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A B S T R A C T

Medical image segmentation is crucial for understanding anatomical or pathological changes, playing a key role
in computer-aided diagnosis and advancing intelligent healthcare. Currently, important issues in medical image
segmentation need to be addressed, particularly the problem of segmenting blurry edge regions and the gener-
alizability of segmentation models. Therefore, this study focuses on different medical image segmentation tasks
and the issue of blurriness. By addressing these tasks, the study significantly improves diagnostic efficiency
and accuracy, contributing to the overall enhancement of healthcare outcomes. To optimize segmentation
performance and leverage feature information, we propose a Neighborhood Fuzzy c-Means Multiscale Pyramid
Hybrid Attention Unet (NFMPAtt-Unet) model. NFMPAtt-Unet comprises three core components: the Multiscale
Dynamic Weight Feature Pyramid module (MDWFP), the Hybrid Weighted Attention mechanism (HWA),
and the Neighborhood Rough Set-based Fuzzy c-Means Feature Extraction module (NFCMFE). The MDWFP
dynamically adjusts weights across multiple scales, improving feature information capture. The HWA enhances
the network’s ability to capture and utilize crucial features, while the NFCMFE, grounded in neighborhood
rough set concepts, aids in fuzzy C-means feature extraction, addressing complex structures and uncertainties
in medical images, thereby enhancing adaptability. Experimental results demonstrate that NFMPAtt-Unet
outperforms state-of-the-art models, highlighting its efficacy in medical image segmentation.
1. Introduction

Medical image segmentation stands as a pivotal technique within
healthcare and diagnostics, playing a crucial role in extracting mean-
ingful information from intricate medical images. As advancements in
imaging technologies continue to burgeon, the demand for accurate
and efficient methods to delineate and analyze anatomical structures
becomes increasingly paramount. In this context, image segmentation
serves as a linchpin, enabling the precise identification and isolation of
specific regions of interest within medical images.

Traditional medical image segmentation methods typically include
techniques such as threshold-based (Bhargavi & Jyothi, 2014), region-
based (Lewis, O’Callaghan, Nikolov, Bull, & Canagarajah, 2007), and
edge detection-based approaches (Huang, Tung, Chen, Wang, & Wu,
2005). While these methods can yield satisfactory segmentation results
to some extent, they may encounter limitations, particularly when deal-
ing with complex and diverse medical images. For instance, threshold-
based methods may struggle with images exhibiting complex grayscale
distributions, while region-based methods may fail to accurately seg-
ment structures with irregular shapes. Therefore, as the complexity and
diversity of medical images increase, traditional approaches may prove
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to be less flexible and accurate in certain scenarios. In contrast, deep
learning-based medical image segmentation methods often demonstrate
superior performance when dealing with complex and diverse medical
images.

In contrast, significant strides have been made in the field of med-
ical image segmentation with the advancement of deep learning. In-
troducing models like U-Net (Ronneberger, Fischer, & Brox, 2015),
U-Net++(Zhou, Rahman Siddiquee, Tajbakhsh, & Liang, 2018), Re-
sUNet++(Jha et al., 2019), nnU-Net (Isensee, Jaeger, Kohl, Petersen,
& Maier-Hein, 2021), and TransUNet (Chen et al., 2021) has greatly
enhanced the accuracy and robustness of medical image segmentation
tasks. These models leverage the potent feature learning capabilities
of deep learning, particularly convolutional neural networks (CNNs),
to improve segmentation effectiveness through techniques such as skip
connections, dense feature fusion, multi-scale receptive fields, and
attention mechanisms. However, medical image segmentation still en-
counters challenges such as noise, blurred boundaries, and inadequate
low-level features. These issues may impact the performance of deep
learning models, especially when dealing with medical images featur-
ing complex structures and low contrast. Difficulties arise from relying
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solely on low-level features, as semantic features alone may fail to
provide precise boundary information, resulting in inferior boundary
quality of segmentation results.

Therefore, to address the issues of noise and blurry boundaries
in medical images, we propose a feature extraction module based on
neighborhood rough set and fuzzy C-means. Neighborhood rough set is
an extension of rough set theory that focuses more on the local structure
and neighborhood information within the data (Guo et al., 2024). It
considers the relationships between elements in the dataset, allowing
for a more accurate description of data features and local patterns. By
introducing neighborhood rough set into fuzzy C-means, we aim to
extract features from medical images, thus addressing problems such
as blurry boundaries and uncertainty in the images.

In the field of image processing, particularly in the medical domain,
rough set methods are widely utilized. Their advantage lies in their
ability to effectively handle complex information within medical im-
ages and extract useful features and patterns from them. The scope
of application of this method encompasses various aspects such as
image denoising (Phophalia, Rajwade, & Mitra, 2014), image segmen-
tation (Hirano & Tsumoto, 2002), and image classification (Jothi et al.,
2016). Its uniqueness lies in its capability to deal with uncertainty
and fuzziness in the data, thereby enabling more accurate and reliable
results in medical image analysis.

Additionally, to enhance feature selectivity and multi-scale recep-
tive fields while addressing the challenge of relying on low-level fea-
tures, we propose a Multi-scale Dynamic Weight Feature Pyramid (MD-
WFP) module and a Hybrid Weighted Attention mechanism (HWA).
The MDWFP module dynamically adjusts the weights of different scales
to better capture feature information at various scales, enhancing the
network’s sensitivity to information. By adjusting the weights across
multiple scales, it improves feature diversity and representation, thus
aiding in enhancing model performance.

The Hybrid Weighted Attention mechanism combines spatial and
channel attention by dynamically adjusting weights across different
scales to adapt to various tasks and datasets. It evaluates scales through
convolutional layers, then normalizes them using the softmax func-
tion to obtain dynamic weights. This mechanism dynamically adjusts
weights in both spatial and channel domains, reducing redundancy in
descriptions. By integrating features from different scales, it improves
adaptability and the ability to capture relevant features.

The paper presents a network model called NFMPAtt-Unet, which
serves as an enhancement of the U-Net architecture. It incorporates
three key components: the multi-scale dynamic weight feature pyramid
module (MDWFP), hybrid weighted attention mechanism (HWA), and
the fuzzy C-means feature extraction module based on neighborhood
rough set (NFCMFE). The primary contributions of this paper are as
follows:

• A multi-scale dynamic weight feature pyramid module is pro-
posed. By introducing this module, the network is allowed to
dynamically adjust weights across multiple scales, facilitating bet-
ter capturing of feature information at different scales. This helps
enhance the network’s sensitivity to information at various scales,
thereby boosting feature diversity and expressive capability.

