under a specific feature.

Definition 2. Let 𝐼 𝑉 𝐼 𝑆 = (𝑈 , 𝐴𝑇 , 𝐹 ) be an interval-valued information
system, ∀𝐴 ⊆ 𝐴𝑇 , 𝑎 ∈ 𝐴, 𝑓 (𝑥 , 𝑎 ) = [𝑎𝐿 , 𝑎𝑅 ] is an interval-valued
𝑘 𝑖 𝑘 𝑖𝑘 𝑖𝑘

6 
number. Let 𝑔 = (𝑔𝐿, 𝑔𝑅) and ℎ = (ℎ𝐿, ℎ𝑅) be two interval values. 𝑔 ⪯ ℎ
if and only if
(ℎ

𝐿 + ℎ𝑅
2

−
𝑔𝐿 + 𝑔𝑅

2
) > 𝜃

and the dominance relation 𝑅⪯
𝐴 is defined as

𝑅⪯
𝐴 = {(𝑥𝑖, 𝑥𝑗 ) ∈ 𝑈 × 𝑈 ∣

𝑎𝐿𝑗 𝑘 + 𝑎𝑅𝑗 𝑘
2

−
𝑎𝐿𝑖𝑘 + 𝑎

𝑅
𝑖𝑘

2
≥ 𝜃 , 𝜃 ≥ 0}.

where 𝜃 is a nonnegative number, which signifies the permitted extent
of deviation, acting as a tolerance threshold.

After sorting the interval values, the next step is to select the
split point for the target splitting attribute. We choose the median
of all object values under the target feature as the split point. This
approach, when applied to continuous numerical features, can effec-
tively partition the dataset into two relatively balanced subsets. It
contributes to minimizing skewness in the decision tree and enhancing
the generalization capability of the model. From this, by iteratively
performing spatial divisions to form a complete tree structure, we
define the indistinguishable relationship of granular-rectangular and its
equivalence classes.

Definition 3. Let 𝐼 𝑉 𝐼 𝑆 = (𝑈 , 𝐴𝑇 , 𝐷 , 𝑓 ) be an interval-valued infor-
mation system. ∀𝑥, 𝑦 ∈ 𝑈 and 𝑎 ∈ 𝐴𝑇 , 𝑆𝑖 is a granular-rectangular in a
granular-rectangular division, and the indistinguishable relationship of
granular-rectangular INDGR (a) of the attribute 𝑎 on 𝑆𝑖 is defined as

𝐼 𝑁 𝐷 𝐺 𝑅(𝑎) = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 ∣ 𝑓 (𝑥, 𝑎) ∈ 𝑆𝑖, 𝑓 (𝑦, 𝑎) ∈ 𝑆𝑖,∀𝑎 ∈ 𝐴𝑇 }

where 𝑓 is a mapping function that represents the value of the object
under attribute 𝑎. A granular-rectangle equivalent class is defined as

[𝑥]𝐺 𝑅(𝑎) = {𝑦 ∈ 𝑈 ∣ (𝑥, 𝑦) ∈ 𝐼 𝑁 𝐷 𝐺 𝑅(𝑎)}.
{[𝑥]𝐺 𝑅(𝑎) ∣ 𝑥 ∈ 𝑈} is a granular-rectangular division of 𝑈 , denoted
𝑈∕𝐼 𝑁 𝐷 𝐺 𝑅(𝑎) and abbreviated 𝑈∕𝐺 𝑅(𝑎).

As shown in Fig. 3(a), a tree is a succinct method to represent
granular-rectangular divisions. Initially, the entire dataset acts as the
root node of the decision tree. First, an attribute is selected and all
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Fig. 3. (a)An example of the tree structure formed by space division. (b)The neighborhood radius of granular-rectangular space division.
interval values under this attribute are sorted to determine the median,
which then serves as the splitting point. This operation divides the
dataset into two subspaces, each corresponding to the samples that are
either below or above the median. This process is recursively applied to
each subspace until the space is completely divided, ultimately forming
a tree structure. In this structure, each node represents an equivalence
class, and all the leaf nodes together constitute a granular-rectangular
division of space. Clearly, the closer two nodes are, the higher the
similarity of the samples they contain. Based on this, we can describe
the neighborhood radius under space division.

As can be seen in Fig. 3(b), the neighborhood radius 𝑟 is defined by
the level of the parent space and is a smaller discrete value. As shown
in Fig. 3(a), in the subspace (leaf node) where sample 𝑥2 is located, the
neighborhood with radius 1 includes the subspaces containing samples
𝑥2 and 𝑥4, while the neighborhood with radius 2 includes the subspaces
containing samples 𝑥1, 𝑥2, 𝑥4, and 𝑥9. In our experiments, we set
the step size to 1 and searched for the optimal neighborhood radius
within the range of 1 to 5. Clearly, the neighborhood of a granular
rectangle is defined based on equivalence classes. Accordingly, we
provide the definition of upper and lower approximations described
using equivalence classes.

Definition 4. Let 𝐼 𝑉 𝐼 𝑆 = (𝑈 , 𝐴𝑇 , 𝐷 , 𝑓 ) be an interval-valued infor-
mation system, where 𝑈 is the data point set, 𝐴𝑇 is the conditional at-
tribute set, and 𝐷 is the decision attribute set. Let 𝑆 = {𝑆1, 𝑆2,… , 𝑆𝑀}
be a granular-rectangular division generated on 𝑈 . 𝐷 divides 𝑈 into 𝑁
equivalence classes, 𝑋1, 𝑋2,… , 𝑋𝑁 . According to the 𝑆, ∀𝑎 ∈ 𝐴𝑇 , the
lower approximation and the upper approximation of the decision at-
tribute set 𝐷 under the conditional attribute 𝑎 are respectively defined
as

𝐺 𝑅𝑎(𝐷) =
𝑁
⋃

𝑖=1
𝐺 𝑅𝑎(𝑋𝑖). (4)

𝐺 𝑅𝑎(𝐷) =
𝑁
⋃

𝑖=1
𝐺 𝑅𝑎(𝑋𝑖). (5)

where 𝐺 𝑅𝑎(𝑋𝑖) = {𝑆𝑗 ∣ 𝑝𝑎𝑟𝑒𝑛𝑡𝑟(𝑆𝑗 ) ⊆ 𝑋𝑖, 𝑆𝑗 ⊂ 𝑈}, 𝐺 𝑅𝑎(𝑋𝑖) = {𝑆𝑗 ∣
𝑝𝑎𝑟𝑒𝑛𝑡𝑟(𝑆𝑗 ) ∩𝑋𝑖 ≠ ∅, 𝑆𝑗 ⊂ 𝑈}.

The lower approximation, denoted as 𝐺 𝑅𝑎(𝐷), consists of granular-
rectangular equivalence classes whose neighborhood can be fully con-
tained within an equivalence class partitioned by the decision attribute
set 𝐷. On the other hand, the upper approximation, denoted as 𝐺 𝑅𝑎(𝐷),
comprises granular-rectangular equivalence classes whose neighbor-
hood intersects with the equivalence class that requires representation
and is also partitioned by the decision attribute set 𝐷. In rough set
theory, the positive region is equivalent to the lower approximation,
as it consists of all objects that can be unambiguously classified into a
7 
particular concept based on the available attributes. Based on Eq. (4),
we obtain the positive region of a granular-rectangular division as

𝑃 𝑂 𝑆𝑆𝐺 𝑅𝑎(𝐷) = 𝐺 𝑅𝑎(𝐷). (6)

In rough set theory, the accuracy of a model depends on the size of
the positive, negative, and boundary regions. The accuracy is weaker
when the positive region is smaller and the negative region is larger.
Additionally, the smaller the boundary region of the rough model, the
greater its ability to handle uncertainty. The positive region is an im-
portant concept used to describe the set of objects for which the value
of the decision attribute is determined, reliable, and not constrained by
the conditions. The larger the positive region, the higher the likelihood
that the number of samples whose neighborhoods are completely con-
tained in the equivalence classes partitioned by the decision attribute
set 𝐷 will increase. This demonstrates that the division formed by the
condition attribute 𝑎𝑖 is a better fit for the decision boundary. In other
words, there is a greater dependency of the decision attribute set 𝐷 on
the condition attribute 𝑎𝑖. From this, the positive domain count can be
computed, and it is utilized to measure the importance of an attribute
to the information system, serving as a relevance indicator in the graph
theory weighting function. The definition is as follows:

Definition 5. Let 𝐼 𝑉 𝐼 𝑆 = (𝑈 , 𝐴𝑇 , 𝐷) be an interval-valued information
system. ∀𝐴 ⊆ 𝐴𝑇 , 𝑎𝑖 ∈ 𝐴, the importance of 𝑎𝑖 relative to 𝐴 is defined
as

𝐼 𝑚𝑝(𝑎𝑖) =
𝑃 𝑂 𝑆𝑎𝑖 (𝐷)

∣ 𝑈 ∣
. (7)

According to Eq. (7), the importance of attribute 𝑎𝑖 is defined as
the ratio of its positive domain count to the total number of ob-
jects. This measure demonstrates the impact of attribute 𝑎𝑖 on the
classification capability of the information system. Finally, we use
𝑅𝑖𝑗 = 𝑚𝑎𝑥(𝐼 𝑚𝑝(𝑎𝑖), 𝐼 𝑚𝑝(𝑎𝑗 )) normalized as a relevance indicator for
subsequent calculations.

4.2.2. The redundancy metrics
We utilize the SRCC to characterize the redundancy among features.

According to Definition 6, the dominance relations under a subset
of attributes can be determined, which leads to the definition of the
dominating and dominated sets.

Definition 6. Let 𝐼 𝑉 𝐼 𝑆 = (𝑈 , 𝐴𝑇 , 𝐹 ) be an interval-valued information
system, ∀𝐴 ⊆ 𝐴𝑇 , the knowledge granules about 𝑥𝑖 ∈ 𝑈 induced by 𝑅⪯

𝐴
can be divided into dominating and dominated sets in terms of 𝐴 are
defined as
𝑅+
𝐴(𝑥𝑖) = {𝑥𝑗 ∈ 𝑈 ∣ 𝑥𝑖𝑅

⪯
𝐴𝑥𝑗},
⪯
𝑅−

𝐴(𝑥𝑖) = {𝑥𝑗 ∈ 𝑈 ∣ 𝑥𝑗𝑅𝐴𝑥𝑖}.
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The rank order of the object 𝑥𝑖 within attribute ℎ𝑗 can be determined
y utilizing the cardinality of the dominating or dominated sets of
𝑖. Further definitions of the calculation method for the SRCC are
rovided.

Definition 7. Let 𝐼 𝑉 𝐼 𝑆 = (𝑈 , 𝐴𝑇 , 𝐹 ) be an interval-valued information
system, ∀𝑎𝑖, 𝑎𝑗 ∈ 𝐴𝑇 , SRCC of 𝑎𝑖 and 𝑎𝑗 is defined as

𝛿𝑖,𝑗 = 1 −
6
∑𝑚
𝑘=1(∣ 𝑅

−
{𝑎𝑖}

(𝑥𝑘) ∣ − ∣ 𝑅−
{𝑎𝑗}

(𝑥𝑘) ∣)2

𝑚(𝑚2 − 1) . (8)

SRCC can reveal the redundancy between pairwise features by
easuring the strength and direction of the monotonic relationship

between two variables. It helps identify whether features in the dataset
carry similar information. When two features have a high SRCC value,
t indicates a strong correlation between them, suggesting redundancy.

Therefore, we desire minimal redundancy, which is why the redun-
ancy metrics in the weighting function is denoted as 𝑁𝑖𝑗 = 1− ∣
(𝑎𝑖, 𝑎𝑗 ) ∣.

4.3. Feature ranking process

In this study, the feature ranking process within graph theory is
achieved through the utilization of matrix power series properties.

ompared to other path selection methods like shortest path selection
nd random walk, MPS systematically integrates multiple paths be-
ween nodes through high-order matrix powers, capturing the global
nfluence of features. The shortest path considers only the optimal

path, neglecting relationships from other potential paths, while random
walk, due to its randomness, can lead to instability in high-dimensional
data. MPS comprehensively accounts for all path contributions between
features, making the ranking more robust and adaptable.

