
Vol.:(0123456789)

International Journal of Machine Learning and Cybernetics (2024) 15:3619–3645 
https://doi.org/10.1007/s13042-024-02112-8

ORIGINAL ARTICLE

An efficient multi‑source information fusion approach for dynamic 
interval‑valued data via fuzzy approximate conditional entropy

Ke Cai1 · Weihua Xu1

Received: 25 July 2023 / Accepted: 26 December 2023 / Published online: 28 March 2024 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Information fusion enables the integration and transformation of complimentary data from different sources, providing a 
unified representation for centralized knowledge discovery, which can contribute to effective decision-making, classifica-
tion, prediction, and more. Multi-source interval-valued data, represented in the form of intervals to capture uncertainty 
phenomenons, is a common type of symbolic data that finds extensive applications in the real world. This paper aims to 
investigate the effective fusion of multi-source interval-valued data and to design dynamic updating algorithms for the situ-
ations involving multiple dimensions. The objective is to enhance the efficiency of fusion processes. Firstly, this paper use 
the Kullback–Leibler divergence to measure the dissimilarity between interval distributions, and construct fuzzy similarity 
relation. Furthermore, we define a fuzzy information granule structure of interval-valued. Secondly, the concept of fuzzy 
similarity relations is utilized to construct fuzzy decision-making for objects. Subsequently, based on the aforementioned 
fuzzy information granule structure and fuzzy decision-making, we propose a novel measure called fuzzy approximate 
conditional entropy and design a corresponding entropy fusion model. Finally, we discuss various scenarios where dynamic 
changes occur simultaneously in the attributes and information sources of dynamic multi-source interval-valued data. We 
design corresponding dynamic update algorithms for these situations. Numerical experiments are conducted on nine UCI 
datasets to validate our proposed fusion method. The experimental results indicate that our fusion approach exhibits improved 
classification performance compared to the common fusion methods. The designed dynamic update algorithms are also 
capable of reducing computation time and enhancing fusion efficiency.
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1 Introduction

With the development of advanced information technolo-
gies such as big data, cloud computing, and mobile com-
puting, data acquisition is no longer limited to a single 
source. Data storage and description are now presented 
in the form of multiple sources, where the relationships 
between data objects from different sources contain vari-
ous pieces of information about the knowledge structure. 
These relationships provide insights into the underlying 
knowledge and express information about the samples 

from multiple perspectives. The fundamental principle of 
multi-source information fusion is to fully utilize various 
information sources by combining the spatial redundancy, 
temporal redundancy, or complementary information con-
straints through specific rules. This process aims to con-
struct a unified representation to obtain information that is 
more significant and of higher accuracy than that provided 
by individual sources or single sensors [1]. This approach 
helps reduce data ambiguity and uncertainty, leading to an 
improvement in information quality. Currently, multi-source 
data fusion has become an important research direction and 
has been successfully applied in various military and civil-
ian domains. In the military field, it has found applications 
in military command automation systems, strategic warn-
ing and defense, multi-target tracking and recognition, and 
precision-guided weapons. Moreover, its applications have 
extended to civilian fields such as remote sensing detection, 
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medical diagnosis, e-commerce, wireless communication, 
industrial process monitoring, and fault diagnosis [2–4].

The concept of information granularity was first intro-
duced by Zadeh [5], which subsequently sparked significant 
attention and research fervor in the field of information gran-
ulation. The idea of information granulation has permeated 
various domains [6], such as the “decomposition” and “par-
titioning” in automate and systems, operations on interval 
numbers in interval analysis, the concept of “aggregation” 
in economics, and the notion of “evidence” in evidence the-
ory. Hobbs [7] proposed a framework for granularity theory, 
which explores the decomposition and merging of granules 
and provides methods for constructing granules of differ-
ent sizes. Lin [8] introduced the concept of domain systems 
and studied the relationship between domain systems and 
relational databases. Information granulation encompasses 
various theories and approaches, including set theory, inter-
val analysis, fuzzy sets, rough sets, probability theory, and 
the theory of quotient space [9]. Typical examples of infor-
mation granulation include granulation based on rough set 
theory [10], granulation based on commercial space theory 
[11], and granulation based on fuzzy set theory [12]. As one 
of the effective tools in data mining, information granula-
tion can effectively handle the problem of uncertainty. For 
instance, Zhang et al. [13] utilized a granular computing 
model to perform information granulation on information 
systems, followed by uncertainty measurement using the 
granulated results. Similarly, Chen et al. [14] employed 
information granulation methods for uncertainty measure-
ment in domain information systems. Xu et al. [15] carried 
out information granulation in fuzzy domain information 
systems and proposed an uncertainty measurement method. 
Therefore, information granulation can serve as an effective 
approach to address the challenge of unified modeling in 
multi-source information systems.

