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A B S T R A C T

Concept-cognitive learning (CCL), an emerging intelligence learning paradigm, has recently become a popular
research subject in artificial intelligence and cognitive computing. A central notion of CCL is cognitive and
learning things via concepts. In this process, concepts play a fundamental role when mining and fusing
knowledge from data to wisdom. With the in-depth research and expansion of CCL in scopes, goals, and
methodologies, some difficulties have gradually emerged, including some vague terminology, ambiguous
views, and scattered research. Hence, a systematic and comprehensive review of the development process and
advanced research about CCL is particularly necessary at the moment. This paper summarizes the theoretical
significance, application value, and future development potential of CCL. More importantly, by synthesizing
the reviewed related research, we can acquire some interesting results and answer three essential questions: (1)
why examine a cognitive and learning framework based on concept? (2) what is the concept-cognitive learning?
(3) how to make concept-cognitive learning? The findings of this work could act as a valuable guide for
related studies in quest of a clear understanding of the closely related research issues around concept-cognitive
learning.
. Introduction

Recently, the emergence of new technologies such as Gemini1 and
hatGPT2 has brought attention to artificial intelligence and cognitive
omputing. Simultaneously, the question of how to define a notion of
‘intelligence’’ has attracted concentration in academia and industry
gain. In fact, cognitive computing and artificial intelligence initially
ad the same goals, both involving the study of computational mod-
ling of the human brain, including memory, attention, perception,
easoning, planning, decision-making, etc. Hence, a close relation-
hip exists between both fields. Investigating various valuable cogni-
ive intelligence paradigms is essential for studying and enforcing the
undamental assumptions of artificial intelligence. Despite remarkable
rogress in simulating human logical thinking, the credibility and
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reliability of artificial general intelligence (AGI) have eluded expecta-
tions of the intelligence machine system. According to Lake et al. [1],
‘‘People learning new concepts can often generalize successfully from
just a single example, yet machine learning algorithms typically require
tens or hundreds of examples to perform with similar accuracy’’. The
research of machine learning should focus on the concept learning of
human-level conceptual knowledge. In this sense, cognitive learning of
concepts is undoubtedly a valuable cognitive intelligence paradigm.

In general, the goal of data processing and analysis is to form
concepts and rules that guide human decision-making behavior. Among
these, concepts are the most fundamental unit of human cognition in
philosophy, which refers to the common essential characteristics of
things abstracted and summarized by human beings in the process of
understanding and knowing the world [2,3]. With the help of concepts,
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Fig. 1. Development stage of CCL.
humans can build a mapping between abstraction and reality and
explore the development law of things while recognizing things, that
is cognition. Note that the concept mentioned above is a broad concept
but also a standard concept. That is, it has three elements, including
annotation (i.e., name of concept), connotation (i.e., definition of con-
cept), and denotation (i.e., referent of concept). For example, consider
the concept of a prime number, ‘‘A prime number (or a prime) is a natural
number greater than 1 that has no positive divisors other than 1 and itself ’’.
Here, the annotation is ‘‘prime number ’’, the connotation is ‘‘the natural
number greater than 1 that has no positive divisors other than 1 and itself ’’,
and the denotation is ‘‘the set of natural numbers {2, 3, 5, 7, 11, 13,…}’’
that satisfy this definition.

The study of concept representation and learning is a noteworthy
topic that spans various disciplines, such as philosophy, mathematics,
artificial intelligence, and cognitive science, among others. Formal
concept analysis (FCA) was proposed by Wille [4] in 1982 as a means of
formally describing concepts. The core idea of FCA involves expressing
objects, attributes, and the relations between objects and attributes
based on a formal context that comprises the ontology in a structured
manner. In a formal context, connotation is also known as intent, and
denotation is also known as extent. One enables the construction of
all concepts and their generalization and specialization relationships,
forming a concept lattice for the clear expression of the knowledge
structure. In this way, concepts can be concretely expressed in various
forms (including formal concepts, prototype concepts, granular con-
cepts, and fuzzy concepts) to describe the semantic interpretation of the
ontology in different scenarios, such as medical diagnosis, handwritten
numeral, micro-expressions, etc. In particular, in medical diagnosis,
paper [5] designed a concept-cognitive learning system for genetic data
analysis and successfully applied it to the task of tumor diagnosis.
This system utilizes a fuzzy-based concept-cognitive learning model to
analyze tumor diagnosis from the perspective of gene analysis, which
effectively improves the medical diagnosis accuracy of tumor patients.

During the past 42 years, we have witnessed a growing interest and
development of formal concept analysis [6–12]. At the same time, this
theory focuses more on the construction of concept lattice, which is an
NP-hard problem and does not suit the area of big data, especially in
the area of artificial intelligence. As mentioned above, people learning a
new concept can often generalize successfully from very few examples,
and machine learning algorithms typically require tens or hundreds
of examples to perform with similar accuracy. Therefore, cognitive
learning for concepts is emerging in artificial intelligence and cogni-
tive science. An emerging intelligence paradigm via concept learning,
coined by Zhang and Xu [13] in 2007, is an influential tool for re-
searching concept learning and cognitive intelligence. This work mainly
discusses the sufficient and necessary relationship between objects and
attributes. Then, the unity of objects and attributes forms the concept,
which is a two-way learning process as the essence of the cognitive
process. Based on this essence, a concrete mathematical model of
cognition is presented, along with a detailed description of cognitive
granulation. Since then, the rudiments of cognitive concept learning
2

come into being. Moreover, Wang [14] proposed an important concept
algebra viewpoint for cognitive learning. As a complement to concept
learning, Yao [15] interpreted concept learning from the perspective
of cognitive informatics and granular computing and pointed out that
cognitive concept learning should be carried out from three sub-levels:
the philosophy level, the algorithm/technique level, and the application
level. Undoubtedly, these important studies have laid the foundation
for research on cognitive learning via concepts. For this reason, these
studies are also called the rudiments of cognitive concept learning.

Early research viewed cognitive concept learning as the process of
learning concepts through specific cognitive methods and uncovering
cognitive learning rules within the human brain. From 2013 to 2018,
with the rise of cognitive concept learning, numerous scholars con-
tinued to explore this area and developed various cognitive concept
learning models and methods. One notable research line is focused
on a cognitive concept learning model based on granular computing.
For instance, Xu et al. [16,17] described the concept learning process
through sufficient and necessary learning, also known as two-way
concept learning (TCL). Kumar et al. [18] utilized formal concept
analysis to investigate the cognitive functionalities of bidirectional
associative memory. Li et al. [19] proposed a granular concept learning
model using granular computing from a cognitive viewpoint. Shivhare
et al. [20] introduced a three-way conceptual model to cognitive mem-
ory functionalities. Although these studies significantly contributed to
the advancement of cognitive concept learning, it is mainly limited
within the framework of granular computing.

With the in-depth research and expansion of concept-cognitive
learning in scopes, goals, and methodologies, researchers in various
fields have researched this subject from their professional perspectives.
There were various theoretical frameworks in the same field, such
as medical diagnostics [5], knowledge discovery [21], pattern recog-
nition [22], cloud computing [23], online learning [24], sentiment
analysis [25], and others. In 2018, the term ‘‘concept-cognitive learn-
ing’’ was widely accepted and recognized. Since 2007, the development
stage of the CCL term is shown in Fig. 1. In particular, the fruitful
marriage with machine learning further broadens the research horizon
for this field. Different from formal concept analysis and cognitive
concept learning, concept-cognitive learning, the science of cognition
and learning things via concepts, aims to explore human-level informa-
tion processing and conceptual-knowledge learning mechanisms from
a cognitive viewpoint, with planned applications in studying and im-
plementing human-like intelligent systems. The process of knowledge
mining and fusion in concept-cognitive learning relies on beginning
with a specific formal context, namely a cross table, where each
row corresponds to a set of objects, each column refers to a set of
attributes, and the values in the cross table indicate the relationship
between objects and attributes. Hence, in recent years, increasing
attention has been directed toward CCL in data mining, intelligence
computing, cognitive computing, and intelligence decision-making.
The core concerns of concept-cognitive learning include the concept
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Fig. 2. Publications of CCL.
cognition mechanism, concept learning method, cognitive system con-
struction mechanism, complex decision optimization mechanism, and
others. Specific concept-cognitive learning models include memory-
based CCL [2], incremental CCL [26], fuzzy-based CCL [27], two-way
CCL [28], semi-supervised CCL [29], etc. A detailed analysis of various
CCL models can be found in Ref. [30], and the clear developmental
background of CCL can be seen in Ref. [31]. In addition, the first
book on concept-cognitive learning was also published in 2023 by Xu
et al. [32]

Concept-cognitive learning, an emerging intelligence learning
paradigm, has recently become a popular research subject in artificial
intelligence and cognitive computing. Nevertheless, some issues have
gradually emerged, including some vague terminology, ambiguous
views, and scattered research. Consequently, a systematic and compre-
hensive summary of the development process, advanced research, and
future development of concept-cognitive learning is particularly neces-
sary, especially in answering some essential questions: (1) why examine
a cognitive and learning framework based on the concept? (2) what
is the concept-cognitive learning? (3) how to make concept-cognitive
learning? In this article, we review the published papers related to CCL
and overview the research thought and the representative methods of
CCL. The main contributions of this paper are as follows.