Then we further explain the process of using MPS to achieve feature
ranking. Let 𝜃 = {𝑣0 = 𝑖, ⃗𝑣1,… , ⃗𝑣𝑡−1, ⃗𝑣𝑡 = 𝑗} denote a path of length 𝑡
between nodes 𝑣0 and 𝑣𝑡, which represent features 𝑎𝑖 and 𝑎𝑗 respectively
in a weighted undirected fully connected graph 𝐺 = ⟨𝑉 , 𝐸⟩. Assuming
that the count of nodes 𝑛 in graph 𝐺 exceeds the length 𝑡 of the path
𝜃, the path can then be straightforwardly considered as a subset of the
feature set 𝐴𝑇 .

Subsequently, the overall weight associated with 𝜃 is defined as
follows:

𝜇𝜃 =
𝑡−1
∏

𝑘=0
𝑄(𝑣𝑘, ⃗𝑣𝑘+1). (9)

With 𝜇𝜃 representing all the feature pairs it encompasses, and given
that there may be multiple paths of length 𝑡 connecting nodes 𝑣0 and 𝑣𝑡,
et us define the set 𝜓 𝑡𝑖,𝑗 as comprising all paths of this length between

the two nodes 𝑣0 and 𝑣𝑡. Consequently, we utilize the following sum:

𝛥𝑡(𝑖, 𝑗) =
∑

𝜃∈𝜓 𝑡𝑖,𝑗

𝜇𝜃 (10)

to articulate the contribution of all these paths. Following the principles
f matrix algebra, it follows that

𝛥𝑡 = 𝑄𝑡. (11)

Proposition 2. Let 𝐺 = ⟨𝑉 , 𝐸⟩ be a weighted undirected fully connected
graph where 𝑉 is the set of nodes and 𝐸 is the set of edges, with each
edge weight being positive. For any two nodes 𝑢, 𝑣 ∈ 𝑉 , define 𝑑(𝑢, 𝑣) as
the shortest path length between 𝑢 and 𝑣. Let 𝑑 𝑖𝑎𝑚(𝐺) denote the diameter
of graph 𝐺, i.e., 𝑑 𝑖𝑎𝑚(𝐺) = max𝑢,𝑣∈𝑉 𝑑(𝑢, 𝑣). For sufficiently large 𝑡, the
number of paths 𝑃 from 𝑢 to 𝑣 of length at least 𝑡, denoted by ∣ 𝑃𝑡(𝑢, 𝑣) ∣,
ncreases with 𝑡, but the limit of the average path length between 𝑢 and 𝑣 is
 𝑖𝑎𝑚(𝐺).
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Proof. Since 𝐺 is connected, the shortest path length 𝑑(𝑢, 𝑣) exists and
s finite for any pair of nodes 𝑢, 𝑣. The diameter of graph 𝐺, 𝑑 𝑖𝑎𝑚(𝐺) is
he maximum shortest path length. Considering all paths from node 𝑢

to node 𝑣 with length 𝑡, as 𝑡 approaches infinity, the number of such
paths may increase indefinitely. Despite the existence of longer paths,
the shortest path length 𝑑(𝑢, 𝑣) provides a fixed lower bound. When 𝑡
exceeds 𝑑 𝑖𝑎𝑚(𝐺), the shortest path length between any pair of nodes
will not surpass 𝑑 𝑖𝑎𝑚(𝐺). Therefore, for any sufficiently large 𝑡, the
length of paths 𝑃 will converge to 𝑑 𝑖𝑎𝑚(𝐺).

In the context of feature selection, feature 𝑎𝑖 and feature 𝑎𝑗 may
be directly related or interconnected through other features. When the
umber of intermediary connections between 𝑎𝑖 and feature 𝑎𝑗 is fixed
t 𝑡 − 1, 𝜓 𝑡𝑖,𝑗 encompasses all such potential scenarios. Thus, we can
ssess the individual feature score for feature 𝑎𝑖 at a specified path
ength 𝑡 as follows:

𝜌𝑡(𝑖) =
∑

𝑗∈𝑉
𝛥𝑡(𝑖, 𝑗) =

∑

𝑗∈𝑉
𝑄𝑡(𝑖, 𝑗). (12)

Moreover, by incorporating all possible path lengths, the set of paths
can be viewed as covering all the subsets of feature set 𝐴𝑇 , which can
e calculated as

𝜌(𝑖) =
∞
∑

𝑡=1
𝜌𝑡(𝑖) =

∞
∑

𝑡=1
(
∑

𝑗∈𝑉
𝛥𝑡(𝑖, 𝑗)) =

∞
∑

𝑡=1
(
∑

𝑗∈𝑉
𝑄𝑡(𝑖, 𝑗)). (13)

Eq. (13) assesses the value of feature 𝑎𝑖 across all subsets of features.
Clearly, the larger the value 𝜌(𝑖), the better. Direct computation of 𝜌 as
er Eq. (13), however, is unfeasible due to the potentially infinite na-

ture of the calculations involved. Therefore, it is sensible to investigate
whether the computation can be simplified by utilizing the convergence
properties of power series in algebra. Let 𝛤 denote the power series for
the adjacency matrix 𝑄: 𝛷 =

∑∞
𝑡=1𝑄

𝑡. It should be noted that 𝛷 can be
utilized to derive 𝜌(𝑖) as

𝜌(𝑖) =
∞
∑

𝑡=1
𝜌𝑡(𝑖) = [(

∞
∑

𝑡=1
𝐸𝑡)𝛽]𝑖 = [𝛷 𝛽]𝑖. (14)

where 𝛽 represents a one-dimensional vector of ones, and the square
brackets denote the extraction of a vector element at the specified index
𝑖.

The issue is that the power series ∑∞
𝑡=1𝑄

𝑡 might not converge.
In such instances, regularization becomes necessary through the use
of generating functions [38], which are typically employed to assign
a consistent value to a potentially divergent series. Various types of
generating functions exist [39]. The generating function for the t-path
is defined as follows:

�̆�(𝑖) =
∞
∑

𝑡=1
𝑐𝑡𝜌𝑡(𝑖) =

∞
∑

𝑡=1

∑

𝑗∈𝑉
𝑐𝑡𝛥𝑡(𝑖, 𝑗). (15)

where 𝑐 is a real-valued regularization factor, and 𝑐𝑡 can be interpreted
s the weight for paths of length 𝑡. The parameter 𝑐 is defined as
= 0.9∕𝜑(𝑄), where 𝜑(𝑄) is the spectral radius of 𝑄, ensuring the

onvergence of the infinite sum.

Proposition 3. For any given adjacency matrix 𝑄 of a weighted undirected
fully connected graph 𝐺, there exists a regularization factor 𝑐, and 𝜑(𝑄)
denotes the spectral radius of 𝑄. If 𝑐 satisfies 0 < 𝑐 < (1∕𝜑(𝑄)), then the
matrix power series ∑(𝑐 𝑄)𝑡 are used for feature ranking converges.

Proof. Assuming {𝜆0, 𝜆1,… , 𝜆𝑛−1} as the eigenvalues of the matrix
𝑄 and given the identity matrix 𝐸, according to linear algebra, we
can define the spectral radius 𝜑(𝑆) = 𝑚𝑎𝑥𝜆𝑖∈{𝜆0 ,…,𝜆𝑛−1}(∣ 𝜆𝑖 ∣). For
the theory of convergence of matrix series, we have ∑

𝑡→∞𝑄𝑡 = 0 ⇔
𝜑(𝑄) < 1 ⇔

∑∞
𝑡=1𝑄

𝑡 = (𝐸 − 𝑄)−1 − 𝐸. Then, Gelfand’s formula states
that, we have 𝜑(𝑄) = lim𝑡→∞ ∥ 𝑄𝑡 ∥1∕𝑡. For each pair of matrices
𝑄 and 𝑀 , we have 𝜑(𝑄𝑀) ≤ 𝜑(𝑄)𝜑(𝑀). When 𝑀 = 𝑐 𝐸, we have
𝜑(𝑐 𝑄) = 𝜑((𝑐 𝐸)𝑄) ≤ 𝜑(𝑐 𝐸)𝜑(𝑄) = 𝑐 𝜑(𝑄). Thus, by choosing 𝑐, which

satisfies 0 < 𝑐 < (1∕𝜑(𝑄)), the power series of the matrix in the
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definition of �̆�(𝑖) would be convergent because 0 < 𝜑(𝑐 𝑄) = 𝑐 𝜑(𝑄) <
(1∕𝜑(𝑄))𝜑(𝑄) = 1. Therefore, we obtain �̆� =

∑∞
𝑡=1(𝑐 𝑄)𝑡 = (𝐸−𝑐 𝑄)−1−𝐸.

In all the experiments conducted in this article, we consistently use
𝑐 = (0.9∕𝜑(𝑄)) with 𝑐 belonging to the interval (0, (1∕𝜑(𝑄))).

Utilizing the convergence property of a matrix power series, �̆�(𝑖) can
be efficiently computed, thereby facilitating the derivation of a unique
core for each feature through marginalization.

̆(𝑖) = [�̆� 𝛽]𝑖. (16)

As per the article’s definition of feature scores, the higher the
value, the stronger the relevance and the lower the redundancy of the
feature compared to others, indicating better classification capability.

onsequently, features with elevated scores ought to be retained as the
reduced set, discernible from the descending sequence of the �̆� vector.

5. The GLSFS algorithm

Algorithm 1 completes feature ranking following the process out-
ined below. Specifically, in Algorithm 1, we initially treat the entire

attribute set 𝐴𝑇 as the attribute set 𝐶, which facilitates the iteration
ver the initial attributes. Setting the positive region count to zero
nsures accurate recounting after each spatial division. From steps 3 to
, for each attribute 𝑎𝑖 in set 𝐶, an iterative process generates a space
ivision tree. For each space division, the samples in the positive region
re counted, and the 𝐼 𝑚𝑝(𝑎𝑖) is computed according to Definition 5.

From steps 7 to 12, the SRCC between features is calculated, and the
weights on the graph edges are derived based on the calculated 𝐼 𝑚𝑝(𝑎𝑖)
and 𝛿(𝑎𝑖, 𝑎𝑗 ) values. Finally, from steps 18 to 25, the eigenvalues of the
adjacency matrix 𝑄 are computed, with the largest eigenvalue used to
calculate 𝑐, yielding the feature ranking results. Based on a predefined
cutoff proportion 𝑝, the top-ranked features are selected to form the
final optimal feature subset 𝐵.

Subsequently, we calculated the time complexity of this algorithm.
et 𝑀 denote the number of samples and 𝑁 denote the number of
onditional attributes. The time complexity of the algorithm 1 con-
ists of three components. From steps 3 to 6, the generation of the
pace partitioning tree and the computation of 𝐼 𝑚𝑝(𝑎𝑖) have a time
omplexity of 𝑂(𝑛𝑚𝑙 𝑜𝑔 𝑚). From steps 7 to 12, the computation of
RCC and the adjacency matrix 𝑄 has a time complexity of 𝑂(𝑚𝑛2).
inally, using matrix transformations and inversions for feature ranking
hrough MPS has a time complexity of 𝑂(𝑛3). Thus, the overall time
omplexity of Algorithm 1 is 𝑂(𝑚𝑛2 + 𝑛3). Given this complexity, our
lgorithm demonstrates significant advantages in accelerating compu-
ations and effectively reducing time consumption when processing

large-scale sample datasets.
Next, a brief example is provided to illustrate the algorithm de-

scribed above.
Example: Table 3 shows an 𝐼 𝑉 𝐼 𝑆 = (𝑈 , 𝐴𝑇 , 𝐹 ), this IVIS is an

interval-valued dataset obtained by preprocessing a real-valued dataset
that contains information from 9 patients treated with immunotherapy
for warts. The attributes include gender, age, duration of treatment,
number and size of warts, immune response (induration diameter),
and treatment outcome. 𝑈 = {𝑥1, 𝑥2,… , 𝑥9} is a set of objects, 𝐴𝑇 =
{𝑎1, 𝑎2,… , 𝑎7} is a set of conditional attributes, 𝐷 is the decision
attribute. When 𝛼 = 0.7, 𝜃 = 0.001 and 𝑟 = 1, we have

𝑃 𝑂 𝑆𝑎1 (𝐷) = 0, 𝑃 𝑂 𝑆𝑎2 (𝐷) = 6, 𝑃 𝑂 𝑆𝑎3 (𝐷) = 6, 𝑃 𝑂 𝑆𝑎4 (𝐷)
= 6,

𝑃 𝑂 𝑆𝑎5 (𝐷) = 0, 𝑃 𝑂 𝑆𝑎6 (𝐷) = 3, 𝑃 𝑂 𝑆𝑎7 (𝐷) = 7,
𝐼 𝑚𝑝(𝑎1) = 0.0000, 𝐼 𝑚𝑝(𝑎2) = 0.6667, 𝐼 𝑚𝑝(𝑎3) = 0.6667,

𝐼 𝑚𝑝(𝑎4) = 0.6667,
𝐼 𝑚𝑝(𝑎5) = 0.0000, 𝐼 𝑚𝑝(𝑎6) = 0.3333, 𝐼 𝑚𝑝(𝑎7) = 0.7778.

