
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 32, NO. 6, JUNE 2024 3581

IFCRL: Interval-Intent Fuzzy Concept
Re-Cognition Learning Model
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Abstract—The fuzzy concept serves as a crucial tool for describ-
ing phenomena and constitutes the fundamental unit of human cog-
nition. Fuzzy concepts are characterized by their extent and intent,
with the latter being comprised of continuous membership degrees.
Given that human cognition often progresses from vagueness to
precision, it is imperative that the form of intent not be confined to
a singular continuous value; rather, an interval possesses superior
flexibility in this regard. Initial cognitive processes lack compre-
hensiveness in acquiring knowledge, necessitating subsequent cog-
nitions to more accurately delineate the intended scope of a concept.
Motivated by this insight, we proposed an interval-intent fuzzy
concept re-cognition learning model (IFCRL). First, this model
transforms fuzzy concept intent from a single continuous value
into an interval-based representation, which describes the range of
attribute values for all objects within the given interval. Second,
in order to simulate secondary cognitive processes akin to those
exhibited by humans toward phenomena, we present a concept
re-cognition learning method capable of effectively scaling intervals
within reasonable bounds. Third, aiming to overcome cognitive
barriers and emulate imaginative processes observed in human
brains, we introduce a concept clustering approach based on intent
similarity which significantly reduces concept complexity while en-
hancing cognitive efficiency. Finally, we evaluate our classification
performance using 12 datasets and experimental results demon-
strate that IFCRL outperforms 14 other classification algorithms
both feasibly and effectively.

Index Terms—Concept clustering, concept-cognitive learning,
granular computing, interval-intent, object classification.

I. INTRODUCTION

COGNITIVE informatics is an emerging interdisciplinary
research field that integrates various domains, including

modern informatics, artificial intelligence, cybernetics, cogni-
tive science, neuropsychology, medical science, philosophy,
linguistics, life sciences, etc [1]. In the realm of cognitive infor-
matics, relations are recognized as information. The connections
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between objects can be established through object–object
relationships, attribute–object relationships or attribute–
attribute relationships [2]. As the fundamental unit of human
cognition, concepts encompass the relationship between objects
and attributes. The extent of a concept refers to the set of all
objects or instances that the concept represents, while the intent
of a concept pertains to the set of attributes or properties that
it implies [3]. Investigating the relationship between entities
through the integration of concepts with mathematical, psycho-
logical, and other methodologies has emerged as a prominent
research direction. Moreover, concept learning has expanded
into various interconnected research domains including granular
computing [4], [5], [6], [7], rough set [8], [9], [10], formal
concept analysis [11], [12], [13], [14], among others.

The field of concept-cognitive learning encompasses the study
of cognition and the acquisition of knowledge through con-
ceptual frameworks [15]. In recent years, many different types
of concept learning models have been proposed, such as ab-
stract concept [16], Wille’s formal concept [17], object-oriented
concept [18], fuzzy concept [19], [20], [21], [22], three-way
concept [23], [24], two-way concept [25], [26], [27]. In terms of
basic theory, the framework of concept learning was investigated
by Yao [28], taking into account both cognitive science and
granular computing. Zhang et al. [29] analyzed the sufficient
and necessary between attributes and objects, and combined
intuition and reasoning to establish a rigorous mathematical
model to simulate human cognitive processes. Based on this,
Xu et al. [30] extensively discussed the theory of transform-
ing arbitrary information granules into necessary and sufficient
information granules. Zhang et al. [31] proposed a two-way
concept-cognitive learning model based on three-way decision
under fuzzy context, which can directly learn sufficient and nec-
essary concepts from arbitrary information granules. In addition,
Xu et al. [25] proposed a two-way dynamic concept-cognitive
learning model within a fuzzy context.

The theoretical system of two-way concept-cognitive learning
has been gradually complete. At the same time, the model
combining concept-cognitive with machine learning has devel-
oped rapidly in recent years. A perspective on machine learning
was presented by Mi et al. [32], introducing a comprehen-
sive approach to cognitive learning. For application to clas-
sification problems, many concept-cognitive learning models
[22] [33], [34], [35] have been proposed. Shi et al. [33] proposed
a concept cognitive learning model that is good at incremental
learning to implement static and dynamic classification tasks.
Mi et al. [22] proposed a concept clustering method considering
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object information in fuzzy context and applied it to the problem
of concept generation. Niu et al. [36] proposed a classification
model based on fuzzy rules, which realizes granularity reduc-
tion and dynamic update in fuzzy environment. Liu et al. [37]
proposed a stochastic incremental incomplete concept-cognitive
learning method that is not influenced by the cognitive sequence
of attributes, and employed a stochastic strategy for cognition.
Hu et al. [38] explored concept learning models in the interval-
valued context. Zhang et al. [39] proposed a incremental weight
concept-cognitive learning algorithm based on fuzzy entropy to
solve individual cognitive limitation.

The existing concept-cognitive learning still holds immense
potential for development. However, the current classification
learning models fail to consider interval-valued formal concepts
in a fuzzy context. Each granular concept is learned only once,
resulting in relatively shallow acquired knowledge. In addition,
the existing concept cognitive learning models restrict cognitive
thinking and create cognitive barriers by considering object
information as the basis for participation in clustering processes
(concepts can only be clustered if their extent intersect). To
delve deeper into knowledge, obtain more accurate concepts,
and break down cognitive barriers, we propose an interval-intent
fuzzy concept re-cognition learning (IFCRL) model under a
fuzzy context. The primary contributions of this article are as
follows:

1) We introduce new mapping operators that form the basis
of a novel concept definition method called interval-intent
fuzzy concept. We also discuss the fundamental properties
of interval-intent fuzzy concepts and define two types of
interval-intent fuzzy granular concepts based on granular
computing to represent data from different perspectives.

2) Building upon these new granular concepts, we propose
a concept re-cognition process that effectively reduces
cognitive errors caused by noise data (mainly refers to
extreme value cases) and closely mimics human secondary
cognition.

3) Furthermore, the proposed clustering algorithm is based
on intent similarity, effectively overcoming the cognitive
barrier (concepts can only be clustered if their extent
intersect). This approach significantly reduces the concept
space and enhances classification efficiency.

