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A B S T R A C T

This study proposes a novel method that integrates Prospect Theory (PT) with a Three-Way Decision (TWD)
framework to enhance decision quality in Fuzzy Incomplete Information Systems (FIIS). The method first
applies prior probability tolerance dominance relations to manage and evaluate binary relationships among
decision options, laying the groundwork for subsequent calculations. Based on this foundation, PT is used to
construct objective weight and value functions, effectively reducing uncertainties due to subjective factors in
the decision-making process. Unlike traditional methods, this PT-based TWD approach can address incomplete
data while fully considering decision-makers’ psychological preferences under risk, enabling more precise and
scientific decision support. Extensive experimental studies and comparative analyses demonstrate that this
method outperforms existing approaches in terms of stability, effectiveness, and superiority, highlighting its
potential for applications in fields with high data diversity and uncertainty, such as healthcare.
1. Introduction

In modern society, the complexity and diversity of decision-making
problems are increasing, especially in the medical field. The myriad
of diseases and individual patient differences make medical decisions
particularly complicated. Cardiovascular diseases represent one of the
most significant health challenges today, profoundly impacting human
health and quality of life. In response to this global issue, the healthcare
industry is continually seeking more effective diagnostic and treatment
methods to reduce patient disease risks and improve survival rates. In
this context, Fuzzy Incomplete Information Systems (FIIS) have been
widely studied and applied as crucial tools for managing medical infor-
mation on cardiovascular patients, assisting doctors in making precise
diagnoses and treatment plans. However, due to the incompleteness
and diversity of medical data, as well as the subjective preferences and
psychological behaviors of decision-makers, traditional methods still
face challenges in addressing medical decision-making issues.

Current FIIS face difficulties in handling data incompleteness and
diversity. To tackle these issues, researchers have begun to integrate
Prospect Theory with Fuzzy Incomplete Information Systems, aiming
to enhance the accuracy and efficiency of medical decision-making.
Over the past few decades, significant progress has been made in the
research of fuzzy set theory and incomplete information systems. Fuzzy
set theory provides effective methods for addressing uncertainties and
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fuzziness, while incomplete information systems focus on handling
missing data and diversity. For instance, Zadeh (1965) proposed fuzzy
set theory, which offers a mathematical framework for addressing fuzzy
and uncertain problems. Meanwhile, Pawlak (1982) introduced the
concept of incomplete information systems, offering a new approach for
handling incomplete and diverse data. With the rapid advancements in
data collection, communication, and storage technologies, information
systems frequently encounter situations where data may be missing or
temporarily inaccessible.

Scholars have proposed various strategies to address missing values
in incomplete information systems. Kryszkiewicz (1998) introduced
the rough set reasoning technique for incomplete information systems,
proposing that arbitrary attribute evaluation values can be substituted
for missing data. Liang and Shi (2020) presented fuzzy clustering meth-
ods based on membership and similarity, estimation methods based on
probabilistic statistics (Liu & Yu, 2018), and an interpolation method
based on fuzzy relation matrices (Wang & Liu, 2008). However, these
methods often overlook critical details and fail to fully exploit the
complex relationships among data. Additionally, traditional incomplete
information systems frequently neglect the impact of decision-makers’
psychological states and subjective preferences on their choices.
https://doi.org/10.1016/j.eswa.2024.125833
Received 27 June 2024; Received in revised form 11 November 2024; Accepted 16
vailable online 23 November 2024 
957-4174/© 2024 Elsevier Ltd. All rights are reserved, including those for text and 
 November 2024

data mining, AI training, and similar technologies. 
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In this context, the importance of researching Fuzzy Incomplete In-
ormation Systems (FIIS) has become increasingly pronounced. FIIS in-

tegrates fuzzy set theory and rough set theory, addressing the shortcom-
ings of traditional approaches in managing complex decision-making
problems. Compared to conventional methods, FIIS not only effectively

anages data vagueness but also tackles data incompleteness, demon-
strating broader applicability and flexibility in real-world scenarios.
urthermore, FIIS preserves the information of original data while pro-
iding more flexible and accurate decision support, enabling decision-
akers to better understand and resolve intricate decision-making

hallenges.
However, it is crucial to note that these systems and technologies

have not considered the psychological emotions of decision-makers.
This research provides a theoretical foundation for developing relevant
technologies and applications. Traditional decision-making methods
often view decision-makers as fully rational individuals focused solely
on maximizing utility, neglecting the behavioral aspects of decision-
making. Prospect Theory (Kai-Ineman & Tversky, 1979) examines psy-
chological behaviors in risk decision-making and introduces concepts
uch as loss aversion and risk preference, thus providing a basis for
 deeper analysis of decision-making behaviors. Prospect Theory indi-
ates that individuals tend to avoid losses rather than pursue gains, with
eightened sensitivity to losses compared to equivalent gains. There-
ore, in medical decision-making, Prospect Theory aids doctors in un-
erstanding patients’ psychological states and preferences, facilitating
ore accurate decisions.

In practical decision-making processes, individuals often confront
roblems that are diverse and not easily categorized into risks and
ains. To effectively navigate these complexities, the Three-Way De-

cision (TWD) method has emerged. TWD (Wang & Yao, 2017; Zhan,
Wang, Ding, & Yao, 2022) is a decision-making framework based
on uncertain information that categorizes decision objects into pos-
tive, negative, and uncertain classes, addressing the challenges of
ncomplete and uncertain information. Within the TWD framework,
ecision-makers can more effectively manage incomplete information

and uncertainty, thereby enhancing decision accuracy and robustness.
Compared to traditional binary decision-making, TWD better utilizes
ncertain information, providing decision-makers with more options
nd support. This foundation has led to numerous studies related to
eneralized TWD. For example, Zhang, Li, and Wang (2014) pro-
osed a three-way decision method based on hesitant fuzzy linguistic
erm sets, achieving effective results in addressing uncertainty and
agueness through defined similarity measures and decision rules. He,
iu, Zhang, and Li (2018) introduced an innovative probability-based

three-way decision method to tackle classification problems by em-
ploying probability models to describe uncertainty, partitioning the
ecision space into deterministic, probabilistic, and aversion zones
hile proposing corresponding decision strategies. Experimental results
emonstrated that this method exhibits high accuracy and robustness in
lassification tasks. Xu, Zhang, and Wei (2016) proposed a three-way

decision method based on fuzzy rough sets, integrating fuzzy set theory
nd rough set theory to address uncertainties and incompleteness in
ecision-making, effectively achieving decision space partitioning and
upport through defined fuzzy rough sets and associated decision rules.

The concept of probability dominance relationship is one of the
important concepts in the theory of three-way decisions, describing
the degree of advantage of a decision object relative to other objects
under uncertain conditions. By studying the probability dominance
relationship, one can better understand the relationships between dif-
ferent decision objects, thus providing decision-makers with more ac-
curate and reliable decision support. In the context of generalized
three-way decision theory, probability dominance relationships are
widely used in modeling and analyzing decision problems. By analyzing
probability dominance relationships, researchers can determine the
dominance order of different decision objects, thereby guiding decision-
makers to make better decisions. Therefore, the probability dominance
relationship is of great significance in decision theory and practice.
 d

2 
For example, Li and Zhang (2016) studied a three-way decision
ethod based on probability dominance relationships, exploring how

o use probability dominance relationships to rank and classify de-
ision objects. Liu and Wang (2018) studied a three-way decision

method for handling decision problems in incomplete decision tables
based on probability dominance relationships. Wei and Wang (2020)
studied a three-way decision method based on probability dominance
relationships, applied to decision problems in uncertain decision sys-
tems. Zhang and Ma (2019) discussed the application of decision

ethods based on probability dominance relationships in e-commerce
redit evaluation, providing an effective method for credit evaluation
ecisions.

In summary, we combine probability dominance relationships,
rospect Theory (PT), and the Three-Way Decision (TWD) to establish
 new PT-TWD-PPTDR method within fuzzy incomplete information
ystems (FIIS). The motivations for this study are as follows:

(1) Current TWD techniques overly idealize decision-making by
treating managers as completely rational and neglecting psycho-
logical influences on their behavior. Wang, Li, Qian, Huang,
and Zhou (2020) note that previous TWD techniques rely on
decision-makers independently providing result vectors. This
study addresses this gap by integrating PT and FIIS to create
a novel decision-making approach.

(2) Existing methods for handling missing data in decision prob-
lems, such as those proposed by Zhan, Ye, Ding, and Liu
(2021) and Liu, Liang, and Wang (2016) have limitations due to
their requirements for specific types of fuzzy decision attributes
and interval loss functions. This paper uses prior probability
knowledge to establish probability dominance relationships, ef-
fectively addressing decision problems involving missing data
and binary relationships between alternative solutions.

(3) TWD methods based on Bayesian theory categorize all alterna-
tive solutions into two states. This paper introduces a method
that applies to generalized TWD methods, allowing for compre-
hensive classification of all alternative solutions.

In light of these motivations and current limitations, this study
resents the following advances:

(1) This study defines PPTDR in FIIS, enabling broader handling of
binary relationships among all alternative solutions.