Afterwards, perform min–max normalization and take the maximum
alue.

𝑅12 = 𝑅21 = 0.8571, 𝑅13 = 𝑅31 = 0.8571, 𝑅14 = 𝑅41 =
0.8571,
 c

9 
Algorithm 1: 𝐺 𝐿𝑆 𝐹 𝑆.
Input:

1. A Interval-valued information system 𝐼 𝑉 𝐼 𝑆 = (𝑈 , 𝐴𝑇 , 𝐷), where
𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑚}, 𝐴𝑇 = {𝑎1, 𝑎2,… , 𝑎𝑛};

2. The parameters 𝛼 and 𝜃, the radius of neighborhood 𝑟, where
𝛼 ∈ [0, 1], 𝜃 ≥ 0;

3. A cutoff proportion 𝑝, where 𝑝 ∈ (0, 1), representing the proportion
of features to select.

Output: The optimal feature subset 𝐵, the subset of features
comprising the top 𝑝 proportion of features based on the
feature score ranking �̆�.

1 begin
2 𝐶 is initialized to 𝐴𝑇 .
3 for 𝑎𝑖 in 𝐶 do
4 Generate a space division tree on 𝑎𝑖;
5 Calculate 𝐼 𝑚𝑝(𝑎𝑖) according to Definition 5;
6 end
7 for 𝑖← 1 to 𝑛 do
8 for 𝑗 ← 1 to 𝑛 do
9 for 𝑘 ← 1 to 𝑚 do
10 Calculate 𝑅−

𝑎𝑖
(𝑥𝑘) and 𝑅−

𝑎𝑗
(𝑥𝑘);

11 end
12 compute 𝛿(𝑎𝑖, 𝑎𝑗 );
13 𝑅𝑖𝑗 ← 𝑚𝑎𝑥(𝐼 𝑚𝑝(𝑎𝑖), 𝐼 𝑚𝑝(𝑎𝑗 ));
14 𝑁𝑖𝑗 ← 1− ∣ 𝛿(𝑎𝑖, 𝑎𝑗 ) ∣;
15 𝑄(𝑖, 𝑗) ← 𝛼 𝑅𝑖𝑗 + (1 − 𝛼)𝑁𝑖𝑗 ;
16 end
17 end
18 calculate adjacency matrix 𝑄;
19 𝑐 = 0.9∕𝜑(𝑄);
20 �̆� = (𝐸 − 𝑐 𝑄)−1 − 𝐸;
21 �̆�(𝑖) = [�̆� 𝛽]𝑖;
22 Sort �̆� in descending order;
23 Select the top 𝑝 proportion of features as the feature subset 𝐵;
24 return 𝐵.
25 end

𝑅15 = 𝑅51 = 0.0000, 𝑅16 = 𝑅61 = 0.4286, 𝑅17 = 𝑅71 =
1.0000,

𝑅23 = 𝑅32 = 0.8571, 𝑅24 = 𝑅42 = 0.8571, 𝑅25 = 𝑅52 =
0.8571,

𝑅26 = 𝑅62 = 0.8571, 𝑅27 = 𝑅72 = 1.0000, 𝑅34 = 𝑅43 =
0.8571,

𝑅35 = 𝑅53 = 0.8571, 𝑅36 = 𝑅63 = 0.8571, 𝑅37 = 𝑅73 =
1.0000,

𝑅45 = 𝑅54 = 0.8571, 𝑅46 = 𝑅64 = 0.8571, 𝑅47 = 𝑅74 =
1.0000,

𝑅56 = 𝑅65 = 0.4286, 𝑅57 = 𝑅75 = 1.0000, 𝑅67 = 𝑅76 =
1.0000.

According to Definition 7, we can obtain
𝛿1,1 = 𝛿2,2 = 𝛿3,3 = 𝛿4,4 = 𝛿5,5 = 𝛿6,6 = 𝛿7,7 = 1.0000,
𝛿12 = 𝛿21 = 0.2174, 𝛿13 = 𝛿31 = 0.6062, 𝛿14 = 𝛿41 = −0.3044,
𝛿15 = 𝛿51 = 0.4743, 𝛿16 = 𝛿61 = −0.2598, 𝛿17 = 𝛿71 =

−0.6957,
𝛿23 = 𝛿32 = 0.1590, 𝛿24 = 𝛿42 = 0.5210, 𝛿25 = 𝛿52 = 0.4125,
𝛿26 = 𝛿62 = −0.8285, 𝛿27 = 𝛿72 = −0.6427, 𝛿34 = 𝛿43 =

−0.3264,
𝛿35 = 𝛿53 = −0.3195, 𝛿36 = 𝛿63 = −0.2500, 𝛿37 = 𝛿73 =

−0.6193,
𝛿45 = 𝛿54 = 0.7792, 𝛿46 = 𝛿64 = −0.5774, 𝛿47 = 𝛿74 = 0.2311,
𝛿56 = 𝛿65 = −0.3651, 𝛿57 = 𝛿75 = 0.1833, 𝛿67 = 𝛿76 = 0.5690.

And we may acquire the adjacency matrix 𝑄 by computation ac-
ording to Eq. (3):
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Table 3
Interval-valued information system of immunotherapy.

(U, AT, D) 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝐷

𝑥1 (−0.9951, 0.9951) (−0.4300, 0.7700) (−0.3864, 0.6064) (0.2378, 1.2022) (0.1656, 1.8344) (−0.2777, 0.3777) (0.1965, 1.2235) 1
𝑥2 (−0.9951, 0.9951) (−0.5800, 0.6200) (0.3636, 1.3564) (−0.4222, 0.5422) (−0.8344, 0.8344) (−0.2177, 0.4377) (−0.1735, 0.8535) 1
𝑥3 (−0.9951, 0.9951) (−0.3100, 0.8900) (−0.1764, 0.8164) (−0.0422, 0.9222) (0.1656, 1.8344) (−0.2477, 0.4077) (−0.1035, 0.9235) 1
𝑥4 (0.0049, 1.9951) (−0.5000, 0.7000) (−0.0464, 0.9464) (−0.4222, 0.5422) (−0.8344, 0.8344) (−0.0877, 0.5677) (−0.1035, 0.9235) 1
𝑥5 (0.0014, 1.9986) (−0.1046, 0.9246) (0.3877, 1.6123) (−0.1023, 0.6623) (0.2520, 1.7480) (−0.1588, 0.2188) (−0.4366, 0.5166) 0
𝑥6 (0.0049, 1.9951) (−0.1600, 1.0400) (−0.0164, 0.9764) (−0.4222, 0.6442) (−0.8344, 0.8344) (−0.2977, 0.3577) (−0.5035, 0.5235) 1
𝑥7 (−0.9986, 0.9986) (−0.0546, 0.9746) (−0.2523, 0.9723) (−0.0523, 0.7123) (0.2520, 1.7480) (−0.1288, 0.2488) (−0.4066, 0.5466) 0
𝑥8 (0.0014, 1.9986) (0.1154, 1.1446) (0.2977, 1.5223) (0.1777, 0.9423) (−0.2480, 1.2480) (−0.1688, 0.2088) (−0.4166, 0.5366) 0
𝑥9 (0.0049, 1.9951) (−0.4300, 0.7700) (0.1836, 1.1764) (−0.2622, 0.7022) (−0.8344, 0.8344) (−0.2277, 0.4277) (−0.4235, 0.6035) 1
a

s
b

t
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d
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o
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𝑄 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.0000 0.8348 0.7181 0.8087 0.1577 0.5221 0.7913
0.8348 0.6000 0.8523 0.7437 0.7762 0.6514 0.8072
0.7181 0.8523 0.6000 0.8021 0.8041 0.8250 0.8142
0.8087 0.7437 0.8021 0.6000 0.6662 0.7268 0.9307
0.1577 0.7762 0.8041 0.6662 0.0000 0.4905 0.9450
0.5221 0.6514 0.8250 0.7268 0.4905 0.3000 0.8293
0.7913 0.8072 0.8142 0.9307 0.9450 0.8293 0.7000

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Subsequently, we proceed to obtain the eigenvalues of matrix 𝑄 and
arry out the subsequent computations as follows:

{𝜆0, 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6} = {4.9236,−1.0753,−0.4545,−0.3245,
0.1609,−0.0451,−0.0633}

𝑐 = 0.9∕𝜑(𝑄) = 0.9∕4.9236 = 0.1828

�̆� = (𝐸 − 𝑐 𝑄)−1 − 𝐸

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.7988 1.1587 1.1686 1.1640 0.8320 0.9575 1.2522
1.1587 1.4156 1.4957 1.4511 1.1560 1.2273 1.5817
1.1686 1.4957 1.4899 1.4977 1.1902 1.2876 1.6237
1.1640 1.4511 1.4977 1.4365 1.1472 1.2495 1.6141
0.8320 1.1560 1.1902 1.1472 0.8108 0.9589 1.2860
0.9575 1.2273 1.2876 1.2495 0.9589 1.0008 1.3678
1.2522 1.5817 1.6237 1.6141 1.2860 1.3678 1.7066

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

�̆�(𝑖) = [�̆� 𝛽]𝑖 = (7.3318, 9.4861, 9.7534, 9.5601, 7.3810, 8.0494,
10.4321)𝑇𝑖 .

Ultimately, we can determine the feature ranking as
𝑎7, 𝑎3, 𝑎4, 𝑎2, 𝑎6, 𝑎5 and 𝑎1, and by setting the cutoff proportion 𝑝 = 0.65,

e select the top 65% of the ranked features as the optimal feature
ubset 𝐵. Thus, we obtain 𝐵 = {𝑎7, 𝑎3, 𝑎4, 𝑎2}.

6. Experiments and analysis

To evaluate the efficacy and performance of the proposed GLSFS
algorithm in feature selection, a comprehensive set of experiments was
onducted in this section.

Below is a detailed description of the computer configuration used
or the experiments: The CPU is an AMD R7-5800H with a base fre-
uency of 3.2 GHz and a boost frequency of 4.4 GHz. The system has
6 GB of memory and runs on a 64-bit Windows 11 operating system.
ll algorithms were written in Python and executed on the PyCharm
latform. To carry out the experiments, we downloaded 12 datasets
rom the UCI Machine Learning Repository and Kaggle, as shown in

Table 4. The code is released as an open library called GLSFS: https:
//github.com/weathin/GLSFS. Our experiment is specifically divided
nto the following steps:

(1) Data preprocessing : Since the features of all 12 datasets were in
real numbers, we first converted them into interval value datasets to
meet the requirements of the algorithm. Given a real-valued informa-
tion system 𝐼 𝑆 = (𝑈 , 𝐴𝑇 , 𝑓 ). Subsequently, for each 𝑎 ∈ 𝐴𝑇 and 𝑥 ∈ 𝑈 ,
we set 𝑎(𝑥)𝐿 = 𝑎(𝑥) − 2𝑠𝑡𝑑 and 𝑎(𝑥)𝑅 = 𝑎(𝑥) + 2𝑠𝑡𝑑, where std represents
the standard deviation of the information values for objects that belong
to the same class as object 𝑥 under the attribute.
10 
Table 4
Summary of the experimental datasets.

No. Datasets Abbreviation Objects Attributes Classes

1 Immunotherapy Immunotherapy 90 8 2
2 Ionosphere Ionosphere 351 34 2
3 Dermatology Dermatology 358 35 6
4 Connectionist Bench sonar 208 61 2
5 Turkish Music Emotion Acoustic 400 51 2
6 German credit card GCC 1000 17 2
7 Autism screening data for toddlers AST 1054 19 2
8 Contraceptive method choice cmc 1473 9 3
9 Abalone Abalone 4177 9 29
10 Shill Bidding Bid 6321 10 2
11 Nursery Nursery 12 960 9 5
12 Letter-recognition letter 20 000 17 26

(2) Performance evaluation: The analysis of time complexity and the
comparison of reduction time, classification accuracy, and the number
of reduced features with the existing seven feature selection algorithms.