4) Finally, we compare IFCRL with 14 different classifica-
tion algorithms using 12 datasets from UCI and KEEL
databases. Moreover, we analyze how parameters influ-
ence both the size and accuracy of the clustering space. Our
results demonstrate that IFCRL achieves superior average
accuracy compared to other methods.

Compared to precise fuzzy values, interval values offer greater
flexibility and comprehensibility in our cognitive process. The
concept’s intent shifts from fuzzy values to interval values,
allowing for a reasonable summarization of the attribute mem-
bership degrees of all objects within the scope. The re-cognition
process emulates humans’ second understanding of things, elim-
inating cognitive errors caused by noise and enabling a more ac-
curate comprehension of the concept’s intent. Clustering based
on intent similarity transcends cognitive boundaries and presents

new possibilities for cognition (even extent-disjoint concepts can
be clustered).

The rest of this article is organized as follows. Section II
introduces the interval set correlation operations used in this
study along with basic definitions of fuzzy concepts while dis-
cussing the motivation behind this research. Section III proposes
a model for IFCRL. Extensive experiments are conducted in
Section IV to validate the feasibility of the proposed model.
Finally, Section V concludes this article.

II. RELATED WORK

This section mainly introduces the related operations of inter-
val sets and the relevant knowledge of fuzzy concept-cognitive
learning.

A. Interval Set

Let U stands for the unit closed interval from 0 to 1, and [U ]
denote the set of all closed intervals on the interval [0,1]. IfM be
a nonempty set, we call the mapping B̃ : M → [U ] an interval
set on M . And all interval sets on M are denoted as I(M).

For ∀B̃ ∈ I(M), let B̃±(c) = [B̃−(c), B̃+(c)], c ∈ M . We
define ordinary fuzzy sets B̃−, B̃+ : M → U as lower-interval
sets and upper-interval sets ofM , respectively. For convenience,
B̃± is used to represent an interval set [B̃−, B̃+]∀c in this article.
B̃− and B̃+ denote the ordered set consisting of all lower and
upper bounds of the interval set B̃±.

The four representations of interval sets in this article are as
follows:

B̃± =
[
B̃−, B̃+

]
∀c

=
[{

B̃−(c1), . . . , B̃−(c|M |)},

{B̃+(c1), . . . , B̃
+(c|M |)

}]
∀c

=
{[

B̃−(c1), B̃+(c1)
]
, . . . ,

[
B̃−(c|M |), B̃+(c|M |)

]}
.

The interval inclusion relationship consistent with human
cognition is defined as B̃±

1 ⊆ B̃±
2 if ∀c ∈ M, B̃−

1 (c) ≥ B̃−
2 (c)

and B̃+
1 (c) ≤ B̃+

2 (c). We call two interval sets B̃±
1 and B̃±

2 are
intersected if the following conditions are satisfied: ∃ai ∈ U ,
B̃−

1 (ci) ≤ ai ≤ B̃+
1 (ci) and B̃−

2 (ci) ≤ ai ≤ B̃+
2 (ci), i =1, 2,

· · · , |M |.
Definition 1: Given two interval sets B̃±

1 and B̃±
2 which are in-

tersected, their intersection, and union operations are described
as the following formula:

B̃±
1 ∩ B̃±

2 = [{max(B̃−
1 (ci), B̃

−
2 (ci)) | i = 1, 2, . . . , |M |}

{min(B̃+
1 (ci), B̃

+
2 (ci)) | i = 1, 2, . . . , |M |}]∀c

B̃±
1 ∪ B̃±

2 = [{min(B̃−
1 (ci), B̃

−
2 (ci)) | i = 1, 2, . . . , |M |}

{max(B̃+
1 (ci), B̃

+
2 (ci)) | i = 1, 2, . . . , |M |}]∀c.
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We define the number multiplication and addition operations
of the interval set as follows:

a · B̃±
1 (c) =

[
a · B̃−

1 (c), a · B̃+
1 (c)

]
∀c

B̃±
1 (c) + B̃±

2 (c) =
[
B̃−

1 (c) + B̃−
2 (c), B̃

+
1 (c) + B̃+

2 (c)
]
∀c

B. Fuzzy Concept-Cognitive Learning

Fuzzy formal context (G,M, Ĩ) is a triple, whereG represents
the object set, M represents the attribute set, and Ĩ represents
the fuzzy relationship between the object and the attribute. The
membership degree Ĩ(x, c) between object x and attribute c in Ĩ
satisfied Ĩ(x, c) ∈ [0, 1]. We call the quintuple (G,M, Ĩ,D, J)
fuzzy-classical decision formal context, where Ĩ : G×M →
[0, 1] and J : G×D → {0, 1}.

Let (G,M, Ĩ) be a fuzzy formal context. For X ⊆ G and
B̃ ∈ I(M), the two mapping operators L̃ and N are defined as
follows [19], [40]:

L̃(X) =

{ ∧
x∈X

Ĩ(x, ci)|i = 1, 2, . . . , |M |
}

N(B̃) =
{
x ∈ G|∀ci ∈ M, B̃(ci) ≤ Ĩ(x, ci)

}
.

We call a pair (X, B̃) the fuzzy concept if L̃(X) = B̃ and
N(B̃) = X . And we call X the extent of the concept and B̃ the
intent of the concept. Generally speaking, the learning process is
complicated due to the large number of fuzzy concepts. There-
fore, the idea of particle computing is introduced to simplify
it into fuzzy granular concept. The fuzzy conditional granular
concept derived from any object x is defined as (NL̃(x), L̃(x)).

Example 1: The Table I represents a fuzzy formal deci-
sion context consisting of twelve objects and two condition
attributes, where X1 = {x1, x2, x3, x4, x5, x6} and X2 = {x7,
x8, x9, x10, x11, x12}. For the case of decision d = 1, the clas-
sical fuzzy conditional granular concepts are ({x1, x3, x6},
{0.32, 0.63}), ({x2, x3, x5, x6}, {0.36, 0.52}), ({x3}, {0.48,
0.83}), ({x3, x4, x5, x6}, {0.38, 0.48}), ({x3, x5, x6}, {0.4,
0.6}), ({x3, x6}, {0.41, 0.76}).