(2) This research proposes a novel TWD approach based on prior
probability in FIIS that facilitates both classification and ranking
of potential solutions.

(3) We link PT and TWD in the context of FIIS to form the unique
PT-TWD-PPTDR method, which accounts for decision-makers’
psychological behaviors and minimizes their subjectivity to sci-
entifically derive the value function and weight function in
Prospect Theory.

The organization of this paper is as follows: Section 2 introduces
he fundamental concepts of Fuzzy Incomplete Information Systems
FIIS), Prospect Theory (PT), and Three-Way Decision (TWD). Section 3

presents a novel PT-TWD-PPTDR model and discusses the method for
deriving the value function. In Section 4, we apply this model to
address issues based on echocardiography data. Section 5 compares
and analyzes this strategy with alternative methods. Section 6 conducts
an experimental study to verify the effectiveness and logic of this
pproach. Finally, Section 7 summarizes key research findings and

suggests future research directions. Additionally, Fig. 1 displays the
general schematic of this study.

2. Relate work

We went over the pertinent ideas of theory of prospects, three-way
ecision-making, and fuzzy incomplete information systems in this part.
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Fig. 1. The framework of this paper.
Table 1
FIIS 𝐹 ∗ = {𝐴, 𝐵 , 𝑋 , 𝑓}.
𝑈∕𝐵 𝑏1 𝑏2 ⋯ 𝑏𝑚 𝑑

𝑎1 𝑎11 𝑎12 ⋯ * 𝑑1
𝑎2 * 𝑎22 ⋯ 𝑎2𝑚 𝑑1
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
𝑎𝑛 𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑚 𝑑𝑛

2.1. Fuzzy Incomplete Information Systems (FIIS)

Fuzzy Incomplete Information Systems refer to information systems
designed to handle fuzzy and incomplete information, aiming to pro-
vide effective decision support and information management in the
face of uncertainty and fuzziness. In traditional information systems,
data is often precise and complete. However, in real-life situations,
much of the information we encounter is fuzzy and incomplete. This
necessitates the use of fuzzy incomplete information systems to manage
such information.

Definition 2.1 (Wang, Zhan, Zhang, Herrera-Viedma, & Kou, 2023). The
representation of a fuzzy information system (FIS) is 𝐹 = {𝐴, 𝐵 ∪
{𝑑}, 𝑋 , 𝑓}. A non-empty finite group of 𝑛 objects is represented by 𝐴 =
{𝑎1, 𝑎2,… , 𝑎𝑛}, and a non-empty finite set of 𝑚 condition characteristics
is denoted by 𝐵 = {𝑏1, 𝑏2,… , 𝑏𝑚}. In addition to 𝑑 ∈ 𝐹 (𝐴) and 𝑑(𝑥𝑖) ∈
[0, 1], the conditional attribute 𝑏𝑗 has a value range denoted by 𝑋𝑏𝑗 , and
the power collection 𝑋 = ∪𝑏𝑗∈𝐵𝑋𝑏𝑗 is represented by 𝐹 (𝑈 ). The function
𝐴 × 𝐵 → 𝑋 is 𝑓 ∶ 𝐴. It is specified that for every 𝑖 ∈ 𝑁 = {1, 2,… , 𝑛}
and 𝑗 ∈ 𝑀 = {1, 2,… , 𝑀}, 𝑓 (𝑎𝑖, 𝑏𝑗 ) = 𝑜𝑖𝑗 ∈ 𝑋𝑏𝑗 .. A symbol ∗ in the FIS
indicates an uncertain evaluation value for a conditional attribute. In
other words, if there exists some 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 , we have 𝑜𝑖𝑗 =∗,
indicating that certain values are missing from the value set under the
conditional attribute. Table 1 illustrates how we transform an FIS into
an FIIS. This article defines an FIIS as 𝐹 ∗ = {𝐴, 𝐵 ∪ 𝐷 , 𝑋 , 𝑓}, with
𝑋 = ∪𝑏𝑗∈𝐵𝑋𝑏𝑗 .

A specific fuzzy incomplete information system is shown in Table 2.

2.2. Prospect theory

The decision theory known as prospect theory, which was put out
by psychologists Daniel Kahneman and Amos Tversky (Kai-Ineman &
Tversky, 1979), explains how humans make decisions when faced with
risk and uncertainty. The theory suggests that people’s decisions are
3 
not based on maximizing absolute utility, but rather on weighting
subjective expectations and values of different outcomes.

In prospect theory, people tend to avoid risks in the domain of losses
and are more willing to take risks in the domain of gains. Specifically,
individuals are more sensitive to potential losses, leading them to
adopt a cautious approach and prefer conservative options when facing
potential losses. Conversely, when faced with potential gains, they are
more willing to take risks and pursue greater benefits. For example, the
impact of a decrease in total assets from 1200 to 1100 is perceived as
smaller than a decrease from 200 to 100.

Currently, prospect theory is a significant theory for describing
behavior involving uncertainty and risk. Its core concepts include value
function and weighting function, expressed in Eqs. (1) and (2) respec-
tively.

𝐸(𝛥𝐺𝑘) =
{

(𝛥𝐺𝑘)𝛽 , 𝛥𝐺𝑘 ≥ 0,
−𝜎(−𝛥𝐺𝑘)𝛾 , 𝛥𝐺𝑘 < 0.

(1)

The outcome’s subjective value is represented by 𝛥𝐺𝑘, where a gain is
defined as 𝛥𝐺𝑘 ≥ 0 and a loss as 𝛥𝐺𝑘 < 0. While 𝛽 and 𝛾 quantify the
reactivity of the value of the function to gains and losses, respectively,
and both satisfy 𝛽 , 𝛾 ∈ [0, 1], 𝛼 denotes the diminutive fear parameter
and satisfies . This formula reveals people’s asymmetric perception of
profits and losses as well as their risk preferences during the decision-
making process by reflecting the subjective value evaluation process of
possible outcomes.

𝑈𝑘 =

⎧

⎪

⎨

⎪

⎩

𝑈+(𝑝) = 𝑝𝜑

(𝑝𝜑+(1−𝑝)𝜑)
1
𝜑
,

𝑈−(𝑝) = 𝑝𝜃

(𝑝𝜃+(1−𝑝)𝜃 )
1
𝜃
.

(2)

The weighting formula involves the following symbols: 𝑈+ for holding,
𝑈− for selling, 𝑝 for the probability value, and 𝜑 and 𝜃 for the value of
the weight size’s impact on the profit or loss. Up to now, some scholars
have studied the values of these coefficients. For example, Tversky and
Kahneman (1992) found, and . Abdellaoui, Bleichrodt, and Paraschiv
(2007) found. Xu, Zhou, and Xu (2011) found, and 𝜑 = 𝜃 = 0.74. The
goal of PT’s decision-making process is to choose the target with the
highest anticipation value. Assuming that object 𝑎𝑖 has 𝑘 outcomes and
that we know the values of 𝐸(𝛥𝐺𝑘) and 𝑈𝑘 (𝑘 = 1, 2,… , 𝑛), we may use
Eq. (3) to find the object 𝑎𝑖’s prospect value.

P =
𝑛
∑

𝑘=1
𝐸(𝛥𝐺𝑘)𝑈𝑘. (3)
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Table 2
The relative loss functions.

𝑂(𝑃 ) ¬𝑂(𝑁)

𝐵𝑝 𝜏𝑃 𝑃 𝜏𝑃 𝑁
𝐵𝑏 𝜏𝐵 𝑃 𝜏𝐵 𝑁
𝐵𝑛 𝜏𝑁 𝑃 𝜏𝑁 𝑁

2.3. Three Way Decision(TWD)

The Three-Way Decision (TWD) concept was proposed by Yao
(2010) in 2010 after he analyzed the criteria for decisions for both
decisions-theoretic and conventional rough groups. Research on the
TWD concept has steadily advanced in the last few years. From the
notion of equivalency classes [23], conditioned probability estimation
possesses, strictly speaking, extended to rough sets beyond classes
Zhan, Jiang, & Yao, 2020), probability dominance classes (Wang,

Zhan, & Zhang, 2021), and other related areas (Liang, Fu, Xu, & Tang,
2021; Zhang, Dai, & Xu, 2021). To create sequential TWD models,
esearchers have combined subjective and objective dynamics (Yang,

Chen, Fujita, Liu, & Li, 2022). Concurrently, they have introduced the
idea of related functions for loss and integrated loss functions with
evaluation value (Jia & Liu, 2019). Table 2 displays the particular form,
which is a 3 × 2 matrix with three states and three actions. The two
states for the conditional attribute 𝑏𝑗 are, indicating whether the object
belongs to 𝑂 or not. The three actions are to accept 𝐵𝑝, maintain 𝐵𝑏,
and reject 𝐵𝑛, representing, and respectively. 𝜏𝑃 𝑃 , 𝜏𝐵 𝑃 , 𝜏𝑁 𝑃 represent
the losses incurred when the object belongs to 𝑂 and the three actions
𝐵𝑝, 𝐵𝑏, and 𝐵𝑛 are executed, while 𝜏𝑃 𝑁 , 𝜏𝐵 𝑁 , 𝜏𝑁 𝑁 represent the losses
incurred when the object does not belong to 𝑂 and the three actions
𝐵𝑝, 𝐵𝑏, and 𝐵𝑛 are executed.

