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Graph-Based Unsupervised Feature Selection for
Interval-Valued Information System
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Abstract— Feature selection has become one of the hot research
topics in the era of big data. At the same time, as an extension
of single-valued data, interval-valued data with its inherent
uncertainty tend to be more applicable than single-valued data
in some fields for characterizing inaccurate and ambiguous
information, such as medical test results and qualified prod-
uct indicators. However, there are relatively few studies on
unsupervised attribute reduction for interval-valued information
systems (IVISs), and it remains to be studied how to effectively
control the dramatic increase of time cost in feature selection of
large sample datasets. For these reasons, we propose a feature
selection method for IVISs based on graph theory. Then, the
model complexity could be greatly reduced after we utilize the
properties of the matrix power series to optimize the calculation
of the original model. Our approach can be divided into two steps.
The first is feature ranking with the principles of relevance and
nonredundancy, and the second is selecting top-ranked attributes
when the number of features to keep is fixed as a priori. In this
article, experiments are performed on 14 public datasets and the
corresponding seven comparative algorithms. The results of the
experiments verify that our algorithm is effective and efficient
for feature selection in IVISs.

Index Terms— Feature ranking, graph theory, interval-valued
information system (IVIS), matrix power series (MPS).

I. INTRODUCTION

IN THE era of big data, data mining is usually used
to extract useful information from various complex data,

among which interval-valued data are widely used in different
fields, such as medical test results [1] and range of temper-
ature [2]. Interval-valued data can express fuzzy information
or changeable information because of its own characteristics
of uncertainty. As a common method of dimension reduction
in data mining, feature selection [3], by eliminating irrelevant
or redundant [4] features, is to find the optimal feature subset
for improving the accuracy of the model classification and
reducing the running time of classification. It is widely known
that feature selection can be divided into three types [5]
according to its form.
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The first type is filter methods [6] that score each feature
according to the principle of divergence or correlation and set
a threshold or the number of features to select a feature subset.
They can be divided into univariate filter methods and multi-
variate filter methods [7]. The univariate filter methods do not
need to consider the relationship between the features. They
sort the features according to the correlation or mutual infor-
mation between the feature and the label for decision and then
filter out the least relevant features. Multivariate filter methods
need to consider the relationship between features. For unsu-
pervised feature selection, filter methods are mainly based on
the principle of local preservation found through clustering.
Here are several significant research results in this regard. The
maximum dual interaction and maximum feature relevance [8]
propose the forward filter feature selection method with
mutual information, which considers relevance, redundancy,
and feature interaction simultaneously. In addition, in the
ensemble feature selection framework, Wang et al. [9] take
fast correlation based on the filter to capture the nonlinear
relationships among features and introduce five aggregators to
combine multiple feature subsets into a final set and return it.
The multiobjective mutual information (MOMI) method [10]
is a multiobjective feature selection algorithm based on mutual
information with the principles of minimal redundancy and
maximum relevancy with the target class. Compared with the
other two types, filter methods are classifier independent and
have better computational efficiency. Our approach as a filter
method gets fast since it uses intrinsic properties of the data
instead of relying on clustering, and the model complexity
could be greatly reduced after we utilize the properties of the
matrix power series (MPS) to optimize the calculation of the
original model.

The second type is the wrapper approach [11], which
uses machine learning algorithms to evaluate the effect of
feature subsets. They can detect the interaction between two
or more features and select the feature subset to optimize
the effect of the model. This is a combination of feature
subset searching and evaluation metrics. The former provides
candidate subsets of new features, and the latter trains a model
based on the new subsets of features and evaluates them on the
validation set. The entire process tends to be computationally
expensive, and it is easy to overfit when the samples are not
sufficient. Manikandan et al. [12] incorporate a wrapper-based
subset selection technique for selecting a subset from the
high dimensional datasets, but the feature subsets are given
to the classifier iteratively until the maximum accuracy is
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obtained for finding the optimal threshold value. Therefore,
there is no doubt that the high computational complexity
becomes its main drawback. The feature selection method
based on a multilayer perception neural network [13] can
select essential features and discard derogatory and indifferent
features. In addition, this method is extended by equipping it
with a mechanism to deal with redundancy. However, it cannot
control the level of redundancy maintaining the desired level
of performance of the classifier.

The third type is the embedded methods [14], which embed
feature selection into the model construction process. The
feature selection with constrained ℓ2,0-norm and optimized
graph [15] unifies feature selection and similarity matrix
construction into a general framework instead of independently
performing the two-stage process. This approach is showed
that the result tends to be well when the feature number
is large. In addition, the unsupervised feature selection [16]
operates on a group of features initially and then updates
the selection when a better group appears, which exploits the
combination effect of the features by ℓ2,0 norm. However,
it seems a trouble of solving such optimization problems
with the reasons of the nonsmooth objective function and
nonconvex constraints.

The rough set theory (RST) proposed by Pawlak [17]
belongs to a kind of granular computing theory, which can
be used to deal with the uncertainty and inconsistency of
information. It is worth mentioning that RST has become one
of the research focuses in the field of artificial intelligence
not only in theoretical research but also in its application in
the world nowadays. The interval-valued dataset is called the
interval-valued information system (IVIS) [18], and feature
selection is also called attribute reduction in RST. RST-
based attribute reduction methods are directly applicable to
interval-valued datasets [19], [20], [21], [22], [23], [24] and
single-point datasets [25], [26], [27]. However, these methods
usually encounter the dilemma of high computational com-
plexity.