C. Motivation

The classical formal concepts primarily pertains to the depic-
tion of the association between discrete data objects and their
attributes. However, many real-world datasets are not binary or
discrete, resulting in significant information loss during process-
ing. Fuzzy concepts offer a viable solution to these issues. Nev-
ertheless, existing fuzzy concepts typically represent a single
value that accurately describes the lower bound of a concept’s
membership degree. Human perception often relies on a two-
way scope for defining things rather than a one-way approach.
For instance, gray is considered as being between black and
white without being darker than white or whiter than black.

The unidirectional nature of fuzzy concepts fails to adequately
describe objects with membership degrees close to the intent
(slightly higher or slightly lower). To address this limitation, this
article proposes an interval-intent fuzzy concept that expands

upon the intent of fuzzy concepts by adopting an interval form.
This effectively characterizes concepts with two boundaries
instead of just one boundary as seen in traditional fuzzy con-
cepts. An interval inherently possesses upper and lower bounds,
which aligns with the notion of considering concepts from both
directions simultaneously. Moreover, intervals correspond well
with human cognitive habits since attribute values tend to cluster
among similar entities.

III. IFCRL MODEL

In this section, we introduce the definition and related prop-
erties of a new interval-intent fuzzy concept, and propose the
process of concept re-cognition and a new method of concept
clustering.

A. Interval-Intent Fuzzy Concept

Definition 2: For a fuzzy formal context (G,M, Ĩ), we define
four mapping operators F̃−, F̃+ : 2G → [LM ] and H−, H+ :
[LM ] → 2G as follows:

F̃−(X) =

{[ ∧
x∈X

Ĩ(x, ci), 1

]
|i = 1, 2, . . . , |M |

}

F̃+(X) =

{[
0,

∨
x∈X

Ĩ(x, ci)

]
|i = 1, 2, . . . , |M |

}

H−
(
B̃±

)
=

{
x ∈ G|B̃−(c) ≤ Ĩ(x, c), ∀c ∈ M

}
H+

(
B̃±

)
=

{
x ∈ G|B̃+(c) ≥ Ĩ(x, c), ∀c ∈ M

}
where 2G represents the power set of the object set and [LM ]
represents the power set of the attribute interval set.

According to the theory of the previous section, it is easy to
prove F̃−(X) and F̃+(X) are intersected. It is feasible and con-
cise to merge the four mapping operators defined above into two.

Definition 3: Given the four mapping operators in Defini-
tion 2, we define the two merged mapping operators F̃± : 2G →
[LM ], H± : [LM ] → 2G as follows:

F̃±(X) = F̃−(X) ∩ F̃+(X)

=

{[ ∧
x∈X

Ĩ(x, ci),
∨
x∈X

Ĩ(x, ci)

]
|i = 1, 2, . . . , |M |

}

H±(B̃±) = H+(B̃±) ∩H−(B̃±)

=
{
x ∈ G|B̃−(c) ≤ Ĩ(x, c) ≤ B̃+(c), ∀c ∈ M

}
.

If F̃±(X) = B̃± and H±(B̃±) = X , we call an ordered pair
(X, B̃±) an interval-intent fuzzy concept. We call a super-
concept (X2, B̃

±
2 ) and a subconcept (X1, B̃

±
1 ) have the order

relation (X1, B̃
±
1 ) ≤ (X2, B̃

±
2 ) if X1 ⊆ X2 (or B̃±

1 ⊆ B̃±
2 ). If

there is no confusion, we will rewrite the first merged mapping
to form F̃±(X) = [

∧
x∈X Ĩ(x, c),

∨
x∈X Ĩ(x, c)]∀c.

Property 1: Let X,X1, X2 ⊆ G, B̃±, B̃±
1 , B

±
2 ⊆ [LM ], then

we have:
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1) F̃±(X1) ⊆ F̃±(X2) if X1 ⊆ X2, H±(B̃±
1 ) ⊆ H±(B̃±

2 )
if B̃±

1 ⊆ B̃±
2 ;

2) X ⊆ H±F̃±(X), B̃± ⊇ F̃±H±(B̃±);
3) F̃±(X) = F̃±H±F̃±(X) and H±(B̃±) = H±F̃±H±

(B̃±).
Proof:
1) According to the definition of the object to property

mapping operator, we have F̃±(X1) = [
∧

x∈X1
Ĩ(x, c),∨

x∈X1
Ĩ(x, c)]∀c and F̃±(X2) = [

∧
x∈X2

Ĩ(x, c),
∨

x∈X2

Ĩ(x, c)]∀c. Because X1 ⊆ X2,
∧

x∈X1
Ĩ(x, c) ≥ ∧

x∈X2

Ĩ(x, c) and
∨

x∈X1
Ĩ(x, c) ≤ ∨

x∈X2
Ĩ(x, c), then F̃±

(X1) ⊆ F̃±(X2) holds. In addition, for B̃±
1 ⊆ B̃±

2 ,
H±(B̃±

1 ) = {x ∈ G|B̃−
1 (c) ≤ Ĩ(x, c) ≤ B̃+

1 (c), ∀c ∈
M} and H±(B̃±

2 ) = {x ∈ G|B̃−
2 (c) ≤ Ĩ(x, c) ≤ B̃+

2 (c),
∀c ∈ M}, then we have H±(B̃±

1 ) ⊆ H±(B̃±
2 ) since

B̃−
1 (c) ≥ B̃−

2 (c) and B̃+
1 (c) ≤ B̃+

2 (c) for each c ∈ M .
2) For any xa ∈ X , there must be

∧
x∈X Ĩ(x, c) ≤

Ĩ(xa, c) ≤
∨

x∈X Ĩ(x, c) (∀c ∈ M). Then, we have xa ∈
H±F̃±(X). Thus, X ⊆ H±F̃±(X). Also, for any B̃±

a ⊆
F̃±H±(B̃±), which is equal to B̃±

a ⊆ [
∧

x∈H±(B̃±)