• It is the systematic overview that attempts to provide an in-
depth analysis of the advancement of concept-cognitive learning.
One combs a comprehensive analysis and valuable reference for
related research according to the analysis of publication articles,
the basic theory of CCL, the categorization of CCL, challenges, and
future directions of CCL.

• It is a multi-view categorization of concept-cognitive learning
from the three levels of abstract-machines-brain, which surveys
several triadic structures for characterizing CCL, namely, the
information-processing triangle, the three research scopes
(i.e., mathematics and logics, artificial intelligence, and cogni-
tive simulations), the three research goals (i.e., concept anal-
ysis methods, concept learning strategy, and concept cognitive
3

mechanism), and three research methodologies (i.e., cognitive
computing, granular computing, and machine learning).

• It is an elucidation of the main research gaps and suggestions
for future research directions for the model, method, and ap-
plication of concept-cognitive learning from six aspects: con-
cept learning method, concept cognition mechanism, cognitive
system construction and optimization, complex decision-making,
interdisciplinary research, and engineering applications.

• It acquires some interesting results by synthesizing the reviewed
related research. These findings could act as a valuable guide for
related studies in quest of a clear understanding of the closely
related research issues around concept-cognitive learning.

Furthermore, three essential questions in this review can be an-
swered in six sections. In Section 1 and Section 2, we focus on replying
to the first question in the motivation, i.e., why do we examine a
cognitive and learning framework based on concept? Section 3 answers
the question of what concept-cognitive learning is and some notions
related to it. As for the last question, Section 4 overviews the existing
methodologies on different topics related to CCL, and future directions
about CCL are discussed in Section 5. Finally, the concluding remarks
are presented in Section 6.

2. Analysis of published articles

In this section, we will unveil a clear connection among keywords,
authors, affiliations, papers, and journals. Through a comprehensive
analysis of the dataset comprising concept-cognitive learning articles
published before February 1, 2024, and downloaded from ISI Web of
Science using the keywords ‘‘cognitive concept learning’’ and ‘‘concept-
cognitive learning’’. We offer an overview of 53 CCL papers ana-
lyzed, including 6 highly cited ESI papers [17,19,27,30,31,33], which
represent 11.3% of the total articles.

To clearly show the publication information, we offer statistics of
the publication title of the collected papers as a function of publication
distribution shown in Fig. 2, and recorded the details of these 6 ESI
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Table 1
ESI highly cited paper of CCL in the last decade.
Reference Author Title Citations Year

[31] Xu, Guo, Qian & Ding Two-way concept-cognitive
learning method: A fuzzy-based
progressive learning

37 2023

[30] Xu, Guo, Mi, Qian, Ding &
Zheng

Two-way concept-cognitive
learning via concept movement
viewpoint

15 2023

[27] Mi, Shi, Li, Liu &Yan Fuzzy-based concept learning
method: Exploiting data with
fuzzy conceptual clustering

48 2022

[33] Li, Huang, Qi, Qian & Liu Three-way cognitive concept
learning via multi-granularity

353 2017

[17] Xu & Li Granular computing approach to
two-way learning based on formal
concept analysis in fuzzy dataset

259 2016

[19] Li, Mei, Xu & Qian Concept learning via granular
computing: A cognitive viewpoint

280 2015
Fig. 3. Keywords network of CCL.
highly cited papers in Table 1 for easy access. It can be seen from
Fig. 2 that CCL has been published in 21 famous academic journals,
among which the journals of Information Sciences, International Journal
of Machine Learning and Cybernetics, Cognitive Computations, International
Journal of Approximate Reasoning and Knowledge-Based Systems are the
top five journals in terms of the current number of publications. In
addition, it is noted that the latest progress of CCL has also been
published successively in the journal of Information Fusion, IEEE Trans-
actions on Neural Networks and Learning Systems, IEEE Transactions on
Fuzzy Systems, IEEE Transactions on Knowledge and Data Engineering,
IEEE Transactions on Cybernetics, etc.

In order to gain a better understanding of the research landscape in
concept-cognitive learning, this section constructs a network structure
diagram that encompasses authors, institutions, and keywords. The
diagram is based on 53 papers related to CCL and aims to explore
the interconnectedness among different research frontiers. To visually
represent the analysis, the diagram employs ‘‘growth rings’’ as nodes,
which vary in size and color, indicating different attributes. The colors
within each ‘‘ring’’ signify the author or institution associated with the
research, while the keywords are categorized by year, transitioning
from cool colors to warm colors. The thickness of each growth ring
4

corresponds to the frequency of the respective keyword. A thicker
growth ring represents a larger node, indicating a higher frequency
of the keyword’s occurrence. The lines connecting the nodes represent
co-occurrence relationships, with the color of the lines indicating the
earliest year in which both nodes appeared together in an article.
Besides, the centrality of a node reflects the proportion of all shortest
paths passing through that particular point in the network. Nodes with
high centrality act as key bridges within the network, establishing
strong connections with other nodes. Purple circles denote these key
points.

Fig. 3 displays the keyword clustering graph, where each node
represents a keyword found in the papers. If two keywords appear in
the same paper, there will be a line connecting them. The size of the
node indicates the frequency of occurrence of the keyword. In this fig-
ure, keywords such as concept-cognitive learning, granular computing,
three-way decision, and formal concept analysis are depicted in larger
circles, indicating their frequent occurrence. Meanwhile, the outer
ring of the concept-cognitive learning, three-way decision, formal con-
cept analysis, and concept learning nodes is purple, highlighting their
high centrality and reflecting the current research focus. Furthermore,
concept-cognitive learning connects closely with granular computing,
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Fig. 4. Scientific collaboration network of CCL.
cognitive computing, and other keywords in machine learning, such as
knowledge, attribute reduction, and incremental learning, which also
reflects the main research methodologies of CCL at present. Notably,
granular computing with high centrality has emerged as a key area of
research methodology within concept-cognitive learning.

Fig. 4 shows the author collaboration network diagram, consisting
of 88 nodes, where each node represents the author and the lines
between the nodes indicate that the author has a collaborative rela-
tionship. The larger the node, the greater the number of authors in the
field. The more connections a node has with other nodes, the closer
the author of the node is to its node and the greater its influence. From
this figure, it can be found that Xu Weihua and Li Jinhai have purple
outer rings with high centrality, indicating that they often co-appeared
with other authors in the same literature and played a bridging role. Xu
Weihua has the largest node, and according to statistics, he has 18 co-
authored papers, ranking first. In particular, Xu Weihua, Guo Doudou,
Qian Yuhua, and Ding Weiping nodes show deep purple, indicating that
they have a large number of papers in the past three years and are
in a leading position. In addition, Li Jinhai also published 12 articles,
accounting for 23% of the statistics. From this figure, one can easily
see that there are several non-connected components, for example,
groups labeled by Xu Weihua, Li Jinhai, Zhang Tao, and Hong Wenxue.
This suggests that further efforts are needed to bring more interaction
between these different groups.