Using graphs to represent the relationships between data is
a common and highly efficient method [28], [29], [30], [31].
Therefore, graph-based feature selection methods become
more and more widely applicable because of their good per-
formance. The graph-based feature selection algorithm mainly
includes two stages: graph construction and feature evaluation.
The structure graph is constructed to provide as close as
possible to the actual sample distribution for the feature subset
evaluation stage so that, in the subsequent feature selection,
as many features containing important information as possible
and redundant features are removed.

Our proposed method belongs to a kind of filter method for
IVISs. In the process of attribute reduction, this article starts
with the importance of the attribute to the entire information
system, which is mainly affected by two factors. One is the
range of variation of the attribute values in IVISs, and the
other is the correlation between attributes. For the first factor,
if the value of an attribute fluctuates greatly in the information
system, we believe that the attribute gets significant for this
IVIS. On the contrary, if the fluctuation is small, the attribute
is considered nonsignificant. Therefore, this factor can be

regarded as the correlation between a certain attribute and the
entire information system. For the second factor, if an attribute
is not correlated with other attributes for the same IVIS, the
attribute becomes crucial because it reflects its uniqueness
under this IVIS. On the contrary, if an attribute is strongly
related to the other attribute for the same IVIS, the function
of this attribute could be replaced by other attributes, so this
attribute seems unconsidered. Therefore, the attribute subset
selected by combining these two factors tends to be relevant
to the entire information system but not redundant. Then,
a weighted undirected fully connected graph is constructed
based on the graph theory to transform the information in
IVIS into an adjacency matrix of the graph starting from
the above two factors. In the process of calculating the
importance of each feature by using this adjacency matrix,
the calculation complexity is greatly reduced by using the
convergence properties of MPS.

The main contributions of this study are given as follows.
1) This article proposes a new feature selection method

based on graph theory for IVISs with the principles of
relevance and nonredundancy. In addition, we utilize the
properties of the MPS to reduce the model complexity
greatly, so our model still has less reduction time in the
case of large samples.

2) Comparative experiments are carried out on 14 public
datasets, and the results show the effectiveness and
efficiency of the proposed algorithm against the corre-
sponding seven comparative algorithms.

This article is organized by the following five sections.
In Section II, we mention some relevant preliminaries on
graph theory for IVISs and MPS. In Section III, we construct
the graph for IVISs and design the unsupervised attribute
reduction method, as well as the corresponding algorithm.
The experiments to verify the efficiency and practicability of
this new way are presented in Section IV. Section V is the
conclusions and future work of this article.

II. PRELIMINARIES

In this section, we introduce IVISs and then review some
definitions of the graph theory, MPS, and the Spearman rank
correlation coefficient (SRCC).

A. Interval-Valued Information System

Let U = {x1, x2, . . . , xn} be an object set and A =
{a1, a2, . . . , an} be an attribute set. IVIS = ⟨U, A, F⟩ is called
an IVIS, and for any xi ∈ U, ak ∈ A, f (xi , ak) is an interval-
valued number, i.e., f (xi , ak) = ( f l

ak
(xi ), f r

ak
(xi )). f l

ak
(xi ) and

f r
ak

(xi ) are called the left and right boundaries of f (xi , ak),
respectively, and they can also be denoted by f l

ik and f r
ik .

In an IVIS, for any xi ∈ U, ak ∈ A, f (xi , ak) degenerates
to a single value when f l

ak
(xi ) = f r

ak
(xi ). Therefore, a single-

valued decision system is a special form of the IVIS.
According to the literature [32], given an interval-valued

ordered information system (IVOIS) IS≼
= ⟨U, A, F⟩,∀B ⊆

A, the dominance relation D≼
B is defined as

D≼
B =

{(
xi , x j

)
∈ U ×U | f l

ak
(xi ) ≤ f l

ak

(
x j
)
,

f r
ak

(xi ) ≤ f r
ak

(
x j
)
,∀ak ∈ B

}
. (1)
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From (1), we easily find that the dominance relation D≼
B

is reflexive, asymmetric, and transitive. Then, the dominating
and dominated sets of xi ∈ U in terms of B are defined as

D+B (xi ) =
{

x j ∈ U |xi D≼
B x j

}
D−B (xi ) =

{
x j ∈ U |x j D≼

B xi

}
which are called knowledge granules induced by D≼

B . There-
fore, we can know the ordinal position of an object under an
attribute by calculating the cardinality of the corresponding
dominating and dominated sets.

B. Graph Theory

In the light of literature [33], the set of features H =

{h1, . . . , hn} can be represented by a node set with the same
amount from a weighted undirected fully connected graph G =
(V, E). What is more, the set of edges E formed by connecting
the points in the graph indicates the relationships between
features. The adjacency matrix B of the graph G is used to
describe the information contained by relationships between
nodes, where the elements B(i, j), 1 ⩽ i, j ⩽ n, demonstrate
the confidence that features hi and h j (thenodesv⃗i andv⃗ j ) are
both good candidates to be selected. The element B(i, j) can
be expressed by an associated weight function ω(·, ·)

B(i, j) = ω(i, j).

For the unsupervised feature selection, ω(·, ·) is a weighted
linear combination of the two statistics of the features hi and
h j , defined as

ωU
(
v⃗i , v⃗ j

)
= αL i j + (1− α)Di j .

L i j indicates the relevance of feature hi to the information
system, while Di j represents the irrelevance between feature
hi and other features. Therefore, ωU (v⃗i , v⃗ j ) can be used to
measure the importance of the feature in terms of the principles
of relevance and nonredundancy.