• A novel hybrid weighted attention mechanism is proposed. The
incorporation of a hybrid weighted attention mechanism in the
network enables a more targeted focus on specific regions, thereby
enhancing the model’s attention to critical information. This
mechanism augments the network’s capacity to capture and lever-
age important features effectively.

• A fuzzy C-means feature extraction module based on neighbor-
hood rough set is proposed. This module leverages the concept
of neighborhood rough sets for fuzzy C-means feature extraction,
aiding in better handling complex structures and uncertainties in
medical images. It enhances the adaptability of the network to
2

image features.
• To validate the effectiveness and superiority of our model, we
conducted experiments comparing it with eight different U-Net
models on six medical image datasets. The experimental results
demonstrate that our proposed model outperforms the others.

The paper’s structure is outlined as follows: The second section fo-
cuses on related work, the third section presents a detailed description
of our proposed network model and its core components, the fourth
section conducts experiments comparing our model with other state-
of-the-art models, and the concluding fifth section summarizes the
findings and conclusions of the article.

2. Related work

This section offers an overview of methods utilized in medical image
segmentation, emphasizing a summary of the frequently employed U-
Net model and its associated approaches. Subsequently, we delve into a
detailed summary of the widely used FCM (Fuzzy C-means) algorithm.
Furthermore, we encapsulate the concepts of feature fusion, extraction
fusion methods, and attention mechanisms in the context of medical
image segmentation.

2.1. Medical image segmentation based on U-Net

In 2015 Ronneberger et al. (2015), introduced the U-Net network
model tailored for biomedical image analysis. Renowned for its stream-
lined network architecture and enhanced generalization capabilities,
the model garnered significant attention immediately upon its publi-
cation. Compared to other convolutional neural network models, U-Net
stands out for its simpler structure, stronger generalization capabilities,
and robust feature extraction abilities, which are particularly advan-
tageous for medical image analysis. Subsequently, numerous scholars
have made improvements upon the U-Net model, introducing various
enhanced versions.

In 2018, OZan et al. Oktay et al. (2018) introduced the Attention U-
Net model by incorporating an attention gate module into the standard
U-Net architecture. This model automatically learns to focus on the
shape and size of target structures, suppressing irrelevant regions and
highlighting useful salient features. It demonstrated superior perfor-
mance in tasks such as pancreatic segmentation. However, it did not
fully exploit features from different scales and depths, as it focused
solely on feature maps with the same scale. Subsequently, Zhou et al.
(2018) enhanced the U-Net architecture by incorporating multiple
skip connections, forming a densely connected network. Through a
redesign of the skip connections and upsampling modules, this network
facilitates improved fusion of feature maps at different depths, thereby
enhancing segmentation accuracy and robustness. However, its training
necessitates the use of a deep supervision loss function, potentially
increasing the difficulty and instability of the training process. In
2020, Huang et al. (2020) introduced UNet3+, a neural network de-
signed for medical image segmentation. UNet3+ leverages full-scale
skip connections and deep supervision to fuse feature maps at vari-
ous scales and depths, thereby enhancing segmentation accuracy and
robustness. In 2021, Sha et al. integrated Transformer modules with
the U-Net architecture, as described in their work (Sha, Zhang, Ji, &
Hu, 2021). This integration successfully accomplished a mapping from
low-quality images to high-quality images. Noteworthy for its ability to
simultaneously process spatial and frequency-domain information, this
approach enhances image contrast, clarity, and detail. In 2023, Iqbal
et al. Iqbal and Sharif (2023) introduced PDF-UNet, a semi-supervised
neural network designed for breast tumor image segmentation. The
proposed approach incorporates a U-shaped pyramid dilated network
to boost both the accuracy and robustness of the segmentation process.
Building upon the aforementioned research and to fully leverage image
features, we integrate a novel FCM feature selection module based on
neighborhood rough sets into the U-shaped network. Leveraging the
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capabilities of neighborhood rough sets in handling local neighbor-
hoods and uncertainty, this module enhances the model’s ability to
extract fuzzy and local features effectively. Additionally, by introducing
a multiscale dynamic weight feature pyramid module, the network
dynamically adjusts the weights of different scales, enabling better
capture of feature information across various scales and enhancing
the network’s sensitivity to information. The incorporation of a hybrid
weighted attention mechanism allows the model to selectively focus
on specific regions, thereby enhancing the model’s attention to key
information and improving feature utilization efficiency.

2.2. Image segmentation with Fuzzy C-Means method

FCM (Bezdek, Ehrlich, & Full, 1984) is a soft clustering method
based on fuzzy set theory, capable of handling data uncertainty and
fuzziness. Image segmentation based on FCM (Yu, Jiang, Fan, Xie, &
Lan, 2024) involves using the Fuzzy C-Means clustering algorithm to
categorize pixels in an image. It partitions the image into several re-
gions based on pixel intensity or color values, achieving segmentation.
The advantage of FCM-based image segmentation lies in its ability to
handle uncertainty and fuzziness in images, particularly in cases where
category boundaries are not well-defined. However, drawbacks include
the need to specify the number of clusters beforehand, sensitivity to
noise and outliers, and computational complexity.

Gong et al. introduced a balanced weighted fuzzy factor in their
work (Gong, Liang, Shi, Ma, & Ma, 2012). This factor takes into
account both spatial distance and grayscale differences of all neighbor-
ing pixels simultaneously. This factor accurately estimates the decay
level of neighboring pixels. Furthermore, they incorporated a kernel
distance metric to replace the Euclidean distance, thereby improving
the algorithm’s robustness against noise and outliers. Tang et al. pre-
sented a fuzzy c-means clustering algorithm based on image blocks and
structural similarity for image segmentation in their work (Tang, Ren,
& Pedrycz, 2020). Guo et al. introduced an improved fuzzy c-means
clustering algorithm in their work (Guo, Shi, Chen, Chen & and Ding,
2023). This enhancement involved the introduction of a new affinity
matrix to store and incorporate spatial information of the image as a
prior, contributing to the regularization of the fuzzy clustering method
and yielding superior segmentation results. They also introduced a new
coefficient to control the update of the membership matrix, making it
more accurately reflect the membership of image blocks.

Neighborhood rough set (Pan, Xu, & Ran, 2023) can leverage var-
ious domain functions to characterize the similarity or dissimilarity
between objects, thereby obtaining diverse rough approximations (Xu
et al., 2023). To comprehensively consider both grayscale and spatial
information of pixels, we integrate neighborhood rough set with fuzzy
c-means clustering. We propose a method based on the neighborhood
FCM module, incorporating it as a component of the U-Net network to
enhance U-Net’s capability in capturing overall features.