Fig. 5 shows the institutional collaboration network diagram with
49 nodes representing different institutions, where the size of each
node and the color of the ‘‘ring’’ in the nodes represent the number
of publications and the publication time by the respective institution
in the current field. The connections between these nodes indicate
cooperative relationships between institutions. From this figure, there
are three main research groups represented by Southwest University,
Kunming University of Science & Technology, and Yanshan Univer-
sity. Particularly, Southwest University boasts the largest node with
a frequency of 15 and maintains close connections with other insti-
tutions. From this figure, the University of Regina, with the purple
node, first attended to the thought about concept-cognitive learning,
which has been continuously advanced and researched by different
institutions. Currently, papers from Southwest University, led by Xu
Weihua and Guo Doudou, have played a prominent role in the field.
5

Additionally, Kunming University of Science and Technology and the
Chinese Academy of Sciences have frequencies of 12 and 7, respec-
tively, positioning them as the second and third highest among all
institutions.

Furthermore, some interesting observations can be drawn from
these figures:

• The keywords network demonstrates the relationships between
various concept-cognitive learning topics. As research contin-
ues to advance, concept-cognitive learning, granular computing,
three-way decision, concept learning, formal concept analysis,
and cognitive computing have emerged as hot topics in the field
of concept-cognitive learning.

• The scientific collaboration network shows that most papers
on concept-cognitive learning are collaborated by multiple re-
searchers. Xu Weihua, Guo Doudou, Qian Yuhua, Ding Weiping,
Li Jinhai, and Mi Yunlong have played important roles in the
development of concept-cognitive learning, with a particular
focus on the contributions of Xu Weihua and Li Jinhai in recent
years.

• The university collaboration network reveals that the research
organizations of concept-cognitive learning are closely connected,
with a concentration of organizations based in China. Southwest
University, Kunming University, Yanshan University, and the Chi-
nese Academy of Science are among the organizations actively
promoting the development of concept-cognitive learning.

3. Theory of concept-cognitive learning

Within the CCL theory of this section, we provide a brief review
and necessary statements of some notions related to concept-cognitive
learning, including formal context, formal concept, and basic thoughts.
A formal context is especially accustomed to representing the data
to be analyzed and then extracting concepts of different levels and
the relationships between contexts from a formal context. However,
many researchers in research outside CCL and FCA are unaware of
what formal context is. Hence, to begin this review, it is necessary to
introduce a unifying view of concept-cognitive learning, data mining,
and knowledge discovery, which will be expressed in detail.
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Fig. 5. Institutional collaboration network of CCL.
• Date set 𝐷𝑆: a set that records descriptions about the object.
• Formal context 𝐹 : the specific context obtained by processing the

data set.
• Instance (or feature vector) 𝑥: a description of the object 𝑥.
• Feature (or attribute) 𝑎: the properties of some aspect of the

object.
• Label  = {1, 2,… , 𝑙}: the decision attribute, also called decision

class.
• Feature value (or attribute value): the value of a feature (or

attribute).
• Object set (or object space) 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛}: the space spanned

by objects.
• Feature set (or feature space) 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑛}: the space

spanned by features (or attributes).

With respect to a data set 𝐷𝑆, we can build various formal contexts
based on the different data processing techniques, including classi-
cal formal context, fuzzy formal context, interval formal context, etc.
Generally, a formal context is a triple 𝐹 = (𝑈,𝐴, 𝐼) or a quintuple
𝐹 = (𝑈,𝐴, 𝐼,𝐷, 𝐽 ), called the formal context or decision formal context,
and the following holds.

• 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛} is a nonempty finite object set.
• 𝐴 = {𝑎1, 𝑎2,… , 𝑎𝑚} is a nonempty finite attribute set.
• 𝐼 is a binary relation on 𝑈 ×𝐴, e.g. (𝑥, 𝑎) ∈ 𝐼 represents the object
𝑥 has the attribute 𝑎.

• 𝑈∕𝐷 = {𝐷1, 𝐷2,… , 𝐷𝑙} is a decision division based on decision
label 𝐷, where 𝐷 = 𝐷1 ∪𝐷2∪,… ,∪𝐷𝑙.

• 𝐽 ∶ 𝑈 ×𝐷 → {𝐷1, 𝐷2,… , 𝐷𝑙} is a binary relation on 𝑈 ×𝐷.

In source data set and formal context, the acquisition of formal con-
text is usually defined in terms of a specific data processing techniques,
including normalization, discretization, regularization, fuzzification,
etc. With respect to a formal context, we can formally define the
cognitive learning operator of concept. Let 𝑃 (𝑈 ) and 𝑃 (𝐴) be two power
sets of 𝑈 and 𝐴, respectively.  ∶ 𝑃 (𝑈 ) → 𝑃 (𝐴) and  ∶ 𝑃 (𝐴) →
𝑃 (𝑈 ) are considered as a pair of set-valued mappings, and they are
abbreviated as  and , respectively.

Definition 1. Let 𝐹 = (𝑈,𝐴, 𝐼) be a formal context. For any 𝑋1, 𝑋2 ⊆ 𝑈
and 𝐵 ⊆ 𝐴, a pair of set-valued mappings  and  are called a pair of
cognitive learning operators, if the following properties hold:
6

(1) 𝑋1 ⊆ 𝑋2 ⇒ (𝑋2) ⊆ (𝑋1);
(2) (𝑋1) ∩ (𝑋2) ⊆ (𝑋1 ∪𝑋2);
(3) (𝐵) = {𝑥 ∈ 𝑈 |𝐵 ⊆ (𝑥)}.

Note that Definition 1 directly declares three properties to define a
pair of cognitive learning operators. In fact, these correspond to three
cognitive viewpoints as follows.

• item (1) describes commonalities in cognitive viewpoints, i.e., the
more samples a concept denotes, the fewer features it connotes,
and vice versa.

• item (2) explains the cognitive viewpoint that the perception of
the whole is more than the integration of those of its parts.

• item (3) declares that whether or not the information is selected
depends on how relevant it is at the time.

The above Definition 1 mainly reflects the commonality cognition
of concept, which constitutes the inverse Galois connection. Similarly,
the characteristic cognition of concepts can be reflected by constructing
order-preserving Galois connections, and the above pair of cognitive
learning operators are defined as follows.

Definition 2. Let 𝐹 = (𝑈,𝐴, 𝐼) be a formal context. For any 𝑋 ⊆ 𝑈
and 𝐵1, 𝐵2 ⊆ 𝐴, a pair of set-valued mappings  and  are called a pair
of cognitive learning operators, if the following properties hold:

(1) 𝐵1 ⊆ 𝐵2 ⇒ (𝐵1) ⊆ (𝐵2);
(2) (𝐵1 ∪ 𝐵2) ⊆ (𝐵1) ∪(𝐵2);
(3) (𝑋) = {𝑎 ∈ 𝐴|(𝑎) ⊆ 𝑋}.

Whether the connection is the inverse or order-preserving Galois
connection, the (𝑋,𝐵) is called a concept or formal concept, if only
if (𝑋) = 𝐵 and (𝐵) = 𝑋, where 𝑋 is the extent (that is, an
object set) and 𝐵 is the intent (that is, an attribute set) of the concept
(𝑋,𝐵). Generally speaking, with respect to a pair of cognitive learning
operators, we can produce a concept learning mechanism based on a
formal context. In concept-cognitive learning, it is assumed that the
concept is acquired through a pair of cognitive learning operators
that satisfy the above three properties in Definition 1. Different from
formal concept analysis theory, the constraints of cognitive learning
operators of concepts appear to be more relaxed, especially in item (2)
of Definition 1.
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Fig. 6. Concept-cognitive learning: a DIKW perspective.
Definition 3. Let 𝐹 = (𝑈,𝐴, 𝐼) be a formal context,  and  be a
pair of cognitive learning operators. For any 𝑋 ⊆ 𝑈 and 𝐵 ⊆ 𝐴, both
((𝑋),(𝑋)) and ((𝐵),(𝐵)) are concepts. Then, for any 𝑥 ∈ 𝑈
and 𝑎 ∈ 𝐴, we say that ((𝑥),(𝑥)) and ((𝑎),(𝑎)) are granular
concepts

Hence, given a formal context 𝐹 = (𝑈,𝐴, 𝐼). For any concept (𝑋,𝐵),
we have (𝑋) =

⋂

𝑥∈𝑋 (𝑥), (𝐵) =
⋂

𝑎∈𝐵 (𝑎). Then the following
statements hold.