C. Matrix Power Series

Given a sequence of matrices Q0, Q1, Q2, . . . , Qk, . . .,
where Qk = (q(k)

i j ) ∈ Cm×n , then the sum formula Q0+ Q1+

Q2 + · · · + Qk + · · · is called an MPS [34], which can be
written as

∑
∞

k=0 Qk .
For any positive integer N , let S(N )

=
∑N

k=0 Qk be the
partial sum of the matrix series. If the matrix sequence {S(N )

},
which is made of S(N )

=
∑N

k=0 Qk , converges [35] and has a
limit, that is, lim

N→∞
S(N )
= S, then the matrix series

∑
∞

k=0 Qk

converges, and let call S the sum of this matrix series, that
is, S =

∑
∞

k=0 Qk . It is worth noting that, if the matrix
series

∑
∞

k=0 Qk converges to S, we will get m × n convergent
numerical series, that is,

∞∑
k=0

Qk = S ⇔ lim
N→∞

N∑
k=0

Qk = S

⇔ lim
N→∞

N∑
k=0

a(k)
i j = si j

⇔

∞∑
k=0

a(k)
i j = si j .

Using the convergence properties of MPS can greatly sim-
plify the calculation when summing some specific matrix
series.

D. Spearman Rank Correlation Coefficient

Let ρ be an SRCC [36] of two vectors a and b, where

ρ = 1−
6
∑n

i=1 d2
i

n
(
n2 − 1

) . (2)

n is the sample size, and d represents a sort difference
sequence of a and b. From (2), we can conclude that ρ ∈

[−1, 1], and the closer the absolute value of ρ is to 1, the
stronger the correlation between a and b.

Example 1: Here are two stocks a and b in different sectors,
given the monthly returns of these two stocks over the past
six months

a = (1.23%, 2.58%,−0.03%, 0.97%,−1.45%, 1.63%)

b = (0.32%, 0.56%, 0.13%, 3.28%, 2.99%, 4.01%).

Then, the sort difference sequence of a and b is

d = (4, 6, 2, 3, 1, 5)− (2, 3, 1, 5, 4, 6) = (2, 3, 1,−2,−3,−1)

and the SRCC is computed as follows:

ρ = 1−
6×

(
(2)2
+ (3)2

+ 12
+ (−2)2

+ (−3)2
+ (−1)2)

6×
(
62 − 1

)
= 0.2.

It shows that the monthly returns of these two stocks have
a slight trend of change in the same direction in the past six
months.

III. OUR APPROACH

The proposed feature selection method can be constructed
in three steps, as shown in Fig. 1.

A. Digital Feature of Interval-Valued Random Variable

In order to facilitate the selection and definition of cor-
relation indicators and redundancy indicators for IVIS in
subsequent research, the following numerical characteristic
definitions of interval-valued random variables are given first.

Definition 1: Let g = (g−, g+) and h = (h−, h+) be two
interval values. The distance [23] between two interval values
g and h is redefined as follows:

d(g, h) =
1
√

3

(
|g− − h−|2 + |

g− + g+

2
−

h− + h+

2
|
2
+ |g+ − h+|2

) 1
2

.

Definition 2: In the probability distribution, let Y be an
interval-valued random variable. The population mean E(Y ),
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Fig. 1. Construction process of our approach.

the population variance D(Y ), and the standard deviation of
Y are denoted as follows:

E(Y ) = E
((

Y l , Y r))
=
(
E
(
Y l), E

(
Y R))

=

(
1
N

N∑
i=1

yl
i ,

1
N

N∑
i=1

yr
i

)

D(Y ) =
1
N

N∑
i=1

(d(yi , E(Y )))2

σ(Y ) =
√

D(Y ) =

(
1
N

N∑
i=1

(d(yi , E(Y )))2

)1/2

where N indicates the size of the population. Similarly, if n
is equal to the sample size, then sample mean Y and sample
variance S2 could be defined as

Y =
(

Y l , Y r
)
=

(
1
n

n∑
i=1

yi
l ,

1
n

n∑
i=1

yi
r

)

S2
=

1
n − 1

n∑
i=1

(
d
(
yi , Y

))2

S(Y ) =
√

S2(Y ) =

(
1

n − 1

n∑
i=1

(
d
(
yi , Y

))2

)1/2

.

In practice, the values of sample statistics are often used
to estimate population parameters. Based on the previous
definition [32], given an IVOIS IS≼

= ⟨U, A, F⟩,∀B ⊆ A,
the dominance relation D≼

B is defined as

D≼
B =

{(
xi , x j

)
∈ U ×U

∣∣vl
ak

(xi ) ≤ vl
ak

(
x j
)
,

vr
ak

(xi ) ≤ vr
ak

(
x j
)
,∀ak ∈ B

}
.

However, this definition cannot sort two nested interval
values. In addition, a certain degree of deviation should be
allowed when ordering sample values. Therefore, we introduce
a new method of ranking interval values.

Definition 3: Let g = (g−, g+) and h = (h−, h+) be two
interval values. g ≼ f if and only if(

h+ + h−

2
−

g+ + g−

2

)
> β

where β is a nonnegative number, which represents the toler-
ance of deviation.

Definition 4: Given an IVOIS IS≼
= ⟨U, A, F⟩,∀B ⊆ A,

the dominance relation D≼
B is defined as

D≼
B =

{(
xi , x j

)
∈ U ×U |

f l
ak

(
x j
)
+ f r

ak

(
x j
)

2

−
f l
ak

(xi )+ f r
ak

(xi )

2
≥ β, β ≥ 0

}
.