𝜏 represents the relative loss value, and the relative loss function
allows decision-makers to balance risks and rewards among different
decision options. Lower relative loss values indicate relatively smaller
risks or greater rewards, providing an intuitive way to compare the
degree of loss between different decision options, making the decision-
making process more transparent, and enabling decision-makers to
understand the risks and impacts of each option more clearly.

3. The model PT-TWD-PPTDR

To resolve the multi-attribute decision-making (MADM) problem,
e will define a new PT-TWD-PPTDR model in this part.

3.1. Maximum deviation weights and PPTDR

We suggest using a maximum deviation weight and a PPTDR to han-
le the binary relationships between items that have no values (Wang

et al., 2023).

Definition 3.1. Some predicted previous information is embodied
in a FIIS 𝐹 ∗ = (𝐴, 𝐵 , 𝑉 , 𝑓 ), based on the distribution of probability
concept. As a result, by taking into account the probabilities that
are currently known inside the evaluation range, we can represent
unknown assessment values. Drawing from previous information, the
unknown evaluation value under attribute 𝑀 𝐵𝑗 receives probabilities
or all objects 𝑎𝑗 , in such a way that 𝑃 (= 𝑣1) = 𝑃1, 𝑃 (= 𝑣2) = 𝑃2,
. . , and 𝑃 (= 𝑣𝑘) = 𝑃𝑘. Here, ∀𝑏𝑗 ∈ 𝐵, 𝑉 (𝑏𝑗 ) = 𝑣1, 𝑣2,… , 𝑣𝑘 represents
 finite set of values for attribute 𝑏𝑗 , satisfying 𝑣1 ≤ 𝑣2 ≤ ⋯ ≤ 𝑣𝑘.

𝑃 (𝑏𝑗 ) = 𝑃1, 𝑃2,… , 𝑃𝑘 is the vector containing the probabilities of all
values in 𝑉 (𝑏𝑗 ). The prior probability is defined as 𝑃𝑓 (𝑓 ∈ 1, 2,… , 𝑘).
The core semantics of it are derived from attribute 𝑏𝑗 , which is the ratio
of evaluation value 𝑣𝑓 occurrences to all objects (𝑛− 1). The evaluation
values of each student for each course are shown by the data in Table 3,
where 𝐴 = 𝑎1, 𝑎2,… , 𝑎7 represents seven students and 𝐵 = {𝑏1, 𝑏2, 𝑏3, 𝑏4}
represents four courses. For instance, the previous likelihood of 𝑃 (=
4 
Table 3
A scores evaluation degree table of students.

𝑏1 𝑏2 𝑏3 𝑏4
𝑎1 0.11 0.32 0.65 0.54
𝑎2 0.23 ∗ 0.59 0.36
𝑎3 ∗ 0.25 0.058 0.98
𝑎4 0.21 0.85 ∗ 0.27
𝑎5 0.53 0.52 0.59 0.19
𝑎6 0.74 ∗ 0.25 0.85
𝑎7 0.61 0.18 ∗ 0.52

0.21) for attribute 𝑏1 is 1∕7. The amount with the highest probability
s usually assumed by the unidentified assessment value. This may be
epresented as 𝑃1 ≥ 𝑃2 ⇒ 𝑃 (= 𝑣1|𝑝(𝑣1) = 𝑃1) ≥ 𝑃 (= 𝑣2|𝑝(𝑣2) = 𝑃2) in

terms of conditional probabilities.

Definition 3.2 (Wang et al., 2023). Suppose that 𝐹 ∗ = {𝐴, 𝐵 , 𝑉 , 𝑓} is a
IIS. For any 𝑎𝑖, 𝑎𝑙 ∈ 𝐴 (𝑖, 𝑙 ∈ {1, 2,… , 𝑛}), 𝑏𝑗 ∈ 𝐵 (𝑗 ∈ {1, 2,… , 𝑚}), and

𝑣𝑓 ∈ 𝑉 (𝑐𝑗 ) (𝑓 ∈ {1, 2,… , 𝑘}), the probability that the item 𝑎𝑖 is poorer
ompared to the item 𝑎𝑙 is as follows:

𝑅𝑏𝑗 (𝑎𝑖, 𝑎𝑙) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if𝑎𝑖𝑗 ≥ 𝑎𝑙 𝑗 ∧ 𝑎𝑖𝑗 ≠∗ ∧𝑎𝑙 𝑗 ≠∗;
𝑎𝑙 𝑗−𝑎𝑙 𝑗
𝑎𝑙 𝑗 if𝑎𝑖𝑗 < 𝑎𝑙 𝑗 ∧ 𝑎𝑙 𝑗 ≠∗ ∧𝑎𝑙 𝑗 ≠∗;

∑𝑘
𝑓=1 𝑃

2
𝑓 if𝑎𝑖𝑗 =∗ ∧𝑎𝑙 𝛥𝑗 =∗;

∑

1≤ℎ≤𝑓 𝑃ℎ if𝑎𝑙 𝑗 =∗ ∧𝑎𝑙 𝑗 = 𝜈𝑓 ;
∑

𝑓≤ℎ≤𝑘 𝑃ℎ if𝑎𝑖𝑗 = 𝜈𝑓 ∧ 𝑎𝑙 𝑗 =∗ .

(4)

According to the definition, we can use prior probabilities to fully
tilize the knowledge of incomplete information systems in order to

determine the dominance probability between two objects as well as
the likelihood of an unknown attribute value ∗. This is more consistent
with how people interpret and understand unclear information in their
ut feelings (Li, Liang, & Pang, 2017).

Definition 3.3. The prior to probability tolerance dominance level in
egard to the characteristic set 𝐶 is as follows for every 𝐶 ⊆ 𝐵 and
∀𝑎𝑖, 𝑎𝑙 ∈ 𝐴, given a FIIS 𝐹 ∗ = {𝐴, 𝐵 , 𝑉 , 𝑓}.

𝑅𝐶 (𝑎𝑖, 𝑎𝑙) =
∑

𝑏𝑗∈𝐶 𝑅𝑏𝑗 (𝑎𝑖, 𝑎𝑙)
|𝐶|

, (5)

where |𝐶| represents the cardinality of attribute set 𝐶. Subsequently,
under 𝐹 ∗, the prior probability tolerance dominance relation concern-
ing characteristic set 𝐶 is expressed as:

𝑅≤∗𝛼
𝐶 = {(𝑎𝑖, 𝑎𝑙) ∈ 𝐴 × 𝐴|𝑅𝐶 (𝑎𝑖, 𝑎𝑙) ≤ 𝛼}, (6)

where the tolerance level for characteristic set 𝐶 is defined as 𝛼,
satisfying 0 ≤ 𝛼 ≤ 1. 𝑅𝛼 is called PPTDR in this context.

Additionally, the prior probability tolerance dominance class is
shown as follows relying on the conditional characteristic set 𝐶:

[𝑎𝑖]
≤∗𝛼
𝐶 = {𝑎𝑙 ∈ 𝐴|𝑅𝐶 (𝑎𝑙 , 𝑎𝑖) ∈ 𝑅≤∗𝛼

𝐶 }. (7)

We standardize the data in the data table in order to make it
asier to promote the best mutual interests within a certain range. This
rocedure of normalization is stated as:

𝑒𝑖𝑗 =
𝑎𝑖𝑗

√

∑𝑛
𝑖=1 𝑎

2
𝑖𝑗

, 𝑖 = 1, 2,… , 𝑛; 𝑗 = 1, 2,… , 𝑚. (8)

Example 3.1. Table 4 displays the students’ A scores assessment
degree table; 𝐴 = {𝑎1, 𝑎2,… , 𝑎10} denotes the student collection, and
𝐵 = {𝑏1, 𝑏2, 𝑏3, 𝑏4} represents the B scores evaluation degree table.
The collection of courses is denoted by the math scores degree by 𝑏1,
the Chinese scores degree by 𝑏 , the English scores degree by 𝑏 , and
2 3
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Table 4
A scores evaluation degree table of students.

𝑏1 𝑏2 𝑏3 𝑏4 D

𝑎1 3 2 4 1 4
𝑎2 4 1 2 2 2
𝑎3 2 ∗ 3 3 1
𝑎4 2 2 1 2 1
𝑎5 ∗ 3 2 1 2
𝑎6 1 2 3 2 4
𝑎7 1 1 ∗ 2 3
𝑎8 2 3 2 1 1
𝑎9 2 2 1 ∗ 3
𝑎10 3 ∗ 1 3 1

Table 5
Weight calculation for each attribute.