(𝑋,𝐵) =
⋁

𝑥∈𝑋 ((𝑥),(𝑥)) =
⋀

𝑎∈𝐵((𝑎),(𝑎)).
Furthermore, a dynamic concept-cognitive learning system for in-

cremental learning can also be constructed according to the following
definition.

Definition 4. Let 𝑈𝑖−1 and 𝑈𝑖 be object sets of {𝑈𝑡} ↑ and 𝐴𝑖−1 and 𝐴𝑖
be attribute sets of {𝐴𝑡} ↑, where {𝑈𝑡} ↑ is a nondecreasing sequence
subset of 𝑈 , that is, 𝑈1 ⊆ 𝑈2 ⊆ ⋯ ⊆ 𝑈𝑛; {𝐴𝑡} ↑ is a nondecreasing
sequence subset of 𝐴, that is, 𝐴1 ⊆ 𝐴2 ⊆ ⋯ ⊆ 𝐴𝑚; Denote 𝛥𝑈𝑖−1 =
𝑈𝑖 − 𝑈𝑖−1 and 𝛥𝐴𝑖−1 = 𝐴𝑖 − 𝐴𝑖−1. Suppose

(1) 𝑖−1 ∶ 2𝑈𝑖−1 → 2𝐴𝑖−1 , 𝑖−1 ∶ 2𝐴𝑖−1 → 2𝑈𝑖−1 ,
(2) 𝛥𝑈𝑖−1

∶ 2𝛥𝑈𝑖−1 → 2𝐴𝑖−1 , 𝛥𝑈𝑖−1
∶ 2𝐴𝑖−1 → 2𝛥𝑈𝑖−1 ,

(3) 𝛥𝐴𝑖−1
∶ 2𝑈𝑖 → 2𝛥𝐴𝑖−1 , 𝛥𝐴𝑖−1

∶ 2𝛥𝐴𝑖−1 → 2𝑈𝑖 ,
(4) 𝑖 ∶ 2𝑈𝑖 → 2𝐴𝑖 , 𝑖 ∶ 2𝐴𝑖 → 2𝑈𝑖 .

are four pairs of cognitive learning operators satisfying the following
properties:

(𝑥) =
{

𝑖−1(𝑥) ∪ 𝛥𝐴𝑖−1
(𝑥), 𝑖𝑓 𝑎 ∈ 𝐴𝑖−1

𝛥𝑈𝑖−1
(𝑥) ∪ 𝛥𝐴𝑖−1

(𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(𝑎) =
{

𝑖−1(𝑎) ∪𝛥𝑈𝑖−1
(𝑎), 𝑖𝑓 𝑥 ∈ 𝑈𝑖−1

𝛥𝐴𝑖−1
(𝑎), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

then we say that 𝑖−1 and 𝑖−1 are extended cognitive learning opera-
tors 𝑖 and 𝑖 with the update information 𝛥𝑈𝑖−1

, 𝛥𝑈𝑖−1
and 𝛥𝐴𝑖−1

,
𝛥𝐴𝑖−1

.

Definition 5. Let 𝐹 = (𝑈,𝐴, 𝐼) be a formal context,  and  be
two cognitive learning operators, ((𝑥),(𝑥)) and ((𝑎),(𝑎)) be
two granular concepts. The granular concept space of 𝑈 is a set of all
granular concepts by  , that is

 = {((𝑥),(𝑥))|𝑥 ∈ 𝑈} ∪ {((𝑎),(𝑎))|𝑎 ∈ 𝐴}.

where  is formed from granular concepts that can generally be
identified by extent and intent.
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Note that within both FCA and CCL, a formal context is used to
represent the data to be analyzed and then extract concepts of different
levels and the relationships between concepts from the formal context.
FCA pays more attention to constructing a lattice structure of con-
cepts, which are also called concept lattices. However, CCL emphasizes
cognitive and learning concepts from a cognitive viewpoint, especially
in the above cognitive learning operators, which also have cognitive
properties. Furthermore, CCL can be used to research the cognitive
and learning processes of things via these concepts. It is easy to find
that the cognitive concepts learning from a formal context via a pair
of cognitive learning operators are both structured knowledge and
causal knowledge. Consequently, CCL is a theory and method with
interpretability.

In concept-cognitive learning, it is evident that the formal context
derived from the source data serves as the carrier of information, and
the formal concept is selected as the carrier of knowledge. There are
main reasons for this:

• Different scene requirements allow for the processing of source
data into various forms of formal context. These forms enable
the utilization of binary relationships to describe the association
between objects and attributes.

• The involutivity between intent and extent of concepts effectively
characterizes the knowledge structure and provides interpretabil-
ity.

• The concept space constructed through formal concepts (obeying
the Galois connection) provides a structured knowledge space
suitable for storing knowledge.

Up to now, various concepts based on formal context have been
proposed for the settlement of real practical problems. In particular,
as shown in Fig. 6, knowledge discovery and intelligence decision
analysis based on concept conform to the currently popular data-
information-knowledge-wisdom (DIKW) hierarchy model, that is, data
creates information, information creates knowledge, and knowledge
creates wisdom. In this process, CCL places greater emphasis on trans-
forming the source data into a specific formal context, representing the
knowledge through concepts within this formal context, and ultimately
utilizing these valuable concepts in the concept space to facilitate
intelligent decisions by humans. In addition, it is worth noting that
this hierarchy model also become an active research topic in artificial
intelligence and data science.

4. Triadic categorization of CCL

As an emerging interdisciplinary research, the study of concept-
cognitive learning is a topic covered in many disciplines, including phi-
losophy, mathematics, cognitive science, computer science, and many
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Fig. 7. The information processing triangle [15].
others. Namely, it is a highly inclusive research. As shown in Fig. 7,
Yao [15] proposed the information processing triangle and provided
value research thought, i.e., suggesting that cognitive concepts may
be researched in three levels: in the abstract, in the machine, and in
the brain. Consequently, how to examine CCL from the three levels of
abstract-machines-brain will also be the guide of this section.

In developing a theory of three-way decision as thinking in threes,
problem-solving in threes, and computing in threes, Yao [34] argued
that a theory, a model, or a method with triadic structures are simple-
to-understand, easy-to-remember, and practical-to-use. By following
this philosophy of thinking in threes, we explore several triadic struc-
tures for characterizing CCL, namely, the information-processing tri-
angle, the three research scopes (i.e., mathematics and logics, artifi-
cial intelligence, and cognitive simulations), the three research goals
with respect to concept analysis methods, concept learning strategy,
and concept cognitive mechanism, and three research methodologies
(i.e., cognitive computing, granular computing, and machine learning).

4.1. Research scopes

Within the abstract-machines-brain three-level framework, this sub-
section will concentrate on CCL in the characterization and representa-
tion of concepts in mathematics and logics, the cognitive simulation
in human-level or human-like brain logic, and the method design
and application of artificial intelligence, i.e., the abstract level, the
machines level, and the brain level.

4.1.1. Mathematics and logics
At the abstract level, CCL mainly focuses on the mathematics and

logic of concepts, in which a core research content is concept formation
and learning. As we all know, concepts are regarded as the most
fundamental units of cognition in philosophy. Meanwhile, according to
the standpoint of cognitive psychology and cognitive informatics, the
concept is a knowledge structure existing in the human brain, and it is
also a cognitive processing process carried out by the subject. It is often
said that concepts are formed by abstracting the perceived essential
characteristics of things and generalizing or induction in the process of
cognition. Hence, describing the mathematical and logical structures of
concepts is the primary concern of CCL at the abstract level.

In order to study the mathematical characterization of concepts,
Wille [4] formally introduced the notion of formal concepts in 1982 to
represent the knowledge structure of concept ontology within a formal
context. This led to the development of formal concept analysis, a
theory that utilizes order theory and complete lattices for data analysis,
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information processing, and knowledge management. Consequently, it
has stimulated extensive exploration by researchers into the mathemat-
ical and logical structure underlying formal concepts. For instance, Ma
et al. [35] propose a concept model based on a dual Galois connection,
in which the zooming-in and zooming-out operators comprise two pairs
of approximate operators. Wang et al. [36] investigated the logical and
cognitive mechanism of the brain by utilizing cognitive informatics
and formal methodologies. And then, Wang has investigated concept
algebra [14] and conceptual knowledge structure [37] successively.