Ĩ(x, c),
∨

x∈H±(B̃±) Ĩ(x, c)]. Then, we have B̃−
a (c) ≥∧

x∈H±(B̃±) Ĩ(x, c) and B̃+
a ≤ ∨

x∈H±(B̃±) Ĩ(x, c) for

any c ∈ M . Because
∧

x∈H±(B̃±) Ĩ(x, c) ≥ B̃−(c) and∨
x∈H±(B̃±) Ĩ(x, c) ≤ B̃+(c), we get B̃−

a (c) ≥ B̃−(c) and

B̃+
a (c) ≤ B̃+(c) for any c ∈ M . Thus, B̃± ⊇ F̃±H±

(B̃±) is obtained.
3) According to (2), we know X ⊆ H±F̃±(X). Then,

we have F̃±(X) ⊆ F̃±H±F̃±(X) by (1). Since F̃ (X)
= B̃±, and B̃± ⊇ F̃±H±(B̃±). Further, we obtain
F̃±(X) ⊇ F̃±H±F̃±(X). Meanwhile, F̃±(X) = F̃±

H±F̃±(X) holds. And it is easy to prove that H±(B̃±) =
H±F̃±H±(B̃±) as above. �

The above mapping clearly satisfies the order-preserving
Galois connection relation. In classical fuzzy concept-cognitive
learning, the reverse order Galois link is convenient to represent
the properties common to all objects. The sequence-preserving
Galois link in this article shows that more objects have a larger
range of properties. When considering multiple objects, the
boundaries between them are better understood and exploring
similarities among them becomes easier.

Property 2: Given a regular fuzzy-classical formal decision
context (G,M, Ĩ,D, J) and four mappings in Definition 2.
For any object x, (H−F̃−(x), F̃−(x) ∩ F̃+H−F̃−(x)) and
(H+F̃+(x), F̃−H+F̃+(x) ∩ F̃+(x)) are both interval-intent
fuzzy concepts.

Proof: We only need to demonstrate (1) F̃±(H−F̃−(x)) =
F̃−(x) ∩ F̃+H−F̃−(x) and (2) H±(F̃−(x) ∩ F̃+H−F̃−(x))
= H−F̃−(x). The same goes for another concept.

1) Note that F̃±(H−F̃−(x)) = F̃−(H−F̃−(x)) ∩ F̃+(H−

F̃−(x)) by Definition 3. According to Property 1,
it is easy to obtain F̃−H−F̃−(x) = F̃−(x). Thus,
F̃±(H−F̃−(x)) = F̃−(x) ∩ F̃+H−F̃−(x).

2) According to Definition 2, we can get F̃−(x) ∩ F̃+H−

F̃−(x) = [Ĩ(x, c),
∨

xi∈H−F̃−(x) Ĩ(xi, c)]∀c. And H−F̃−

Algorithm 1: Construction of Interval-Intent Fuzzy Concept
Space.

(x) = {xt ∈ G|Ĩ(xt, c) ≥ Ĩ(x, c), ∀c ∈ M}. Obviously,
we have H±(F̃−(x) ∩ F̃+H−F̃−(x)) = H±([Ĩ(x, c),∨

xi∈H−F̃−(x) Ĩ(xi, c)]∀c) = {xm ∈ G|Ĩ(x, c) ≤ Ĩ(xm,

c) ≤ ∨
xi∈H−F̃−(x) Ĩ(xi, c), ∀c ∈ M} = {xt ∈ G|Ĩ

(xt, c) ≥ Ĩ(x, c), ∀c ∈ M} = H−F̃−(x).
In conclusion, there are F̃±(H−F̃−(x)) = F̃−(x) ∩

F̃+H−F̃−(x) and H±(F̃−(x) ∩ F̃+H−F̃−(x)) = H−F̃−(x),
thus (H−F̃−(x), F̃−(x) ∩ F̃+H−F̃−(x)) is an interval-intent
fuzzy concept. �

Definition 4: LetG/D = {Gdk |k = 1, 2, . . . , |D|} represent
the partition of the object set based on their respective labels.
For any object x ∈ Gdk , (H−F̃−(x), F̃−(x) ∩ F̃+H−F̃−(x))
and (H+F̃+(x), F̃−H+F̃+(x) ∩ F̃+(x)) are upper-interval-
intent fuzzy granular concept (short for UFGC and denote it by
(X+, B̃±,u)) and lower-interval-intent fuzzy granular concept
(short for LFGC and denote it by (X−, B̃±,l)), respectively. The
interval-intent fuzzy granular concept spaces (under decisiondk)
introduced by UFGC and LFGC are as follows:

GCSdk,u

=
{(

H−F̃−(x), F̃−(x) ∩ F̃+H−F̃−(x)
)
|x ∈ Gdk

}
GCSdk,l

=
{(

H+F̃+(x), F̃−H+F̃+(x) ∩ F̃+(x)
)
|x ∈ Gdk

}
.

Obviously, UFGC and LFGC both are granular concepts
derived from the same object whose attribute membership
serves as the lower and upper bounds of the two interval-intent
concepts, respectively. The concept space under each decision
is combined into the overall concept space, which are de-
fined as GCSd,u = {GCSd1,u, GCSd2,u, . . . , GCSd|D|,u} and
GCSd,l = {GCSd1,l, GCSd2,l, . . . , GCSd|D|,l}.

Example 2: According to Definition 4, the four interval-intent
fuzzy granular concept spaces in Table I can be derived as
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TABLE I
FUZZY FORMAL DECISION CONTEXT

follows:

GCSd1,u = {({x1, x3, x6}, {[0.32, 0.48], [0.63, 0.83]})
({x2, x3, x5, x6}, {[0.36, 0.48], [0.52, 0.83]})
({x3}, {[0.48, 0.48], [0.83, 0.83]})
({x3, x4, x5, x6}, {[0.38, 0.48], [0.48, 0.83]})
({x3, x5, x6}, {[0.4, 0.48], [0.6, 0.83]})
({x3, x6}, {[0.41, 0.48], [0.76, 0.83]})}

GCSd1,l = {({x1}, {[0.32, 0.32], [0.63, 0.63]})
({x2}, {[0.36, 0.36], [0.52, 0.52]})
({x1, x2, x3, x4, x5, x6},
{[0.32, 0.48], [0.48, 0.83]})
({x4}, {[0.38, 0.38], [0.48, 0.48]})
({x2, x4, x5}, {[0.36, 0.4], [0.48, 0.6]})
({x1, x2, x4, x5, x6}, {[0.32, 0.41], [0.48, 0.76]})}