2.3. Multi-scale feature extraction and fusion

The pyramid module, as introduced in the work by Zhao, Shi, Qi,
Wang, and Jia (2017), is a network structure specifically designed
for feature extraction. This module facilitates the generation of global
scene prior information on the final layer feature map of deep neural
networks. By doing so, it enhances the network’s capability to capture
global information, providing a more comprehensive understanding
of the overall context within the input data (Guo, Xu, Qian, & Ding,
2023). The pyramid module is particularly valuable in tasks where
global context is crucial, such as in the analysis of complex scenes or
in the segmentation of medical images with diverse structures. The
fundamental idea of the pyramid module is to obtain feature maps
of multiple sizes by employing pooling operations at different scales.
Following this process, the feature maps, which include the original fea-
ture map, are concatenated along the channel dimension. This results
3

in a composite feature map that effectively integrates information from
multiple scales, contributing to a more comprehensive representation of
the input data. The concatenation along the channel dimension ensures
that the model can leverage features from different scales in a unified
manner, enhancing its ability to capture both local and global details
during subsequent processing steps. The advantage of the pyramid
module lies in its ability to simultaneously consider global semantic
information and local details, thereby improving the robustness and
flexibility of the network.

Hierarchical parsing net (Shi et al., 2018) introduces a context
feature encoding and fusion mechanism. This mechanism enhances the
local features of each object, considering both scene–object context and
object–object context. In RAPNet (Zhang, Liu, Lei, Wang, & Lu, 2020),
a residual atrous spatial pyramid (RASP) module is introduced. This
module sequentially aggregates contextual information from global
to local scales, enhancing label consistency in a residual-refinement
manner. In the P2T model introduced by Wu, Liu, Zhan, and Cheng
(2022), a pyramid pooling module is utilized to improve the multi-
head self-attention mechanism. This module serves the dual purpose of
reducing the sequence length of image labels while capturing powerful
contextual features. By incorporating this pyramid pooling module
into the attention mechanism, the model is better equipped to handle
and process contextual information across different scales, ultimately
improving its performance in tasks such as image labeling. P2T stands
out for its capacity to balance global and local information, taking
into account both spatial and channel dimensions of the feature map.
This equilibrium enhances the expressive power and robustness of the
features, reducing redundancy and contributing to more effective and
efficient processing.

The feature pyramid’s advantage lies in its capability to strike a
balance between global and local information, taking into account both
spatial and channel dimensions of the feature map. This approach
enhances feature expression and robustness, providing a comprehensive
representation of the input data. Building upon this, we propose a
multi-scale dynamic weight feature pyramid module, assigning differ-
ent weights to various scales to ensure more accurate fusion of the
obtained feature maps.

2.4. Attention mechanism in deep learning

In the realm of deep learning, the attention mechanism, as described
by Li, Jin, Zhou, Kubota, and Ju (2020), mimics the human visual
and cognitive systems. This approach enables neural networks to focus
their attention on relevant parts while processing input data. Through
the incorporation of attention mechanisms, neural networks can au-
tonomously learn and selectively attend to crucial information in the
input, thereby enhancing the model’s performance and generalization
capabilities.

The most typical attention mechanisms include self-attention mech-
anism (Vaswani et al., 2017), spatial attention mechanism (Jaderberg,
Simonyan, Zisserman, & kavukcuoglu, 2015), and temporal attention
mechanism (Yao et al., 2015). The integration of attention mechanisms
empowers the model to assign varying weights to different positions in
the input sequence. This capability allows the model to focus on the
most relevant parts during the processing of each sequence element,
enhancing its ability to capture and prioritize important information. In
their work, Hu, Li, Zhao, and Zhang (2020) introduced a parallel deep
learning algorithm that incorporates a hybrid attention mechanism into
DenseNet. This approach effectively extracts and integrates spatial and
channel features from images. In the TransAttUnet model, as proposed
by Chen, Liu, Zhang, Lu, and Kong (2023), the traditional U-Net
structure is enhanced through the incorporation of a self-aware atten-
tion module. This SAA module consists of transformer self-attention
and global spatial attention, aiming to augment non-local interactions
between encoder features.
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The channel attention mechanism assesses the importance of each
channel by calculating its significance, while the spatial attention
mechanism incorporates an attention module that enables the model
to dynamically learn attention weights for distinct regions. This com-
bination enhances the model’s ability to focus on relevant features
both within individual channels and across different spatial regions,
minimizing redundancy and improving its overall adaptability. By com-
bining them, the model can simultaneously capture information about
both channels and regions. Hence, our proposal introduces a hybrid
weighted attention mechanism that concurrently integrates the spatial
attention mechanism and channel attention mechanism. This approach
assigns distinct weights at various scales, ensuring varied weights for
both channel and spatial attention mechanisms across different scales.
The parallel combination of these mechanisms aims to enhance the
model’s adaptability and capture relevant features effectively across
different spatial and channel dimensions.

3. The proposed approach

In this section, we initially outline the overall framework of our
proposed NFMPAtt-Unet model. Subsequently, we provide a detailed
introduction to the core components of the network, including the
multi-scale dynamic weight feature pyramid module (MDWFP), the
hybrid weighted attention mechanism (HWA), and the fuzzy c-means
feature extraction module based on neighborhood rough set (NFCMFE).

3.1. NFMPAtt-Unet

As illustrated in Fig. 1, the framework diagram of the proposed
NFMPAtt-Unet model is depicted. Clearly, this network model adopts
a U-shaped structure. The left half of the network consists of a se-
ries of downsampling operations, including convolutional layers and
pooling layers, while the right half performs the opposite upsampling
operations. Additionally, the network model includes the proposed
multi-scale dynamic weight feature pyramid module (MDWFP), hy-
brid weighted attention mechanism (HWA), and fuzzy c-means feature
extraction module based on neighborhood rough set (NFCMFE).

During downsampling, different-scale features are input into MD-
WFP for feature fusion based on scale-specific weights. The fused
feature map is then input into MWA, where different attention mecha-
nisms are applied. This network model enables the acquisition of rich
information at multiple scales, achieving a more comprehensive context
through pyramid feature fusion. The attention mechanism allows fine-
grained attention adjustments across the entire fused feature map to
enhance focus on critical regions for the task. Simultaneously, the
original image is input into NFCMFE to obtain processed feature maps.
The combination of these two feature maps using a loss function yields
the final output result.

To achieve superior results, we have devised a comprehensive loss
function, denoted as 𝐿, specifically designed for this model. Its mathe-

atical expression is as follows:

= 𝐿𝑛𝑒𝑡 + 𝜆 ∗ 𝐿𝐹𝐶𝑀 (1)

where 𝐿𝑛𝑒𝑡 represents the loss function for the lower part of the net-
work, 𝐿𝐹𝐶𝑀 is the loss function for the NFCMFE module, and 𝜆 is the
arameter balancing between the network and NFCMFE.