𝑏1 𝑏2 𝑏3 𝑏4
𝑊𝑗 0.2534 0.2466 0.2603 0.2397

the history scores degree by 𝑏4. Utilizing Formula (7), we standardize
the information in Table 4. For every student 𝑎𝑖, we can compute the
previous likelihood tolerance dominant group in the following way, per
Definitions 3.1–3.3:

[𝑎1]
(≤∗0.2)
𝐵 = {𝑎1},

[𝑎2]
(≤∗0.2)
𝐵 = {𝑎1, 𝑎2, 𝑎3, 𝑎6},

𝑎3]
(≤∗0.2)
𝐵 = {𝑎3},

[𝑎4]
(≤∗0.2)
𝐵 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6, 𝑎8, 𝑎9, 𝑎10},

[𝑎5]
(≤∗0.2)
𝐵 = {𝑎5, 𝑎8},

[𝑎6]
(≤∗0.2)
𝐵 = {𝑎1, 𝑎3, 𝑎4},

[𝑎7]
(≤∗0.2)
𝐵 = {𝑎1, 𝑎2, 𝑎3, 𝑎6, 𝑎7},

[𝑎8]
(≤∗0.2)
𝐵 = {𝑎1, 𝑎2, 𝑎3, 𝑎5, 𝑎8},

[𝑎9]
(≤∗0.2)
𝐵 = {𝑎4, 𝑎9},

[𝑎10]
(≤∗0.2)
𝐵 = {𝑎3, 𝑎10}.

Definition 3.4. Defining the 𝑗th characteristic of a FIIS with 𝐹 ∗ =
𝐴, 𝐵 , 𝑉 , 𝑓}, the equation calculating the highest bias weight 𝑤𝑗 of the
rior likelihood tolerance dominance group is as follows:

𝑤𝑗 =
∑𝑛

𝑖=1
∑𝑛

𝑘=1 |𝐸𝑖𝑗 − 𝐸𝑘𝑗 |
∑𝑚

𝑗=1
∑𝑛

𝑖=1
∑𝑛

𝑘=1 |𝐸𝑖𝑗 − 𝐸𝑘𝑗 |
, (9)

where 𝐸𝑖𝑗 denotes the value of attribute 𝑗 for the 𝑖-th decision option,

𝑖𝑗 = 1 − [𝑎𝑖]
(≤∗𝛼)
𝐵 (𝑏𝑗 )
𝑛 , 𝑖 ∈ {1, 2,… , 𝑛}, and 𝑛 represents the number of

decision options, 0 ≤ 𝑤𝑗 ≤ 1, ∑𝑗 𝑤𝑗 = 1.

Example 3.2. We use Definition 3.4 to determine the greatest pos-
ible variance weight for every conditional characteristic 𝑏𝑗 based on

Example 3.1. The findings are displayed in Table 5.

Definition 3.5 (Wang, Zhan, & Herrera-Viedma, 2022). Let 𝐹 ∗ =
{𝐴, 𝐵 , 𝑉 , 𝑓} be an FIIS, where 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑛} and 𝐷 = {𝑑1, 𝑑2,… ,
𝑑𝑛}. Thus, 𝑌 = {𝑂 ,¬𝑂} is represented as:

𝑂 = {𝑎𝑖 ∈ 𝐴 ∣ 𝑑𝑖 > |𝑉 𝐷|},¬𝑂 = {𝑎𝑖 ∈ 𝐴 ∣ 𝑑𝑖 ≤ |𝑉 𝐷|}. (10)

where |𝑉𝐷| indicates the domain of all objects under the choice char-
acteristic, and 𝑑𝑖 indicates the integer value of the choice characteristic
orresponding to item 𝑎𝑖, which increases from 1.

Example 3.3. Building upon Example 3.1, according to Definition 3.1,
the two states, 𝑂 and ¬𝑂, for Table 4 are calculated as follows: 𝑂 =

𝑎1, 𝑎2, 𝑎5, 𝑎6, 𝑎7, 𝑎9}; ¬𝑂 = {𝑎3, 𝑎4, 𝑎8, 𝑎10}. 𝑈

5 
Remark 3.1. For an FIIS 𝐹 ∗ = {𝐴, 𝐵 , 𝑉 , 𝑓}, the set 𝑌 = {𝑂 ,¬𝑂} must
atisfy the following two conditions:

𝑂 ∪ ¬𝑂 = 𝐴, 𝑂 ∩ ¬𝑂 = ∅.

The classical conditional probability formula 𝑃 𝑟(𝑂|[𝑎i]
≤𝛼
𝐵 ) =

|𝑂∩[𝑎𝑖]≤𝐵𝛼|
|[𝑎𝑖]≤𝐵𝛼|

, is known to us based on Definition 3.5. The weighting
unction of the theory of prospects and the conditional likelihood allow
s to construct the weighted function of this article as follows:

𝜔𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜔+ (

𝑃 𝑟(𝑂|[𝑎i]
≤𝛼
𝐵 )

)

=
𝑃 𝑟(𝑂|[𝑎i]

≤𝛼
B )𝜑

(

𝑃 𝑟(𝑂|[𝑎i]
≤𝛼
B )𝜎+(1−𝑃 𝑟(𝑂|[𝑎i]

≤𝛼
B ))𝜎

)1∕𝜑 ,

𝜔− (

𝑃 𝑟(¬𝑂|[𝑎i]
≤𝛼
0 )

)

=
𝑃 𝑟(−𝑂|[𝑎i]

≤𝛼
B )𝜃

(

𝑃 𝑟(𝑂|[𝑎i]
≤𝛼
B )𝛿+(1−𝑃 𝑟(−𝑂|[𝑎i]

≤𝛼
B ))𝛿

)1∕𝜃 .
(11)

where 𝜙 and 𝜃 represent the effects of increasing and decreasing
weights on gains, and 𝜙, 𝜃 ∈ (0, 1). This weighting function is calculated
based on the decision attributes in the information, thus obtaining the
target weighting function. The advantage of this weighting function is
that it is more objective than existing weighting functions, avoiding
decision risks brought about by subjectivity.

Based on the classical TWD theory of prospect theory, we consider
that different decision options have their own unique value func-
tions, and different attributes have different weight values. As a result,
we have the more thorough formula that follows to show the value
functions for every attribute:

𝑈 𝑗
𝛥𝜕(𝑎𝑖) =

⎛

⎜

⎜

⎜

⎝

𝑈 𝑗
𝑃 𝑃 (𝑎𝑖) 𝑈 𝑗

𝑃 𝑁 (𝑎𝑖)

𝑈 𝑗
𝐵 𝑃 (𝑎𝑖) 𝑈 𝑗

𝐵 𝑁 (𝑎𝑖)

𝑈 𝑗
𝑁 𝑃 (𝑎𝑖) 𝑈 𝑗

𝑁 𝑁 (𝑎𝑖)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

𝑎𝑖𝑗−𝑎
𝑗
min

𝑎𝑗max−𝑎
𝑗
min

)𝜔
0

𝜇
(

𝑎𝑖𝑗−𝑎
𝑗
min

𝑎𝑗max−𝑎
𝑗
min

)𝜔
𝜇
(

𝑎𝑗max−𝑎𝑖𝑗
𝑎𝑗max−𝑎

𝑗
min

)𝜔

0
(

𝑎𝑗max−𝑎𝑖𝑗
𝑎𝑗max−𝑎

𝑗
min

)𝜔

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(12)

In Formula (12), 𝑎𝑖𝑗 represents the assessment outcome for every ob-
ect 𝑎𝑖 beneath every conditional characteristic 𝑏𝑗 . The minimum and
maximum evaluation values for each condition attribute are denoted,
espectively, by 𝑎𝑗𝑚𝑖𝑛 and 𝑎𝑗𝑚𝑎𝑥. 𝜇 denotes the loss aversion coefficient

and fulfills 𝜇 ∈ [0, 1], whereas 𝜔 represents the sensitivity declining
level of the value function and fulfills 𝜔 ∈ (0.5, 1).

In cases where an object 𝑎𝑖 lacks its evaluation value, the object’s
general value function can be assessed using the weight values assigned
to the given assessment attribute and the evaluation values that are
currently available. The following figure illustrates this value function’s
expression:

𝑈𝛥𝜕(𝑎𝑖) =
⎛

⎜

⎜

⎜

⎝

𝑈𝑃 𝑃 (𝑎𝑖) 𝑈𝑃 𝑁 (𝑎𝑖)

𝑈𝐵 𝑃 (𝑎𝑖) 𝑈𝐵 𝑁 (𝑎𝑖)

𝑈𝑁 𝑃 (𝑎𝑖) 𝑈𝑁 𝑁 (𝑎𝑖)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑𝑚
𝑗 𝐖𝑗

(

𝑎𝐼 𝐽−𝑎𝑗min
𝑎𝑗max−𝑎

𝑗
min

)𝜔
𝟎

∑𝑚
𝑗 𝐖𝑗𝜇

(

𝑎𝐼 𝐽−𝑎𝑗min
𝑑𝑗max−𝑑

𝑗
min

)𝜔
∑𝑚

𝑗 𝐖𝑗𝜇
(

𝑑𝑗max−𝑎𝑖𝑗
𝑑𝑗max−𝑑

𝑗
min

)𝜔

0
∑𝑚

𝑗 𝐖𝑗

(

𝑎𝑗max−𝑎𝑖𝑗
𝑎𝑗max−𝑎

𝑗
min

)𝜔

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(13)

where 𝜇 ∈ (0.5, 1).
Table 6 lists the value functions for all objects:

Remark 3.2. According to the semantic interpretation of the value
functions 𝑈𝛥𝜕(𝑎𝑖) under attribute 𝑏𝑗 , where 𝛥 = 𝑃 , 𝐵 , 𝑁 and 𝜕 = 𝑃 , 𝑁 ,
the value functions 𝑈𝛥𝜕(𝑎𝑖) satisfy the following two conditions: 𝑈 𝑗

𝑃 𝑃 ≥
𝑗 > 𝑈 𝑗 , 𝑈 𝑗 ≥ 𝑈 𝑗 > 𝑈 𝑗 .
𝐵 𝑃 𝑁 𝑃 𝑃 𝑁 𝑅𝑁 𝑁 𝑁
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Table 6
The value functions for all objects.