GCSd2,u = {({x7}, {[0.8, 0.8], [0.7, 0.7]})
({x8}, {[0.81, 0.81], [0.66, 0.66]})
({x7, x8, x9}, {[0.77, 0.81], [0.6, 0.7]})
({x10}, {[0.91, 0.91], [0.55, 0.55]})
({x7, x8, x9, x10, x11}, {[0.72, 0.91], [0.45, 0.7]})
({x7, x8, x12}, {[0.58, 0.81], [0.61, 0.7]})}

GCSd2,l = {({x7, x9, x11, x12}, {[0.58, 0.8], [0.45, 0.7]})
({x8, x9, x11, x12}, {[0.58, 0.81], [0.45, 0.66]})
({x9, x11}, {[0.72, 0.77], [0.45, 0.6]})
({x10, x11}, {[0.72, 0.91], [0.45, 0.55]})
({x11}, {[0.72, 0.72], [0.45, 0.45]})
({x12}, {[0.58, 0.58], [0.61, 0.61]})}.

B. Concept Re-Cognition Process

Concept cognition is a process of starting from an object to
find attributes and returning to find objects again. In the process
of human cognition, there are often deviations or inaccuracies in
the first cognition. Therefore, it is necessary to constantly update
knowledge (concepts). The re-cognition process proposed in this
article can simulate the human thinking process to a certain
extent, and find more accurate concept representation in complex
and variable data.

Definition 5: Given the two interval-intent fuzzy con-
cepts (X+

j , B̃±,u
j ) = (X+

j , [B̃−,u
j , B̃+,u

j ]∀c) and (X−
j , B̃

±,l
j ) =

(X−
j , [B̃

−,l
j , B̃+,l

j ]∀c) induced by xj , the definition of pseudoin-
tent in the re-cognition concept (RC) is as follows:

B̃±,p
j =

{[
B̃+,l

j (ci)− (1− er(xj)) ·
(
B̃+,l

j (ci)− B̃−,l
j (ci)

)
B̃−,u

j (ci) + er(xj) · (B̃+,u
j (ci)− B̃−,u

j (ci))
]

|i = 1, 2, . . . , |M |}.
where er(xj) =

|X+
j |

|X+
j |+|X−

j |
.

The parameter er(xj) in the above definition is defined in
terms of the extent ratio of UFGC and LFGC. Essentially to
measure the magnitude of the fluctuation of the attribute value
based on the number of objects in the extent. For example, if
UFGC has a large number of extent, it means that for object
xj , there are more objects in the dataset that are larger than its
attribute value. Therefore, in the process of re-cognition, we give
more tolerance to the larger attribute values, allowing the larger
attribute values to be more retained.

The concept re-cognition process is divided into the following
steps:

1) Find the two interval-intent fuzzy concepts induced by xj ,
and compute the extent ratio er(xj).

2) Get the pseudointent B̃±,p
j of the RC by Definition 5.

3) The pseudointent is used as the clue in the
process of re-cognition, and the new concept
(H±(B±,p

j ), F±H±(B±,p
j )) is obtained by Definition 3.

4) Repeat the above steps until every object in the space is
re-recognized.

We call the concept newly learned from xj the RC, which
denoted by (Xr

j , B̃
±,r
j ) = (H±(B±,p

j ), F±H±(B±,p
j )). And

newly obtained concept space a RC space, denoted by RCS.
According to Definition 3, it is easy to prove that the RC is also
an interval-intent fuzzy concept. At this time, the intent of the
RC is a subset of the pseudointent generated in the cognitive
process, and the concept is more accurately depicted. We call
other objects other than the primary original object in the extent
of the RC as approximate objects, and they have higher similarity
with the original object.

Example 3: Object x5 is taken as an example to
illustrate the process of concept re-cognition. First, we
obtain the ratio er(x5) =

|{x3,x5,x6}|
|{x3,x5,x6}|+|{x2,x4,x5}| = 0.5 with

the number of extent of the upper-interval-intent fuzzy
granular concept and lower-interval-intent fuzzy granular
concept. According to Definition 5, the pseudointent is
B̃±,p

5 = {[0.38, 0.44], [0.54, 0.715]}. The RC (Xr
5 , B̃

±,r
5 ) =

(H±(B±,p
5 ), F±H±(B±,p

5 )) = ({x5}, {[0.4, 0.4], [0.6, 0.6]})
is learned from the learning operator in Definition 3. After
re-cognition of each object, we have the following RC space:

RCSd1 = {({x1, x6}, {[0.32, 0.41], [0.63, 0.76]})
({x2, x5, x6}, {[0.36, 0.41], [0.52, 0.76]})
({x3, x5, x6}, {[0.4, 0.48], [0.6, 0.83]})
({x4, x5, x6}, {[0.38, 0.41], [0.48, 0.76]})
({x5}, {[0.4, 0.4], [0.6, 0.6]})
({x5, x6}, {[0.4, 0.41], [0.6, 0.76]})}
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Algorithm 2: Concept Re-Cognition Process.

RCSd2 = {({x7, x9}, {[0.77, 0.8], [0.6, 0.7]})
({x8, x9}, {[0.77, 0.81], [0.6, 0.66]})
({x9}, {[0.77, 0.77], [0.6, 0.6]})
({x10}, {[0.91, 0.91], [0.55, 0.55]})
({x9, x11}, {[0.72, 0.77], [0.45, 0.6]})
({x12}, {[0.58, 0.58], [0.61, 0.61]})}.

The process of concept re-cognition can be considered as
the endeavor to identify objects based on their attributes, which
essentially involves a rational expansion of the range of attribute
values associated with a single object. In comparison to the pre-
ceding two interval granular concepts, RC possesses the ability
to mitigate the impact of noise to some extent. Simultaneously,
it aligns with humans’ second cognitive logic that individuals
tend to associate with others who share similar characteristics.

C. Concept Clustering

In the previous section, we explored the RCs, which are typ-
ically numerous in quantity. Human memory is limited and can
only retain the more significant concepts, necessitating compres-
sion, and prioritization. During concept learning, a multitude of
similar concepts with slight variations in attribute values may
arise. However, precision at this level is not always essential; for
instance, identifying a duck in a river without specifying its exact
species suffices. In other words, people often treat such highly
similar entities as belonging to the same concept. Building
upon these notions, we introduce concept clustering into our
proposed model.