To facilitate the comparison of the GLSFS algorithm with other
lgorithms, we set the proportion of features selected by the GLSFS

algorithm in the obtained feature ranking results to 45%, 65%, and
85%, respectively. We used four classifiers, KNN, SVM [42], Bayes,
and CART, to evaluate the classification performance of these three
different feature proportions, along with the other seven comparison
algorithms. The results obtained by the classifiers were compared with
the classification results of the original dataset to determine the classifi-
cation accuracy of each algorithm. All algorithms were validated based
on the number of selected features and classification accuracy using
five-fold cross-validation on the training set.

(3) Statistical Testing : Two hypothesis testing experiments were de-
igned to further analyze the differences in classification performance
etween our algorithm and the comparison algorithms.

(4) Parameter sensitivity analysis: The sensitivity of the three param-
eters 𝛼, 𝜃, and 𝑟 used in constructing the algorithm was analyzed, and
the impact of different parameter combinations on the algorithm’s final
classification performance was explored.

In our tested algorithm, the parameter 𝛼 is introduced to control
he balance between the relevance principle and the non-redundancy

principle in the graph theory weight function, with its range set from
 to 1 and a step size of 0.1. Parameter 𝜃 represents the allowable
egree of deviation when sorting the sample interval values, and is
et to 0, 0.001, 0.01, and 0.1, respectively. Additionally, parameter 𝑟
epresents the neighborhood radius, which is a discrete value, and in
he experiment, the neighborhood radius 𝑟 is searched within the range
f 1 to 5 with a step size of 1.

(5) Robustness evaluation: The robustness of the GLSFS algorithm was
evaluated using noise experiments.

We added Gaussian noise with noise levels (i.e., noise standard
eviations) of 0.1, 0.2, 0.3, 0.4, and 0.5 to each dataset in Table 4, and

then performed feature selection on the noise-contaminated datasets.
(6) Uncertainty measurement of subset : The relationship between

uncertainty and the feature subset is analyzed to further explore the
interpretability of the GLSFS.

https://github.com/weathin/GLSFS
https://github.com/weathin/GLSFS
https://github.com/weathin/GLSFS
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6.1. Performance evaluation of GLSFS algorithm

In this subsection, we conducted a detailed analysis of the exper-
mental results on the classification performance of the GLSFS algo-
ithm. During the comparison of algorithm performance, we employed
even distinct feature selection algorithms, which are listed below.

(1) Original Dataset : The entire set of conditional attributes present in
the original dataset is utilized for the purpose of classification.

(2) Infinite Feature Selection (Inf-UFS) [15]: The Inf-UFD algorithm
utilizes a filter feature selection framework, where feature subsets
are regarded as paths in a graph, with nodes representing features
and edges indicating the correlation and redundancy between
features.

(3) Unsupervised Attribute Reduction Based on 𝛼-Approximate Equal
Relation (AERAR) [40]: The AERAR algorithm employs approx-
imate equivalence relations to effectuate unsupervised attribute
reduction.

(4) 𝜃-Rough Degree-Based Method (UM) [41]: The UM algorithm uti-
lizes 𝜃-Rough degree to handle uncertainty and performs unsu-
pervised attribute reduction.

(5) Hybrid-Kernel-Based Fuzzy Complementary Mutual Information
Method (HKCMI) [42]: The HKCMI algorithm utilizes fuzzy com-
plementary entropy, corresponding complementary conditional
entropy, and fuzzy complementary mutual information to score
features.

(6) k-nearest Neighborhood Conditional Mutual Information Method
(KNCMI) [43]: The KNCMI algorithm evaluates the importance
of features by combining 𝛿-neighborhood and 𝐾-nearest neighbor
methods, employing an iterative strategy, and utilizing informa-
tion entropy for feature selection.

(7) Unsupervised Method Based on Graph Theory(IGUFS) [44]: Unsu-
pervised feature selection is performed by establishing a graph
where features are represented as nodes, and pairwise relation-
ships between features are represented as edges. Features are
scored based on the principles of correlation and redundancy.

(8) Neural Networks (MIV-BPNN): The mean impact value (MIV)
serves as the chosen feature evaluation metric, gauging the signif-
icance of each variable in relation to the dependent variable. It is
employed to quantify the degree to which input neurons influence
the output neuron, with the absolute magnitude of MIV indicating
the relative importance of this influence.

(9) The graph-based local search feature selection method(GLSFS)
proposed in this article.

In the comparative analysis, we have evaluated several feature
election algorithms, with AERAR, UM, and IGUFS specifically tailored
or IVIS, while HKCMI, Inf-FS, KNCMI, and MIV-BPNN were origi-
ally designed for single-value information systems. To incorporate the
atter group into our experiments, we adapted them by transforming
he original IVIS into single-value information systems, achieving this
onversion by extracting the midpoint value from each interval.

6.1.1. Time complexity and reduction time analysis
We provide a detailed analysis of the time complexity of the GLSFS

lgorithm and seven other algorithms, along with their reduction times
cross different datasets.

(1) Time complexity analysis: Table 5 shows the time complexity of
our GLSFS algorithm and seven other comparison algorithms.

For other algorithms, Inf-UFS and IGUFS have a time complexity
that includes an 𝑛3 term, meaning their computational cost increases
significantly as the number of features grows. As a result, their perfor-

ance may be severely limited when dealing with datasets that have
a large number of features. AERAR and HKCMI exhibit a time com-
plexity of 𝑂(𝑚2𝑛), indicating a quadratic dependency on the number
f samples, which makes their computational cost quite high when
 K

11 
Table 5
Time complexity analysis of feature selection algorithms.

Algorithm Time complexity

Inf-UFS 𝑂((1 + 𝑚)𝑛3)
AERAR 𝑂(𝑚2𝑛)
UM 𝑂(𝑚2𝑛2)
HKCMI 𝑂(𝑚2𝑛)
KNCMI 𝑂(𝑚2𝑛)
IGUFS 𝑂(𝑚𝑛3)
BPNN 𝑂(𝑚𝑖𝑡𝑒𝑟𝑚(𝑛 + ℎ))
GLSFS 𝑂(𝑚𝑛2 + 𝑛3)

The 𝑚 represents the number of samples, 𝑛 denotes the initial number
of features, 𝑚𝑖𝑡𝑒𝑟 indicates the number of iterations, and ℎ refers to the
total number of hidden neurons in the neural network.

working with large sample sizes. The UM algorithm, with a complexity
f 𝑂(𝑚2𝑛2), is suitable for small-scale datasets, but its computational
ost may become unmanageable with larger datasets. BPNN combines
he computations of neural networks, with a complexity of 𝑂(𝑚𝑖𝑡𝑒𝑟𝑚(𝑛+
ℎ)), where the cost depends on the number of iterations 𝑚𝑖𝑡𝑒𝑟 and the
number of hidden neurons ℎ. Despite its powerful capabilities, it also
comes with significant computational overhead.

GLSFS demonstrates a time complexity of 𝑂(𝑚𝑛2 + 𝑛3), and strikes a
ood balance between the number of samples 𝑚 and the number of
eatures 𝑛. When dealing with large datasets that have both a high
umber of samples and features, GLSFS is able to maintain a high level
f computational efficiency.

Therefore, the performance of GLSFS in terms of time complex-
ity makes it a strong algorithmic choice for large-scale and high-
dimensional datasets. It offers effective feature selection capabilities in
big data problems encountered in real-world scenarios.

(2) The reduction time: To demonstrate the efficiency of the algo-
ithm, we compared the reduction times of eight algorithms across 12
ifferent datasets and plotted the results in Fig. 4. For algorithms with

run times exceeding 24 h, we set their values to 0, excluding them from
he comparison.

From Fig. 4, we can observe the distribution trends of reduction
imes for the eight feature selection algorithms across different datasets.
ompared to other algorithms, GLSFS shows significantly lower reduc-
ion times on most datasets, particularly on large-scale datasets such
s AST and letter, where its advantage is more pronounced. Over-
ll, GLSFS consistently maintains low run times across various types
f datasets, highlighting its efficiency and adaptability. This stable,
ow-time performance demonstrates that GLSFS has strong computa-
ional efficiency in feature selection, effectively reducing time costs and
roviding a highly efficient solution for large-scale data processing.

6.1.2. Comparison of classification accuracy
We conducted a comparative analysis of the classification accuracy

between the GLSFS algorithm and seven other algorithms. During the
experiments, any algorithm whose dataset reduction time exceeded
24 h was terminated due to excessive time costs.

Tables 6–9 display the classification accuracy of these seven algo-
ithms along with our three proposed variants of the GLSFS algorithm

(featuring 45%, 65%, and 85% of the features) across KNN, SVM,
Bayes, and CART classifiers. The bold numbers in each row of Tables 3–
6 represent the highest classification accuracy achieved among the ten
lgorithms for that dataset. We consider some datasets (Acoustic, AST,
mc, Dermatology, GCC, Immunotherapy, Ionosphere, and sonar) as
tandard datasets, while others (Abalone, Bid, Nursery, and letter) are
lassified as large-sample datasets. For the standard datasets, GLSFS
chieved the best classification accuracy in 12 records at 45% feature
roportion, in 9 records at 65% feature proportion, and in 15 records
t 85% feature proportion. However, among the Inf-UFS, AERAR, UM,
KCMI, KNCMI, IGUFS, and BPNN algorithms, only AERAR, HKCMI,

NCMI, and BPNN achieved the best accuracy in 1, 3, 4, and 1
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Fig. 4. The reduction time of feature selection algorithms.
t

p

records respectively. Therefore, particularly at 45% and 85% feature
roportions, the GLSFS algorithm generally outperforms the selected

comparative algorithms in terms of average classification accuracy
across the eight standard datasets. Regarding the four large-sample
datasets used in the experiments, out of 16 records (excluding algo-
rithms without classification accuracy data and comparing only those
with available data), GLSFS at 45% feature proportion achieved the
best classification accuracy in 5 records, GLSFS at 65% in another
5 records, and GLSFS at 85% in 4 records. The other comparative
algorithms managed to reach the best accuracy in only 3 records.

Therefore, the GLSFS algorithm provides high classification accu-
acy across most datasets at feature proportions of 45%, 65%, and
5%. This demonstrates that the algorithm maintains good performance
t different levels of feature retention, particularly achieving optimal
ccuracy in most cases at an 85% feature proportion. Additionally,
he GLSFS algorithm has shown its capability to handle large-scale
atasets, as evidenced by the classification accuracy data in the tables.
hile comparative algorithms such as AERAR, HKCMI, and KNCMI

lso displayed commendable performance on some datasets, the GLSFS
lgorithm generally offers more consistent and reliable results across all
atasets. Furthermore, the GLSFS algorithm maintains high accuracy
cross various types of classifiers, demonstrating its good applicabil-
ty and scalability. This provides important evidence for algorithm
election and deployment in practical applications.

Based on the above analysis, our introduced GLSFS algorithm is
apable of either enhancing or sustaining the classification accuracy
chieved with the original dataset.

6.1.3. Comparison of reduction numbers
We have presented a comparison of the average number of se-

ected features between the GLSFS algorithm and other comparative
12 
algorithms, as shown in Table 10. From the table, it is apparent that
hese feature selection methods can effectively reduce the number

of attributes at different levels. However, a significant advantage of
the GLSFS algorithm over others is its ability to flexibly adjust the
quantity or percentage of selected features based on practical needs.
For instance, For datasets that inherently possess a relatively limited
number of features, like those pertaining to Immunotherapy and cmc,
should the objective be to attain enhanced classification accuracy, it
is advisable to consider an appropriate increase in the percentage of
features that are selected, for example, to 65% or 85%. Conversely, for
datasets that encompass a larger quantity of features, such as Sonar and
Acoustic, it is feasible to decrease the percentage of selected features,
for instance, down to 45%, in order to potentially streamline the model
while maintaining satisfactory classification performance.