𝑈𝑃 𝑃 (𝑎𝑖) 𝑈𝐵 𝑃 (𝑎𝑖) 𝑈𝑁 𝑃 (𝑎𝑖) 𝑈𝑃 𝑁 (𝑎𝑖) 𝑈𝐵 𝑁 (𝑎𝑖) 𝑈𝑁 𝑁 (𝑎𝑖)

𝑎1 𝑈𝑃 𝑃 (𝑎1) 𝑈𝐵 𝑃 (𝑎1) 𝑈𝑁 𝑃 (𝑎1) 𝑈𝑃 𝑁 (𝑎1) 𝑈𝐵 𝑁 (𝑎1) 𝑈𝑁 𝑁 (𝑎1)
𝑎2 𝑈𝑃 𝑃 (𝑎2) 𝑈𝐵 𝑃 (𝑎2) 𝑈𝑁 𝑃 (𝑎2) 𝑈𝑃 𝑁 (𝑎2) 𝑈𝐵 𝑁 (𝑎2) 𝑈𝑁 𝑁 (𝑎2)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑛 𝑈𝑃 𝑃 (𝑎𝑁 ) 𝑈𝐵 𝑃 (𝑎𝑛) 𝑈𝑁 𝑃 (𝑎𝑛) 𝑈𝑃 𝑁 (𝑎𝑛) 𝑈𝐵 𝑁 (𝑎𝑛) 𝑈𝑁 𝑁 (𝑎𝑛)

For all 𝑎𝑖 ∈ 𝐴, 𝑈 (ℎ𝛥|[𝑎𝑖]) (𝛥 = 𝑃 , 𝐵 , 𝑁) represents the expected value
f taking action ℎ𝛥. The expression is as follows:

𝑈 (𝐵𝑝|[𝑎𝑖]) = 𝑈𝑃 𝑃 (𝑎𝑖)𝜔+(𝑃 𝑟(𝑂|[𝑎𝑖]
≤∗𝛼
0 )) + 𝑈𝑃 𝑁 (𝑎𝑖)𝜔−(𝑃 𝑟(¬𝑂|[𝑎𝑖]

≤∗𝛼
0 ))

𝑈 (𝐵𝑏|[𝑎𝑖]) = 𝑈𝐵 𝑃 (𝑎𝑖)𝜔+(𝑃 𝑟(𝑂|[𝑎𝑖]
≤∗𝛼
0 )) + 𝑈𝐵 𝑁 (𝑎𝑖)𝜔−(𝑃 𝑟(¬𝑂|[𝑎𝑖]

≤∗𝛼
0 ))

𝑈 (𝐵𝑛|[𝑎𝑖]) = 𝑈𝑁 𝑃 (𝑎𝑖)𝜔+(𝑃 𝑟(𝑂|[𝑎𝑖]
≤∗𝛼
0 )) + 𝑈𝑁 𝑁 (𝑎𝑖)𝜔−(𝑃 𝑟(¬𝑂|[𝑎𝑖]

≤∗𝛼
0 )).

(14)

Based on Bayesian decision theory, the decision rules with the
rinciple of maximum expected value are represented as follows:

(P1) Decide 𝑎𝑖 ∈ POS(𝑂), if 𝑈 (𝐵𝑝|[𝑎𝑖]) > 𝑈 (𝐵𝑏|[𝑎𝑖]) and 𝑈 (𝐵𝑝|[𝑎𝑖]) >
𝑈 (𝐵𝑛|[𝑎𝑖]).

(B1) Decide 𝑎𝑖 ∈ BOU(𝑂), if 𝑈 (𝐵𝑏|[𝑎𝑖]) > 𝑈 (𝐵𝑝|[𝑎𝑖]) and 𝑈 (𝐵𝑏|[𝑎𝑖]) >
𝑈 (𝐵𝑛|[𝑎𝑖]).

N1) Decide 𝑎𝑖 ∈ NEG(𝑂), if 𝑈 (𝐵𝑛|[𝑎𝑖]) ≥ 𝑈 (𝐵𝑏|[𝑎𝑖]) and 𝑈 (ℎ𝑅|[𝑎𝑖]) ≥
𝑈 (𝐵𝑝|[𝑎𝑖]).

Finally, we rank the decision categories according to priority and
xpected value as follows: POS(𝑂) > BOU(𝑂) > NEG(𝑂).

3.2. PT-TWD-PPTDR model algorithm

The detailed algorithm of the PT-TWD-PPTDR model is presented in
lgorithm 1.

Remark 3.3. The temporal complexity of the algorithm is described in
he text below, where 𝑛 denotes the number of elements in the object
et and 𝑚 denotes the number of members in the condition attribute
et, in order to demonstrate the method’s efficiency. With a temporal
omplexity of 𝑂(1), we use Formula (7) to calculate the normalized

data for each object in Step 1. The maximum time complexity in Step
, based on Definitions 3.1-3.3, is 𝑂(𝑛3𝑚) for calculating the prior

probability tolerance dominant class for each object 𝑎𝑖. The temporal
complexity for calculating the maximum deviation weight 𝑤𝑗 for each
attribute 𝑏𝑖’s prior probability tolerance dominance class in Step 3 is
𝑂(𝑛2𝑚), per Definition 3.4. In Step 4, 𝑂(𝑛2𝑚) is the time complexity
for calculating the weight function for each item based on Formula
(8). The time complexity to acquire the value function for each item
in Step 5 is 𝑂(𝑛𝑚), based on Formula (11). The time complexity in Step
 (using Formula (12)) is 𝑂(𝑛𝑚) for calculating the anticipated value

for each item in each domain. Step 7 has a time complexity of 𝑂(𝑛)
for categorizing each item based on (P1)-(N1). In Step 8, POS(𝑂) >
BOU(𝑂) > NEG(𝑂) is the order of predicted values in the distinct
domains, where 𝑂(𝑛 log 𝑛) is the time complexity for sorting every item.
Therefore, the total time complexity of the algorithm proposed in this
paper is 𝑂(𝑛3𝑚).

Remark 3.4. In order to provide an objective weight calculation
pproach, this research first defines the prior probability tolerance

dominance connection of FIIS. The influence of unique psychological
variables on the decision outcomes is then considered in conjunc-
tion with PT, and ultimately the predicted values of every object are
obtained, along with ranking and classification. Based on the afore-
mentioned findings, our approach can effectively reduce choice risks
by classifying all objects into three categories while taking delayed
 d

6 
decision-making into account. This means that the approach presented
in this research can handle choice issues with potential missing assess-
ment values and take the psychological states of the decision-makers
into account. Different decision-makers can obtain varying results by
adjusting the settings, which demonstrates the broad applicability of
he PT-TWD-PPTDR approach.