.2. Fuzzy C-means feature extraction module based on neighborhood
ough set

Fig. 2 illustrates the basic framework of our proposed NFCMFE
odule. Firstly, we conduct image analysis using the theory of neigh-

orhood rough sets. Neighborhood rough set theory is an extension
f rough set theory that introduces the concept of neighborhood to
etter capture spatial correlations between data elements. In our ap-
4

roach, we employ a neighborhood function to compute the upper
approximation, lower approximation, and boundary region for each
pixel, thus constructing feature spaces with different neighborhood
systems. This approach allows us to more accurately describe spatial
relationships between pixels, providing a foundation for subsequent
image segmentation and clustering.In this paper, we use the Euclidean
distance function as the neighborhood function, with the formula as
follows:

𝑑(𝑃 ,𝑄) =
√

(𝑅𝑝 − 𝑅𝑞)2 + (𝐺𝑝 − 𝐺𝑞)2 + (𝐵𝑝 − 𝐵𝑞)2 (2)

here 𝑃 and 𝑄 represent two pixels in the image, where 𝑃 = (𝑅𝑝, 𝐺𝑝, 𝐵𝑝)
and 𝑄 = (𝑅𝑞 , 𝐺𝑞 , 𝐵𝑞).

Next, we employ the fuzzy c-means (FCM) clustering method for
image segmentation. FCM is a classic clustering algorithm designed
to partition data points into multiple clusters so that similar data
points belong to the same cluster center. In our approach, we integrate
both the grayscale values of each pixel and the previously computed
neighborhood system to calculate the membership degree of each pixel
to each cluster center, thereby obtaining a fuzzy partition of pixels. This
method not only considers the grayscale information of pixels but also
utilizes the spatial relationships between pixels, enhancing the accuracy
and robustness of image segmentation. The formula for calculating the
membership degree involved is as follows:

𝑑(𝑃 ,𝑄) =

√

√

√

√

𝑛
∑

𝑖=1
(𝑃𝑖 −𝑄𝑖)2 (3)

By calculating the neighborhood function between pixels, we can
obtain the neighborhood relationship. Let 𝑠𝑖𝑗 represent the neighbor-
hood relationship between the 𝑖th and 𝑗th pixel points, taking values
of 0 or 1. If 𝑠𝑖𝑗 = 1, it signifies that the 𝑖th and 𝑗th pixel points belong to
the same neighborhood; if 𝑠𝑖𝑗 = 0, it implies that the 𝑖th and 𝑗th pixel
points do not belong to the same neighborhood.

Using the fuzzy c-means clustering method and taking into ac-
count the grayscale values of each pixel and the previously computed
neighborhood system, compute the membership degree of each pixel
to each cluster center. This process results in a fuzzy partition. This
step integrates both grayscale and spatial information from the image,
establishing the groundwork for subsequent consistency regularization.
The traditional FCM distance metric only considers the grayscale or
color information of pixel points, overlooking spatial and neighbor-
hood information. To address this issue, we introduced previously
computed neighborhood knowledge into the FCM clustering, obtaining
the distance metric in FCM clustering. The formula is as follows:

𝑑𝑖𝑗 = ‖𝑥𝑖 − 𝑣𝑗‖ + 𝜆
𝑛
∑

𝑘=1
𝑠𝑖𝑘‖𝑢𝑘𝑗 − 𝑢𝑖𝑗‖ (4)

where 𝑥𝑖 denotes the feature vector of the 𝑖th pixel point, 𝑣𝑗 represents
the 𝑗th cluster center, 𝑢𝑖𝑗 denotes the membership degree of the 𝑖th
pixel point to the 𝑗th cluster center, and 𝜆 is a regularization parameter
regulating the impact of the neighborhood system on the distance
metric.

After obtaining the clustering results, we introduce an additional
consistency regularization term. The purpose of this term is to promote
both local and global consistency in the image by maximizing the
similarity of membership degrees between pixels and their neighboring
pixels. The design of this regularization term takes into account both
global and local consistency. By comparing distances between pixels
and their adjacent pixels or region centers, it encourages consistency
between different regions and pixels. The objective function for this
consistency regularization term is as follows:

𝑅(𝑈 ) =
𝑜
∑

𝑖=1

𝑐
∑

𝑗=1
𝑢𝑚𝑖𝑗 (𝛼 𝑑(𝑥𝑖, 𝑥𝑗 ) + 𝛽

𝑐
∑

𝑘=1
𝑑(𝑣𝑗 , 𝑣𝑘)) (5)

where 𝑈 is an 𝑛 × 𝑐 membership matrix, with 𝑢𝑖𝑗? representing the
membership degree of the 𝑖th pixel to the 𝑗th cluster center. The term

𝑑(𝑥𝑖, 𝑥𝑗?) denotes the distance between the 𝑖th and 𝑗th pixels, and
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Fig. 1. The proposed NFMPAtt-Unet model framework.
Fig. 2. The fundamental framework of the NFCMFE module begins with the application of neighborhood rough set theory for neighborhood partitioning. Subsequently, the FCM
algorithm is employed for clustering and regularization. Finally, some post-processing steps are conducted before the output is generated.
𝑑(𝑣𝑗 , 𝑣𝑘) represents the distance between the 𝑗th and 𝑘th cluster centers.
The parameter 𝑚 is a fuzziness exponent greater than 1, while 𝛼 and
𝛽 are two regularization parameters utilized to control the weights of
local and global consistency.

Based on the defined regularization term 𝑅(𝑈 ), we can derive a loss
function 𝐿(𝐿𝐶𝑀) related to FCM, the formula of which is as follows:

𝐿(𝐹𝐶𝑀) = 𝐿(𝑈, 𝑉 ) = 𝐽𝑚(𝑈, 𝑉 ) + 𝜆𝑅(𝑈 ) − 𝜇𝐷(𝑈 ) (6)

𝐽𝑚(𝑈, 𝑉 ) = −
𝑛
∑

𝑖=1

𝑐
∑

𝑗=1
𝜔𝑖𝑗 [𝑢𝑚𝑖𝑗 𝑙𝑜𝑔(𝑣𝑖𝑗 )] (7)

𝐷(𝑈 ) =
2
∑𝑛

𝑖=1
∑𝑐

𝑗=1 𝑢
𝑔𝑡
𝑖𝑗 𝑢

𝑝𝑟𝑒𝑑
𝑖𝑗

∑𝑛
𝑖=1

∑𝑐
𝑗=1(𝑢

𝑔𝑡
𝑖𝑗 + 𝑢𝑝𝑟𝑒𝑑𝑖𝑗 )