Uncertainty measures in information systems is cur-
rently a hot research topic in the field of information sci-
ence. Rough set theory, proposed by the Polish scholar Paw-
lak [16], is an information analysis theory that has shown 
excellent performance in dealing with uncertain data. Rough 
set theory has been successfully applied in various fields 
of intelligent information processing, including machine 
learning [18, 19, 21], decision analysis [17, 25], approxi-
mate reasoning [20], data mining [22–24], and more. From 
the perspective of data analysis, rough set theory possesses 
numerous advantages. Due to these advantages, many 
researchers have combined it with multi-source informa-
tion fusion and achieved outstanding results. For example, 
Yang et al. [26] explored a multi-granularity-based informa-
tion fusion method that directly combines multiple sources 
of information to avoid information loss during the fusion 
process. Lin et al. [27] studied an information fusion method 
that combines multi-granularity rough sets with evidence 

theory. Zhang et al. [28] proposed a data fusion model that 
utilizes domain rough set models to construct domain granu-
lar structures and employs the principles of granular com-
puting to develop uncertainty measurement methods. Zhang 
et al. [29]also presented a matrix-based multi-granularity 
fusion method. In the context of multi-label multi-source 
information systems, Qian et al. [30] proposed a novel con-
ditional entropy and utilized it to fuse multi-label data.

Indeed, the aforementioned information fusion meth-
ods mainly focus on single-valued information systems. 
However, in real-life situations, many phenomena and vari-
ables cannot be precisely represented due to the limitations 
of objective environments and subjective perceptions. In 
such cases, it is common to use interval representations to 
describe the uncertainty or imprecision associated with the 
data. Interval-valued information systems, as a commonly 
encountered type of information system, are widely pre-
sent in various fields such as healthcare and finance [31]. 
Interval-valued data has garnered extensive attention from 
scholars worldwide, and with the development of rough 
set theory, significant achievements have been made in the 
research of interval-valued data. For instance, Dai et al. 
[32–34] proposed various uncertainty measurement meth-
ods for interval-valued information systems using interval 
rough set models. Their approach involved measuring the 
roughness of the approximate object set using upper and 
lower approximations in the interval-valued rough set, and 
using roughness to represent the uncertainty measurement 
results of the interval-valued information system. Liu et al. 
[35]constructed a similarity relation on incomplete interval-
valued information systems and proposed an unsupervised 
attribute reduction method based on �-similarity relation. 
Dai et al. [36] proposed a fuzzy rough set method based 
on dominance degree for attribute reduction of incomplete 
interval-valued data. Xie et al. [37] introduced the definition 
of interval probability similarity to measure the uncertainty 
of interval-valued information systems. Xu et al. [38] pre-
sented a fault diagnosis method that fuses different diagnos-
tic evidence into interval-valued data. Fumanal-Idocin et al. 
[39] developed a moderate deviation function to measure the 
similarity and dissimilarity between a given set of interval-
valued data, constructing interval-valued aggregation func-
tions. These functions were applied to two motor imagery-
based brain-computer interface (MI-BCI) systems for the 
classification of EEG signals. The extensive research con-
ducted on interval-valued information systems, as mentioned 
above, has mainly focused on single-source information sys-
tems. However, interval-valued data can also be obtained 
from multiple diverse sources. For instance, meteorological 
data collected from various weather stations can be fused to 
improve weather predictions. Therefore, a key challenge in 
information fusion is how to effectively integrate and extract 
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useful knowledge from such diverse sources of interval-type 
data.

Regardless of the fusion methods for single-value infor-
mation systems mentioned above or the research on single-
source interval-valued information systems, they cannot 
be directly applied to the study of multi-source interval-
valued information systems. This paper aims to investi-
gate information fusion methods specifically designed 
for multi-source interval-valued information systems. In 
addition, in dynamic multi-source environments, both the 
sources and attributes undergo continuous changes. For 
example, when we want to predict the weather conditions 
of a city, or instance, we can collect data from weather 
sensors distributed throughout the city. This data includes 
various weather parameters such as temperature, humid-
ity, and wind speed. Nevertheless, with the advancement 
of scientific technology, we discover that wind speed is 
not significant for weather prediction. Therefore, to save 
the cost of data collection, wind speed is no longer col-
lected. At the same time, due to factors like weather 
exposure, some sensors may become obsolete and need 
to be removed from the system. Traditional static fusion 
methods require recomputing the entire information fusion 
process, which is costly and even infeasible for large 
datasets. To reduce computational costs, an incremental 
fusion method is proposed, which combines newly updated 
data with accumulated information. For example, Chan 
et al. [40] put forward an incremental method for fusing 
unstructured textual data when new text is added. Kotwal 
et al. introduced a consistent fusion rule for incremen-
tally evaluating the fusion performance of hyperspectral 
images [41]. Huang et al. [42] presented a dynamic fusion 
method for interval-valued data that enables fast updates 
of fusion results when information sources change. How-
ever, it is evident that these methods are not applicable 
for updating fusion results when both attributes and data 
sources undergo simultaneous changes. Nevertheless, in 
recent years, researchers have conducted relevant stud-
ies in this area. For instance, Zhang et al. [43] proposed 
dynamic fusion for incomplete interval-valued information 
systems. Xu et al. [44] developed a dynamic fusion model 
for multi-source interval-valued ordered information sys-
tems. Although these two studies specifically address situ-
ations where changes occur simultaneously in attributes 
and information sources within interval-valued informa-
tion systems. Although both of these studies address situ-
ations where changes occur simultaneously in attributes 
and information sources within interval-valued informa-
tion systems, they only consider the endpoint information 
of interval values when measuring the similarity between 
two objects. This oversight leads to the loss of effective 
information contained within the intervals. To address this 

limitation, this paper proposes a dynamic fusion method 
based on fuzzy approximate conditional entropy. The main 
contributions of this paper can be summarized as follows: 

1. To address the issue of effective information loss caused 
by only considering the endpoint information and ignor-
ing the contribution of the internal points in interval-
valued data, we propose the following solution. We uti-
lize the principle of statistical distribution to transform 
interval values into probability distributions. Then, we 
employ the Kullback–Leibler divergence to measure the 
dissimilarity between two interval value distributions 
and construct a fuzzy similarity relation.