Additionally, Yao [15] identified the concept learning triangle,
which consists of three sublevels for concept information processing:
the philosophy level, the algorithm/technique level, and the application
level. Building upon this research, various results on the structured
description of concepts began to emerge, such as the mathematical
model for concept systems [38], granule description based on FCA [39],
attribute granulation in formal context [40], etc. Over time, numerous
concepts have been proposed with specific meanings, such as ab-
stract concepts [1], AFS-concept [41], three-way concept [42], concept
tree [43], two-way concept [30], multi-adjoint concept [44] etc. These
investigations have significantly contributed to the development of
CCL.

4.1.2. Artificial intelligence
At the machine level, studies of the concept learning model and its

application are typically the stress of CCL. Generally speaking, oper-
ating machines to learn knowledge from data has become a necessary
link for the investigation of artificial intelligence, in which machine
learning is a critical technology for discovering knowledge embedded
in data [45,46]. Interestingly, the smallest unit of knowledge is a
concept, and knowledge itself can be seen as a concept and even
artificial intelligence is a concept. Therefore, at the machine level, con-
cept learning has always been a necessary component for researching
artificial intelligence. Meanwhile, the essence of concept learning lies
in discovering and acquiring concepts, followed by conducting an in-
depth analysis of the learned concepts, including analyzing the types
and structures of concepts, relationships between concepts, and even
using concepts to make decisions or guidance.

Early concept learning focuses on the study of a specific concept,
such as Ref. [47] studied exemplar-based concept learning for heuristic
classification, Ref. [48] offered a capturing conceptual factors method
from multi-view data. In particular, a concept cognitive model based
on granular computing, coined by Zhang and Xu in their seminal pa-
per [13], greatly promoted the early development of cognitive concept
learning. Subsequently, researchers gradually realized that the cogni-
tive learning process of concepts can be explored through cognitive
computing, enabling the simulation of cognitive learning mechanisms
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Fig. 8. Categorization of concept-cognitive learning [15].
observed in the human brain. However, these research studies have
predominantly focused on the theoretical level: constructing concept
learning systems, exploring various concept extensions, analyzing con-
cept structures, analyzing knowledge reduction and rule extraction, and
so on.

Undoubtedly, it remains challenging for a machine learning system
to learn concepts with strong generalization performance and clear
semantic interpretation, which has hindered progress in this field.
Nevertheless, after a prolonged trough period, a new turn of concept
learning at the machine level has benefited from the advancements of
artificial intelligence technology, including granular computing, cog-
nitive computing, and machine learning. Many valuable results began
to emerge. For example, in the paper [17], a two-way concept learn-
ing mechanism was proposed to cognitive a sufficient and necessary
information granular in a fuzzy formal context; Another paper [19]
investigated a concept learning model that considered three cogni-
tive properties to construct cognitive learning operators; Additionally,
the paper [1] delved into the topic of human-level concept learning;
Paper [29] presented a semi-supervised concept-cognitive learning ap-
proach based on concept space. Furthermore, the paper [49] explored
the incremental learning mechanism of concept-cognitive learning for
the classification task. These have significantly expanded the research
horizon of concept-cognitive learning.

4.1.3. Cognitive simulation
At the brain level, CCL primarily focuses on concept learning by

simulating human cognitive processes. In fact, various early explo-
rations of concept learning (e.g., two-way learning [16], granular con-
cept learning [19], concept learning system [38], etc.) and concept-
cognitive learning belong to this category. It is worth mentioning
that the distinction and connection between cognitive concept learning
and concept-cognitive can be found in Ref. [31]. In addition, the
current article is more concerned with concept-cognitive learning in
a broad sense, including concept learning, cognitive concept learning,
and concept-cognitive learning.

With the in-depth research of CCL in model, method, and appli-
cation, increasing attention has been directed towards this research.
For example, Kumar et al. [18] developed cognitive memory func-
tionalities of bidirectional associative memory via concepts. Shivhare
et al. [20] proposed a three-way conceptual approach for cognitive
memory functionalities. Furthermore, Fan et al. [50] explored a multi-
level cognitive concept learning strategy. Shi et al. [51] discussed an
incremental concept learning method. Zhang et al. [43] investigated
concept-cognitive learning using a concept tree. Liu et al. [52] de-
veloped an incremental incomplete concept-cognitive learning model.
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Additionally, Xu et al. introduced a two-way concept learning mecha-
nism from a movement view [30] and a fuzzy progressive learning [31].
Guo et al. [2] combined the memory mechanism of humans with
concept-cognitive learning to analyze fuzzy data and knowledge fusion,
and many more. These achievements promote and enrich the in-depth
study of concept-cognitive learning.

In conclusion, concept-cognitive learning can be studied from the
three sublevels (i.e., abstract level, brain level, and machine level) of
information processing triangle according to Fig. 7, and can also be
regarded as a combination of the three.

4.2. Research goals

In this subsection, we present the tree diagram whose first two levels
consist of three children, as shown in Fig. 8, to illustrate the categoriza-
tion of concept-cognitive learning. The purpose of this diagram is to
provide a concise overview of the concrete agenda of CCL within three
categories: concept analysis method, concept learning strategy, and
concept cognitive mechanism. Note that this diagram can be viewed
as a list of some CCL models rather than a comprehensive summary.

4.2.1. Concept analysis method
The starting point of the category of concept analysis leverages con-

cepts to characterize knowledge embedded in data. Then, it examines
the properties of these concepts, the relations between them, and their
applicability. Presently, the notable accomplishments of the concept
analysis method of CCL concentrate on three aspects: concept lattice,
concept reduction, and multi-granularity analysis.

Concept lattice [4] is a widely recognized approach for mining
data associations and is a critical tool for data analysis and processing
within FCA theory. Researchers have achieved numerous important
breakthroughs, including various concept lattice constructions and gen-
eralizations. Initially, the focus of concept lattice research was Boolean
data, with concepts being formalized by the 0–1 binary relationship
between objects and attributes in the data, otherwise known as classical
formal concepts. However, as research progressed, scholars realized
that classical formal concepts represent only the simplest conceptual
knowledge and that the demands of Boolean data for data collection
and processing are often too strict. Consequently, some scholars have
proposed various extension concepts, such as fuzzy concept [53], AFS
concept [41], three-way concept [54,55], and others. Currently, con-
cept lattices still serve as a necessary foundation for CCL research.
However, current research in CCL focuses more on exploring the var-
ious concepts and the concept relationships in lattices rather than on
how to construct lattices.
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Furthermore, in order to optimize storage space and enhance knowl-
edge discovery, concept reduction [56] is necessary. Concept reduction
can be categorized into object reduction [57], attribute reduction [58],
and granular reduction [59,60]. It is important to note that the goal
of concept reduction is not to eliminate concepts entirely but rather
to delete and utilize certain concepts based on specific requirements
selectively. Additionally, there are two noteworthy studies: paper [2]
introduces the partial concept forgetting for concept cognition, while
paper [21] proposes a concept cognition strategy based on the big
concept priority. In addition, the generalization of various concept
models is inseparable from various multi-granularity analysis meth-
ods, including object granularity [61], attribute granularity [62], rule
extraction [63], granular description [39], etc.

4.2.2. Concept learning strategy
The purpose of concept learning is to discover and acquire concepts

and subsequently conduct in-depth analysis and application of the
acquired concepts. Thus, the core research content of concept learning
is the model and method used to discover and acquire concepts. For
concept learning, numerous representative research about approximate
concept learning [33,64], granule concept learning [19,21,65,66], and
two-way learning [16,17,67,68] have also attracted wide attention.

Two-way learning is regarded as a prominent mathematical tool for
concept learning that facilitates the acquisition of additional knowledge
(i.e., diverse concepts) from the unknown via two learning methods:
sufficient concept learning and necessary granule concept learning.
Based on this naive thought of two-way learning, several related learn-
ing methods have been proposed to cater to different requirements.
These include a two-way cognitive system for arbitrary information
granule transformation [16], two-way concept learning for fuzzy for-
mal context [17], interval-based two-way concept learning in interval-
valued formal contexts [67], and so on. A two-way learning system is a
cognitive process that learns from useless information. The process to
cognitive the useless information into necessary, sufficient, sufficient
and necessary information granules can be described as follows. Let
𝐿1 = 𝑃 (𝑈 ) and 𝐿2 = 𝑃 (𝐴) be two complete lattices,  and  be two
cognitive learning operators (i.e., (𝐿1, 𝐿2,,) is a cognitive system).
For any 𝑋 ∈ 𝐿1, 𝐵 ∈ 𝐿2, denote

1 = {(𝑋,𝐵)|𝐵 ⩽ (𝑋), 𝑋 ⩽ (𝐵)},

2 = {(𝑋,𝐵)|(𝑋) ⩽ 𝐵,(𝐵) ⩽ 𝑋}.