Concept clustering is different from unsupervised clustering
in machine learning. It aims to aggregate two or more supervised
concepts into pseudoconcepts and reduce the size of concept
space to improve classification efficiency. Concept clustering
can be viewed as a compressed processing technique for labeled
concepts.

1) Clustering Related Parameters. Definition 6: Let (Xi,
B̃±

i ) and (Xj , B̃
±
j ) be two interval-intent fuzzy concepts, then

the extent similarity is defined as follows:

δ(Xi, Xj) =
|Xi

⋂
Xj |

|Xi

⋃
Xj | . (1)

Definition 7: Let (Xi, B̃
±
i ) and (Xj , B̃

±
j ) be two interval-

intent fuzzy concepts, then the intent similarity is defined as
follows:

ϕ
(
B̃±

i , B̃
±
j

)
= 1

−
∑
c

(∣∣∣B̃−
i (c)− B̃−

j (c)
∣∣∣+ ∣∣∣B̃+

i (c)− B̃+
j (c)

∣∣∣)
2 |M |+∑

c

(∣∣∣B̃+
i (c)− B̃−

i (c)
∣∣∣+ ∣∣∣B̃+

j (c)− B̃−
j (c)

∣∣∣) (2)

where |M | represents the number of attributes.
Property 3: For two concepts (Xi, B̃

±
i ) and (Xj , B̃

±
j ), we

have:
1) 0 ≤ δ(Xi, Xj) ≤ 1;

2) 0 ≤ ϕ(B̃±
i , B̃

±
j ) ≤ 1.

Proof: (1) It is immediate from Definition 6.
(2) Obviously, 0 ≤ |B̃−

i (c)−B̃−
j (c)| ≤ 1, 0 ≤ |B̃+

i (c)−B̃+
j

(c)| ≤ 1. We get 0 ≤ ∑
c(|B̃−

i (c)− B̃−
j (c)|+ |B̃+

i (c)− B̃+
j

(c)|) ≤ 2 · |M |. Then we have 0 < ϕ(B̃±
i , B̃

±
j ) ≤ 1. Notice that

ϕ(B̃±
i , B̃

±
j ) = 0 if and only if for∀c ∈ M , B̃+

i (c) = B̃−
i (c) = 0

and B̃+
j (c) = B̃−

j (c) = 1 (or the two sets of values are reversed).

Thus, 0 ≤ ϕ(B̃±
i , B̃

±
j ) ≤ 1. �

According to Definition 7, a higher degree of intent similarity
indicates a greater level of similarity between two concepts. It
is reasonable to assess this based on the distance between the
boundaries of the concepts and the size of their respective inter-
vals. A larger interval suggests that a concept has extensive intent
coverage and is distinct from other concepts, thus indicating a
high degree of similarity. However, existing concept-cognitive
learning [22], [39] approaches only consider extent similarity (as
defined in Definition 6) for clustering, overlooking the signif-
icance of attribute similarity. This approach fails to recognize
that concepts with overlapping extents may not necessarily
share similar intents. For instance, when making decisions about
watermelons, large and small watermelons’ concept extent are
likely to intersect due to their inclusion relationship in terms of
size. However, clustering them into the same concept would be
misleading. Therefore, it is crucial to consider intent relation-
ships when defining similarities.

2) Clustering Process: Based on the similarity of intent, this
study integrates two or more concepts with high intent similarity
to generate a novel concept. We refer to this new concept as a
pseudoconcept, as its extent and intent are not strictly bound by
the proposed mapping relationship. Within the concept space,
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Algorithm 3: Concept Clustering.

we partition the blocks based on intent similarity. Concepts
exhibiting an intent similarity exceeding the threshold γ are
grouped together and referred to as cluster C. It is evident that
the re-cognition conceptual space comprises numerous clusters
denoted by RCSdk = {Cdk

1 , Cdk
2 , . . . , Cdk

n }.
Definition 8: For a cluster origin (Xr

i1
, B̃±,r

i1
) and all of its

intent similarity in order from the largest to the smallest concept
(Xr

i2
, B̃±,r

i2
), (Xr

i3
, B̃±,r

i3
), · · · , (Xr

im
, B̃±,r

im
) ∈ Cdk

i , the extent

and intent of the pseudoconcept (Xp
i , B̃

±,p
i ) derived from the

cluster Cdk
i are defined as follows:

Xp
i = Xr

i1
∪Xr

i2
∪ · · · ∪Xr

im

B̃±,p
i (c) =

1

2m−1

(
B̃±,r

i1
(c) + B̃±,r

i2
(c) + 2 · B̃±,r

i3
(c)

+ · · ·+ 2m−2 · B̃±,r
im

(c)
)
, c ∈ M.

The pseudoconcept intent in definition 8 shows that the RC
that is clustered first will have more influence on the pseudo-
concept. Therefore, we prioritize the participation of concepts
with higher intent similarity in clustering, while concepts with
lower intent similarity are involved later. Using pseudoconcepts
can effectively reduce the size of the concept space. At the
same time, the limitation of individual cognition is eliminated
to a certain extent. Algorithm 3 shows the concrete process of
concept clustering.

Algorithm 4: New Object Label Prediction.

D. Object Classification Based on Intent Similarity

Since the new object to be classified will not be in the extent
of any existing concept, the label judgment can only be made
by the distance between the intent. Intent similarity in definition
7 can be seen as a distance measure. The object to be classified
is regarded as an interval-intent fuzzy concept, whose interval-
intent is composed of a single value of the membership degree of
each attribute. Therefore, the formula in definition 7 is deformed
to obtain the following distance definition.

Definition 9: Given a concept ({xnew}, B̃±
new) to be classified

derived from a new object xnew, its similarity distance with the
pseudoconcept (Xp, B̃±,p) is defined as follows:

S(xnew, X
p)

=

∑
c

(∣∣∣B̃−
new(c)− B̃−,p

j (c)
∣∣∣+ ∣∣∣B̃+

new(c)− B̃+,p
j (c)

∣∣∣)
2 · |M |+∑

c

(∣∣∣B̃+,p
j (c)− B̃−,p

j (c)
∣∣∣) (3)

where |M | represents the number of attributes.
It can be seen that similarity distance and intent similarity

are inversely proportional. The greater the intent similarity, the
smaller the similarity distance. We obtain the pseudoconcept of
the minimum similarity distance to determine the decision of the
new object. The specific steps are represented in Algorithm 4.