Algorithm 1: The PT-TWD-PPTDR Model in an FIIS
Input: A MADM problem and five parameters 𝛼 , 𝜙, 𝜃 , 𝜔, 𝜇
Output: The sorting and classification of all alternatives

1 Initialization;
2 Given 𝛼 ∈ [0, 1], 𝜙 ∈ (0, 1), 𝜃 ∈ {0, 1}, 𝜔 ∈ (0.5, 1), 𝜇 ∈ [0, 1];
3 for 𝑖 = 1 to 𝑛, 𝑗 = 1 to 𝑚 do
4 Calculate: normalized data for each object. // by Formula (7);
5 for 𝑖 = 1 to 𝑛, 𝑙 = 1 to 𝑛, 𝑗 = 1 to 𝑚, 𝑘 = 1 to length(unique[𝑎𝑖𝑗])

do
6 Calculate: every object’s prior probability tolerance dominance

category. // by Definitions 3.1–3.3;
7 for 𝑖 = 1 to 𝑛, 𝑗 = 1 to 𝑚, 𝑘 = 1 to 𝑛 do
8 Calculate: max deviation weight 𝑤𝑗 based on prior probability

tolerance dominance category for every characteristic 𝑏𝑗 . // by
Definition 3.4;

9 for 𝑗 = 1 to 𝑚 do
10 Calculate: weight function of each object. // by Formula (9);
11 for 𝑖 = 1 to 𝑛 do
12 Calculate: value function of each object. // by Formula (11);
13 for 𝑖 = 1 to 𝑛 do
14 Calculate: expected value of each object. // by Formula (12);
15 Obtain 𝑃 𝑂 𝑆(𝑂), 𝐵 𝑂 𝑈 (𝑂), 𝑁 𝐸 𝐺(𝑂);
16 for 𝑖 = 1 to 𝑛 do
17 Determine: domain where object is located according to decision

rule (P1)-(N1) and calculate the expected values;
18 if 𝑈 (𝐵𝑝 ∣ [𝑎𝑖]) > 𝑈 (𝐵𝑏 ∣ [𝑎𝑖]) and 𝑈 (𝐵𝑝 ∣ [𝑎𝑖]) > 𝑈 (𝐵𝑛 ∣ [𝑎𝑖]) then
19 𝑎𝑖 ∈ 𝑃 𝑂 𝑆(𝑂), 𝑈 (𝑎𝑖) = 𝑈 (𝐵𝑝 ∣ [𝑎𝑖]);
20 if 𝑈 (𝐵𝑏 ∣ [𝑎𝑖]) > 𝑈 (𝐵𝑝 ∣ [𝑎𝑖]) and 𝑈 (𝐵𝑏 ∣ [𝑎𝑖]) > 𝑈 (𝐵𝑛 ∣ [𝑎𝑖]) then
21 𝑎𝑖 ∈ 𝐵 𝑂 𝑈 (𝑂), 𝑈 (𝑎𝑖) = 𝑈 (𝐵𝑏 ∣ [𝑎𝑖]);
22 if 𝑈 (𝐵𝑛 ∣ [𝑎𝑖]) ≥ 𝑈 (𝐵𝑏 ∣ [𝑎𝑖]) and 𝑈 (ℎ𝑅 ∣ [𝑎𝑖]) ≥ 𝑈 (𝐵𝑝 ∣ [𝑎𝑖]) then
23 𝑎𝑖 ∈ 𝑁 𝐸 𝐺(𝑂), 𝑈 (𝑎𝑖) = 𝑈 (𝐵𝑏 ∣ [𝑎𝑖]);
24 for 𝑖 = 1 to 𝑛 do
25 Prioritizing 𝑃 𝑂 𝑆(𝑂) > 𝐵 𝑂 𝑈 (𝑂) > 𝑁 𝐸 𝐺(𝑂), all alternatives are

separated according to the predicted values of each domain’s
alternatives;

26 return classification and sorting of all objects;

4. Application case

In Section 3, we constructed a new PT-TWD-PPTDR model to solve
the MADM problem. From Definition 3.2, it can be observed that this
model mainly addresses the decision problem in the FIIS. In order to
verify the practicality and applicability of this method, this section will
analyze a real case of heart disease from the UCI repository.

Heart Disease: Heart disease (Heenan, Parks, Bärnighausen, Kado,
Bloom, & Steer, 2020) refers to a series of diseases caused by abnormal
eart structure and function. It encompasses various cardiovascular
iseases, including coronary heart disease, myocardial disease, arrhyth-
ia, and heart valve diseases. Nowadays, heart disease has become the

eading killer endangering human health. According to the statistics
from the World Health Organization, over one-third of global deaths are
caused by heart disease. Therefore, it is crucial to prevent heart disease,
and patients with heart disease need regular check-ups. Echocardiogra-
phy (Hackett & Chin, 2021) is a non-invasive examination method that
ses sound waves to observe and evaluate the structure and function of

the heart. It plays a crucial role in diagnosing and monitoring heart dis-
ease. It can display the structure of the heart, helping doctors determine
the type and severity of heart disease, as well as assess the contraction
and relaxation function of the heart. Echocardiography can also be used
or screening high-risk populations. By regularly undergoing echocar-

iography examinations, early signs of heart disease can be detected,
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Table 7
Categorization of every option in echocardiography.

Domains Classifications

POS(O) 𝑎1 , 𝑎12 , 𝑎4 , 𝑎8 , 𝑎10 , 𝑎11 , 𝑎18 , 𝑎23 , 𝑎25 , 𝑎27 , 𝑎29 , 𝑎32 , 𝑎34 , 𝑎35 , 𝑎36 , 𝑎38 , 𝑎39 , 𝑎40
𝑎46 , 𝑎47 , 𝑎52 , 𝑎54 , 𝑎55 , 𝑎58 , 𝑎59 , 𝑎62 , 𝑎63 , 𝑎64 , 𝑎66 , 𝑎67 , 𝑎68 , 𝑎70

BOU(O) 𝑎3 , 𝑎5 , 𝑎6 , 𝑎7 , 𝑎9 , 𝑎12 , 𝑎15 , 𝑎16 , 𝑎17 , 𝑎19 , 𝑎20 , 𝑎21 , 𝑎22 , 𝑎24 , 𝑎26 , 𝑎28 , 𝑎30 , 𝑎31
𝑎37 , 𝑎41 , 𝑎42 , 𝑎43 , 𝑎45 , 𝑎48 , 𝑎49 , 𝑎50 , 𝑎51 , 𝑎53 , 𝑎56 , 𝑎57 , 𝑎60 , 𝑎61 , 𝑎65 , 𝑎69

NEG(O) 𝑎13 , 𝑎14 , 𝑎33 , 𝑎44 , 𝑎71 , 𝑎72

Fig. 2. The outcome of echocardiography ranking.

and preventive measures or timely treatment can be taken. However,
treatment for heart disease can be difficult to find early on. The reasons
include the possible loss of patient examination data results during
storage or migration processes, resulting in incomplete information in
diagnosis. Secondly, patient examination results are susceptible to their
own emotions, as decision-making may involve some uncertainty and
risk.

4.1. An example of lacking information: An echocardiography

This section will use an incomplete dataset from the UCI reposi-
tory (http://archive.ics.uci.edu/m-l/datasets/Echocardiogram) to test
the PT-TWD-PPTDR approach described in this research. The back-
ground is as follows: a hospital plans to diagnose patients with heart
problems using echocardiography. We selected a dataset that has five
conditional features and seventy-two items, where each item has a
maximum of two missing evaluation values, while the decision at-
tributes have no missing values, facilitating experimentation and anal-
ysis. Therefore, the dataset consists of a total of 72 objects, with each
object potentially containing up to two missing evaluation values. We
address this problem by using the approach suggested in this work. The
results of the classification are shown in Fig. 3, the ranking results are
displayed in Fig. 2, and Table 7 is presented below.

The ranking results obtained from applying our method to the
dataset are displayed in Fig. 2. Here, we can see that the 𝑎25 includes
the greatest overall ranking, indicating that this item has the highest
probability of having heart disease is the 25th. The actual situation
of applying this approach to categorize all items into three domains
is represented in Fig. 3 and Table 7, along with the number of items
included in each sector. As a result, the approach we propose could
assist in resolving medical problems in FIIS.

5. The comparison of echocardiogram

The approach can effectively address FIIS decision issues, according
to the analysis above. To prove the superiority and efficacy of this
7 
Fig. 3. The echocardiography categorization result.

strategy, we further compare it with different approaches utilizing
databases of echocardiography in this section.

5.1. Comparison and analysis of ranking results

The purpose of the upcoming comparative experiments is to evalu-
ate the ranking outcomes produced by various FIIS algorithms. First, as
seen in Fig. 4, we compare the ranking results achieved in this paper’s
Section 4.1 with those obtained by Wang et al. (2023) It is evident that
the ranking outcomes produced by the methodology suggested in this
research are comparable to those produced by FIIS. The two approaches
have different theoretical bases, which results in somewhat different
rankings, but the best outcome stays the same. Therefore, it can be said
that the approach suggested in this work works well.

In addition, this method is compared with the methods proposed
by Zhu et al.’s methond (Zhu, Ma, Zhan, & Yao, 2022), Wang et al.’s
methond (Wang et al., 2022), Zhang et al.’s methond (Zhang & Fan,
2012), Liu et al.’s methond (Liu and Zhu and Liu, 2014), J.C.R. Alcan-
tud et al.’s methond (Alcantud, de Andrés Calle, & Torrecillas, 2016),
and Liu et al.’s methond (Liu, Zhu, & Liu, 2014). Fig. 5 shows the
comparison of rankings between the method proposed in this paper
and these other methods. Simultaneously, it can also be observed
that our method yields the same optimal results as these approaches.
In addition, for the qualitative assessment mentioned above, we will
conduct a quantitative evaluation, thus introducing the Spearman rank
correlation coefficient (SRCC) (Gauthier, 2001), which displays the
correlation between variables. The calculation formulas for the two
ranking results are as follows:

𝑆 𝑅𝐶 𝐶 = 1 − 6
∑𝑛

𝑖=1(𝑦𝑖 − 𝑥𝑖)2

𝑛3 − 𝑛
(15)

The correlation between two samples is compared using Spearman’s
rank correlation threshold table and the SRCC value. According to the
SRCC critical value table, with an average sample size of 100 and a
level of significance of 0.01 in the two-tailed test, a strong correlation
between the two identical samples is indicated if the SRCC value
obtained by comparing them is more than 0.257.