• If (𝑋,𝐵) ∈ 1, then (𝑋,𝐵) is a necessary granule concept of
(𝐿1, 𝐿2,,). Meanwhile, 1 is a necessary granule concept space
of (𝐿1, 𝐿2,,);

• If (𝑋,𝐵) ∈ 2, then (𝑋,𝐵) is a sufficient granule concept of
(𝐿1, 𝐿2,,). Meanwhile, 2 is a sufficient granule concept space
of (𝐿1, 𝐿2,,);

• If (𝑋,𝐵) ∉ 1 ∩ 2, that is, (𝑋,𝐵) satisfy 𝐵 = (𝑋) and 𝑋 =
(𝐵), then (𝑋,𝐵) is a sufficient and necessary granule concept
of (𝐿1, 𝐿2,,). Meanwhile, 1 ∩ 2 is a sufficient and necessary
granule concept space.

where ⩽ is a quasi-order relationship.
In terms of granule concept learning, various models and meth-

ods have proposed innovative CCL using the object granule concept
((𝑥),(𝑥)) or attribute granule concept ((𝑎),(𝑎)). For instance,
paper [33] introduced the idea of multi-granularity concept learning
through the lens of three-way concepts from both positive and negative
perspectives. Additionally, paper [27] developed a fuzzy-based concept
learning based on conceptual clustering for efficient data analysis. To
further enhance the efficiency of concept learning, paper [65] designed
a concept cognitive computing system for dynamic classification.

Regarding approximate concept learning for CCL, two widely rec-
ognized learning methods have been studied: rough concept learning
and three-way concept learning. For example, Li et al. [19] proposed a
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cognitive process for learning approximate cognitive concepts inspired a
by the approximate space of a rough set. Similarly, Guo et al. [64]
focused on improving CCL accuracy using some approximate concepts.
Furthermore, various three-way concept learning methods have been
proposed from different perspectives. Huang et al. [66] considered
an information fusion viewpoint, while Yuan et al. [49] suggested a
progressive fuzzy three-way concept learning standpoint.

4.2.3. Concept cognitive mechanism
Concept cognitive is an active topic in artificial intelligence and cog-

nitive science. As Lake in Science [1] pointed out, ‘‘People learning new
concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of
examples to perform with similar accuracy’’. An emerging intelligence
paradigm to concept-cognitive learning has opened up exciting new
possibilities for advancing the field of concept cognition, i.e., mining
and fusing knowledge from data. During the past few years, some
novel concept-cognitive learning paradigms have begun to focus on
studying the process of cognition and learning things via concepts that
wish to enable machines to achieve human-level or human-like concept
learning. A comprehensive overview of the developmental stages of
CCL across different periods can be found in Ref. [31]. As mentioned
in Ref. [31], since 2018, many scholars have increasingly emphasized
the cognitive perspective in studying CCL. During this time, as shown
in Fig. 1, the term ‘‘concept-cognitive learning’’ was adopted, marking
the formal development stage of CCL. Currently, active research areas
in CCL include cognitive computing, granular computing, and machine
learning. For more detailed explanations of these fields, please refer to
Section 4.3.

Regarding concept cognitive in CCL, researchers primarily car-
ried out a series of studies in concept-cognitive computing, two-way
concept-cognitive learning, and dynamic concept-cognitive learning.
Note that the existing research about two-way learning [13,16] and
two-way concept learning [17,67,69] has some issues leading to the
stagnation of its related research, such as a complex learning mecha-
nism and the absence of a concept evolution mechanism. To overcome
these issues, based on the two-way learning and FCA theory, Guo and
Xu [28,30,31] took the two-way cognitive process of sufficiency and
necessity discrimination between objects and attributes as the starting
point, studied the two-way cognitive mechanism of concept learning,
and formally proposed the two-way concept-cognitive learning (TCCL).
Paper [30] first investigated TCCL from the perspective of concept
movement, in which authors also reveal the relationship between
various two-way granular concepts (i.e., sufficient granular concept,
necessary granular concept, sufficient and necessary granular concept),
as shown in Fig. 9. Moreover, unlike two-way learning and two-way
concept [13,16] learning [17,67,69], authors in paper [30] gave six
concept cognitive methods for directly learning sufficient and necessary
granule concepts as follows.

Let (𝐿1, 𝐿2,,) be a cognitive system, 1 ∩2 = {((),(𝑋))
|𝑋 ∈ 𝐿1} ∪ {((𝐵 ),(𝐵 ))|𝐵 ∈ 𝐿2} be a sufficient and necessary
fuzzy granule concept space. Then the following statements hold.

• ((𝑋),(𝑋)) ∈ 1 ∩ 2,
• ((𝑋 ∧𝐵)),(𝑋 ∧(𝐵)) ∈ 1 ∩ 2,
• ((𝑋 ∨(𝐵)),(𝑋 ∨(𝐵))) ∈ 1 ∩ 2,
• ((𝐵),(𝐵)) ∈ 1 ∩ 2,
• ((𝐵 ∨ (𝑋)),(𝐵 ∨ (𝑋))) ∈ 1 ∩ 2,
• ((𝐵 ∧ (𝑋)),(𝐵 ∧ (𝑋))) ∈ 1 ∩ 2.

Drawing inspiration from [30], paper [31] put forward the two-way
oncept-cognitive learning via fuzzy progressive learning for dynamic
ata updating. Then, the authors provide a convenient and innovative
ool for researching CCL methods involving information fusion in the
aper [28] to explore the two-way concept-cognitive learning within

multi-source formal context. Additionally, paper [70] analyzed the
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Fig. 9. Two-way concept-cognitive learning: a concept movement perspective [30].
dynamic updating mechanism for three-way concepts based on two-
way concept-cognitive learning, further enriching the understanding of
this area of study.

In concept-cognitive computing, Shi et al. [71] established a gran-
ular concept-cognitive computing system to extend the incremental
learning of CCL and also proposed concurrent concept-cognitive learn-
ing for classification. Additionally, Mi et al. [29] combined some ma-
chine learning methods with CCL to study semi-supervised concept-
cognitive learning. Furthermore, the dynamic concept-cognitive mech-
anism is a hot topic in concept-cognitive learning, including fuzzy-
granular concept-cognitive learning [21,52], memory-based concept-
cognitive learning [2], incremental concept-cognitive learning [51,
72,73], incremental concept tree [43,74], and progressive concept-
cognitive learning [31], etc. Meanwhile, a detailed introduction to
them can be found in the related articles.

4.3. Research methodologies

As previously mentioned, CCL has been widely explored from dif-
ferent professional perspectives in various fields. Hence, this subsection
mainly discusses the research methodologies of CCL from the per-
spectives of cognitive computing, granular computing, and machine
learning.

4.3.1. Cognitive computing
Cognitive computing, a computer system that simulates the cogni-

tive process of the human brain, is one of the fundamental technical
fields within cognitive science [75,76]. Numerous studies have been
conducted to explore this field from various professional perspectives.
Note that the basic idea of CCL is to reveal the systematic law of
the human brain through concept formation and learning. Therefore,
integrating cognitive computing and concept learning is a nice choice
for concept-cognitive learning. In this sense, various early explorations
of concept learning, as well as current research on CCL, all involve the
study of cognitive computing.