2. In order to study uncertainty measures that are more 
suitable for interval-valued information systems, based 
on the fuzzy similarity relation, we construct fuzzy deci-
sions for objects and define a fuzzy information struc-
ture. A novel entropy measure is proposed by combining 
fuzzy information structure and fuzzy decision defini-
tion. Additionally, we construct a lower bound fusion 
function to effectively fuse multi-source interval-valued 
information tables.

3. In order to gain a clearer understanding of the dynamic 
update mechanism. We have discussed four different sit-
uations in which the attributes and information sources 
of a dynamic multi-source interval-valued information 
system change simultaneously. Additionally, we have 
formulated corresponding dynamic update algorithms 
to eliminate redundant calculations and decrease fusion 
time during the fusion process.

The rest of this work consists of the following contents: 
Sect. 2 gives the basic definitions of rough set, and reviews 
the concepts of information tables. Section 3 introduces 
fuzzy similarity. An infimum fusion function is provided 
and the dynamic fusion scenarios where multiple dimen-
sions change simultaneously are discussed in Sect. 4. Sec-
tion 5 compares the time complexity of dynamic and static 
fusion algorithms. Section 6 analyzes the results of the 
experiment and the effectiveness and efficiency of fusion. 
Finally, in Sect. 7 summarizes the work of this paper and 
future research. And the framework of the paper can be 
seen in Fig. 1.

2  Preliminary

In this section, we briefly review some mathematical 
notions and definitions.
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2.1  Rough set theory

Assume that (U, A) is an information system, where U repre-
sents a non-empty finite object set, A represents a non-empty 
finite conditions attribute set. a binary indiscernible relation is 
determined for any attribute subset B ⊆ A as below:

According to the binary indiscernible relation BIR(B), we 
can obtain a partition U/BIR(B) of the object set U. For any 
attribute subset B ⊆ A and subset X ⊆ U , the lower approxi-
mation, upper approximation, and boundary region of X with 
respect to B can be expressed as follows:

BIR(B) =
{
(ui, uj) ∈ U|∀b ∈ B, b(ui) = b(uj)

}
.

BIR(X) =
{
ui ∈ U|[ui]BIR ⊆ X

}
,

BIR(X) =
{
ui ∈ U|[ui]BIR ∩ X ≠ ∅

}
,

B(X) = BIR(X) − BIR(X).

Pawlak proposed two numerical measures, accuracy and 
roughness, for evaluating the uncertainty of a given object 
set X. These measures can be expressed as follows:

where |.| denotes the cardinality of elements. The accuracy 
and roughness concepts are used to characterize the com-
pleteness and incompleteness, respectively, of the knowledge 
about a given set of objects, denoted as X.

2.2  Fuzzy rough set theory

Let the set A on the universe U be a mapping:

(1)Accurac(X) =

|||BIR(X)
|||

|||BIR(X)
|||
,

(2)Roughness(X) =1 − Accurac(X).

Fig. 1  A framework of the paper
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for any x ∈ U , then A is called a fuzzy set, A(x) is the mem-
bership degree of x to A.

Let B ⊆ A be an attribute subset, and let RB be a fuzzy 
binary relation induced by B on U. RB is referred to as a fuzzy 
similarity relation if it satisfies the following conditions: 

(1) Reflectivity: RB(x, x) = 1,∀x ∈ U;
(2) Symmetry: ∀x, y ∈ U,RB(x, y) = RB(y, x).

Given  a  dec i s ion  sys tem (U,A
⋃

D) ,  where 
U = {x1, x2,… , xn} , A = {a1, a2,… , am} . Let attribute subset 
B ⊆ A and RB is the fuzzy similarity relation on U induced by 
attribute set A. The decision partition U∕D =

{
Y1, Y2,… , Ym

}
 , 

then the fuzzy decisions of objects exported by decision attrib-
ute D can be expressed as below:

where F̃Yr is the fuzzy set and F̃Yr(x) indicates the member-
ship degree of x to F̃Yr.

2.3  Multi‑source interval‑valued information 
system

Assume that IvIS = (U,A,V , f ) is an interval-valued infor-
mation system, where U = {x1, x2,… , xn} represents a non-
empty and finite object set, A = {a1, a2,… , ap} represents 
non-empty and finite attribute set. V is called the range of 
attribute A. f ∶ U × A → V represents information function, 
∀x ∈ U, a ∈ A, f (x, a) = [f−(x, a), f +(x, a)].