The dominating and dominated sets of xi ∈ U in terms of
B are defined as

D+B (xi ) =
{

x j ∈ U |xi D≼
B x j

}
D−B (xi ) =

{
x j ∈ U |x j D≼

B xi

}
which are called knowledge granules induced by D≼

B . We can
use the cardinality of the dominating or dominated sets of
xi ∈ U in terms of one feature h j to know the sort position of
the object xi in the attribute h j . Therefore, for an IVOIS IS≼

=

⟨U, A, F⟩,∀hi , h j ∈ A, SRCC of hi and h j is computed as

ρi, j = 1−
6
∑n

k=1

(∣∣D−
{hi }

(xk)
∣∣− ∣∣∣D−

{h j}
(xk)

∣∣∣)2

n
(
n2 − 1

) .

B. Graph Building for IVIS

In the unsupervised feature selection for IVIS, we build
upon a weighted undirected fully connected graph G =

(V, E). Using node set V = {v⃗1, . . . , v⃗n} represents the set
of features A = {h1, . . . , hn} from the IVIS. In addition,
using the set of edges E formed by connecting the points
in the graph indicates the relationship between features. Then,
the adjacency matrix B of the graph G is used to describe
the information contained by relationships between features,
where the element B(i, j), 1 ⩽ i, j ⩽ n, demonstrates the
confidence that features hi and h j (the nodesv⃗i and v⃗ j ) are
both good candidates to be selected. The element B(i, j) can
be expressed by an associated weight function ω(·, ·), defined
as

ωU
(
v⃗i , v⃗ j

)
= αL i j + (1− α)Di j . (3)

L i j shows the maximum normalized standard deviation of the
two features distributions on IVIS, i.e., L i j = max(Si , S j ),
where Si is the standard deviation over the samples {hi },
which is normalized to the range [0, 1] by the maximum
standard deviation over the attribute set F. L i j reflects the
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principle of relevance, which means the bigger, the better.
As for the principle of nonredundancy, there is no doubt that
we expect as small as possible. Therefore, in order to keep
the monotony of the criteria ω(i, j), the second term is the
opposite of the correlation Di j = 1 − |ρ(hi , h j )|. α is a
parameter ∈ [0, 1], with its value being estimated during the
experiments by fivefold cross-validating on the training set for
the classification tasks.

C. Feature Ranking Procedure

The feature ranking procedure for an IVIS can be explained
with the properties of the power series of matrices. Let η =

{v⃗0 = i, v⃗1, . . . , v⃗l−1, v⃗l = j} represent a path of length l
between nodes v⃗0 and v⃗l , where v⃗0 and v⃗l denote features
hi and h j on a weighted undirected fully connected graph
G = (V, E). Provided that the number of the nodes n in the
graph G is more than the length l of the path η, in this case,
the path can simply be deemed as a subset of the feature set A.

Then, the overall weight matched with η is defined as

ϑη =

l−1∏
k=0

B
(
v⃗k, v⃗k+1

)
with ϑη interpreting all the feature pairs that belong to it.
On account of that, there can be more than one path of length l
connecting nodes v⃗0 and v⃗l , let us define the set Φl

i, j consisting
of all the paths of length l between two nodes v⃗0 and v⃗l . Then,
we use the following sum:

Γl(i, j) =
∑

η∈Φl
i, j

ϑη

to express the contribution of all these paths. Following the
notion of matrix algebra, we can conclude that

Γl = Bl .

From the perspective of feature selection, feature hi and
feature h j can be related directly or through other features.
When holding the number of mediations connecting hi and h j

to be a constant l−1, Φl
i, j denotes all these possible situations.

Therefore, we can evaluate the single feature score for the
feature hi at a given path length l as

ϱl(i) =
∑
j∈V

Γl(i, j) =
∑
j∈V

Bl(i, j).

In addition, combining all the possible path lengths means
that the set of paths can be seen as all the subsets of feature
set A, which can be calculated as

ϱ(i) = =
∞∑

l=1

ϱl(i) =
∞∑

l=1

∑
j∈V

Γl(i, j)


=

∞∑
l=1

∑
j∈V

Bl(i, j)

.

Equation (4) evaluates the value of feature hi when consid-
ered in every subset of features. It is obvious that the higher
ϱ(i), the better. However, directly computing ϱ in terms of (4)

is impractical because the computation tends to be infinite.
As a result, it is apparent to explore whether we could simplify
the computation by applying the property of power series
convergence in algebra. Let Θ be the power series of adjacency
matrix B: Θ =

∑
∞

l=1 Bl . Then, ϱ(i) can be shown as

ϱ(i) =
∞∑

l=1

ϱl(i) =

[(
∞∑

l=1

Bl

)
I

]
i

= [Θ I]i

where I is a column vector whose each component equals 1,
and the square bracket denotes the i th component of this
vector.

The problem is that the power series
∑
∞

l=1 Bl may not be
convergent. Therefore, we should use the method of regular-
ization in the form of generating functions by assigning a
consistent value for the sum of possible divergent power series.
There exist different forms of generating functions [37], [38]
and the generating function that we define for the l − path as

ϱ̌(i) =
∞∑

l=1

ς lϱl(i) =
∞∑

l=1

∑
j∈V

ς lΓl(i, j)

where ς is a real-valued regularization factor and ς l can
be considered as the weight for paths of length l. Let δ(B)

be the spectral radius of B, so parameter ς was defined as
ς = 0.9/δ(B) in order to ensure that the infinite sum

∑
∞

l=1 Bl

would be convergent. The effectiveness of this method is
proven as follows.