(8)

we need to determine the degree of membership of each pixel to each
cluster center, which is the purpose of the 𝑈 matrix. The 𝑈 matrix has
a size of 𝑛×𝑐, where 𝑛 represents the number of pixels in the image, and
𝑐 represents the number of cluster centers. In the 𝑈 matrix, each row
represents a pixel, and each column represents a cluster center. Each
element 𝑢𝑖𝑗 in the matrix represents the degree to which the 𝑖th pixel
belongs to the 𝑗th cluster center. 𝑉 is a 𝑐 × 𝑝 matrix representing the
positions of the cluster centers, where 𝑝 denotes the dimensionality of
the feature space. Each row in the 𝑉 matrix represents a cluster center,
and each column represents a feature dimension, indicating the position
of the cluster center in the feature space. 𝐽𝑚(𝑈, 𝑉 ) is the weighted cross-
entropy loss function, used to measure the difference between the fuzzy
clustering result and the ground truth labels, where 𝑤𝑖𝑗 is a weighting
term typically used to adjust the contribution of different samples to the
loss function, 𝑢 is the membership degree of pixel 𝑖 to cluster center 𝑗,
5

𝑖𝑗
and 𝑣𝑖𝑗 is the feature value corresponding to cluster center 𝑗. 𝑅(𝑈 ) is the
consistency regularization term, which promotes the local and global
consistency of the image. It maximizes the similarity of membership
degrees between adjacent pixels based on the degree of membership of
the pixels. This helps ensure that the clustering results have continuity
and smoothness in space. 𝐷(𝑈 ) is the Dice loss function, where 𝑢𝑔𝑡𝑖𝑗 is
the membership degree of the 𝑖th pixel’s ground truth label to the 𝑗th
cluster center, and 𝑢𝑝𝑟𝑒𝑑𝑖𝑗 is the membership degree of the 𝑖th pixel’s
predicted label to the 𝑗th cluster center.

Finally, post-processing is applied to the obtained feature maps,
including tasks such as removing small regions, filling holes, and
smoothing edges, to further enhance the overall effectiveness.

3.3. Multi-scale dynamic weight feature pyramid module

To enhance the utilization of feature maps at different scales, we
introduce a multi-scale dynamic weight feature pyramid module (MD-
WFP), as depicted in the structural diagram shown in Fig. 3.

Firstly, the input includes feature maps from low to high levels,
with each feature map corresponding to a different scale. The scale
evaluation module, as shown in Fig. 3, employs convolution for scale
evaluation, producing a scalar as the weight for each scale. For each
scale i, denoting the scale weight as 𝑤𝑖, the output of the scale eval-
uation module is 𝑤1, 𝑤2,… , 𝑤𝑛. The output is subsequently passed
through a softmax function to ensure weight normalization, transform-
ing it into an effective probability distribution. The dynamic weights 𝑑𝑖
can be calculated using the following formula:

𝑑𝑖 =
𝑒𝑤𝑖

∑𝑛 𝑤𝑗 (9)

𝑗=1 𝑒
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Fig. 3. (a) illustrates the framework of the MDWFP module, which is utilized for evaluating feature inputs of multiple scales and generating corresponding feature weights. These
feature weights are then processed by an activation function to obtain the final weighted features. (b) represents the structural diagram of the scale evaluation module in (a).
Fig. 4. The framework of the Hybrid Weighted Attention Mechanism involves obtaining different weighted features for channel attention and spatial attention through a weight
matrix. Subsequently, these features undergo fusion and activation functions to produce the final feature map.
where 𝑒𝑤𝑖 represents the exponent of 𝑤𝑖.
For each scale 𝑖, multiply the original feature map by the corre-

sponding dynamic weight 𝑑𝑖. For each spatial position and channel, the
fused feature map can be represented as:

𝐹fused(𝑥, 𝑦, 𝑐) =
𝑧
∑

𝑖=1
𝑑𝑖 ⋅ 𝐹𝑖(𝑥, 𝑦, 𝑐) (10)

where 𝐹𝑖 represents the feature map for the 𝑖th scale. The fused feature
map serves as the final output of the module.

3.4. Hybrid weighted attention mechanism

The proposed hybrid weighted attention (MWA) mechanism, shown
in Fig. 4, dynamically adjusts the weights in both spatial and channel
domains across different scales to adapt to various tasks and datasets.
It integrates spatial attention and channel attention to extract and fuse
features across various scales, minimizing redundancy in the descrip-
tion. Convolutional layers are employed for scale evaluation, followed
by normalization using the softmax function to obtain dynamic weights.
Formulas (9), (10), and (11) represent the MWA mechanism, spatial
attention scores, and channel context information, respectively.
6

𝐻(𝑄,𝐾, 𝑉 ) = 𝑆(𝑄,𝐾, 𝑉 )⊙ 𝐶(𝑄,𝐾, 𝑉 ) (11)

where ⊙ denotes element-wise multiplication. The symbols 𝑄, 𝐾, 𝑉
denote the query, key, and value matrices, respectively. These matrices
are obtained through linear transformations of the input feature map.

𝑆(𝑄,𝐾, 𝑉 ) = Softmax
(

𝑄𝐾𝑇
√

𝑑𝑘

)

𝑉 (12)

where 𝑑𝑘 represents the dimension of 𝐾, and the Softmax operation
normalizes along the last dimension.

𝐶(𝑄,𝐾, 𝑉 ) = 𝜎

(

𝑊𝑐 ⋅ 𝑅𝑒𝐿𝑈
(

𝑊𝑠 ⋅ 𝐶𝑜𝑛𝑐𝑎𝑡
(

𝑄,𝐾, 𝑉
)

)

)

(13)

where 𝜎 represents the sigmoid function. In this context, 𝑊𝑠 and 𝑊𝑐
represent two weight matrices, where 𝑊𝑠 is used for spatial dimension
processing, and 𝑊𝑐 is used for channel dimension processing. Con-
catenate operation is applied to concatenate Q, K, and V along the
channel dimension. Subsequently, ReLU and Sigmoid functions are used
to calculate the channel attention weights.
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Table 1
Information about datasets used.

Dataset Number of
training set

Number of
test set

Image size

Eye 54 27 4288 × 2848
WSSS4LUAD 80 40 256 × 256
Lung 632 72 3000 × 2919
FootUlcer 810 200 512 × 512
Cell 1000 101 512 × 512
ISIC 2000 150 512 × 512

By introducing scale adaptability, the hybrid-weighted attention
echanism has made significant progress in flexibility, enabling neural
etworks to intelligently learn and adapt to diverse scale features in
ifferent tasks or scenarios. This advancement facilitates more effective
apture and processing of various spatial scale differences present
n input data. Through automatic weight adjustments, the network
an handle information more intricately across different levels and
esolutions, thereby enhancing performance on complex tasks.