Numerous efforts have been dedicated to enriching the field of CCL
by incorporating research ideas from cognitive computing, and its basic
research contents include the cognitive concept mechanism, cognitive
system construction, simulated cognitive agent behavior, decision anal-
ysis, etc. Specific cognitive mechanisms for concept-cognitive learning
include incremental learning [49], fuzzy mechanism [5,27], memory
mechanism [2], two-way learning [30,69], multi-level cognitive [50],
etc. From these results, we can note that the theory and method of
cognitive computing are very effective ways to study some problems in
concept-cognitive learning, such as concept analysis, concept learning,
and concept cognition. Thus, cognitive computing can be considered
a significant approach for studying concept-cognitive learning, while
the study of conceptual cognitive learning serves as an important
complement to cognitive computing.
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In fact, in cognitive psychology, there are four cognitive views re-
garding the understanding of concepts: the classical view, the prototype
view, the exemplar view, and the theory-based view. Drawing inspira-
tion from these views, Table 2 outlines the representative achievements
of concept-cognitive learning.

4.3.2. Granular computing
Granular computing (GrC) [80–83] is influential studies for studying

knowledge processing and concept learning, particularly in exploring
how cognitive and learning a thing, one be viewed as a novel, inter-
esting, and interpretable theory and technology. The current outline of
GrC comprises formal concept analysis theory [84–86], fuzzy set the-
ory [87–89], rough set theory [90–93], three-way decision theory [94–
96], interval set theory [97–99], among others. Simultaneously, com-
bining these theories with CCL has brought a lot of new problems,
ideas, and methods. Table 3 summarizes some representative concepts
and their cognitive learning operator of concept-cognitive learning
under a GrC viewpoint.

Early attempts were made to combine fuzzy set theory with CCL
(i.e., fuzzy-based CCL) in a fuzzy formal context due to two main
advantages: (1) continuous data can be processed directly, avoiding
information loss during the discretization process; (2) it can effectively
handle the situation where the connotation of concepts cannot be
accurately described when the intent of concept can be effectively
measured. Furthermore, various fuzzy-based CCL models have been
proposed for different problem scenarios. For instance, authors in
papers [28,31] investigate the two-way CCL from a fuzzy-based pro-
gressive learning viewpoint and a multi-source information context.
The authors in papers [49,73] proposed CCL based on fuzzy concept or
weighted fuzzy concept for concept classification. Additionally, the au-
thors in papers [2,5,21] discussed a fuzzy three-way concepts grounded
on different information granularities for concept prediction, etc.

Note that three-way decision based on three-level thinking is an-
other widely acknowledged theory of granular computing used for
researching various concept models [100,101]. Inspired by this the-
ory, authors [42,54] suggested the three-way concept by combining
three-way decisions with the formal concept to study formal concept
analysis from positive and negative perspectives (i.e., positive and
negative attributes). Accordingly, we can also integrated the idea of
three-way decisions or three-way concepts into CCL to study three-way
concept-cognitive learning. For instance, paper [1] introduced three-
way concept analysis into concept description, paper [49] discussed
the incremental learning mechanism of the three-way concept, and
paper [66] proposed a three-way concept learning method from an
information fusion perspective. Additionally, it is worth mentioning the
novel fuzzy-granular concept-cognitive learning by three-way decision
studied in the paper [21]. This research clearly highlights that fuzzy
three-way concepts have advantages over regular fuzzy concepts in
terms of knowledge depiction and reducing cognitive bias.
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Table 2
Cognitive views of CCL.
Cognitive views Representative method Research content Reference

Classical view Two-way concept learning The cognitive process based on
sufficient and necessary concept
granule transformation.

[16,17,28,30,31,67,69,70]

Prototype view Approximation concept learning The cognitive process based on
sufficient and necessary concept
granule approximation.

[19,26,33,64,66,72,77]

Exemplar view Concept classification learning The classification learning process
based on concept similarity
degree.

[5,21,27,29,49,52,65,73]

Theory-based view Human-level and human-like
concept learning

The concept learning process by
simulating the behavior of
cognitive agents.

[2,13,19,31,43,50,74,78,79]
Table 3
Granular computing methods of CCL.
GrC model Representative concepts Cognitive learning operator Reference

FCA Classical formal concept (𝑋,𝐵) (𝑋) = {𝑎|𝑎 ∈ 𝐴,∀𝑥 ∈ 𝑋, (𝑥, 𝑎) ∈ 𝐼};
(𝐵) = {𝑥|𝑥 ∈ 𝑈,∀𝑎 ∈ 𝐵, (𝑥, 𝑎) ∈ 𝐼}.

[16,30,52,78]

Rough set Approximation concept of object set
(𝐴𝑝𝑟(𝑋),(𝐴𝑝𝑟(𝑋))), (𝐴𝑝𝑟(𝑋),(𝐴𝑝𝑟(𝑋)))

 and  satisfy definition 1 or
definition 2

[19,64]

Approximation concept of attribute set
((𝐴𝑝𝑟(𝐵)), 𝐴𝑝𝑟(𝐵)), ((𝐴𝑝𝑟(𝐵)), 𝐴𝑝𝑟(𝐵))

 and  satisfy definition 1 or
definition 2

[19,64,93]

Fuzzy set Fuzzy concept (𝑋,𝐵) (𝑋) =
⋀

𝑥∈𝑋
𝐼(𝑥, 𝑎), 𝑎 ∈ 𝐴;

(𝐵) = {𝑥 ∈ 𝑈 |∀𝑎 ∈ 𝐴,𝐵(𝑎) ⩽ 𝐼(𝑥, 𝑎)}.

[17,27,28,31,69,70,79]

Weighted fuzzy concept (𝑋,𝐵,𝑤) (𝑋) =
⋀

𝑥∈𝑋
𝐼(𝑥, 𝑎), 𝑎 ∈ 𝐴;

(𝐵) = {𝑥 ∈ 𝑈 |∀𝑎 ∈ 𝐴,𝐵(𝑎) ⩽ 𝐼(𝑥, 𝑎)}.

[73]

Three-way decision Object-induced three-way concept
(𝑋, (𝐵1 , 𝐵2))

(𝑋) = (𝐵1 , 𝐵2); (𝐵1 , 𝐵2) = 𝑋 [5,49]

Attribute-induced three-way concept
((𝑋1 , 𝑋2), 𝐵)

(𝑋1 , 𝑋2) = 𝐵; (𝐵) = (𝑋1 , 𝑋2) [49]

Fuzzy three-way concept
(∇∇(𝑋),∇(𝑋))

∇(𝑋) = ((𝑋),−(𝑋));
∇((𝑋),−(𝑋)) = ((𝑋)) ∩−(−(𝑋)).

[2,5,49]

Fuzzy-granular three-way concept
(∇∇(𝑥),∇(𝑥))

∇(𝑥) = ((𝑥),−(𝑥));
∇((𝑥),−(𝑥)) = (𝑥) ∩−−(𝑥).

[21]

Interval set Interval-valued concept (𝑋, (𝐵𝐿 , 𝐵𝑈 )) (𝑋) = {< 𝑎, [𝑚𝑎𝐿(𝑋),𝑀𝑎𝑈 (𝑋)] > |𝑎 ∈ 𝐴};
(𝐵𝐿 , 𝐵𝑈 ) = {𝑥|𝑥 ∈ 𝑈,∀𝑎 ∈ 𝐵, 𝑎𝐿(𝑋) ≥
𝐵𝐿(𝑎), 𝑎𝑈 (𝑋) ≤ 𝐵𝑈 (𝑎)}.

[67]
In addition, other models of granular computing, such as rough
ets and interval sets, have also been integrated into the study of
CL. As a result, several related CCL models have been proposed suc-
essively, including cognitive learning of approximate concepts [77],
nterval-value concept-cognitive learning [67], etc. Various common
ranulation methods of GrC have also been applied to the cognitive
oncepts for concept-cognitive learning systems, such as attribute gran-
lation [50], object granulation [102], relation granulation [61,103],
nd so on.

.3.3. Machine learning
From a machine learning perspective, concept-cognitive learning

as both cognitive properties and the capability to accomplish two
rucial learning tasks: classification and prediction. An integration of
hese two aspects expands the research horizon in this field. Fig. 10
llustrates the comprehensive procedure of concept-cognitive learning
rom a machine learning standpoint. This procedure encompasses three
tages: concept learning, concept cognition, and concept recognition.
he specific details are outlined below:

• Concept learning: this stage involves data processing for the spe-
cific formal context and learning concepts in the formal context.

• Concept cognitive: the concept formation via a pair of concept
cognitive learning operators and mapping these concepts to dif-
ferent concept subspaces.
12
• Concept recognition: the concept application for actual scenar-
ios by concept recognition and knowledge discovery from the
unknown.