The different feature proportions offered by the GLSFS algorithm
rovide a flexible strategy to meet the needs of various datasets, allow-

ing adjustments in the proportion of feature selection based on specific
requirements for classification accuracy and reduction efficiency. For
example, if the goal is to maximize reduction efficiency by significantly
reducing the number of attributes with minimal impact on classification
accuracy, a lower feature proportion, such as 45% or less, can be
selected. For instance, on the Ionosphere dataset, selecting 45% of
features is more appropriate than 85%, as reducing the number of
attributes to 14, which reduces the attribute reduction proportion by
about 40% from the original data, only decreases the classification
accuracy from 91.71% to 90.28% using the KNN classifier. However,
most alternative feature selection algorithms, including AERAR and
UM, commonly produce a fixed set of reduction outcomes that are not

capable of being tailored to specific, real-world needs.
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Table 6
The classification accuracy of selected features on KNN(%).

Data sets Original Inf-UFS AERAR UM HKCMI KNCMI IGUFS BPNN GLSFS(45%) GLSFS(65%) GLSFS(85%)

Immunotherapy 80.00 ± 6.66 72.72 ± 15.23 76.15 ± 9.98 78.75 ± 12.52 70.83 ± 14.97 76.53 ± 14.33 78.75 ± 15.19 75.55 ± 2.72 78.88 ± 4.15 78.88 ± 4.15 81.11 ± 6.08
Ionosphere 91.16 ± 2.13 58.21 ± 5.12 52.38 ± 3.01 74.86 ± 10.52 88.00 ± 5.24 89.14 ± 6.36 88.00 ± 5.97 83.19 ± 3.30 90.28 ± 1.80 92.57 ± 1.06 91.71 ± 1.39
Dermatology 97.76 ± 1.13 86.60 ± 1.84 94.65 ± 3.01 23.87 ± 6.37 60.37 ± 4.94 95.78 ± 2.30 91.30 ± 4.57 94.96 ± 2.08 93.54 ± 2.07 98.03 ± 0.89 98.31 ± 1.04
sonar 80.19 ± 2.75 64.80 ± 5.30 84.52 ± 3.57 50.69 ± 9.17 64.71 ± 8.49 84.10 ± 7.98 82.14 ± 8.37 80.77 ± 4.28 84.52 ± 5.95 79.69 ± 1.53 78.26 ± 2.82
Acoustic 67.75 ± 5.88 38.74 ± 5.68 65.62 ± 5.62 28.82 ± 8.74 41.88 ± 10.22 60.42 ± 9.33 52.14 ± 11.16 39.00 ± 2.66 67.66 ± 3.22 69.68 ± 3.48 69.17 ± 1.67
GCC 72.87 ± 2.42 63.28 ± 4.15 72.17 ± 1.67 64.56 ± 11.12 63.47 ± 3.33 70.37 ± 2.21 70.77 ± 3.26 64.20 ± 2.83 78.67 ± 2.65 73.57 ± 0.99 74.47 ± 1.20
AST 95.63 ± 1.18 62.17 ± 4.85 95.63 ± 1.18 66.47 ± 4.74 66.09 ± 5.70 97.34 ± 1.58 90.22 ± 2.37 68.22 ± 2.27 96.44 ± 0.71 94.49 ± 0.50 94.58 ± 0.50
cmc 45.44 ± 1.58 41.85 ± 3.57 45.44 ± 1.58 40.90 ± 4.25 51.21 ± 4.97 43.96 ± 4.46 39.54 ± 5.39 43.58 ± 2.19 66.03 ± 2.02 66.10 ± 1.42 66.10 ± 2.41
Abalone 20.70 ± 0.25 10.46 ± 1.54 – 17.49 ± 4.06 20.55 ± 1.57 21.94 ± 1.97 19.66 ± 2.12 22.95 ± 1.25 25.62 ± 0.39 21.54 ± 0.04 22.84 ± 0.60
Bid 98.48 ± 0.25 86.51 ± 0.87 – – 86.41 ± 0.65 98.66 ± 0.58 88.89 ± 0.99 89.86 ± 0.73 99.66 ± 0.20 99.22 ± 0.37 98.53 ± 0.35
Nursery 91.76 ± 0.25 33.35 ± 1.23 – – – 83.74 ± 1.94 73.33 ± 1.71 76.70 ± 2.45 69.35 ± 0.32 75.28 ± 1.40 85.46 ± 7.83
letter 93.38 ± 0.08 39.58 ± 4.88 – – – – 89.94 ± 0.46 70.99 ± 0.93 93.06 ± 0.16 91.83 ± 0.47 93.08 ± 0.43

Average 77.93 ± 2.03 54.85 ± 4.52 73.32 ± 3.70 49.60 ± 7.94 61.35 ± 6.01 74.98 ± 4.79 72.06 ± 5.13 67.50 ± 2.31 78.64 ± 1.97 78.40 ± 1.36 79.47 ± 2.19
Table 7
The classification accuracy of selected features on SVM(%).

Data sets Original Inf-UFS AERAR UM HKCMI KNCMI IGUFS BPNN GLSFS(45%) GLSFS(65%) GLSFS(85%)

Immunotherapy 78.88 ± 8.89 78.88 ± 8.88 78.88 ± 8.88 78.75 ± 12.52 78.75 ± 12.52 79.86 ± 13.79 68.47 ± 13.09 78.88 ± 2.22 81.11 ± 8.88 80.00 ± 8.88 80.00 ± 7.85
Ionosphere 93.42 ± 3.20 63.14 ± 3.42 57.61 ± 7.12 74.86 ± 10.52 91.43 ± 3.13 92.29 ± 3.39 90.57 ± 5.12 93.15 ± 2.46 94.85 ± 2.45 94.00 ± 2.32 94.28 ± 2.77
Dermatology 97.21 ± 2.49 85.19 ± 3.01 94.69 ± 3.69 35.40 ± 5.46 33.96 ± 6.98 33.41 ± 6.35 50.51 ± 6.57 96.92 ± 2.23 94.93 ± 1.70 98.03 ± 1.05 98.03 ± 1.12
sonar 83.11 ± 4.25 65.72 ± 6.29 81.19 ± 3.92 57.98 ± 10.06 70.62 ± 8.97 62.81 ± 10.22 70.05 ± 7.32 82.22 ± 2.83 83.10 ± 1.23 82.14 ± 1.75 83.60 ± 1.89
Acoustic 78.69 ± 7.37 45.31 ± 6.32 74.75 ± 4.70 32.83 ± 5.64 28.33 ± 6.49 29.58 ± 6.11 62.13 ± 10.24 37.00 ± 3.40 79.45 ± 2.14 77.19 ± 3.64 77.19 ± 3.64
GCC 76.37 ± 2.15 70.28 ± 7.37 71.67 ± 1.12 68.36 ± 4.78 69.96 ± 5.43 69.56 ± 4.95 70.13 ± 4.97 70.20 ± 0.50 76.77 ± 2.53 75.97 ± 2.20 77.87 ± 2.23
AST 98.76 ± 0.87 69.13 ± 3.46 98.86 ± 1.33 69.13 ± 4.08 28.33 ± 6.49 98.77 ± 1.28 88.88 ± 2.99 69.07 ± 1.66 99.76 ± 0.23 98.76 ± 0.64 98.86 ± 0.57
cmc 50.81 ± 2.20 46.83 ± 3.05 45.43 ± 1.64 43.21 ± 3.79 49.80 ± 3.90 46.88 ± 4.24 44.70 ± 3.02 43.71 ± 1.85 46.81 ± 2.32 53.40 ± 2.11 54.01 ± 1.91
Abalone 25.43 ± 1.24 16.04 ± 0.91 – 19.16 ± 1.26 27.16 ± 2.19 26.75 ± 1.72 26.92 ± 2.19 23.86 ± 0.50 26.62 ± 0.56 25.85 ± 0.04 26.12 ± 0.58
Bid 97.97 ± 0.20 89.22 ± 0.98 – – 85.13 ± 0.98 99.29 ± 0.33 90.09 ± 1.45 90.21 ± 0.33 99.43 ± 0.18 98.73 ± 0.30 97.90 ± 0.19
Nursery 95.73 ± 0.05 36.89 ± 0.64 – – – 89.22 ± 0.56 77.08 ± 1.38 83.60 ± 0.29 76.79 ± 0.36 83.75 ± 0.34 85.49 ± 7.83
letter 92.67 ± 0.55 37.33 ± 1.35 – – – – 92.03 ± 0.41 64.51 ± 0.73 73.99 ± 0.02 88.35 ± 0.40 91.26 ± 0.56

Average 80.75 ± 2.79 58.66 ± 3.81 75.39 ± 4.05 53.30 ± 6.46 56.35 ± 5.71 66.31 ± 4.84 69.30 ± 4.90 69.44 ± 1.58 77.80 ± 1.88 79.68 ± 1.97 80.38 ± 2.60
Table 8
The classification accuracy of selected features on NB(%).

Data sets Original Inf-UFS AERAR UM HKCMI KNCMI IGUFS BPNN GLSFS(45%) GLSFS(65%) GLSFS(85%)

Immunotherapy 80.00 ± 8.31 77.86 ± 0.90 64.74 ± 11.69 78.75 ± 12.52 74.31 ± 13.96 77.64 ± 13.04 78.75 ± 12.52 76.66 ± 6.47 85.55 ± 6.47 84.44 ± 4.15 83.33 ± 8.16
Ionosphere 88.85 ± 5.81 56.82 ± 5.80 55.10 ± 4.08 74.86 ± 10.52 84.00 ± 5.60 87.71 ± 7.12 87.43 ± 5.74 83.48 ± 2.84 86.57 ± 2.77 86.28 ± 2.45 89.42 ± 4.37
Dermatology 86.80 ± 2.86 50.82 ± 8.56 70.79 ± 3.22 35.40 ± 5.46 65.71 ± 6.54 89.37 ± 5.77 67.07 ± 7.28 85.98 ± 2.03 87.64 ± 2.91 85.97 ± 2.24 86.80 ± 2.82
sonar 65.66 ± 7.39 65.74 ± 6.94 71.42 ± 4.76 57.02 ± 7.99 63.76 ± 10.53 63.31 ± 10.35 71.50 ± 9.25 66.88 ± 8.66 73.81 ± 1.19 69.04 ± 2.73 66.63 ± 3.37
Acoustic 75.18 ± 4.72 36.25 ± 5.87 78.12 ± 1.87 29.56 ± 4.24 51.64 ± 7.26 73.17 ± 5.11 34.83 ± 7.52 37.00 ± 3.40 72.18 ± 1.62 78.75 ± 3.75 73.94 ± 2.69
GCC 72.37 ± 2.31 70.11 ± 3.69 73.77 ± 0.90 69.66 ± 5.39 69.86 ± 4.11 72.47 ± 4.30 72.67 ± 4.59 71.90 ± 1.98 74.77 ± 1.44 74.37 ± 1.01 72.77 ± 1.83
AST 97.24 ± 0.96 67.88 ± 3.73 97.24 ± 0.96 69.13 ± 4.08 69.13 ± 4.08 95.73 ± 2.00 91.55 ± 2.61 95.82 ± 1.31 99.28 ± 0.71 94.30 ± 1.06 96.01 ± 0.89
cmc 47.07 ± 3.16 45.50 ± 1.66 47.07 ± 3.16 43.62 ± 3.25 51.16 ± 3.35 46.88 ± 3.79 44.16 ± 3.77 47.11 ± 1.89 43.88 ± 2.12 46.87 ± 2.76 50.33 ± 3.62
Abalone 23.75 ± 0.07 16.03 ± 1.49 – 10.72 ± 2.15 22.53 ± 2.38 25.48 ± 2.15 22.87 ± 2.39 22.50 ± 1.22 26.29 ± 0.79 26.09 ± 0.25 25.43 ± 0.07
Bid 97.04 ± 0.46 89.18 ± 1.03 – – 89.32 ± 0.69 96.77 ± 0.73 87.64 ± 0.97 90.21 ± 0.33 98.03 ± 0.27 98.03 ± 0.27 97.42 ± 0.35
Nursery 63.77 ± 0.54 38.79 ± 1.00 – – – 60.48 ± 1.55 58.24 ± 1.54 60.01 ± 0.25 57.29 ± 0.09 64.31 ± 0.34 63.37 ± 0.52
letter 64.36 ± 0.51 37.58 ± 3.96 – – – – 56.57 ± 0.90 59.51 ± 0.81 54.66 ± 0.11 64.23 ± 0.21 65.68 ± 0.37

Average 71.84 ± 3.09 54.38 ± 3.72 69.78 ± 3.83 52.08 ± 6.18 64.14 ± 5.85 71.73 ± 5.08 64.44 ± 4.92 66.42 ± 2.60 71.66 ± 1.71 72.72 ± 1.77 72.59 ± 2.42
Table 9
The classification accuracy of selected features on CART(%).