. Experimental setup and outcomes

In this section, we experimentally validate the efficacy and perfor-
ance of our proposed model, NFMPAtt-Unet. Initially, we present the
atasets and equipment employed in our experiments. Subsequently,
e present the experimental results and conduct a detailed analysis.

.1. Basic introduction

In the experiments, we implemented our method using PyTorch
version 2.0.0) and conducted the experiments on an NVIDIA GTX
090 GPU. Different batch sizes (1, 8, 16) were employed for various
atasets. We initialized the learning rate at 0.001 with a weight decay
ate of 0.003. Furthermore, we employed active data augmentation
echniques, incorporating random angle rotations within the range of
45 degrees to 45 degrees, along with random horizontal and vertical

lips. For standardizing image processing, we uniformly resize images
o a size of 512×512 pixels for experimental purposes.

We utilized a total of six different medical image segmentation
atasets, and their basic information is presented in Table 1.
WSSS4LUAD (Han et al., 2022): This dataset was derived by scan-

ing H&E stained slides from Guangdong Provincial People’s Hospital
GDPH) and collecting Whole Slide Images (WSI) from the Cancer
enome Atlas (TCGA) at a resolution of 256×256. Pixel-level predic-

ions were conducted for three prevalent and significant tissue types:
umor epithelial tissue, tumor-associated stromal tissue, and normal
issue.
Cell (Ma et al., 2023): This dataset encompasses the diversity of mi-

roscopic images across four dimensions: cell source, staining method,
icroscope type, and cell morphology. There is significant variation

n the source of cells in microscopic images, differences in staining
ethods, the use of different types of microscopes, and noticeable

ariations in cell morphology across different cell types.
FootUlcer (Wang et al., 2020): This dataset comprises 1109 images

f foot ulcers captured from 889 patients. The original images were
aptured using a Canon SX 620 HS digital camera and an iPad Pro,
ften under uncontrolled lighting conditions, leading to varied back-
rounds. The dataset underwent uniform resizing, standardizing the
ixel dimensions to 512×512.
Eye: This dataset comprises various fundus images with diverse

abels. For this experiment, we focused solely on using the pupil as the
arget label. The dataset comprises a total of 54 training images and 27
esting images.
ISIC (Rotemberg et al., 2021): This dataset is a skin lesion image

ataset used for segmenting melanomas from dermoscopic images. It
omprises 2000 training images and 150 testing images, minimizing
7

r

edundancy in the description. The images in the dataset have varying
izes, which we standardized to 512×512.
Lung: This dataset consists of X-ray chest images with segmented

abels corresponding to lung regions. It includes 632 training images
nd 72 testing images.

.2. Evaluation indicators

To evaluate the performance of various methods, we utilized a set
f five evaluation metrics: accuracy (Acc), precision (Prec), F1 score
F1), intersection over union (IoU), Area Under the Curve-Receiver
perating Characteristic (AUC-ROC) , and Dice coefficient (Dice). Their
efinitions are as follows:

cc = TP + TN
TP + TN + FP + FN

(14)

Prec = TP
TP + FP

(15)

F1 = 2 × TP
2 × TP + FP + FN

(16)

oU = TP
TP + FP + FN

(17)

AUC-ROC = ∫

1

0
TPR (FPR) 𝑑 FPR (18)

Dice =
2 × |𝑋 ∩ 𝑌 |
|𝑋| + |𝑌 |

(19)

In these formulas, TP (True Positive) denotes the number of samples
redicted as positive and actually belonging to the positive class,
hile TN (True Negative) represents the number of samples predicted
s negative and actually belonging to the negative class. FP (False
ositive) represents the number of samples predicted as positive but
ctually belonging to the negative class, and FN represents the number
f samples predicted as negative but actually belonging to the positive
lass. TPR (True Positive Rate) is calculated as 𝑇𝑃∕(𝑇𝑃 +𝐹𝑁), and FPR
False Positive Rate) is calculated as 𝐹𝑃∕(𝐹𝑃 + 𝑇𝑁). X and Y are two
ets, |X ∩ Y| is the number of elements in their intersection, and |X|
nd |Y| are the number of elements in sets X and Y, respectively.

Accuracy evaluates the proportion of correctly predicted samples
ut of the total samples, focusing on overall correctness. Precision
easures the accuracy of positive predictions among samples predicted

s positive, indicating the precision of the predictions. F1 score is the
armonic mean of precision and recall, offering a balanced consider-
tion of both accuracy and completeness in predictions. Intersection
ver Union is the ratio of the intersection to the union of the predicted
nd true regions, representing the degree of overlap. A higher value
ndicates better segmentation results. The ROC curve plots the false
ositive rate (FPR) against the true positive rate (TPR) at various
hresholds, reflecting sensitivity and specificity at different thresholds.
UC-ROC, the area under the ROC curve, ranges from 0.5 to 1, with
higher value indicating better classification performance. The Dice

oefficient is a statistical tool used to measure the similarity between
wo samples. The value of the Dice coefficient ranges from 0 to 1, where
indicates complete similarity and 0 indicates no similarity.

.3. Experimental results

In this section, we assessed the performance of the proposed
FMPAtt-Unet model and conducted a comparative analysis with eight
ther UNet-related models. These models include: U-Net(2015) (Ron-
eberger et al., 2015), U-Net++(2018) (Zhou et al., 2018), SA-UNet
2021) (Guo et al., 2021), AB-UNet(2021) (Saidu & Csató, 2021), DC-
Net(2021) (Lou, Guan, & Loew, 2021), DenseRes-UNet(2022) (Kiran,
aza, Ijaz, & Khan, 2022), PDF-UNet(2023) (Iqbal & Sharif, 2023)
nd META-UNet(2023) (Wu, Zhao, & Wang, 2023). The experimental

esults are detailed in Table 2, Table 3 and Table 4. Furthermore, visual
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Table 2
Comparison with other models on mentioned datasets (WSSS4LUAD, Cell, FootUlcer).