It is clear that when the threshold table has larger sample sizes,
there is less of a requirement to compare the SRCC values from two
samples. However, an absolute value of SRCC greater than or equal
to 0.6847 is often seen as indicating a strong correlation when the
sample size is limited. The SRCC values produced using this method and
those acquired using alternative methods are compared in this research.
The results of our approach and the other techniques’ SRCC values are

http://archive.ics.uci.edu/m-l/datasets/Echocardiogram
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Fig. 4. A comparative analysis of Wang et al.’s technique ranking in FIIS.

all larger than or equal to 0.6847, as shown in Fig. 6 (Wang et al.’s
method is denoted as Wang and others (2022), Liu et al.’s method
is denoted as Liu et al. (2014)). This suggests that there is a great
degree of consistency between the ranking outcomes produced by these
approaches and the results gained by our method.

Furthermore, our technique and the other methods had higher SRCC
values than Wang et al.’s method (Wang et al., 2023). The findings
show that our technique’s ranking performance is noticeably better
than Wang et al.’s (Wang et al., 2023) method. To sum up, our approach
shows some superiority in effectiveness.

5.2. Comparative examination of the classification outcomes

In this section, we will compare our method’s categorization results
with those of other methods. Other approaches include those presented
by Wang et al. (2023), Wang and others (2022), and Zhu et al. (2022).
Our method splits all objects into three regions. From Fig. 7, we can
clearly see that (the second column is Wang et al. (2023), and the fourth
column is Wang and others (2022)), with the exception of Wang et al.’s
method (Wang & others, 2022), all objects can be classified into three
regions using our method, Wang et al.’s method (Wang et al., 2023),
and Zhu et al.’s method (Zhu et al., 2022). This is consistent with
the reasonable semantic interpretation of the three regions in Three-
Way Decision (TWD) in decision theory and rough sets. TWD takes
into account boundary regions, or delayed decision-making, where
objects may have an ambiguous categorization because they are at
the junction of positive and negative areas. These areas have practical
applications that aid in the understanding and classification of data,
particularly when dealing with ambiguous and imprecise information.
As a result, while handling decision-making challenges, our approach
takes practicality into account more, showing both fault tolerance and
pragmatism. Next, we examine the misclassification rates acquired by
different approaches, as shown in Fig. 8, where our method yields a
lower misclassification rate than other methods. It is obvious that the
model performs better the lower the misclassification percentage. The
following formula may be used to get the misclassification percentage:

Misclassification rate =
𝑛𝑂→NEG(𝑂) + 𝑛¬𝑂→POS(𝑂)

|𝐴|
(16)

Where 𝑛𝑂→NEG(𝑂) represents the number of objects belonging to the
negative region NEG(𝑂) of 𝑂, 𝑛¬𝑂→POS(𝑂) represents the number of
objects belonging to the positive region of ¬𝑂, and |𝐴| represents the
total number of objects.
8 
5.3. Comparison among decision theories

Our method and Wang et al.’s method (Wang & others, 2022)
combine prospect theory in decision theory, while the other methods,
Wang et al.’s method (Wang et al., 2023) and Zhu et al.’s method (Zhu
et al., 2022), integrate regret theory. Both are significant theories in
decision-making. In the field of decision theory, numerous studies have
explored the superiority of prospect theory over regret theory and
provided evidence supporting prospect theory.

Prospect theory focuses on the relative changes in gains and losses
rather than their absolute values, making it more sensitive to gains
and losses. It emphasizes individuals’ sensitivity to potential losses,
known as the loss aversion effect. This sensitivity makes prospect theory
more realistic in explaining decision-making behaviors since, in many
cases, individuals tend to focus more on losses than gains. Kahneman
(1979), Kahneman and Tversky (1984), Tversky and Kahneman (1992)
conducted a series of experiments to investigate individuals’ cogni-
tive processes regarding uncertainty and verified the effectiveness of
prospect theory in explaining decision-making behaviors. Their re-
search found that individuals are more concerned about potential
losses, exhibiting loss aversion effect, thus providing higher accuracy
and explanatory power in describing and predicting decision-making
behaviors.

On the other hand, regret theory primarily focuses on comparing
decision outcomes with possible alternative solutions, overlooking in-
dividuals’ actual feelings toward decision outcomes. It assumes that
individuals make decisions by comparing the degree of regret, but
in reality, individuals may be influenced by emotions, attitudes, and
external factors during decision-making. Regret theory does not em-
phasize individuals’ aversion to losses and risk-averse behaviors. It
mainly focuses on the degree of regret regarding choices already made,
overlooking individuals’ emotional experiences during the decision-
making process, i.e., sensitivity to gains and losses. Therefore, regret
theory lacks in addressing the emotional dimension of individuals’
decision-making behaviors compared to prospect theory. Regret theory
does not consider individuals’ cognitive processes regarding uncertainty
as prospect theory does. It assumes that individuals can accurately
assess the degree of regret for different decision choices, but when
facing uncertainty, individuals often make irrational decisions, which
is a limitation of regret theory.

Hence, our method, combined with prospect theory, exhibits higher
accuracy and explanatory power in explaining and predicting individ-
uals’ decision-making behaviors.

5.4. Discussion

In this study, we constructed a PPTDR model in the context of
FIIS, introducing an objective method to obtain weights, which was
then combined with PT to consider the psychological states of decision-
makers. This method derived the calculation methods for weight func-
tions and value functions of decision objects, ultimately developing an
algorithm to determine the expected values of all objects for sorting
and classification. Nevertheless, some approaches exclusively deal with
decision-making in fully integrated information systems, neglecting
incomplete information or the emotional impact of decision-makers’
choices. As a result, we thoroughly compared our approach to nine
different approaches. We evaluated and synthesized our approach with
the other nine techniques based on the table in a number of different
ways:

(1) Our approach can efficiently resolve making choices issues in
full information systems and FIIS. As shown in Table 8, only our method
and those proposed by Liu et al. (2016), Zhan et al. (2021), and Yang
and Li (2020) can handle problems in FIIS, whereas other methods are
limited to complete information systems. This capability is crucial in
the era of big data where missing data is common due to losses during
data acquisition and storage.
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Fig. 5. Analysis of the rankings of various approaches in FIIS.
Fig. 6. SRCCs of the ranking outcomes acquired in FIIS using various techniques.
(2) From Table 8, it can be observed that only four methods can be
used for decision-making in FIIS. Yang et al.’s (Yang & Li, 2020) and
Liu et al.’s (Liu et al., 2016) methods classify objects without ranking
them. Zhan et al.’s (Zhan et al., 2021) method can sort and classify
objects but relies on known fuzzy decision attribute values, which are
often unavailable in real-world scenarios, limiting its applicability. Our
method calculates the expected value based on evaluation values of
all objects, enabling both sorting and classification. Thus, our method
not only classifies objects but also ranks them, providing a complete
ranking that aids decision-makers in making informed decisions.

(3) Our method calculates the target state set based on the decision
attributes of the dataset. The conditional probability values are derived
using the classic conditional probability formula to calculate the weight
function. This process minimizes the influence of subjective preferences
9 
on decision results, as the conditional probability is objectively ob-
tained. Additionally, our method fully utilizes the dataset’s information,
enhancing its effectiveness.

(4) Only our approach, Bell’s approach (Bell, 1982), and Wang
et al.’s approach (Wang et al., 2020) combine PT and RT to take
decision-makers’ psychological states into account. This consideration
aligns better with actual decision-making situations, making these
methods more effective in practice. Our method also calculates the
maximum deviation weight of all objects based on classical conditional
probability, dividing objects into two states and three behaviors in
TWD, which effectively addresses behavioral decision problems in FIIS.

By analyzing these differences, we summarize the advantages of
our method. Our method effectively solves decision problems in FIIS
by accommodating missing data in information systems. It not only
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Fig. 7. Analysis of how various FIISs techniques are classified in comparison.

classifies but also ranks all objects, providing a comprehensive decision-
making tool. By incorporating the psychological attitudes of decision-
makers, it addresses behavioral decision problems in FIIS. Additionally,
it derives maximum deviation weights and categorizes objects into
states and behaviors based on conditional probability, ensuring robust
decision-making.

6. Analytical experimentation

In this part, we conduct a study using the echocardiography case
mentioned above to analyze the sensitivity of the model through pa-
rameter analysis. This paper involves five parameters: 𝛼, 𝜙, 𝜃, 𝜇, and
𝜔. We will analyze 𝛼 and 𝜇 in three aspects.

6.1. The sensitivity analysis of the parameter 𝛼

We investigate the effect of changing parameter 𝛼 on the choice
outcomes while its value is set at 0.1. The variations in the sorting and
classification outcomes are shown in Figs. 9 and 10, respectively.