Proof [39]: Given the unit matrix E and the eigen-
values {ϵ0, . . . , ϵn−1} of matrix B, obtaining from lin-
ear algebra, we can define the spectral radius δ(B) =

max
ϵi∈{ϵ0,...,ϵn−1}

(|ϵi |). Then, lim
l→∞

Bl
= 0 ⇔ δ(B) < 1 ⇔∑

∞

l=1 Bl
= (E − B)−1

− E, and Gelfand’s formula shows
that, for matrix B, we have δ(B) = lim

l→∞
∥Bl
∥

1/ l . Following
this, for matrix B and M , we have δ(B M) ≤ δ(B)δ(M).
When M = ς E, we obtain δ(ς B) = δ((ς E)B) ≤

δ(ς E)δ(B) = ςδ(B). Thus, if we choose ς , which could
satisfy 0 < ς < (1/δ(B)), the power series of matrix in
the definition of ϱ̌(i) would be convergent because 0 <

δ(ς B) = ςδ(B) < (1/δ(B))δ(B) = 1. Then, we can get
Θ̌ =

∑
∞

l=1 (ς B)l
= (E − ς B)−1

− E. Definitely, we use ς =

(0.9/δ(B)), ς ∈ (0, (1/δ(B))) for all the experiments in this
article.

As a result, ϱ̌(i) can be concisely computed with the
convergence property of the power series of a matrix, and we
can acquire the single score for each feature by marginalizing
this quantity

ϱ̌(i) =
[
Θ̌ I

]
i .

According to the definition of single scores of features
for IVISs in this article, the highest value means that the
corresponding feature tends to be most relevant but least
redundant compared with others. Therefore, the top-ranked
features should be retained as the reduction set for IVISs,
which can be obtained from the decreasing order of ϱ̌ vector.
Algorithm 1 completes feature ranking by following this logic.
The computational complexity of Algorithm 1 is O(mn3),
where m is the number of samples and n is the number of
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initial features. From this complexity, we can see that our
algorithm has a great advantage in reducing time under large
sample data.

Algorithm 1 Unsupervised Feature Ranking for IVIS
Input : I V I S = ⟨U, A, F⟩, α, β; where

U = {x1, x2, . . . , xm},
A = {h1, h2, . . . , hn}, α ∈ [0, 1], β ≥ 0;

Output : ϱ̌, the final scores for each feature and
select the features with top scores

1 for i ← 1 to n do
2 for k ← 1 to m do
3 calculate d

(
hi (xk), hi

)
;

4 end
5 compute S(hi );
6 end
7 for i ← 1 to n do
8 for j ← 1 to n do
9 for k ← 1 to m do

10 calculate D−hi
(xk) and D−h j

(xk);
11 end
12 compute ρ

(
hi , h j

)
;

13 Di j ← 1− |ρ
(
hi , h j

)
|;

14 L i j ← max
(
S(hi ), S

(
h j
))

;
15 B(i, j)← αL i j + (1− α)Di j ;
16 end
17 end
18 compute adjacency matrix B;
19 ς = 0.9/δ(B);
20 Θ̌ = (E − ς B)−1

− E;
21 ϱ̌(i) =

[
Θ̌ I

]
i .

return : ϱ̌

Next, a small example is given to explain the algorithm
presented above.

Example 2: Table I shows an IVIS = (U, A, F). Then,
we have

S(h1) = 0.1099, S(h2) = 0.1034, S(h3) = 0.2265
S(h4) = 0.1713, S(h5) = 0.2692, S(h6) = 0.2214

L12 = L21 = 0.0390, L13 = L31 = 0.7426
L14 = L41 = 0.4096, L15 = L51 = 1.0000
L16 = L61 = 0.7119, L23 = L32 = 0.7426
L24 = L42 = 0.4096, L25 = L52 = 1.0000
L26 = L62 = 0.7119, L34 = L43 = 0.7426
L35 = L53 = 1.0000, L36 = L63 = 0.7426
L45 = L54 = 1.0000, L46 = L64 = 0.7119
L56 = L65 = 1.0000.

When β = 0.01 and α = 0.7, following Definition 4,
we could get

ρ1,1 = ρ2,2 = ρ3,3 = ρ4,4 = ρ5,5 = ρ6,6 = 1.0000
ρ1,2 = ρ2,1 = 0.9940, ρ1,3 = ρ3,1 = 0.6429
ρ1,4 = ρ4,1 = −0.2679, ρ1,5 = ρ5,1 = 0.1905

ρ1,6 = ρ6,1 = 0.6310, ρ2,3 = ρ3,2 = 0.6667
ρ2,4 = ρ4,2 = −0.2917, ρ2,5 = ρ5,2 = 0.2440
ρ2,6 = ρ6,2 = 0.6190, ρ3,4 = ρ4,3 = −0.1250
ρ3,5 = ρ5,3 = 0.4464, ρ3,6 = ρ6,3 = 0.2202
ρ4,5 = ρ5,4 = 0.3333, ρ4,6 = ρ6,4 = −0.2440
ρ5,6 = ρ6,5 = 0.3333

and the adjacency matrix B is
0.0273 0.0291 0.6269 0.5063 0.9429 0.6090
0.0291 0.0000 0.6198 0.4992 0.9268 0.6126
0.6269 0.6198 0.5198 0.7823 0.8661 0.7537
0.5063 0.4992 0.7823 0.2867 0.9000 0.7251
0.9429 0.9268 0.8661 0.9000 0.7000 0.9000
0.6090 0.6126 0.7537 0.7251 0.9000 0.4983

.