Dataset Model Acc (%) Prec (%) F1 (%) IoU (%) AUC-ROC (%)

WSSS4LUAD

U-Net 91.37 90.33 87.70 78.09 90.36
U-Net++ 92.76 90.28 86.87 76.78 90.04
SA-UNet 92.81 87.85 87.37 77.57 91.04
AB-UNet 93.21 96.93 86.92 76.87 88.89
DC-UNet 93.16 90.15 87.73 78.15 90.85
DenseRes-UNet 93.42 92.10 88.00 78.57 90.67
PDF-UNet 93.44 90.88 88.20 78.90 91.12
META-UNet 90.17 86.99 81.80 69.20 86.28
NFMPAtt-Unet 93.62 93.27 88.25 78.98 90.66

Cell

U-Net 86.32 73.12 74.48 59.34 82.97
U-Net++ 86.98 74.77 75.52 60.67 83.55
SA-UNet 87.76 72.87 78.55 64.68 86.94
AB-UNet 88.39 76.91 78.35 64.41 85.64
DC-UNet 88.09 73.72 78.98 65.26 87.11
DenseRes-UNet 88.29 76.82 78.14 64.13 85.47
PDF-UNet 88.14 79.16 76.79 62.32 83.77
META-UNet 88.71 77.39 79.00 65.28 86.13
NFMPAtt-Unet 89.94 77.78 80.74 67.71 87.95

FootUlcer

U-Net 90.44 76.49 77.60 66.15 88.97
U-Net++ 90.54 82.83 78.64 64.79 89.03
SA-UNet 92.51 82.99 82.11 69.64 90.50
AB-UNet 91.44 76.71 80.99 68.05 92.71
DC-UNet 92.70 73.20 77.37 63.10 90.82
DenseRes-UNet 90.69 86.89 86.79 70.97 88.36
PDF-UNet 92.19 87.82 85.00 73.91 91.09
META-UNet 93.71 89.80 89.63 81.21 92.76
NFMPAtt-Unet 94.36 92.26 90.09 77.55 93.91
Table 3
Comparison with other models on mentioned datasets (Eye, ISIC, Lung).

Dataset Model Acc (%) Prec (%) F1 (%) IoU (%) AUC-ROC (%)

Eye

U-Net 90.05 56.90 62.68 45.65 84.42
U-Net++ 90.49 61.01 65.52 44.79 85.13
SA-UNet 92.89 71.20 71.74 55.93 85.88
AB-UNet 93.85 60.55 68.52 34.71 87.57
DC-UNet 92.12 20.24 32.05 18.76 84.71
DenseRes-UNet 93.02 74.87 65.70 48.92 89.05
PDF-UNet 95.98 83.35 83.33 55.24 90.20
META-UNet 95.79 70.21 78.60 64.75 94.30
NFMPAtt-Unet 96.99 85.17 79.51 65.98 91.94

ISIC

U-Net 92.52 87.86 80.81 67.80 81.76
U-Net++ 92.97 89.93 80.98 68.04 85.92
SA-UNet 93.08 86.32 79.17 65.53 85.29
AB-UNet 93.15 87.24 79.21 69.93 88.53
DC-UNet 93.25 83.32 80.63 67.54 87.34
DenseRes-UNet 89.40 72.37 69.28 53.00 80.44
PDF-UNet 94.09 89.89 82.15 69.70 86.88
META-UNet 94.91 90.94 84.91 73.78 88.95
NFMPAtt-Unet 95.64 90.81 86.38 71.70 89.53

Lung

U-Net 97.33 95.77 95.11 90.75 93.48
U-Net++ 97.54 95.63 94.15 92.63 95.53
SA-UNet 97.94 94.80 95.78 91.91 96.42
AB-UNet 97.37 94.44 95.54 93.39 93.43
DC-UNet 97.75 95.61 96.03 92.35 96.61
DenseRes-UNet 97.42 97.33 95.34 91.09 95.59
PDF-UNet 98.13 97.09 96.67 93.55 96.58
META-UNet 97.17 97.02 96.19 93.02 95.37
NFMPAtt-Unet 98.21 97.51 96.80 93.81 97.57
comparisons of NFMPAtt-Unet with other models on the dataset are
presented in Fig. 6.

Analyzing the experimental results from Tables 2 and 3, it is evident
that our proposed NFMPAtt-Unet model exhibits superior performance
compared to other models. On the WSSS4LUAD dataset, NFMPAtt-Unet
attains the highest performance, achieving the best values for Acc, F1,
and IoU, with scores of 93.62%, 88.25%, and 78.98%, respectively.
In the Cell dataset, the NFMPAtt-Unet model exhibits the best perfor-
mance across the Acc, F1, IoU, and AUC-ROC metrics, with values of
8

89.94%, 80.74%, 67.71% and 87.95%, respectively. On the FootUlcer
dataset, the NFMPAtt-Unet model demonstrates the best performance
across the Acc, Prec, F1, and AUC-ROC metrics, with values of 94.36%,
92.26%, 90.09%, and 93.91%, respectively. In the Eye dataset, the
NFMPAtt-Unet model achieves the best performance in terms of Acc,
Prec, and IoU, with values of 96.99%, 85.17%, and 65.98%, respec-
tively. On the ISIC dataset, the NFMPAtt-Unet model demonstrates the
best performance in terms of Acc, F1, and AUC-ROC, with values of

95.64%, 86.38%, and 89.53%, respectively. On the Lung dataset, the
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Fig. 5. The bar chart illustrates the DICE scores of different models on various datasets, with (a), (b), (c), (d), (e), and (f) corresponding to datasets WSSS4LUAD, Cell, FootUlcer, Eye,
ISIC, and Lung, respectively. Models 1 through 9 represent U-Net, U-Net++, SA-UNet, AB-UNet, DC-UNet, DenseRes-UNet, PDF-UNet, META-UNet, and NFMPAtt-UNet, respectively.
Table 4
The experimental results of the model’s DICE scores (%) on different datasets are presented as follows: (average value ± standard
deviation).

Models
Datasets WSSS4LUAD Cell FootUlcer Eye ISIC Lung

U-Net 88.35±0.157 75.89±0.167 86.25±0.123 74.79±0.054 84.08±0.065 96.58±0.105
U-Net++ 88.65±0.266 77.91±0.174 86.78±0.135 79.30±0.042 84.67±0.051 96.67±0.064
SA-UNet 88.96±0.215 77.52±0.154 86.06±0.134 82.65±0.054 85.42±0.038 96.73±0.072
AB-UNet 88.92±0.157 77.35±0.268 87.69±0.083 74.70±0.035 81.46±0.042 96.34±0.065
DC-UNet 89.35±0.157 76.59±0.241 86.61±0.104 63.32±0.033 85.83±0.035 96.28±0.052
DenseRes-UNet 88.40±0.245 77.15±0.124 86.17±0.107 44.10±0.025 79.07±0.025 94.26±0.062
PDF-UNet 89.77±0.287 77.67±0.111 86.30±0.157 75.81±0.021 86.32±0.031 96.01±0.047
META-UNet 88.65±0.154 79.72±0.152 85.92±0.139 72.40±0.024 86.71±0.023 96.56±0.049
NFMPAtt-UNet 90.35±0.187 81.03±0.136 86.39±0.085 80.32±0.022 87.24±0.034 97.64±0.038
NFMPAtt-Unet model excels in all five metrics — Acc, Prec, F1, IoU,
and AUC-ROC, with values of 98.21%, 97.51%, 96.80%, 93.81%, and
97.57%, respectively. From the results in Table 4 and Fig. 5, we can
observe that the NFMPAtt-UNet model outperforms other models on
most datasets and exhibits greater stability.