Data sets Original Inf-UFS AERAR UM HKCMI KNCMI IGUFS BPNN GLSFS(45%) GLSFS(65%) GLSFS(85%)

Immunotherapy 85.55 ± 9.29 72.86 ± 8.34 64.72 ± 10.82 78.75 ± 12.52 68.61 ± 6.34 69.44 ± 12.97 74.17 ± 12.17 65.55 ± 4.15 81.11 ± 9.29 83.33 ± 6.47 85.55 ± 4.44
Ionosphere 83.71 ± 5.39 48.57 ± 3.95 47.10 ± 7.58 74.86 ± 10.52 88.57 ± 4.61 91.71 ± 4.86 90.86 ± 5.12 89.17 ± 4.20 90.00 ± 1.71 90.57 ± 0.57 92.28 ± 1.93
Dermatology 92.41 ± 2.87 84.07 ± 6.20 86.51 ± 2.30 34.83 ± 5.97 67.17 ± 7.74 95.23 ± 3.55 87.90 ± 4.96 94.68 ± 2.39 91.00 ± 1.06 95.50 ± 1.13 95.79 ± 1.02
sonar 65.24 ± 8.58 55.20 ± 4.66 71.42 ± 4.76 52.64 ± 6.06 63.38 ± 8.59 74.36 ± 10.80 75.26 ± 9.13 73.05 ± 3.97 80.95 ± 7.14 76.71 ± 1.21 75.79 ± 1.56
Acoustic 59.14 ± 6.32 38.33 ± 5.68 68.75 ± 1.24 36.08 ± 7.46 49.37 ± 4.00 68.14 ± 6.94 45.61 ± 6.46 56.25 ± 2.49 68.67 ± 1.15 68.17 ± 1.45 69.15 ± 0.81
GCC 67.66 ± 3.83 60.25 ± 2.81 69.66 ± 2.07 68.36 ± 4.78 67.56 ± 5.68 68.57 ± 4.37 69.46 ± 3.85 66.70 ± 2.78 71.67 ± 0.37 70.87 ± 0.59 70.67 ± 0.63
AST 100.00 ± 0.00 55.41 ± 3.85 97.24 ± 0.96 69.61 ± 3.82 69.23 ± 3.84 100.00 ± 0.00 90.02 ± 3.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
cmc 46.75 ± 3.31 42.86 ± 5.11 46.40 ± 1.63 41.58 ± 3.59 55.78 ± 3.97 43.21 ± 3.7 44.23 ± 3.13 44.80 ± 0.89 45.38 ± 1.91 47.82 ± 1.48 48.70 ± 1.63
Abalone 18.61 ± 2.56 10.89 ± 0.65 – 19.16 ± 1.26 25.31 ± 1.78 25.48 ± 2.15 24.93 ± 2.86 20.49 ± 0.99 22.77 ± 0.23 21.42 ± 0.07 21.00 ± 0.01
Bid 99.69 ± 0.17 81.46 ± 1.54 – – 88.99 ± 0.86 99.49 ± 0.28 90.22 ± 0.68 99.69 ± 0.18 99.63 ± 0.24 99.63 ± 0.22 99.84 ± 0.07
Nursery 99.28 ± 0.36 37.81 ± 0.93 – – – 87.71 ± 0.81 77.24 ± 1.38 83.85 ± 0.27 76.79 ± 0.44 83.75 ± 0.27 83.08 ± 0.86
letter 87.15 ± 0.20 40.33 ± 3.35 – – – – 44.43 ± 0.89 86.97 ± 0.43 79.99 ± 0.15 87.48 ± 0.67 87.89 ± 0.33

Average 75.43 ± 3.57 52.34 ± 3.92 68.98 ± 3.92 52.87 ± 6.22 64.40 ± 4.74 74.85 ± 4.58 67.86 ± 4.47 73.43 ± 1.66 75.66 ± 1.97 77.10 ± 1.16 77.48 ± 1.11
13 
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Table 10
Average number of selected attributes.

Data sets Original Inf-UFS AERAR UM HKCMI KNCMI IGUFS BPNN GLSFS (45%) GLSFS (65%) GLSFS (85%)

Immunotherapy 7 3 7 2 3 3 4 3 3 4 5
Ionosphere 33 14 28.4 2 5 15 17 15 14 21 28
Dermatology 34 15 15.4 2 6 28 18 15 15 22 28
sonar 60 27 50 2 2 41 31 27 21 39 51
Acoustic 50 22 17 2 3 49 26 22 22 32 42
GCC 16 9 13.4 2 3 15 11 9 7 10 13
AST 18 8 17 2 2 6 10 8 8 11 15
cmc 8 4 8 2 6 6 5 4 3 5 6
Abalone 8 3 – 2 3 5 5 4 3 5 6
Bid 9 6 – 2 3 6 6 4 4 5 7
Nursery 8 5 – – – 4 5 3 3 5 6
letter 16 10 – – – – 9 7 7 10 13

Average 25.5 10.5 19.5 2 3.6 16.2 12.3 10.1 10.2 15.6 20.5
Table 11
Average ranking of classification accuracies of algorithms.

Inf-UFS AERAR UM HKCMI KNCMI IGUFS BPNN GLSFS (45%) GLSFS (65%) GLSFS (85%)

KNN 2.13 6.13 2.75 3.25 6.75 4.88 4.25 8.38 8.38 8.38
SVM 4.50 5.50 2.25 3.50 4.25 3.88 5.25 8.75 8.13 9.38
NB 3.00 6.00 2.25 4.13 6.00 5.38 5.50 8.00 7.13 7.88
CART 2.25 4.75 2.63 3.88 6.38 5.38 5.13 8.00 8.50 9.38
d

o

a

Therefore, the GLSFS algorithm demonstrates strong advantages
n flexibility and practicality in feature selection, allowing it to ad-
ust the feature selection strategy according to different application
equirements. This makes it highly applicable in practical settings,
specially suitable for processing large datasets or complex datasets
ith a high number of features. Overall, the GLSFS algorithm is not
nly efficient but also possesses clear advantages in feature selection
or IVIS classification tasks.

6.2. Statistical testing

In this subsection, we utilize two statistical testing methods to
further analyze the experimental results of various algorithms: Fried-
man’s test (F-test) and the Wilcoxon test (W-test). These tests are
employed to validate the effectiveness of our algorithm. Due to some
omparative algorithms failing to produce results within 24 h for large
ample datasets, our subsequent analyses focus on the standard datasets

previously mentioned. Table 8 displays the average rankings based on
lassification accuracy for the Inf-UFS, AERAR, UM, HKCMI, KNCMI,
GUFS, BPNN, and GLSFS algorithms across the KNN, SVM, Bayes, and
ART classifiers. This approach provides a comprehensive overview of
ow each algorithm performs under various classification conditions,
ffering insights into their relative strengths and weaknesses.

The Friedman test, a non-parametric statistical method, tests the
null hypothesis that all experimental algorithms exhibit equivalent
classification performance. The significance level for this test is set
at 0.05. If the 𝑃 -value exceeds 0.05, the null hypothesis stands; if
it is below 0.05, the null hypothesis is rejected. In our comparative
analysis involving 8 datasets and 10 algorithms, the Friedman value,
which assesses the classification performance of these algorithms, is
derived from the average rankings shown in Table 11. According to
he results displayed in Table 12, all P-values from the Friedman test
all below the 0.05 significance level, leading to the rejection of the
ull hypothesis. This indicates that the classification performance of
he algorithms under comparison is not equivalent.

Furthermore, the Wilcoxon test is utilized to delve deeper into
he relative performance and distinctions among all the comparative

algorithms. This test assesses whether the rank differences between
two sample datasets are symmetrically distributed around the median,

hich helps determine whether the two samples originate from the

same distribution. In this study, we undertake three distinct sets of

14 
Table 12
Result of the Friedman test.

Friedman value 𝜒2
𝐹 P Value

KNN 14.67 48.74 1.85×10−7
SVM 15.33 49.43 1.38×10−7
NB 5.62 32.07 1.94×10−4
CART 30.98 58.73 2.35×10−9

hypothesis tests, each aligned with the three distinct optimal feature
subset ratios introduced by our method. For each set, the null hypoth-
esis is formulated to assert that the classification accuracy attained by
our approach does not surpass that of the seven comparative methods
under consideration. The resulting p-values from these rigorous tests
are comprehensively presented in Table 13.

The rejection of the null hypothesis demonstrates that our model
attains classification accuracy that surpasses the comparative models,
thereby validating the efficacy of our approach. As evidenced by the
ata in the tables, the test results for both the KNN and SVM clas-

sifiers reject the null hypothesis when our model’s feature selection
ratios are configured at 45% and 65%. This confirms that our model’s
classification accuracy substantially exceeds that of the models from
other comparative algorithms. For the NB and CART classifiers, only
the hypothesis tests for the AERAR, KNCMI, and BPNN comparison
algorithms do not reject the null hypothesis, potentially due to the
limited sample sizes involved.

6.3. Parameter sensitivity analysis of GLSFS algorithm

(1) Sensitivity analysis of parameters 𝛼 and 𝜃: To analyze the impact
f varying parameter combinations of 𝛼 and 𝜃 on the accuracy of

classification achieved by the KNN classifier using the proposed GLSFS
lgorithm, we plotted the classification accuracy results for 12 datasets

at a neighborhood radius 𝑟 = 1, with various combinations of 𝛼 and 𝜃,
as shown in Fig. 5.

The charts clearly demonstrate that selecting different parameter
combinations is crucial, as they significantly affect the classification
accuracy. From the charts, it is evident that the optimal parameter
combinations vary across datasets. For instance, the GLSFS algorithm
performs better with higher 𝛼 values for datasets like Ionosphere,
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Table 13
P-value of the Wilcoxon test.

KNN SVM NB CART

45% 65% 85% 45% 65% 85% 45% 65% 85% 45% 65% 85%

Inf-UFS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
AERAR < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.25 0.31 0.46 < 0.05 < 0.05 < 0.05
UM < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
HKCMI < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
KNCMI < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.38 0.38 0.07 0.23 0.6 < 0.05
IGUFS < 0.05 < 0.05 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.05 0.07 < 0.05 < 0.05 < 0.05
BPNN < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.05 0.10 < 0.05 0.06 < 0.05 < 0.05
Fig. 5. The impact of parameters 𝛼 and 𝜃 on classification accuracy for twelve datasets when 𝑟 = 1 on the KNN classifier.
Dermatology, and AST, while lower 𝛼 values are more suitable for
datasets such as Acoustic, GCC, and cmc. Particularly when 𝛼 is close to
0.9, the GLSFS algorithm achieves superior classification performance
for most datasets, indicating that increasing the weight of the relevance
principle in the graph theory weight function is essential for enhancing
classification performance. Conversely, lower 𝛼 values yield better
results for datasets like Acoustic and GCC, suggesting that reducing
the weight of the relevance principle can effectively minimize feature
redundancy, thereby improving classification accuracy. The optimal 𝜃
values also show considerable variation between datasets. For example,
higher 𝜃 values (e.g., 0.1) significantly improve classification accuracy
in Dermatology and Ionosphere datasets. On other datasets like Bid and
Nursery, lower 𝜃 values (such as 0.01 or lower) are sufficient to achieve
good performance, likely due to the specific distribution and type of
features in these datasets.

Furthermore, for most datasets, classification accuracy reaches its
peak within specific combination regions of 𝛼 and 𝜃, further em-
phasizing the importance of parameter tuning to optimize algorithm
performance based on the specific characteristics and requirements of
each dataset. The charts also show that when parameters approach
15 
their upper or lower limits, the performance of most datasets deteri-
orates, indicating that over-reliance on a single principle may lead to a
decline in performance.

In conclusion, different combinations of parameters significantly af-
fect the final classification accuracy. Therefore, it is crucial to carefully
select the appropriate combinations of 𝛼 and 𝜃 to achieve the best
possible classification accuracy for the GLSFS algorithm. This flexible
adjustment of parameters provides customized solutions for different
types of datasets, thereby enhancing overall classification efficiency
and accuracy.