Let IvISi = (U,A,Vi, fi) be the i-th IvIS, where the mean-
ings of U, A, Vi and fi as mentioned above. Generally, a multi-
source interval-valued information system is defined as below:

Similarly, IvDIS = (U,A,VA, fA,D,VD, fD) represents incom-
plete interval-valued decision information system, where the 
connotations of U, A, VA and fA are in agreement with those 
mentioned in the IvIS, D represents the decision attribute set. 
VD represents the range of the decision attribute value. Infor-
mation function is expressed as fD ∶ U × D → VD . I = [0, 1] , 
IU is called as the family consisted of all fuzzy sets on U. Let 
IvDIS = (U,A,VAi

, fAi
,D,VDi

, fDi
) be the ith IvDIS, where the 

connotations of U, A, VAi
 , fAi

 , D, VDi
 and fDi

 as mentioned 
above. In general, a multi-source interval-valued decision 
information system(MsIvDIS) is expressed as follows:

A ∶ U → [0, 1]

x ↦ A(x),

F̃U∕D =
�
F̃Y1, F̃Y2,… , F̃Ym

�
,

F̃Yr(x) =
��[x]A

⋂
Yr
��

[x]A
, r = 1, 2,… ,m,

MsIvIS = {IIvISi
||IIvISi = (U,A,Vi, fi), i = 1, 2,… ,N}.

For convenience, this article abbreviated the above expres-
sion. We use (U,A

⋃
D)i to represent the decision informa-

tion system and (U,Ai) to represent the information system 
(Table 1).

Example 1 So as to better understand the definition of 
MsIvDIS. We give the example as following. With the awak-
ening of people’s health awareness, more and more friends 
began to develop the habit of regular physical examination. 
However, because the interval between medical examina-
tions is long, and the specific time and place are not fixed. As 
a result, many friends have several physical examinations, 
which are not carried out in the same hospital. After receiv-
ing the results of the physical examination, some people will 
find that the numerical results of the physical examination 
they did in several hospitals are very different. Tables 2, 3, 
4, 5 respectively represent the physical examination results 
of eight people in four hospitals. Attributes a1 − a6 indi-
cate hemoglobin counts, leukocyte counts, blood fat, blood 
sugar, platelet counts, and Hb level, respectively. Suppose 
t h a t  VD = {Leukemia patient,Non leukemia patient}  , 
a n d  U∕D = {Y1, Y2} ,  w h e r e  Y1 = {x1, x2, x6, x8} , 
Y2 = {x3, x4, x5, x7}.

3  Fuzzy similarity relation for MsIvDIS

Unlike real values, comparing two interval values using 
traditional methods is challenging. However, inspired by 
the similarity measure for general interval-valued data 
proposed in [43], we can define the notion of similarity 
between two intervals.

3.1  Distance measurement between interval values

Many difference measurements of interval values are asso-
ciated with distance. Numerous scholars have done a great 

MsIvDIS = {IvDISi
||IvFDISi

= (U,A,VAi
, fAi

,D,VDi
, fDi

), i = 1, 2,⋯ ,N}.

Table 1  Abbreviation table

Terminologies Abbreviations

Interval-valued information system IvIS
Interval-valued decision information system IvDIS
Muti-source intervalued decision information system MsIvDIS
Fuzzy approximate conditional entropy FACE
Kullback–Leibler divergence KL divergence
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deal of work to measure the differences between interval 
values. So far to, there are some familiar distances that 
can be used to reflect diverseness in interval values. For 
example:

City-block distance:

Euclid distance:

(3)Dc = |y− − x−| + |y+ − x+|,

Hausdorf distance etc:

where x = [x−, x+] are two interval values.
However, the distance measure mentioned above only 

considers the endpoints of interval values, but the internal 

(4)DE = |y− − x−|2 + ||y+ − x+||2,

(5)DH = max(|y− − x−|, ||y+ − x+||),

Table 2  Physical examination 
report of the first hospital IIvIS1

U a1 a2 a3 a4 a5 a6

x1 [121.56,139.69] [3.00,7.00] [115.25,134.96] [67.23,106.58] [43.25,186.98] [70.56,92.98]
x2 [116.58,124.36] [4.00,11.00] [116.96,124.95] [79.03,117.68] [80.00,223.98] [67.34,88.56]
x3 [105.25,116.06] [2.00,10.00] [112.45,141.06] [118.59,178.45] [64.25,82.97] [78.99,99.02]
x4 [125.19,133.65] [2.00,9.00] [111.65,120.98] [60.45,97.98] [99.56,239.14] [66.25,88.29]
x5 [127.68,135.39] [4.00,11.00] [111.62,294.97] [75.59,108.62] [138.06,169.45] [43.00,74.00]
x6 [127.16,214.15] [6.00,16.00] [164.62,295.68] [81.34,162.58] [78.37,88.18] [28.02,61.25]
x7 [103.69,196.58] [4.00,9.00] [177.45,268.36] [84.58,152.97] [78.18,98.37] [30.00,60.02]
x8 [114.97,196.42] [10.00,20.00] [224.12,313.37] [102.25,162.36] [67.06,86.86] [25.06,56.00]
x9 [119.56,149.28] [12.00,22.00] [121.16,167.98] [90.18,138.28] [71.68,98.56] [78.35,88.64]
x10 [138.26,206.05] [8.00,18.00] [176.98,265.69] [96.65,128.46] [109.98,252.96] [39.06,70.00]