It is evident from Fig. 9 that the general trend remains constant
and that changes in parameter 𝛼 have minimal impact on the sorting
outcomes of all items. Furthermore, the ideal result obtained for the
25th object is likewise consistent. As 𝛼 grows, the number of items
in the positive and border regions steadily rises, whereas the number
of objects in the negative region gradually falls, as shown in Fig. 10.
This trend reflects the impact of the 𝛼 parameter on the stringency of
classification. That is, a lower 𝛼 value leads to stricter classification, but
may cause the model to excessively exclude uncertain objects, thereby
increasing classification error; conversely, a higher 𝛼 value relaxes the
classification criteria, which may reduce classification accuracy in some
scenarios. Therefore, selecting an appropriate 𝛼 value is crucial for
balancing classification accuracy and generalization ability.

6.2. The sensitivity analysis of the parameter 𝜇

Parameters 𝛼, 𝜙, 𝜃, and 𝜔 have fixed values of 0.1, 0.61, 0.69,
and 0.88, respectively. We observed that all items maintained their
ranking while the value of parameter 𝜇 was varied. As a result, as
seen in Fig. 111, we examined how item categorization changed as
the parameter 𝜇 changed. We limited our analysis to the impact of
parameter 𝜇 on overall object categorization. Findings indicate that
while the number of items in the positive and negative zones decreases,
the number of items in the border zone increases as the value of
parameter 𝜇 rises. In the experiment, changes in the parameter 𝜇
directly affect the distribution of objects in the boundary region and
10 
Fig. 8. Rate of misclassification for various techniques in FIIS.

the positive and negative regions. The parameter 𝜇 reflects the model’s
sensitivity to loss. When 𝜇 is large, the model tends to make con-
servative decisions, increasing the proportion of the boundary region
and thus enhancing fault tolerance in high-risk scenarios; however,
an excessively high 𝜇 value can reduce the model’s ability to identify
objects in the positive region. Therefore, the selection of 𝜇 should be
based on the risk preference in the decision-making scenario to avoid
potential suppression of profitable decisions.

6.3. The sensitivity analysis of parameters 𝜇 and 𝛼

We note that when the values of 𝛼 and 𝜇 vary concurrently, the
categorization of all objects changes when the values of parameters 𝜙,
𝜃, and 𝜔 are fixed at 0.61, 0.69, and 0.88, respectively. The number
of items in the positive zone progressively decreases as these two pa-
rameters are increased, whereas the number of objects in the negative
region and boundary region gradually grows, as seen in Fig. 12. The
experimental results show that the joint variation of 𝛼 and 𝜇 has a
significant impact on the classification results. Particularly, when 𝛼 and
𝜇 are increased, the number of objects in the negative and boundary
regions both increases. This phenomenon indicates that the interaction
between 𝛼 and 𝜇 may cause the model to become risk-averse under
high tolerance, especially in situations with high data uncertainty,
which expands the boundary region to enhance robustness but may
also reduce the model’s ability to identify objects in the positive region.
Therefore, the 𝛼 and 𝜇 parameters need to be jointly tuned in different
application scenarios to achieve a balance between risk management
and decision accuracy.

6.4. Parameter tuning and analysis

In incomplete information systems, model performance is signifi-
cantly influenced by parameter settings, making meticulous parameter
tuning a crucial step in enhancing decision accuracy and robustness.
Firstly, it is necessary to clarify the roles and expected ranges of
key parameters in the model (such as 𝛼, 𝜇, 𝜙, 𝜃, and 𝜔), and set
reasonable initial values for each parameter based on relevant liter-
ature and domain knowledge. For example, the value range of the 𝛼
parameter can be set to [0, 1], while the value range of 𝜇 is adjusted
according to the intensity of loss aversion. Secondly, cross-validation
techniques (Kohavi, 1995) can be used to effectively evaluate the
model’s performance under different parameter settings. Specifically,
the datasets can be divided into 𝑘 subsets (usually 5 or 10), with 𝑘 − 1
subsets used for training the model each time, and the remaining subset
used for validation. By repeating this process 𝑘 times, ensuring that
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Fig. 9. Ordering of all items when 𝛼 changes in value.
Table 8
Comparing several approaches.
Methods Incomplete Decision Objective Loss/Utility Behavior Ranking Classification

information characteristics weights/Value decisions
functions

Our method
√ √ √ √ √ √ √

Wang et al. (2020) et al.’s method × × ×
√ √ √ √

Wang and others (2022) et al.’s method × ×
√

×
√ √ √

Zhu et al. (2022) et al.’s method
√ √

×
√ √ √ √

Zhang and Fan (2012) et al.’s method
√

×
√

× ×
√

×
Liu and Zhu and Liu (2014) et al.’s method ×

√

× × ×
√

×
Alcantud et al. (2016) et al.’s method ×

√

×
√

×
√

×
(Hwang & Tilley, 1981) approach × × ×

√

×
√

×
(Ghorabaee, Zavadskas, Olfat, & Turskis, 2015) approach × × × × ×

√

×
(Harsanyi, 1955) approach × × × × ×

√

×

each subset serves as a validation set, the average performance metrics
(such as accuracy, recall, and F1 score) across all validation processes
can be calculated to select the optimal parameter combination.

Based on the results of cross-validation, the grid search method
(Hutter, Kotthoff, & Vanschoren, 2019) can systematically explore the
parameter space. A predefined grid of parameter combinations (for
example, setting multiple values for 𝛼 such as 0.1, 0.2, 0.3, etc., and
different loss aversion levels for 𝜇) can be used for cross-validation
to help discover the best parameter combination, enabling the model
to exhibit optimal decision-making capabilities in incomplete informa-
tion systems. Additionally, as a complement to grid search, random
search (Bergstra & Bengio, 2012) can experiment with randomly se-
lected parameter combinations in the parameter space. Compared to
11 
grid search, random search is more efficient in large-scale parame-
ter spaces, especially suitable for situations with a large number of
parameters.

Finally, after tuning, we need to conduct in-depth analysis and
visualization of the results from different parameter combinations to
identify which parameters have the greatest impact on model perfor-
mance (Sokolova & Lapalme, 2009). Methods such as learning curves
or parameter importance plots can be used to visually showcase the
contribution of each parameter to model decisions, providing valuable
insights for subsequent model improvements. At the same time, after
the model is deployed, we should continuously monitor its perfor-
mance in real-world applications, collect feedback data, and adjust rel-
evant parameters or introduce new features as needed to continuously
enhance the model’s decision-making capabilities.
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Fig. 10. Entire object classification when 𝛼 parameter values vary.

Through these systematic parameter tuning methods, we can sig-
nificantly enhance the model’s ability to cope with ambiguity and
uncertainty in incomplete information systems, thereby ensuring its
stability and practicality in complex application scenarios.

7. Conclusion and future works

In the information age, data frequently tends to be lost or ig-
nored during storage and utilization, leading to a growing interest
in behavioral decision-making among academics. Consequently, man-
aging decision difficulties in incomplete information systems (FIIS)
has become critically important. In this study, we have examined
12 
the PT-TWD-PPTDR approach within FIIS to address these challenges,
resulting in several significant advancements. Firstly, we present a PT-
TWD-PPTDR approach to resolve decision problems involving missing
information, successfully handling partial datasets that arise from the
probability of data loss or omission during data collection or stor-
age. Secondly, we employ a PPTDR to manage binary relationships
between objects more efficiently. Previous TWD techniques in FIIS
often required additional relationships formed through the expansion of
equivalency relations, such as tolerance and similarity relations, which
improved the handling of missing values. Lastly, TWD typically incor-
porates two states and three behaviors, with conditional probability
and loss function being two critical considerations. We recognize that
decision-makers are frequently influenced by varying psychological
states and tend to make different decisions, as the loss function in cur-
rent approaches is either subjectively provided by decision-makers or
computed as relative loss functions. Thus, decision psychology must be
integrated into the process. This study introduces prospect theory to de-
termine the predicted values of each item for ranking and classification,
emphasizing the acquisition of weight and value functions.

Several important and practical issues can be explored in future re-
search based on the framework established in this paper. Our approach
integrates prospect theory with TWD, accounting for the psychological
states of decision-makers and their effects on outcomes. Future research
could delve into additional behavioral decision-making theories, such
as regret theory. Another avenue for enhancing decision resilience
involves combining TWD with cumulative prospect theory or third-
generation prospect theory. Expanding the method’s applicability to
encompass both single and group decision settings would enrich its rel-
evance in group decision information systems. Additionally, adapting
the dominance relation-based TWD technique to dynamic informa-
tion systems presents a prospective research direction, considering
the dynamic nature of contemporary data and information. Moreover,
extending the technique to manage missing values across various infor-
mation systems, including fuzzy, multi-scale, intuitionistic fuzzy, and
interval-valued systems, would enhance its adaptability and utility in a
multitude of real-world contexts.
Fig. 11. Categorization of every item when the parameter 𝜇 values fluctuate.
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Fig. 12. Categorization of every item when 𝛼 and 𝜇 change in value.
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