(2) Sensitivity analysis of neighborhood radius r : We discuss further
experiments to understand the relationship between the neighborhood
radius and GLSFS performance.

In our approach, we considerably reduced the search range for the
neighborhood radius by converting it from a real number to an integer.
We plotted the changes in average classification accuracy across 12
datasets as the neighborhood radius was searched within the range of
1 to 5, as shown in Fig. 6. From the figure, it can be observed that dif-
ferent neighborhood radius values 𝑟 have a certain impact on the KNN
classification accuracy across various datasets, with most fluctuations
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Fig. 6. The average classification accuracy variation for different neighborhood radius(r) on the KNN classifier.
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remaining around 0.01 or 0.02. This indicates that the classification
performance of the model does not vary significantly with different
radius values, although there are some local improvements in accuracy
at certain specific values. For instance, in the Acoustic and Bid datasets,
the accuracy shows fluctuations with 𝑟 changes. Furthermore, different
datasets exhibit varied trend responses. For example, Immunotherapy
shows that accuracy remains relatively stable before decreasing as 𝑟
ncreases; meanwhile, Abalone displays a gradual increase in accuracy

as 𝑟 increases. These results suggest that it is necessary to adjust 𝑟
o optimize the classification for specific datasets. Priority should be
iven to selecting neighborhood radius values that show stable or
ocally optimal performance across multiple datasets, while avoiding
xcessively large or small radius values that may negatively impact
odel performance.

6.4. Robustness evaluations of GLSFS

In this subsection, we evaluate the robustness of the feature selec-
tion algorithm based on the feature subsets.

To evaluate the robustness of the GLSFS feature selection algorithm
and demonstrate the advantages of data processing, Gaussian noise
with noise levels (i.e., standard deviations of the noise) of 0.1, 0.2,
0.3, 0.4, and 0.5 was added to the feature values of each dataset listed
in Table 4. Gaussian noise is a common type of random noise, char-
acterized by a normal distribution with a defined mean and variance.
As a result, the same algorithm can generate six feature subsets: one
from the original clean data and five from datasets with varying noise
levels. The similarity between these subsets serves as a measure of the
algorithm’s robustness.

For an algorithm that outputs feature subsets, let
𝐸𝑖 = {𝑒𝑖1, 𝑒𝑖2,… , 𝑒𝑖∣𝐸∣} and 𝐹𝑗 = {𝑓 𝑗1 , 𝑓

𝑗
2 ,… , 𝑓 𝑗∣𝐹 ∣} be the feature subsets

obtained at noise levels 𝑖 and 𝑗, respectively. The similarity between
these two feature subsets is calculated as

𝑆(𝐸𝑖, 𝐹𝑗 ) =
∣ 𝐸𝑖 ∩ 𝐹𝑗 ∣

∣ 𝐸𝑖 ∣ + ∣ 𝐹𝑗 ∣ − ∣ 𝐸𝑖 ∩ 𝐹𝑗 ∣
. (17)

At different noise levels, the same algorithm generated six sets
of feature subsets. The similarity between each pair of subsets was
16 
calculated to construct a similarity matrix 𝑆 = [𝑠𝑖𝑗 ]6×6. Each element
𝑖𝑗 in the matrix represents the degree of similarity between the feature

subsets generated under noise levels 𝑖 and 𝑗. To assess the algorithm’s
robustness, the average value of all elements in matrix 𝑆 was used as
the overall evaluation metric. A higher average value indicates greater
stability of the algorithm in handling noise interference.

Since the GLSFS algorithm selects feature subsets by truncating
based on the ranking results, 65% of the top-ranked features were
hosen as the feature subset in this experiment. To further validate the
erformance and robustness of GLSFS, we compared it against seven
ther algorithms. Table 14 presents the experimental results, with the
ighest similarity value in each row highlighted in bold.

From the Table 14, we can observe that GLSFS outperforms other
eature selection algorithms on most datasets. Particularly on datasets
uch as Ionosphere, Abalone, and Nursery, GLSFS demonstrates signif-
cant advantages, indicating its strong adaptability to various datasets
nd feature selection requirements. In terms of average performance,
LSFS shows superior results in the average similarity metric compared

o other algorithms, reflecting its robust noise resistance. Even at high
oise levels, GLSFS can reliably select feature subsets similar to the
riginal, ensuring consistency and effectiveness in data processing.

It is worth noting, however, that on certain datasets (such as Derma-
tology and Sonar), GLSFS does not show a significant advantage over
other algorithms. This may be due to specific characteristics in feature
distribution or noise sensitivity within these datasets, which affect the
erformance of GLSFS in feature selection.

Overall, GLSFS exhibits stable robustness and efficiency in han-
dling high-dimensional, complex datasets and noise interference, pro-
iding strong support for large-scale data processing and accurate
lassification.

6.5. Uncertainty measurement of subset

In this subsection, to evaluate the uncertainty of the feature subsets
selected by our feature selection method GLSFS, we used the concept
of roughness. Roughness is a measure in rough set theory that is well-
suited for quantifying uncertainty by measuring boundary regions. A
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Table 14
Similarity of feature subsets at different noise levels.

Data sets Inf-UFS AERAR UM HKCMI KNCMI IGUFS BPNN GLSFS (65%)

Immunotherapy 0.72 0.70 0.69 0.67 0.59 0.75 0.66 0.74
Ionosphere 0.69 0.39 0.37 0.44 0.55 0.49 0.67 0.70
Dermatology 0.75 0.44 0.52 0.38 0.77 0.66 0.59 0.72
sonar 0.57 0.55 0.59 0.48 0.54 0.69 0.70 0.61
Acoustic 0.69 0.54 1.00 0.46 0.66 0.66 0.58 0.60
GCC 0.78 0.78 0.65 0.40 0.70 0.90 0.59 0.68
AST 0.66 0.76 0.54 0.48 0.69 0.85 0.62 0.69
cmc 0.72 0.78 0.68 0.68 0.70 0.89 0.69 1.00
Abalone 0.66 – 0.72 0.68 0.69 0.66 0.69 0.91
Bid 0.78 – – 0.61 0.68 0.80 0.70 0.92
Nursery 0.76 – – – 0.80 0.82 0.75 1.00
letter 0.95 – – – – 0.94 1.00 0.75

Average 0.73 0.62 0.64 0.53 0.67 0.76 0.69 0.78
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lower roughness value indicates a more precise boundary and lower
uncertainty, suggesting that the selected features effectively capture
relevant information for classification.

Let 𝑓 (𝑥𝑖, 𝑎𝑘) = (𝑎𝐿𝑖𝑘, 𝑎𝑅𝑖𝑘) and 𝑓 (𝑥𝑗 , 𝑎𝑘) = (𝑎𝐿𝑗 𝑘, 𝑎𝑅𝑗 𝑘) be two interval
values of samples 𝑥𝑖 and 𝑥𝑗 under the attribute 𝑎𝑘, The similarity of
two samples under attribute 𝑎𝑘 is defined as

𝑆 𝑖𝑚(𝑥𝑖, 𝑥𝑗 ) = 1 − min

(

1,max

(

𝑎𝑅𝑖𝑘 − 𝑎
𝐿
𝑗 𝑘

(𝑎𝑅𝑖𝑘 − 𝑎
𝐿
𝑖𝑘) + (𝑎𝑅𝑗 𝑘 − 𝑎𝐿𝑗 𝑘)

, 0

))

− min

(

1,max

(

𝑎𝑅𝑗 𝑘 − 𝑎𝐿𝑖𝑘
(𝑎𝑅𝑗 𝑘 − 𝑎𝐿𝑗 𝑘) + (𝑎𝑅𝑖𝑘 − 𝑎𝐿𝑖𝑘)

, 0

))

. (18)

Let 𝐼 𝑉 𝐼 𝑆 = (𝑈 , 𝐴𝑇 , 𝐷 , 𝑓 ) be an interval-valued information system,
where 𝑈 is the data point set, 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑛} ⊆ 𝐴𝑇 is the
conditional attribute set and 𝐷 is the decision attribute set. 𝐷 divides
𝑈 into 𝑁 equivalence classes, 𝑋1, 𝑋2,… , 𝑋𝑁 , the lower approximation
and the upper approximation of the decision attribute set 𝐷 under 𝐴
are respectively defined as

𝐴𝜖𝑋(𝐷) =
𝑁
⋃

𝑗=1
{𝑥𝑖 ∈ 𝑈 ∣ 𝑆𝜖𝐴(𝑥𝑖) ⊆ 𝑋𝑗}. (19)

𝐴
𝜖
𝑋(𝐷) =

𝑁
⋃

𝑗=1
{𝑥𝑖 ∈ 𝑈 ∣ 𝑆𝜖𝐴(𝑥𝑖) ∩𝑋𝑗 ≠ ∅}. (20)

where 𝑆𝜖𝐴(𝑥𝑖) = {𝑥𝑗 ∣
√

∑𝑛
𝑘=1 (𝑆 𝑖𝑚(𝑥𝑖, 𝑥𝑗 ))2 ≥ 𝜖 , 𝐴 ⊆ 𝐴𝑇 , 𝑥𝑗 ∈ 𝑈}

represents the collection of samples within set 𝐴 that have a similarity
with the interval-valued sample 𝑥𝑖 less than 𝜖.

Pawlak [41] proposed a numerical measure for evaluating the un-
certainty of a rough set 𝑋: roughness. It is defined as

𝛾𝜖𝐴(𝑋) = 1 − ∣ 𝐴𝜖𝑋(𝐷) ∣
∣ 𝐴

𝜖
𝑋(𝐷) ∣

. (21)

Roughness 𝛾𝜖𝐴(𝑋) reflects the degree of knowledge certainty of
set 𝑋 under relation 𝑆𝜖𝐴(𝑥𝑖) and can be effectively used to measure
uncertainty.

Compared to the roughness of the original information system, we
measure the roughness of the obtained feature subset by selecting the
top 65% of the features. To present the measurement results, a line
chart comparing the roughness values is drawn, as shown in Fig. 7.
The results show that the feature subsets generated by the GLSFS algo-
rithm maintain roughness levels close to those of the original system
n most datasets. This indicates that GLSFS effectively preserves the

structure and informational integrity of the original information system
while selecting features. This trend demonstrates GLSFS’s significant
advantage in reducing data uncertainty, allowing it to retain system
knowledge while reducing feature dimensions, further enhancing the
interpretability of the model.

However, on a few datasets (such as GCC and AST), the roughness
of the feature subset is slightly higher than that of the original system,
which may be due to the specific distribution of data features or the
17 
influence of noise, leading to a slight impact on GLSFS’s selection
performance on these datasets.

In summary, the GLSFS exhibits robust performance on most
atasets, generating compact and efficient feature subsets without sig-
ificantly increasing uncertainty. Its contributions to uncertainty con-
rol and interpretability improvement highlight its potential advantages
n handling complex and high-dimensional datasets.

7. Conclusion and outlook

7.1. Conclusions

In this study, we integrate graph theory and matrix algebra with
eighborhood rough sets to provide a thorough evaluation of attribute
ignificance within interval-valued information systems. Specifically,
ur approach balances both the contributions of attributes to classifi-
ation accuracy and their interrelationships, offering a comprehensive
ramework for feature evaluation. We present a novel feature ranking
ethodology based on principles of relevance and redundancy, along
ith three distinct selection ratios to enhance the flexibility of our

eature selection algorithm.
The method was rigorously tested against seven benchmark algo-

ithms on 12 publicly available datasets, and the results confirmed
he effectiveness of the Graph-based Local Search Feature Selection
GLSFS) algorithm for interval-valued information systems. The method
emonstrated significant improvements in classification accuracy and
omputational efficiency across diverse datasets, highlighting not only
he effectiveness of GLSFS in feature selection but also its potential for

real-world applications where efficient and accurate data processing is
ssential.

7.2. Future work and limitations

While our approach offers substantial improvements, several lim-
tations persist. The primary challenge lies in noise resistance; al-

though our method exhibits stronger anti-interference capabilities com-
ared to most benchmark algorithms, its robustness in highly noisy
nvironments still requires further enhancement. Another limitation
s the current application scope, as this study focuses solely on static
nterval-valued datasets. In real-world applications, datasets often pos-

sess dynamic characteristics, with attributes or instances evolving over
time.