E. Overall Procedure and Complexity Analysis

The overall flowchart of IFCRL is shown in Fig. 1. The model
consists of three stages: 1) concept-cognitive process; 2) concept
re-cognition process; 3) concept clustering and classification.
For a fuzzy formal context with three decisions, the first concept
learning is performed according to the mapping proposed in
Definition 2, and two related concept spaces are obtained. Then,
for each object, the extent ratio of their concepts in different
concept spaces is calculated, so as to obtain the pseudointent
used for re-cognition according to Definition 5. The pseudoin-
tent is learned to obtain the RC. Finally, the pseudoconcept
space is obtained by concept clustering. According to Formula
3, the nearest concept to the newly added object is obtained to
determine the label.
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Fig. 1. General flow chart of IFCRL (1st and 2nd in the legend represent the concept-cognitive process and the concept re-cognition process, respectively).

According to the aforementioned discussion, the time com-
plexity of Algorithm 1 for constructing the initial concept space
is O(|G|2|M |). The time complexity of re-cognition process is
related to the number of objects. In the process of re-cognition of
each object, it does not need to go through all the objects again,
only need to search the objects in the extent union of UFGC
and LFGC derived from the corresponding object. Assuming
that the average number of objects in the extent union of two
concepts (UFGC and LFGC) in two concept spaces is a, the
time complexity of Algorithm 2 is O(a|G||M |). In the process
of clustering, the complexity of computing intent similarity is
O(|M |). Concepts that have already been clustered will not
participate in the subsequent clustering process, so the number
of concepts that need to be considered for clustering concepts
will be gradually reduced each time. The choice of threshold
γ is positively related to the complexity: a higher threshold
will make the space more refined, thus increasing the total
number of comparisons for intent similarity. The best case is
that every concept in the space is clustered together at once,
and the worst case is that no concept can be clustered with
the others. Therefore, the time complexities of Algorithm 3 in
the best and worst cases are O(|G||M |), O(|G|2|M |), respec-
tively. Obviously, when predicting the label, it is necessary to
compare the new object with each pseudoconcepts. Therefore,
Algorithm 4 takes O(|PCγ ||M |). The overall complexity of
IFCRL is O(|G|2|M |).

IV. EXPERIMENTS

In this section, we examine the rationality and effective-
ness of the IFCRL algorithm proposed in a fuzzy context. We
compare its classification accuracy with 14 algorithms and verify

TABLE II
DETAILS OF THE EXPERIMENTAL DATASETS

the effectiveness of the re-cognition method through ablation
experiments. In addition, we assess the importance of clustering
by evaluating the rate at which space is compressed, and further
explore how parameter γ affects clustering. The datasets utilized
in this experiment are sourced from UCI and KEEL, with
detailed information provided in Table II.

A. Experimental Setting

In order to adapt to the fuzzy environment in this article, all
datasets are normalized according to the following formula:

Ĩ(xi, cj) =
v(xi, cj)−min(v(cj))

max(v(cj))−min(v(cj))
(4)

where v(xi, cj) represents the value of xi under attribute cj
in the original dataset, min(v(cj)) and max(v(cj)) represents,
respectively, the minimum and maximum value of attribute cj
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TABLE III
COMPARISON OF ACCURACY (MEAN ± STANDARD DEVIATION%) AMONG IFCRL AND SEVEN CLASSIC CLASSIFICATION ALGORITHMS

TABLE IV
COMPARISON OF ACCURACY (MEAN ± STANDARD DEVIATION%) AMONG IFCRL AND SEVEN FUZZY-BASED CLASSIFICATION ALGORITHMS

in the original data. The normalized value Ĩ(xi, cj) is regarded
as the fuzzy membership degree of object xi under cj .

In this article, the experiment compares IFCRL with seven
classical machine learning classification algorithms (KNN [41],
SVM [42], DT [43], NB [44], LR [45], LDA [46], Bag-
ging [47]) and seven fuzzy-based classification algorithms
(FCLM [22], FRNN [48], PFKNN [49], GAFuzzyKNN [50],
IF-KNN [51], CFKNN [52], FuzzyKNN [53]), where FCLM
is a fuzzy concept-cognitive learning algorithm. 80 % and 20
% of each dataset serve as the training set and the test set,
respectively. The dataset was executed 10 times with randomized
data partitions and the results were averaged to assess each
classification method. To ensure fairness, the aforementioned
experiments were conducted using Python 3.10 on a personal
computer equipped with an Intel(R) Core(TM) i5-10300H CPU
@ 2.50 GHz and 16 GB of memory.

B. Comparative Experimental Analysis

The accuracy of classic machine learning classification al-
gorithms and the selected parameter γ by IFCRL are recorded
in Table III. The average accuracy of IFCRL on 12 datasets
is observed to be 87.52%. As depicted in Table III, it can be
observed that LR performs well on one dataset, KNN performs
well on two datasets, DT outperforms other algorithms on
three datasets, while IFCRL demonstrates superior performance

on nine datasets. Notably, IFCRL achieves the highest accu-
racy for both dataset 7 and dataset 11. In addition, it exhibits
lower standard deviation compared to other algorithms in four
datasets(Wine, Tic_tac_toe, Phoneme, Mushroom).

Table IV shows the comparison of classification efficiency
with fuzzy-based classification algorithm. The results show that
IFCRL performs well on 11 datasets. It shows that we have the
best classification performance and exhibits strong generaliza-
tion capabilities among the selected fuzzy classifiers. Compared
with FCLM algorithm based on fuzzy concept cognitive learn-
ing, IFCRL has better classification performance. The gap can
be visualized more intuitively by creating a bar chart, as shown
in Fig. 2.