Table 3  Physical examination 
report of the second hospital 
IIvIS2

U a1 a2 a3 a4 a5 a6

x1 [117.60,148.30] [1.00,5.00] [115.56,124.65] [69.39,108.65] [45.00,76.25] [70.00,93.89]
x2 [109.49,164.37] [3.00,11.00] [116.68,124.37] [79.00,118.65] [62.59,79.65] [67.58,82.34]
x3 [118.26,129.56] [2.00,10.00] [112.85,121.94] [119.03,179.56] [66.00,84.00] [78.00,100.05]
x4 [125.65,153.26] [1.00,9.00] [121.36,160.48] [60.00,98.85] [83.02,126.58] [66.25,89.35]
x5 [126.97,145.34] [4.00,11.00] [111.97,294.98] [81.65,119.75] [139.28,268.94] [43.00,74.09]
x6 [106.26,134.15] [6.00,16.00] [116.97,125.68] [75.45,120] [68.58,87.79] [27.34,61.52]
x7 [123.38,185.96] [4.00,9.00] [177.89,245.34] [84.65,153.88] [77.89,97.65] [30.88,60.59]
x8 [187.68,258.54] [10.00,20.00] [149.97,166.65] [102.00,162.98] [65.02,84.38] [26.65,59.34]
x9 [138.00,249.28] [11.00,22.00] [153.26,268.98] [90.00,150.02] [88.69,164.35] [77.85,99.58]
x10 [111.35,214.69] [8.00,18.00] [177.39,265.98] [67.85,118.06] [109.26,252.97] [39.00,70.00]

Table 4  Physical examination 
report of the third hospital 
IIvIS3

U a1 a2 a3 a4 a5 a6

x1 [116.85,136.49] [3.00,.007] [115.96,124.85] [72.60,116.98] [43.00,186.45] [70.98,93.06]
x2 [118.79,130.00] [6.00,12.00] [103.98,139.85] [79.69,118.89] [80.00,223.85] [67.97,89.65]
x3 [124.99,163.00] [2.00,10.00] [112.30,121.98] [116.59,159.99]] [66.58,84.00] [78.00,100.00]
x4 [106.69,129.85] [2.00,9.00] [111.00,120.85] [60.00,98.99] [86.08,168.96] [66.00,89.99]
x5 [126.35,135.84] [4.00,11.00] [111.98,295.52] [81.00,119.89] [139.65,282.59] [43.00,74.59]
x6 [156.89,214.98] [6.00,16.00] [204.59,295.85] [80.15,162.38] [68.85,87.48] [27.96,61.59]
x7 [122.98,196.85] [4.00,9.00] [177.85,268.35] [84.69,153.78] [77.56,97.34] [30.00,60.00]
x8 [158.59,233.94] [10.00,20.00] [224.96,314.84] [102.96,142.58] [65.59,84.98] [25.00,56.89]
x9 [118.26,149.35] [12.00,21.00] [224.58,268.95] [94.95,128.58] [71.98,90.06] [76.29,89.58]
x10 [161.85,214.95] [8.00,18.00] [177.56,267.89] [67.35,118.86] [109.38,252.95] [39.48,71.67]
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contribution to information of interval-valued endpoints 
is ignored, resulting in the loss of interval-valued effec-
tive information. Therefore, this paper uses the probability 
distribution principle to treat an interval as a probability 
distribution, and uses Kullback–Leibler divergence to cal-
culate the distance between distributions.

Definition 1 For continuous random variables, the KL diver-
gence of the two probability distributions P and Q is defined 
in the integral form as follows:

where P(x) and Q(x) is the probability density function of 
P, Q. In the field of probability statistics, KL divergence can 
be used to measure the distance between two probability 
distributions.

Definition 2 Let xi = [xi
−, xi

+], yj = [yj
−, yj

+] are two inter-
val values and a ∈ A,where xi, yj ∈ U . The new distance 
measurement between xi and yj is defined as follow:

where

Based on KL divergence, The interval-valued distance 
between xi and yj is defined as follows:

where

(6)KL(P‖Q ) = ∫ P(x) ln

�
P(x)

Q(x)

�
dx,

(7)xi ∼ N(�1, �
2
1
) , yj ∼ N(�2, �

2
2
),

(8)�1 =
xi
++xi

−

2
, �2 =

yj
+ + yj

−

2
,

(9)�1 =
xi
+ − xi

−

2
, �2 =

yj
+ − yj

−

2
.

(10)disA(xi, xj) =

(∑
a∈A

dis{a}(xi, xj)

) 1

2

,

3.2  ı‑similarity in MsIvDIS

Definition 3 Let xi = [x−
i
, x+

i
],yj = [y−

j
, y+

j
] are two interval 

values and a ∈ A , where x−
i
< x+

i
, y−

j
< y+

j
 . The similarity of 

xi and yj can be expressed as below:

where 𝛿 > 0 is a hyperparameter, which is used to con-
trol the size of the interval similarity values. Obviously, 
0 < Sima(x, y) ≤ 1 and SimA(x, y) = SimA(y, x) . It should be 
noted that we set � to be 0.5 in this paper.

Proposition 1 Let xi = [x−
i
, x+

i
],yj = [y−

j
, y+

j
] are two interval 

values. Assume attribute subsets B and C, C ⊆ B ⊆ A , the 
similarity of interval samples xi and yj under attribute sub-
sets B and C satisfies the following properties:

Proof When C ⊆ B , we know |C| ⩽ |B| , so we have 
disC(xi, xj) ⩽ disB(xi, xj) . At the same time disC(xi, xj) ⩽ 0 , 
and because f (x) = ex increases monotonically on ℝ , 
it is clear that g(x) = e−x decreases on ℝ , so there is 
simC(xi, yj) ≥ simB(xi, yj)   ◻

Definition 4 Suppose that (U,A
⋃

D)i is the ith IIvDISi . For 
condition attribute subset B ⊆ A , the fuzzy similarity rela-
tion is expressed as follows:

where Simi
b
(xj, xk) denotes the similarity of xj and xk under 

attribute b in the i-th IIvDISi.