To address these challenges, future work will explore the extension
of this methodology to dynamic interval-valued datasets. This extension
will focus on developing an adaptive feature selection approach capable
of efficient attribute reduction when the dataset evolves. By integrating
dynamic data adaptation mechanisms, we aim to enhance the noise
resistance of the GLSFS algorithm, thereby improving its robustness in
real-world scenarios. Through these extensions, we hope to improve
the applicability and resilience of our feature selection algorithm across
diverse and dynamic data environments (see Fig. 8).
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Fig. 7. Roughness of the original feature and the feature subset.
Fig. 8. Graphical summary.
CRediT authorship contribution statement

Xiaoyan Zhang: Validation, Supervision, Project administration,
Methodology, Investigation, Funding acquisition, Conceptualization.
Xuan Shen: Writing – review & editing, Writing – original draft,
Visualization, Software, Methodology, Formal analysis, Data curation.

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest
associated with this publication and there has been no significant
financial support for this work that could have influenced its outcome.

We confirm that the manuscript has been read and approved by all
named authors and that there are no other persons who satisfied the
criteria for authorship but are not listed. We further confirm that the
order of authors listed in the manuscript has been approved by all of
us.

We confirm that we have given due consideration to the protection
of intellectual property associated with this work and that there are
no impediments to publication, including the timing of publication,
with respect to intellectual property. In so doing we confirm that we
have followed the regulations of our institutions concerning intellectual
property.
18 
Acknowledgments

This work was supported by the National Natural Science Founda-
tion of China (Grant NO.12371465) and the Chongqing Natural Science
Foundation (Grant NO. CSTB2023NSCQ-MSX1063).

Data availability

No data was used for the research described in the article.

References

[1] H. Zapata, H. Bustince, S. Montes, et al., Interval-valued implications and
interval-valued strong equality index with admissible orders, Internat. J. Approx.
Reason. 88 (2017) 91–109.

[2] X. Qi, H. Guo, Z. Artem, et al., An interval-valued data classification method
based on the unified representation frame, IEEE Access 8 (2020) 17002–17012.

[3] J. Dai, W. Wang, J.S. Mi, Uncertainty measurement for interval-valued
information systems, Inform. Sci. 251 (2013) 63–78.

[4] Y. Li, T. Li, H. Liu, Recent advances in feature selection and its applications,
Knowl. Inf. Syst. 53 (2017) 551–577.

[5] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci. 11 (1982) 341–356.
[6] S. Roy, P. Shivakumara, N. Jain, et al., Rough-fuzzy based scene categorization

for text detection and recognition in video, Pattern Recognit. 80 (2018) 64–82.
[7] T. Shaheen, B. Mian, M. Shabir, et al., A novel approach to decision analysis

using dominance-based soft rough sets, Int. J. Fuzzy Syst. 21 (2019) 954–962.

http://refhub.elsevier.com/S1568-4946(25)00027-4/sb1
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb1
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb1
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb1
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb1
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb2
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb2
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb2
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb3
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb3
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb3
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb4
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb4
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb4
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb5
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb6
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb6
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb6
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb7
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb7
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb7


X. Zhang and X. Shen Applied Soft Computing 170 (2025) 112716 
[8] G. Lang, D. Miao, M. Cai, Three-way decision approaches to conflict analysis
using decision-theoretic rough set theory, Inform. Sci. 406 (2017) 185–207.

[9] W. Xu, Y. Pan, X. Chen, et al., A novel dynamic fusion approach using
information entropy for interval-valued ordered datasets, IEEE Trans. Big Data
(2022).

[10] W. Xu, K. Cai, D.D. Wang, A novel information fusion method using improved
entropy measure in multi-source incomplete interval-valued datasets, Internat. J.
Approx. Reason. 164 (2024) 109081.

[11] J. Dai, Y. Yan, Z. Li, et al., Dominance-based fuzzy rough set approach for
incomplete interval-valued data, J. Intell. Fuzzy Systems 34 (1) (2018) 423–436.

[12] T.Y. Lin, Neighborhood systems-A qualitative theory for fuzzy and rough sets,
Adv. Mach. Intell. Soft Comput. 4 (1997) 132–155.

[13] Y. Yao, Rough sets, neighborhood systems and granular computing, in: Engi-
neering solutions for the next millennium. 1999 IEEE Canadian Conference on
Electrical and Computer Engineering (Cat. No. 99TH8411), Vol. 3, IEEE, 1999,
pp. 1553–1558.

[14] Y. Akhiat, Y. Asnaoui, M. Chahhou, et al., A new graph feature selection
approach, in: 2020 6th IEEE Congress on Information Science and Tech..

[15] G. Roffo, S. Melzi, U. Castellani, et al., Infinite feature selection: a graph-based
feature filtering approach, IEEE Trans. Pattern Anal. Mach. Intell. 43 (12) (2020)
4396–4410, nology (CiSt). IEEE, 2021: 156-161..

[16] X. Xie, Z. Cao, F. Sun, Joint learning of graph and latent representation for
unsupervised feature selection, Appl. Intell. 53 (26) (2023) 25282–25295.

[17] C. Tang, X. Zheng, W. Zhang, et al., Unsupervised feature selection via multiple
graph fusion and feature weight learning, Sci. China Inf. Sci. 66 (5) (2023)
152101.

[18] R.W. Swiniarski, A. Skowron, Rough set methods in feature selection and
recognition, Pattern Recognit. Lett. 24 (6) (2003) 833–849.

[19] Y. Chen, D. Miao, R. Wang, A rough set approach to feature selection based on
ant colony optimization, Pattern Recognit. Lett. 31 (3) (2010) 226–233.

[20] J.R. Anaraki, M. Eftekhari, Rough set based feature selection: a review, in: The
5th Conference on Information and Knowledge Technology, IEEE, 2013, pp.
301–306.

[21] N. Zhong, J. Dong, S. Ohsuga, Using rough sets with heuristics for feature
selection, J. Intell. Inf. Syst. 16 (2001) 199–214.

[22] R. Jensen, Q. Shen, Interval-valued fuzzy-rough feature selection in datasets with
missing values, in: 2009 IEEE International Conference on Fuzzy Systems, IEEE,
2009, pp. 610–615.

[23] W. Li, H. Zhou, W. Xu, et al., Interval dominance-based feature selection for
interval-valued ordered data, IEEE Trans. Neural Netw. Learn. Syst. (2022).

[24] Q.-H. Hu, Numerical attribute reduction based on neighborhood granulation and
rough approximation.

[25] X. Zhang, Z. Jiang, W. Xu, Feature selection using a weighted method
in interval-valued decision information systems, Appl. Intell. 53 (9) (2023)
9858–9877.
19 
[26] B. Sang, H. Chen, L. Yang, et al., Feature selection for dynamic interval-valued
ordered data based on fuzzy dominance neighborhood rough set, Knowl.-Based
Syst. 227 (2021) 107223.

[27] Q. Ke, X. Jing, M. Woźniak, et al., APGVAE: Adaptive disentangled representation
learning with the graph-based structure information, Inform. Sci. 657 (2024)
119903.

[28] W. Dong, J. Wu, X. Zhang, et al., Improving performance and efficiency of graph
neural networks by injective aggregation, Knowl.-Based Syst. 254 (2022) 109616.

[29] W. Dong, M. Woźniak, J. Wu, et al., Denoising aggregation of graph neural
networks by using principal component analysis, IEEE Trans. Ind. Inform. 19 (3)
(2022) 2385–2394.

[30] Y. Qian, J. Liang, C. Dang, Interval ordered information systems, Comput. Math.
Appl. 56 (8) (2008) 1994–2009.

[31] Q. Hu, D. Yu, J. Liu, et al., Neighborhood rough set based heterogeneous feature
subset selection, Inform. Sci. 178 (18) (2008) 3577–3594.

[32] S. Xia, H. Zhang, W. Li, et al., GBNRS: A novel rough set algorithm for fast
adaptive attribute reduction in classification, IEEE Trans. Knowl. Data Eng. 34
(3) (2020) 1231–1242.

[33] S. Xia, C. Wang, G. Wang, et al., GBRS: A unified granular-ball learning model of
Pawlak rough set and neighborhood rough set, IEEE Trans. Neural Netw. Learn.
Syst. (2023).

[34] S. Xia, S. Wu, X. Chen, et al., GRRS: Accurate and efficient neighborhood rough
set for feature selection, IEEE Trans. Knowl. Data Eng. (2022).

[35] E.C. Fieller, H.O. Hartley, E.S. Pearson, Tests for rank correlation coefficients. I,
Biometrika 44 (3/4) (1957) 470–481.

[36] G. Bierman, Power series evaluation of transition and covariance matrices, IEEE
Trans. Autom. Control 17 (2) (1972) 228–232.

[37] N.J. Young, The rate of convergence of a matrix power series, Linear Algebra
Appl. 35 (1981) 261–278.

[38] R.L. Graham, Concrete Mathematics: A Foundation for Computer Science,
Pearson Education India, 1994.

[39] E. Elizalde, Ten Physical Applications of Spectral Zeta Functions, Springer, 2012.
[40] X. Liu, J. Dai, J. Chen, et al., Unsupervised attribute reduction based on 𝛼-

approximate equal relation in interval-valued information systems, Int. J. Mach.
Learn. Cybern. 11 (9) (2020) 2021–2038.

[41] J. Dai, W. Wang, J.S. Mi, Uncertainty measurement for interval-valued
information systems, Inform. Sci. 251 (2013) 63–78.

[42] Z. Yuan, H. Chen, X. Yang, et al., Fuzzy complementary entropy using hybrid-
kernel function and its unsupervised attribute reduction, Knowl.-Based Syst. 231
(2021) 107398.

[43] W. Xu, Z. Yuan, Z. Liu, Feature selection for unbalanced distribution hybrid data
based on k-nearest neighborhood rough set, IEEE Trans. Artif. Intell. (2023).

[44] W. Xu, M. Huang, Z. Jiang, et al., Graph-based unsupervised feature selection
for interval-valued information system, IEEE Trans. Neural Netw. Learn. Syst.
(2023).

http://refhub.elsevier.com/S1568-4946(25)00027-4/sb8
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb8
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb8
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb9
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb9
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb9
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb9
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb9
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb10
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb10
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb10
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb10
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb10
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb11
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb11
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb11
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb12
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb12
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb12
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb13
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb13
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb13
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb13
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb13
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb13
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb13
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb14
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb14
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb14
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb15
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb15
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb15
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb15
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb15
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb16
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb16
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb16
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb17
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb17
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb17
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb17
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb17
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb18
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb18
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb18
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb19
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb19
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb19
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb20
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb20
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb20
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb20
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb20
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb21
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb21
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb21
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb22
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb22
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb22
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb22
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb22
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb23
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb23
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb23
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb25
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb25
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb25
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb25
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb25
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb26
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb26
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb26
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb26
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb26
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb27
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb27
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb27
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb27
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb27
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb28
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb28
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb28
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb29
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb29
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb29
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb29
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb29
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb30
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb30
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb30
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb31
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb31
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb31
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb32
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb32
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb32
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb32
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb32
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb33
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb33
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb33
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb33
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb33
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb34
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb34
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb34
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb35
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb35
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb35
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb36
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb36
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb36
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb37
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb37
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb37
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb38
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb38
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb38
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb39
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb40
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb40
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb40
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb40
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb40
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb41
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb41
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb41
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb42
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb42
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb42
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb42
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb42
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb43
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb43
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb43
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb44
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb44
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb44
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb44
http://refhub.elsevier.com/S1568-4946(25)00027-4/sb44

	Graph-driven feature selection via granular-rectangular neighborhood rough sets for interval-valued data sets
	Introduction
	Related work
	Preliminaries
	Interval-Valued Information System
	Graph Theory
	Granular-Rectangular Rough Set
	Spearman Rank Correlation Coefficient
	Matrix Power Series

	The Graph-based Local Search Feature Selection (GLSFS) model
	Graph Building for IVIS
	The calculation of weight functions
	The correlation indicator
	The redundancy metrics

	Feature Ranking Process

	The GLSFS algorithm
	Experiments and analysis
	Performance evaluation of GLSFS algorithm
	Time complexity and reduction time analysis
	Comparison of classification accuracy
	Comparison of reduction numbers

	Statistical Testing
	Parameter sensitivity analysis of GLSFS algorithm
	Robustness evaluations of GLSFS
	Uncertainty measurement of subset

	Conclusion and Outlook
	Conclusions
	Future Work and Limitations

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