Then, we can get the eigenvalue of matrix B and the
following computation:

{ϵ0, ϵ1, ϵ2, ϵ3, ϵ4, ϵ5}

= {3.9337,−0.0150,−0.2036,

−0.2585,−0.3945,−1.0300}

ς = 0.9/δ(B) = 0.9/3.933693 = 0.2287927
Θ̌ = (E − ς B)−1

− E

=


0.8336 0.8203 1.2501 1.1281 1.5520 1.2334
0.8203 0.8002 1.2294 1.1091 1.5252 1.2152
1.2501 1.2294 1.6409 1.5593 2.0471 1.6729
1.1281 1.1091 1.5593 1.3314 1.8846 1.5309
1.5520 1.5252 2.0471 1.8846 2.4174 2.0309
1.2334 1.2152 1.6729 1.5309 2.0309 1.5992


ϱ̌(i) =

[
Θ̌ I

]
i

= (6.8174, 6.6994, 9.3997, 8.5434, 11.4572, 9.2826)T
i .

Finally, we can get the feature ranking h5, h3, h6, h4, h1,

and h2, and the top-ranked features should be selected first as
a reduction set.

IV. EXPERIMENTS AND RESULTS

In this section, we carry out a series of experiments to verify
the efficiency and effectiveness of the proposed unsupervised
feature selection algorithm for IVIS.

The configuration of the computer used for experiments is
given as follows. CPU is AMD R7-5800H. The processor
base frequency is 3.2 GHz, and the acceleration frequency
is 4.4 GHz. The memory capacity is 16 GB. The operation
system is 64-bit Windows 11. The algorithms are coded in
Python and run on the PyCharm platform. We downloaded
14 datasets, as summarized in Table II, from the UCI machine
learning repository and Kaggle. The feature values of the
14 datasets are real values, so these datasets are processed into
interval value datasets before experiments. The preprocessing
way is given as follows.

Let (U, C, F) be a real-valued information system. Then,
for all a ∈ C and x ∈ U , let a(x)l

= a(x) − 2std and
a(x)r

= a(x) + 2std, where std is the standard deviation of
the corresponding information values of objects belonging to
the same class as object x under the attribute [40], [41].
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TABLE I
IVIS

Fig. 2. Reduction time of IGUFS.

TABLE II
SUMMARY OF THE EXPERIMENTAL DATASETS

Four classification algorithms, including KNN, SVM [42],
Bayes, and Random Forest, are used to evaluate the clustering
effects of our three algorithms and other eight comparative
algorithms. We use the results obtained by classifiers to com-
pare the classification results of the original dataset to obtain
the classification accuracy of various algorithms. In order
to avoid significant differences between the experimental

classification results and the actual situation due to random
parameters in clustering algorithms, the experiment is repeated
five times. Eventually, the final results are compared with the
average of the results of five repeated experiments.

A. Compared Algorithms

Seven feature selection (attribute reduction) algorithms are
adopted as comparison algorithms, as shown in the following.

1) Original Attributes (Original Data): All conditional
attributes in the original dataset are used to classify.

2) Unsupervised Attribute Reduction Based on
α-Approximate Equal Relation (AERAR) [23]: The
algorithm AERAR uses α-approximate equal relation
to generate unsupervised attribute reduction.

3) Infinite Feature Selection (Inf-FS) [33]: The filtering
feature selection framework considers subsets of fea-
tures as paths in a graph, where a node is a feature
and an edge indicates pairwise (customizable) relations
among features, dealing with relevance and redundancy
principles.

4) θ -Rough Degree-Based Method (UM) [19]: This algo-
rithm UM uses θ -rough degree to measure uncertainty
to perform unsupervised attribute reduction.
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TABLE III
AVERAGE NUMBER OF SELECTED ATTRIBUTES

5) Hybrid-Kernel-Based Fuzzy Complementary Mutual
Information Method (HKCMI) [25]: The fuzzy comple-
mentary entropy, the corresponding complementary con-
ditional entropy, and the fuzzy complementary mutual
information are used to construct the algorithm of fea-
ture selection.

6) Multilevel Neighborhood-Based Sequential Three-Way
Decision (MNS3WD) [26]: This is an integrative
multigranularity approach to the sequential three-way
decision in a neighborhood system by the evolution
mechanism of data and parameters. We only consider the
horizontal granularity based on γ and set the decision
thresholds (α, β) in (0.15, 0.3) and (0, 0.15) in the
following experiments.

7) Distance Measure-Based Fuzzy Rough Set (AVDP) [27]:
This method first constructs a fuzzy rough set model
based on distance measure with a fixed parameter. Then,
the fixed distance parameter is replaced by a variable
one to better characterize attribute reduction with fuzzy
rough sets. The parameter γ is set to 0.005 in the
following experiments.

8) Neural Networks (MIV-BPNN): The mean impact value
(MIV) was selected as an indicator to evaluate the
importance of each variable on the dependent variable.
MIV is an indicator used to determine the magnitude of
the effect of input neurons on output neurons, and its
absolute size represents the relative importance of the
impact.

9) The interval-valued feature selection based on the graph
theory (IGUFS) method is proposed in this article.

In general, AERAR and UM are unsupervised feature
selection algorithms for IVISs, and HKCMI and Inf-FS
are unsupervised feature selection algorithms for single
value information systems, while MNS3WD, AVDP, and
MIV-BPNN are supervised feature selection algorithms for the
single-valued information system. For these feature selection
algorithms suitable for single-valued information systems,
we convert the original IVIS into a single-valued information
system by taking the midpoint value of the interval when using
these algorithms.