(11)disa(xi, yj) =

KL
(
xi
‖‖‖yj

)
+ KL

(
yj
‖‖xi

)

2
.

simA(xi, xj) = e
−

disA(xi ,xj)

2�2 ,

simC(xi, yj) ≥ simB(xi, yj).

(12)Ri
B
= ( ∧

b∈B
Simi

b
(xj, xk))

n×n
(∀xj ∈ U, (xj, xk) ∈ n × n),

Table 5  Physical examination 
report of the fourth hospital 
IIvIS4

U a1 a2 a3 a4 a5 a6

x1 [116.48,128.56] [3.00,7.00] [115.38,125.97] [73.97,111.25] [59.97,139.98] [70.00,92.39]
x2 [119.58,131.69] [4.00,11.00] [115.25,124.68] [79.38,118.65] [82.69,215.48] [67.00,88.09]
x3 [109.99,112.98] [4.00,6.00] [112.87,121.96] [119.59,179.98] [66.78,85.97] [78.00,99.65]
x4 [126.43,134.97] [2.00,9.00] [111.98,120.99] [60.0,99.00] [100.00,260.00] [66.45,88.9]
x5 [128.45,136.76] [4.00,11.00] [108.97,236.99] [81.28,120.95] [138.88,283.69] [43.00,74.06]
x6 [127.97,215.96] [6.00,16.00] [204.08,296.98] [81.97,163.65] [68.06,88.09] [28.00,61.98]
x7 [143.96,216.26] [4.00,9.00] [177.89,268.38] [84.56,154.98] [78.0,98.99] [30.00,60.00]
x8 [121.59,169.09] [10.00,20.00] [224.96,315.98] [102.98,163.96] [65.35,85.97] [25.65,56.69]
x9 [119.68,150.98] [12.00,22.00] [225.58,269.97] [90.00,151.98] [71.96,91.09] [78.99,88.58]
x10 [142.54,165.86] [7.00,16.00] [177.56,268.69] [68.34,119.98] [109.36,253.69] [43.00,76.60]
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Simi
B
(xj) contains the similarity between the object and 

all other objects in the universe, and can be acknowledged 
to be a fuzzy information granule. The set of these informa-
tion granules forms a fuzzy set vector, which is called fuzzy 
similarity class. The definition is as below:

Given an interval-valued decision information sys-
tem (U,A

⋃
D)i , and attribute subset B ⊆ A , interval-

valued fuzzy information structure can be expressed as: 
Simi

B
= (Simi

B
(x1), Sim

i
B
(x2),⋯ , Simi

B
(xn)).

Example 2 (Continued from Example 1) In accordance with 
to the above definition, we can figure up the fuzzy similarity 
class. Let’s take attribute a1 of the first information source 
as an example.

(13)Simi
B
(xj) =

Ri
B
(xj, x1)

x1
+

Ri
B
(xj, x2)

x2
+⋯ +

Ri
B
(xj, xn)

xn
.

First, according to Definition 2 we can calculate the dis-
tance between xi and xj(i, j = 1, 2,… , 8) w.r.t.a1.The specific 
calculation process of distance da1(xi, xj) is as follows:

Suppose that:

so according to the Definition 1 we can calculation the KL 
divergence:

Thus, da1(x1, x2) = 1.7091 , The same we can also obtain a 
distance matrix:

so the similarity between xi and xj w.r.t. a1 in the first IIvIS1 
can be calculated as follows:

Then the the fuzzy similarity class in the 1-th IIvIS1 can be 
calculated as follows:

f (x1, a1) =[121.56, 139.69], f (x2, a1) = [116.58, 124.36],

�1 =130.625, �1 = 9.065,

�2 =120.47, �2 = 3.89.

f (x1, a1) ∼ N(130.625, 9.0652), f (x2, a1) ∼ N(120.47, 3.892),

KL(f (x1, a1)
‖‖f (x2, a1) ) = 1.0655,KL(f (x2, a1)

‖‖f (x1 , a1)) = 4.7767.

da1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1.70913 2.21768 0.85281 0.97162 3.21763 2.52382 3.23992 0.57005 2.93864
1.70913 0 1.58999 1.56513 2.02052 8.52637 6.90912 8.19699 2.56918 7.94978
2.21768 1.58999 0 2.82746 3.34420 6.85390 5.68189 6.97030 2.62588 6.52132
0.85281 1.56513 2.82746 0 0.38261 7.06516 5.60540 6.50887 1.72718 6.43973
0.97162 2.02052 3.34420 0.38261 0 7.56796 5.98007 6.83910 1.83875 6.85172
3.21763 8.52637 6.85390 7.06516 7.56796 0 0.25895 1.24923 1.82510 0.25353
2.52382 6.90912 5.68189 5.60540 5.98007 0.25895 0 1.18167 1.38507 0.25279
3.23929 8.19699 6.97030 6.50887 6.83910 1.24923 1.18167 0 2.14302 0.89719
0.57005 2.56918 2.62588 1.72718 1.83875 1.82510 1.38507 2.14302 0 1.66454
2.93864 7.94978 6.52132 6.43973 6.85172 0.25353 0.25279 0.89719 1.66454 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