C. Ablation Experiment

The proposed re-cognition process in this article aims to
acquire more precise knowledge. To validate the effectiveness
of re-cognition, we initially learn UFGC and LGFC separately
and conduct cognitive learning on them to obtain RC. The
aforementioned three types of concepts are individually tested
through clustering experiments and classification accuracy as-
sessments. In the experiment, clustering parameter γ was set as
1.00, 0.99, and 0.95 respectively, for RC, UFGC, and LFGC,
which were each run ten times to calculate the average classi-
fication accuracy. The results are presented in Table V with the
last column indicating the optimal accuracy score ratio for each
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Fig. 2. Bar chart comparison of classification accuracy. (a) Comparison with seven classical classification algorithms. (b) Comparison with seven fuzzy-based
classification algorithms.

TABLE V
RE-COGNITION LEARNING ABLATION EXPERIMENT

round of experiments. And the experimental results demonstrate
a strong resemblance between the classification effect of RC and
UFGC on certain datasets (Wpbc, Glass, Mushroom). It can be
observed that the final composite score ratio of these three con-
cepts is 28:19:10. The overall impact of re-cognition is generally
positive on the classification performance of most datasets, thus
rendering the re-cognition process highly effective.

D. Theoretical Discussion and Parametric Analysis

In order to evaluate the clustering effect, the space compres-
sion rate is used to characterize the reduction degree of the spatial
size after clustering, which is denoted by

scr =
|RCS| − |PC|

|RCS| (5)

where |RCS| denotes the cardinality of concepts in the re-
cognition space, and |PC| denotes the cardinality of concepts
in the clustered space. The purpose of concept clustering is to
reduce the concept space. Fig. 3 shows the relationship between
the space compression rate and parameter γ. Obviously, the rela-
tionship between the two is inversely proportional. The smaller
the γ, the greater the space compression rate. For datasets with
a small number of objects, the space compression rate decreases
evenly with the increase of γ. For datasets with a large number
of objects, the image drops off a cliff when γ ∈ [0.95, 1]. The
image of dataset 7 plummets around γ = 0.88, indicating that
the intent similarity between concepts is relatively concentrated.
Therefore, concept clustering is reasonable and efficient.

Combined with Algorithm 3, we know that the classification
accuracy of IFCRL is closely related to parameterγ. Therefore, it
is necessary to discuss the effect of parameter γ on classification
accuracy. For different datasets, it is necessary to choose the
appropriate threshold γ in order to achieve the optimal accuracy.
According to Fig. 3, when γ = 0.81, the compression ratio in
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TABLE VI
RANKING OF THE FOURTEEN CLASSIFICATION ALGORITHMS

Fig. 3. Relationship between the space compression rate and the parameter γ
on 12 datasets.

Fig. 4. Relationship between the parameter γ and classification accuracy of
IFCRL on 12 datasets.

space is all higher than 80%, and some even reach 95%. Thus, the
discussion of the parameter γ is in the range [0.81,1]. We set the
step size to 0.01 and test the parameter within the range [0.81,1],
that is, γ ∈ {0.81, 0.82, . . . , 1}. And for the same parameter,
10 experiments were conducted and the average accuracy was
calculated. The specific change trend is shown in Fig. 4. We
can observe that most classification accuracy presents a gradual
upward trend, and individual datasets have a state of first increase

and then decrease. The validity of clustering is substantiated to
a certain extent.

E. Statistical Significance Analysis

The Friedman test is a rank-based statistical method used to
determine whether there are significant differences in the aver-
age performance of multiple models across multiple datasets.
The accuracy of all classification algorithms on the 12 datasets
is ranked and represented in Table VI. The Friedman statistic is
calculated as follows:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

∼ F (k − 1,(k − 1)(N − 1)) (6)

where χ2
F = 12N

k(k+1) (
∑k

i=1 R
2
i − k(k+1)2

4 ), k and N are the
number of different algorithms and datasets, respectively. Ri =
1
N

∑N
j=1 r

i
j indicates the average rank of ith algorithm on all the

datasets, and rij indicates the rank of ith algorithm on jth dataset.
We assume that there is no significant difference between all
algorithms, and if FF > F (k − 1,(k − 1)(N − 1)) then reject
the null hypothesis. According to the number of datasets and the
number of algorithms in this article, χ2

F = 68.93 is obtained.
We plug this into formula (6) to obtain FF = 8.71 > 1.79 =
F (13, 143) in α = 0.05. Therefore, the null hypothesis does not
hold and there is a significant difference between all algorithms.

The Friedman test can only be used to determine whether
there is a significant difference between the measurements of
multiple models, but it cannot know whether there is a difference
between any two models, which is what the Nimenyi test aims to
solve. The critical range critical difference (CD) formula for the
difference between the average order values is calculated from
the Nemenyi test as follows:

CD = qα

√
k(k + 1)

6N
(7)

where qα is the critical value corresponding to the significance
level, k and N are the number of different algorithms and
datasets, respectively. In this article, qα is determined to be 3.383
based on the degrees of freedom and significance level of the test.
We plot the average ranking and CD of the algorithms in Fig. 5.
The results indicate that when α = 0.05, there are statistically
significant distinctions between IFCRL and CFKNN as well as
the other four classification methods.
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Fig. 5. CD plot of all classification methods used in the experiment.

V. CONCLUSION

In this article, we propose a novel IFCRL model called
IFCRL. First, we provide the definition of an interval-intent
fuzzy concept, where the intent of classical fuzzy concepts is
transformed from single-valued to interval-valued form. Based
on this, we introduce a concept re-cognition process that keeps
the value of the property within a reasonable range. This process
serves as a secondary learning mechanism on the data and effec-
tively mitigates the impact of extreme value noise. Furthermore,
the introduction of concept clustering based on intent similar-
ity not only simplifies the concept space, but also overcomes
the cognitive limitations encountered in previous clustering
processes. Finally, extensive experiments are conducted on 12
datasets from UCI and KEEL databases to demonstrate our
method’s advanced classification ability.

This work presents a novel perspective on concept learning,
expanding the boundaries of cognitive understanding beyond
unidirectional limitations and providing more precise descrip-
tions of cognitive outcomes. The issue of the high similarity
between the RC and UFGC, however, still needs to be addressed.
It is imperative to explore a more rational re-cognition process
in order to tackle the problem of ineffective re-cognition. And it
is important to acknowledge that human cognition is an intricate
process, which goes beyond simple set intersection operations
when considering secondary or multiple cognitions. In addition,
there are deeper issues such as conceptual reasoning, associative
memory, selective forgetting, etc., that warrant further investi-
gation in future research.
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