B. Experimental Design

First, the reduction time of our algorithm IGUFS on 14 dif-
ferent datasets is given, and the number of reduction sets
from different algorithms mentioned before is compared and
analyzed. Second, we compare the classification accuracy
on the original dataset, the classification accuracy of the
seven comparative algorithms, and the classification accuracy
obtained by the three algorithms proposed in this article.
In addition, two hypothesis tests are designed to further
analyze the differences between the classification accuracy
of our algorithm and the comparison algorithms. Ultimately,
the influence of different parameter combinations on the final
clustering effect of our algorithm is explored.

There are two parameters α and β when building the
algorithm IGUFS. The parameter α is introduced to control the
proportion between relevance and nonredundancy principles,
and the parameter β is used as a certain degree of deviation
should be allowed when ordering sample values. From the
definition, different combinations of α and β in algorithm
IGUFS could lead to eventual unequal clustering accuracy.
As a result, we set the variation range of the parameter α in the
experiment from 0 to 1, where the step size of each variation
is 0.1. Simultaneously, the parameter β value was set at 0.001,
0.01, 0.1, and 0, respectively. The final parameter combination
of α and β is chosen based on the final classification results of
the fivefold cross-validation on the training set. To facilitate the
comparison with algorithm IGUFS, the percentage of selected
attributes in IGUFS was set to 45%, 65%, and 85% in advance.
In addition, all other comparison algorithms also use fivefold
cross-validation to determine the number of features selected
and classification accuracy.

C. Experimental Results

When the reduction time of the algorithm on the dataset
exceeds 24 h, the experiment will be terminated due to the
excessive time cost of the algorithm. The reduction time
difference of our algorithm IGUFS on 14 different datasets
is shown in Fig. 2. For the dataset letter with the maximum
sample size of 20 000 and 16 features, the reduction time of
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IGUFS is 1067.5 s or about 18 min. However, there are five
comparison algorithms with a reduction time of more than
24 h on this dataset.

The average numbers of selected features under comparative
algorithms and our algorithms are given in Table III, where
we can know that these feature selection methods could
reduce attributes effectively on different levels. However, the
advantage of IGUFS over other algorithms is that the number
or proportion of selected features can be easily changed
according to actual needs. For example, if the goal of higher
classification accuracy for the dataset is pursued, for some
datasets with relatively few attributes, such as Immunotherapy,
the proportion of selected attributes can be appropriately
increased like 65% and 85%. For datasets with a large number
of attributes, such as sonar and Acoustic, the proportion of
selected attributes can be appropriately decreased like 45%.
If it is to maximize the efficiency of reduction, that is,
a large number of attributes are reduced, but the reduction
of classification accuracy is small, the proportion of selected
attributes can be appropriately decreased like 45% or lower to
determine the final option. For instance, 45% seems a better
choice than 85% for dataset Dermatology on account of that
the classification accuracy is only reduced from 98.04% to
96.37% on KNN when the number of attributes is reduced
by 13 (or the ratio of attribute reduction is reduced by 40%
of the original dataset). However, for most feature selection
methods, such as AERAR and UM, they can only give a
unique reduction set result and cannot be adjusted according
to actual needs.

Table IV–VII show the classification accuracy of the orig-
inal data and the reduced datasets based on these seven
algorithms and our proposed three kinds of algorithms on
KNN, SVM, Bayes, and Random Forest, respectively. The
bolded numbers in each row from Table IV–VII are the highest
classification accuracy obtained by a total of nine algorithms
under the corresponding dataset. We regard these datasets
(Acoustic, AST, cmc, Dermatology, ES, GCC, Immunother-
apy, Ionosphere, sonar, and UFD) as normal datasets and the
remaining four datasets (Abalone, Bid, Nursery, and letter) as
large sample size datasets. Then, among 40 records on normal
datasets in Tables IV–VII, the algorithm IGUFS (45%) has
13 records to achieve the best clustering accuracy, and the
algorithm IGUFS (65%) has 28 records to achieve the best
classification accuracy, while the algorithm IGUFS (85%) has
25 records to achieve the best classification accuracy. However,
for algorithms HKCMI, UM, MNS3WD, AVDP, AERAR,
Inf-UFS, and BPNN, only three, three, three, two, seven,
four, and three records achieve the best accuracy. What is
more, the average classification accuracy of algorithm IGUFS
(85%) and the average classification accuracy of algorithm
IGUFS (65%) on ten normal datasets tend to have a bet-
ter performance against selected comparative algorithms. For
the four large sample datasets selected in the experiment,
among 16 records (ignoring the algorithms without classifi-
cation accuracy, comparing the algorithms with classification
accuracy), the algorithm IGUFS (45%) has four records to
achieve the best clustering accuracy, and the algorithm IGUFS
(65%) has seven records to achieve the best classification

accuracy, while the algorithm IGUFS (85%) has eight records
to achieve the best classification accuracy. The original dataset
has only five records to achieve the best classification accuracy.
Most obviously, our proposed algorithm IGUFS can improve
or maintain the classification accuracy of the original data
efficiently from Table IV to VII. As a result, algorithm IGUFS
has a degree of superiority for feature selection of IVISs on
classification tasks.

D. Statistical Testing

In order to further compare the experimental results of
different algorithms, two statistical test methods, the Friedman
test [43] and the Wilcoxon test, are selected to verify the
validity of the algorithm comparison.