Sim1
a1

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0.03277 0.01185 0.18166 0.14324 0.00160 0.00642 0.00153 0.31979 0.00280
0.03277 1 0.04159 0.04371 0.01758 0.00000 0.00000 0.00000 0.00587 0.00000
0.01185 0.04159 1 0.00350 0.00125 0.00000 0.00001 0.00000 0.00524 0.00000
0.18166 0.04371 0.00350 1 0.46523 0.00000 0.00001 0.00000 0.03161 0.00000
0.14324 0.01758 0.00125 0.46523 1 0.00000 0.00001 0.00000 0.02529 0.00000
0.00160 0.00000 0.00000 0.00000 0.00000 1 0.59577 0.08221 0.02599 0.60227
0.00642 0.00000 0.00001 0.00001 0.00001 0.59577 1 0.09411 0.06265 0.60315
0.00135 0.00000 0.00000 0.00000 0.00000 0.08221 0.09411 1 0.01376 0.16623
0.31979 0.00587 0.00524 0.03161 0.02529 0.02599 0.06265 0.01376 1 0.03583
0.00280 0.00000 0.00000 0.00000 0.00000 0.60227 0.60315 0.16623 0.03583 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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3.3  Uncertainty measurement based 
on information granularity

In this subsection, we can use the information granular 
structure mentioned above to define the uncertainty meas-
urement for MsIvDIS.

Definition 5 Given that (U,A
⋃

D)i(i = 1, 2,… ,N) is i-th 
IvDISi . For B ⊆ A , Simi

B
 represents the fuzzy information 

s t r u c t u r e  c a u s e d  b y  B  i n  i t h  IvDISi  , 
Simi

B
= (Simi

B
(x1), Sim

i
B
(x2),⋯ , Simi

B
(xn))  , 

F̃U∕D =
{
F̃Y1, F̃Y2,… , F̃Ym

}
 is the fuzzy decision of 

objects induced by decision attribute D. The fuzzy lower 
approximation, upper approximation and boundary region 
of X according to B can be expressed as below:

Definition 6 Assume that (U,A
⋃

D)i(i = 1, 2,… ,N) is the 
ith IvDISi . U∕D = {Y1, Y2,… , Ym} is the partition of U on 
the decision attribute set and F̃U∕D =

{
F̃Y1, F̃Y2,… , F̃Ym

}
 

is the fuzzy decision of objects induced by decision attribute 
D. Simi

B
 represents the fuzzy information structure induced 

by B in ith IvDISi , Simi
B
= (Simi

B
(x1), Sim

i
B
(x2),… , Simi

B
(xn)) . 

Sim1
a1
(x1) =

1
x1

+ 0.03277
x2

+ 0.01185
x3

+ 0.18166
x4

+0.14324
x5

+ 0.00160
x6

+ 0.00642
x7

+ 0.00153
x8

+ 0.31979
x9

+ 0.00280
x10

,

Sim1
a1
(x2) =

0.03277
x1

+ 1
x2

+ 0.04159
x3

+ 0.04371
x4

+ 0.01758
x5

+ 00587
x9

,

Sim1
a1
(x3) =

0.01185
x1

+ 0.04159
x2

+ 1
x3

+ 0.00350
x4

+ 0.00125
x5

+ 0.00001
x7

+ 0.00524
x9

,

Sim1
a1
(x4) =

0.18166
x1

+ 0.04371
x2

+ 0.00350
x3

+ 1
x4

+ 0.46523
x5

+ 0.00001
x7

+ 0.02529
x9

,

Sim1
a1
(x5) =

0.14324
x1

+ 0.01758
x2

+ 0.00125
x3

+ 0.46523
x4

+ 1
x5

+ 0.00001
x7

+ 0.02529
x9

,

Sim1
a1
(x6) =

0.00160
x1

+ 1
x6

+ 0.59577
x7

+ 0.08221
x8

+ 0.02599
x9

+ 0.60227
x10

,

Sim1
a1
(x7) =

0.00642
x1

+ 0.00001
x3

+ 0.00001
x4

+ 0.00001
x5

+ 0.59577
x6

+ 1
x7

+ 0.09411
x8

+ 0.06265
x9

+ 0.60315
x10

,

Sim1
a1
(x8) =

0.00135
x1

+ 0.08221
x6

+ 0.09411
x7

+ 1
x8

+ 0.01376
x9

+ 0.16626
x10

,

Sim1
a1
(x9) =

0.31979
x1

+ 0.00587
x2

+ 0.00524
x3

+ 0.03161
x4

+ 0.02529
x5

+ 0.02599
x6

+ 0.06265
x7

+ 0.01376
x8

+ 1
x9

+ 0.03583
x10

,

Sim1
a1
(x10) =

0.00280
x1

+ 0.60227
x6

+ 0.60315
x7

+ 0.16623
x8

+ 0.03583
x9

+ 1
x10

.

(14)FSDi
B
(�FYr) = {xj ∈ Yr ∶ Simi

B
(xj) ⊆ �FYr},

(15)FSDi
B
(F̃Yr) = {xj ∈ U ∶ Simi

B
(xj)

⋂
F̃Yr ≠ ∅},

(16)BFSDi
B
(F̃Yr) = FSDi

B
(F̃Yr) − FSDi

B
(F̃Yr).