Consequently, considering the experimental results, it can be con-
cluded that our proposed NFMPAtt-Unet model surpasses other mod-
els, showcasing superior performance across different datasets and
evaluation metrics.

As depicted in Fig. 6, the first row showcases the segmentation
results for breast cancer glands. In this task, both NFMPAtt-Unet and
other models successfully capture the main contour areas. However,
compared to other models, NFMPAtt-Unet exhibits more accurate seg-
mentation, particularly in smaller regions. For cell segmentation (sec-
ond row), NFMPAtt-Unet demonstrates superior accuracy in capturing
cell contours and local areas compared to other models. In wound
segmentation (third row), NFMPAtt-Unet showcases a more precise
ability to segment the entire wound contour and small wounds. When
dealing with segmentation tasks involving small and detailed structures
like pupils and melanomas (fourth and fifth rows), NFMPAtt-Unet also
demonstrates more precise segmentation. The last row displays lung
segmentation results, highlighting NFMPAtt-Unet’s superior accuracy in
capturing lung contours. These observations emphasize the outstanding
performance of the NFMPAtt-Unet model across various segmentation
tasks.
9

4.4. Ablation study

As depicted in Fig. 1, as described in the third section, our proposed
NFMPAtt-Unet incorporates three additional core components: MD-
WFP, HWA, and NFCMFE, in comparison to the Unet network. To assess
the effectiveness of each component, we performed an ablation study
by selectively removing certain components from NFMPAtt-Unet and
evaluated the model on the FootUlcer and Eye datasets (see Table 5).

The experimental results of the ablation study are presented in
Table 4. Upon comparing the data in Table 4, it is apparent that
the incorporation of the three proposed core components substantially
improves the experimental performance in comparison to the standard
U-Net. Each core component has been validated for its effectiveness on
the two datasets used, providing support for the superior performance
of the model.

4.5. Computational complexity

The model complexity is shown in Table 6, with the input image
format being (1, 3, 128, 128). From the experimental results, it is
evident that although our model’s parameter count and computational
complexity are not the lowest, our segmentation performance is supe-
rior. Additionally, the computational complexity of SA-UNet, AB-UNet,
and DenseRes-UNet is significantly higher than that of NFMPAtt-UNet.
Therefore, NFMPAtt-UNet balances the model’s computational cost
while improving segmentation accuracy.
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Table 5
Ablation results from the FootUlcer and Eye datasets.

MDWFP HWA NFCMFE FootUlcer Eye

Acc Prec F1 IoU AUC-ROC Acc Prec F1 IoU AUC-ROC

× × × 90.44 76.49 77.60 66.15 88.97 90.05 56.90 62.68 45.65 84.42
× ✓ ✓ 92.65 88.77 87.84 75.08 90.92 95.83 83.69 77.80 62.89 90.36
✓ × ✓ 91.26 86.75 83.48 69.72 90.40 95.96 82.40 77.06 63.26 90.59
✓ ✓ × 92.79 88.75 87.49 74.23 91.49 95.44 83.91 78.07 63.55 91.05
✓ ✓ ✓ 94.36 92.26 90.09 77.55 93.91 96.99 85.17 79.51 65.98 91.94
Fig. 6. Visual comparison of different algorithm models on various datasets. From the first row to the last row, the datasets are as follows: WSSS4LUAD, Cell, FootUlcer, Eye,
ISIC, Lung.
Table 6
Different models’ parameter count, FLOPs, and FPS comparison, measured at a
resolution of 128 × 128.

Models Params (M) FLOPs (G) FPS

U-Net 7.850 3.525 251.369
U-Net++ 9.160 8.725 173.369
SA-UNet 60.339 19.221 58.663
AB-UNet 31.038 13.686 100.809
DC-UNet 10.811 5.958 34.950
DenseRes-UNet 11.796 90.234 26.766
PDF-UNet 10.523 2.796 120.281
META-UNet 11.628 1.268 78.322
𝐍𝐅𝐌𝐏𝐀𝐭𝐭 − 𝐔𝐍𝐞𝐭 9.628 6.760 125.850

4.6. Limitations and future work

Although our proposed NFMPAtt-Unet model has shown significant
performance improvement in various medical image segmentation tasks
compared to many advanced methods, there are still limitations in
segmentation tasks. As shown in Table 6, the main issue lies in the high
number of parameters. While our model has fewer parameters com-
pared to some models and achieves other performance improvements,
it still increases the hardware burden to some extent. This is because
the neighborhood rough set proposed in our network model is based on
pixel extraction, and higher-resolution images increase computational
complexity. Additionally, the introduced hybrid weighted attention
mechanism adds two additional weight matrices during weight genera-
tion. While these operations enhance the segmentation performance of
10
the model, they also increase the number of parameters in the model. In
future work, we will focus on reducing model parameters to make the
proposed deep learning model more suitable for deployment in clinical
applications.

5. Conclusion

In this study, we propose a novel U-Net network model designed
to address the inherent challenges posed by the fuzzy boundaries in
medical image segmentation. This enhanced U-Net architecture inte-
grates three key components: the Multi-scale Dynamic Weight Feature
Pyramid Module (MDWFP), the Hybrid Weighted Attention Mechanism
(HWA), and the Fuzzy C-means Feature Extraction Module based on
Neighborhood Rough Set (NFCMFE). The MDWFP module improves
feature fusion by dynamically assigning weights to features across
different scales, thereby enhancing the network’s ability to capture
multi-scale information effectively. The HWA mechanism enhances the
network’s feature selection process by integrating both channel-wise
and spatial attention mechanisms, enabling more efficient utilization of
crucial features for segmentation tasks. Finally, the NFCMFE module
leverages the concept of neighborhood rough sets to extract features
using fuzzy C-means clustering, enabling the model to handle com-
plex structures and uncertainties inherent in medical images more
effectively.

Furthermore, we conducted comparative experiments involving our
proposed model and other state-of-the-art models on multiple datasets.
The experimental results substantiate the superior advantages and per-
formance of our proposed model.
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