Against this background, numerous CCL methods have been estab-
lished for implementing the different required problem scenarios. For
example, a multi-attention CCL for concept learning on the handwritten
numeral [78], two-way CCL for multi-source information context [28],
fuzzy-granular CCL for dynamic knowledge discovery [21], memory-
based CCL for fuzzy data classification and knowledge fusion [2],
multi-level CCL to recognize and distinguish micro-expressions [79],
semi-supervised CCL for object classification task [29], fuzzy-based CCL
to tumor diagnosis analysis [5], CCL based on conceptual clustering to
exploit knowledge from fuzzy data [27], a stochastic strategy based
CCL for incremental incomplete concept learning [52], a novel CCL
method for bird song classification [22], incremental CCL model for
concept classification oriented to weighted fuzzy concepts [73], etc.
These results have significantly enriched and advanced CCL research.

5. Challenges and future directions

CCL provides a multi-view, multi-level, and multi-granularity intel-
ligence computing paradigm for the description and problem-solving of
complex problems and has attracted the attention of many researchers.
Although concept-cognitive learning has shown some satisfactory work
in research scopes, goals, and methodologies, it is essential to ac-

knowledge a range of limitations of the current study thus far. For
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Fig. 10. Concept-cognitive learning: a machine learning perspective.
example, CCL has not been applied to complex problem-solving sce-
narios, including cognitive and learning in big data environments and
multi-modal scenarios. Moreover, as an emerging field, CCL is gradually
becoming recognized and hot in artificial intelligence and cognitive
computing. However, CCL research is still in its infancy. There is
a big scope for exploring alternative scopes, goals, and methodolo-
gies of concept-cognitive learning. Therefore, a future expectation of
the model, method, and application of CCL in this section will be
discussed from six aspects: concept learning method, concept cog-
nition mechanism, cognitive system construction and optimization,
complex decision-making, interdisciplinary research, and engineering
applications.

• Concept learning method: Investigating human-level or human-
like concept learning methods is the first concern for concept-
cognitive learning. Note that human-level concept learning [1]
needs one or a few instants, yet a central challenge is how to
succeed in learning concepts from such small sample data. For
most machine learning and concept learning methods, fitting a
more complicated model requires more data, not less. In ad-
dition, continuous learning from non-stationary data streams is
an intriguing research area. Current studies on concept learning
typically assume that important elements of the learning process
remain unchanged within a closed environment. However, in re-
ality, data accumulates over time, making it challenging to train a
concept learning system using traditional approaches that rely on
collecting all the data upfront. Consequently, studying concept-
cognitive learning in a small sample and non-stationary data en-
vironment holds significant importance in achieving human-level
or human-like concept learning.

• Concept cognition mechanism: One of the key research areas in
CCL is the exploration of cognition mechanisms in diverse and
complex scenarios. The current concept cognition system con-
sists of cognitive operators, specifically extent–intent cognitive
learning operators, and intent–extent operators, which process
data into concepts. To tackle more complex data analysis tasks,
CCL needs to integrate the cognitive operator of the concept
cognitive system with specific real-world data environments. For
example, in the multi-modal background, one concept may be
expressed in various forms, such as images, text, and audio.
How does CCL study the representation and characterization of
this concept? Hence, CCL research also needs to deal with some
challenges, including processing complex data like incomplete,
mixed, heterogeneous, and multi-modal data, as well as adopting
new learning methods like parallel learning, distributed learning,
multi-modal learning, etc.
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• Cognitive system construction and optimization: To tackle more
complex learning tasks, we need to focus not only on enhancing
the effectiveness of the concept-cognitive learning system but also
on ensuring its stability. Most existing concept-cognitive learning
systems are constructed using classical cognitive learning opera-
tors, where a basic assumption is that cognitive learning operators
have the function of complete cognition. However, in reality,
affected by various uncertain factors (e.g., missing data, fuzzy
data, insufficient cognition, cognitive dimension uncertainty, and
others), it is often impossible to realize the complete cognition
of concepts, which is manifested in the deviation of cognitive
results of the cognitive system. In addition, integrating language
understanding of concepts with other modalities, such as vision
and audio, can lead to more robust cognitive systems capable of
understanding and generating content across multiple modalities.
Hence, exploring the effective cognitive learning operator is a
valuable issue for CCL. Furthermore, evaluating the effectiveness
and stability of the system warrants further investigation.

• Complex decision-making: Intelligent decision-making is a crucial
objective of data science. Discovering valuable information and
knowledge from data to enable intelligent decision-making by
humans is also a critical topic in CCL. However, the openness of
the decision environment, virtualization of decision resources, un-
structured decision problems, and collaborative problem-solving
increase the difficulty of solving decision problems in big data
environments, especially for complex decision problems such as
major engineering decisions, large enterprise management deci-
sions, and social public event processing decisions. The current
concept-based intelligent decision-making struggles to perform
well when dealing with the multi-modal, spatiotemporal dynam-
ics, and multi-source heterogeneity of knowledge discovery in
big data. As we all know, cognitive computing plays an im-
portant role in big data intelligence mining, but how to build
a specific cognitive model for big data intelligence decision-
making is still a challenging subject. As such, how to simu-
late the human cognitive learning process and construct specific
concept-cognitive learning models that advance the development
of intelligent decision-making is also an open question.

• Interdisciplinary research: Indeed, concept-cognitive learning is
an interdisciplinary emerging research. Exploring the integration
of CCL with emerging disciplines in recent years is a topic worthy
of investigation. As mentioned in Section 4.3, some progress has
been made in the cross-research of CCL and granular computing,
cognitive computing, and machine learning. Nevertheless, some
areas, such as large model construction based on CCL, space–
time concept cognitive learning, big data concept-cognitive learn-
ing, multi-modal concept-cognitive learning, and others, present
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promising avenues for exploration. In addition, as an important
research topic of artificial intelligence and cognitive computing,
CCL can be combined with many branches of data science to get
some new research topics on artificial intelligence. For example,
one can combine with a graph network to produce concept-
cognitive learning based on a graph network structure and also
can study concept-cognitive learning with deep learning so as
to complete many artificial intelligence tasks, such as image
recognition and natural language processing. Therefore, it will
be helpful to further improve the theory research of concept-
cognitive learning by drawing on the relevant theories of concept
representation and learning in interdisciplinary research.

• Engineering applications: Engineering application plays a crucial
role in showcasing research outcomes and translating them into
practical benefits. However, it is indeed one of the weaknesses of
CCL research. Meanwhile, in the era of digital industrial transfor-
mation with the internet of everything (IoE), traditional industrial
production methods have been unable to satisfy the demands of
intelligent society for intelligent manufacturing. While CCL has
achieved some progress in fields like medical diagnosis, machine
learning, and data mining, it has predominantly focused on theo-
retical research and lacks exploration of engineering application
scenarios. Drawing on many artificial intelligence technologies,
carrying out advanced CCL research, actively excavating the in-
telligent application of CCL in various industries is the key to
the subsequent participation in engineering applications, such as
smart cities, smart parks, smart transportation, smart medical
care, smart education, and other intelligence scenarios. Conse-
quently, the concept-cognitive learning for engineering applica-
tion emerges will be a critical point that demands concentration
in the future.

. Conclusion

Concept-cognitive learning, a crucial technology for knowledge dis-
overy and representation, has been gaining acceptance and recogni-
ion. One immense potential of CCL is promoted by the various formal
oncept constructs by the cognitive learning operators as the knowledge
arrier for knowledge discovery and intelligence decisions. In fact, the
esearch objective of CCL is to simulate the cognitive learning mech-
nism of humans, which can also be regarded as a research category
or the intelligence exploration of humans or animals. This survey
ims to provide an overview of research articles on CCL, summarizing
umerous state-of-the-art concept-cognitive learning techniques.

Up to now, we have witnessed a growing interest and the growth
f CCL from the view of the information-processing triangle (i.e., the
bstract-machine-brain level). To advance concept-cognitive learning,
onstructing an emerging intelligence paradigm that mines and fuses
nowledge from data is crucial. This survey provides the first compre-
ensive review of CCL, including its hierarchical classification, repre-
entative model, theoretical significance, application value, and future
evelopment potential. This survey aims to promote the development
f CCL and attract increasing attention to CCL.
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