The null hypothesis of the Friedman test, as a nonparametric
statistical test method, is that all experimental algorithms have
equivalent classification performance. The formula is defined
as

FF =
(T − 1)χ2

F

T (s − 1)− χ2
F

χ2
F =

12T
s(s + 1)

(
s∑

i=1

R2
i −

s(s + 1)2

4

)
where T and s are the numbers of experimental datasets and
experimental algorithms, respectively, and Ri represents the
average ranking value of the classification accuracy results of
algorithm i on different classifiers. Since some comparison
algorithms fail to generate results on large sample datasets
within 24 h, subsequent analyses in this part are performed on
normal datasets mentioned above.

Table VIII represents the average ranking of the classifica-
tion accuracy results of the algorithms AERAR, Inf-UFS, UM,
HKCMI, MNS3WD, AVDP, MIV-BPNN, and IGUFS on clas-
sifier KNN, SVM, Bayes, and Random Forest, respectively.
In the comparison experiments where T = 10 and s = 10, the
Friedman values of the algorithms classification performance
can be obtained from the average ranking results in Table IX.

As shown in Table IX, when the significance level is 0.05,
if the P value is greater than 0.05, it means that the null
hypothesis is not rejected. If the P value is less than 0.05,
it means that the null hypothesis is rejected. From Table IX,
we know that the P values of Friedman tests are all less than
the significance level of 0.05, so the null hypothesis can be
rejected. In addition, the Wilcoxon test can further analyze the
relative performance and differences of all the compared algo-
rithms. Three sets of hypothesis tests are performed as follows,
corresponding to the three selection ratios of the reduction
algorithm proposed in this article. For each hypothesis test, the
null hypothesis is that the classification accuracy obtained by
the method in this article is less than or equal to the other seven
selected comparative methods, and the alternative hypothesis
is that the classification accuracy obtained by the method in
this article is greater than the other seven methods. The P
values are shown in Table X–XIII.

When the null hypothesis is rejected, it indicates that the
classification accuracy of our model is higher than other
comparison models. It can be seen from the table that, when
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TABLE VIII
AVERAGE RANKING OF CLASSIFICATION ACCURACIES OF ALGORITHMS

Fig. 3. (a) Acoustic-KNN. (b) AST-KNN. (c) Dermatology-KNN. (d) ES-KNN. (e) Immunotherapy-KNN. (f) Ionosphere-KNN. (g) sonar-KNN. (h) UFD-KNN.
(i) Abalone-KNN. (j) Bid-KNN. (k) Nursery-KNN. (l) letter-KNN.

TABLE IX
RESULT OF THE FRIEDMAN TEST

the selection ratio of feature selection of the model proposed
in this article is determined to be 65%, whether it is the KNN
classifier or the SVM classifier or the Bayes classifier or the
Random tree classifier, the test result is to reject the null
hypothesis, indicating that the classification accuracy of our
model is significantly higher than models from other compar-

TABLE X
P VALUE OF THE WILCOXON TEST ON KNN

ison algorithms. When the proportion of selected features is
45% and 85%, only the hypothesis test with the comparison
algorithm AERAR and Inf-UFS fails, which may be caused
by the small sample size.
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TABLE XI
P VALUE OF THE WILCOXON TEST ON SVM

TABLE XII
P VALUE OF THE WILCOXON TEST ON BAYES

TABLE XIII
P VALUE OF THE WILCOXON TEST ON RANDOM FOREST

E. Experimental Parameter

For the purpose of analyzing the influence of different
parameter combinations of α and β on the classification
accuracy of the algorithm IGUFS proposed in this article,
we draw the classification accuracy results obtained by com-
bining the previous parameter combinations of α and β for
the algorithm IGUFS on the classifier KNN on 12 datasets,
as shown in Fig. 3. It can be seen from the figures that it
is meaningful to set different combinations of parameters of
α and β because different parameter combinations will lead
to significant differences in the final classification accuracy
results obtained. In addition, the parameter combinations to
obtain the optimal classification results tend to be inconsistent
for different datasets. For example, we can see that, for
datasets Acoustic, AST, and Nursery, IGUFS needs to choose
larger α to achieve better performance, while, for datasets Der-
matology, ES, and Immunotherapy, IGUFS needs to choose
smaller α. When β approaches 0.1, IGUFS would achieve
better performance for most datasets. For most datasets,
the optimal classification accuracy of the algorithm can be
achieved by different parameter combinations rather than just
one parameter combination. For each dataset, we can choose
the appropriate combination of parameters α and β to achieve
relatively optimal performance. For instance, on the dataset

sonar with the combination of α = 0.3 and β = 0.1, the
proposed algorithm IGUFS could achieve relatively optimal
performance. In conclusion, different parameter combinations
could cause significant differences in the eventual classifica-
tion accuracy results obtained. Hence, we must choose the
appropriate parameter combination of α and β to achieve
the relatively optimal classification accuracy results of the
algorithm IGUFS.

In summary, the algorithm IGUFS is efficient and effective
for the feature selection for IVISs under four clustering
algorithms of KNN, SVM, Bayes, and Random Forest.

V. CONCLUSION

This article proposes a new feature ranking procedure
with the principles of relevancy and nonredundancy by using
the graph theory and the algebra of matrix for IVISs, and
we set three different selected proportions to construct our
feature selection algorithms. The experiments are performed
on 14 public datasets with seven comparative algorithms. The
results of the experiments verify that the proposed method is
an effective and efficient scheme for reducing interval-valued
attributes.

This work studies feature selection algorithms for static
IVISs, while, for the dynamic interval-valued datasets, it is our
present research direction to get an efficient attribute reduction
mechanism for dynamic IVISs based on the research of this
article. In addition, there is no automatic mechanism to decide
the number of features to choose when we pick the top-ranked
features to be the reduction subset. Therefore, studying how to
determine the number of features more perfectly also belongs
to future work.
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