The ith fuzzy approximate conditional entropy (FACE) of B 
is expressed as belows:

Additionally, the �-approximate conditional entropy 
FACEi(D|B) has follow propositions which can be expressed 
as follows: 

(1) FACEi(D|B) ≥ 0,
(2) FACEi(D|B) < ∞,
(3) For x ∈ U and C ⊆ B ⊆ A , then Simi

B
(x) ≤ Simi

C
(x) , we 

have FACEi(D|B) ≤ FACEi(D|C).

Proof 

(1) For ∀xj ∈ U  and attribute subset B ⊆ A , there is 
|||Simi

B
(Xj)∩F̃Yk

||||Simi
B
(Xj)| = 1 , then FACEi(D|B) = 0.

(2) If ∃xj ∈ U  , such that |||Simi
B
(Xj) ∩ F̃Yk

||| = 0 , then 
FACEi(D|B) = ∞ . Thus we have FACEi(D|B) < ∞.

(3) G i ve n  f (x, y) = −x log2
x

x+y
 ,  t h e n  we  h ave 

�f

�x
= log2

x+y

x
−

y

(x+y) ln 2
 . When x, y > 0 , let t = y

x
 , then 

we  h ave  �f

�x
= log2(1 + t) −

t

(1+t) ln 2
 .  We  l e t 

G(t) = log2(1 + t) −
t

(1+t) ln 2
 , when t > 0 , then we know 

G�(t) =
1

(1+t)2 ln 2
> 0 , so G(t) monotonically increases 

(17)FACEi(D|B) = −
|U|

∑

j=1

m
∑

k=1

|

|

|

Simi
B(Xj) ∩ F̃Yk

|

|

|

|U|

log
|

|

|

Simi
B(Xj) ∩ F̃Yk

|

|

|

|

|

|

Simi
B(Xj)

|

|

|

.
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with respect to t, then G(t) > G(0) = 0 , thus G(t) > 0 , 
i .e . 𝜕f

𝜕x
> 0  .  S imi lar i ty,  when x, y > 0  ,  then 

𝜕f

𝜕y
=

x

(x+y) ln 2
> 0  .  A n d  b e c a u s e 

F̃Yk ∈
{
F̃Y1, F̃Y2,… , F̃Ym

}
 , so when x ∈ U  and 

C ⊆ B ⊆ A , then according to proposition 1 we can eas-
i ly  know Simi

B
(x) ≤ Simi

C
(x) ,  then we have 

|||Simi
B
(x) ∩ F̃Yk

||| ≤ |||Simi
C
(x) ∩ F̃Yk

|||  a n d 
|||Simi

B
(x) ∩ (F̃Yk)

C||| ≤ |||Simi
C
(x) ∩ (F̃Yk)

C||| . 

Fig. 2  The fusion process of multi-source incomplete interval-valued information system

Table 6  The fuzzy approximate conditional entropy of information 
sources for diverse attributes

A I1 I2 I3 I4

a1 0.929975 0.878091 0.956675 0.736975
a2 1.341667 1.258771 1.195430 1.205198
a3 0.941145 0.891750 1.001344 1.186731
a4 1.091394 1.449511 1.309411 1.362049
a5 1.002595 0.964111 1.160842 1.256408
a6 1.309759 1.381374 1.349524 1.335237



3629International Journal of Machine Learning and Cybernetics (2024) 15:3619–3645 

.
  □

FACEi(D|B)

= −
|U|

∑

j=1

m
∑

k=1

|

|

|

Simi
B(Xj) ∩ F̃Yk

|

|

|

|U|

log
|

|

|

Simi
B(Xj) ∩ F̃Yk

|

|

|

|

|

|

Simi
B(Xj)

|

|

|

= −
|U|

∑

j=1

m
∑

k=1

|

|

|

Simi
B(Xj) ∩ F̃Yk

|

|

|

|U|

log
|

|

|

Simi
B(Xj) ∩ F̃Yk

|

|

|

|

|

|

Simi
B(Xj ∩ F̃Yk

|

|

|

+ |

|

|

Simi
B(Xj ∩ (F̃Yk)C

|

|

|

≤ −
|U|

∑

j=1

m
∑

k=1

|

|

|

Simi
C(Xj) ∩ F̃Yk

|

|

|

|U|

log
|

|

|

Simi
C(Xj) ∩ F̃Yk

|

|

|

|

|

|

Simi
C(Xj ∩ F̃Yk

|

|

|

+ |

|

|

Simi
C(Xj ∩ (F̃Yk)C

|

|

|

= FACEi(D|C)

4  Information fusion for dynamic 
interval‑valued data based on FACE

According to the property of fuzzy approximate 
conditional entropy, we can know the smaller the 
FACEi(D|B)(i = 1, 2,… ,N) is, the more significant the 
information source is. Hence, we obtain the following fusion 
function, which can be employed to fuse the MsIvDIS. Then, 
aiming at the dynamic data of the four situations, we design 
the corresponding fusion strategy.

D e f i n i t i o n  7  F o r  a  M s I v D I S 
MsIvDIS = {IIvIISi

||IIvIISi = (U,A,Vi, fi), i = 1, 2,… ,N)  , 

Table 7  The fusion results from 
fusion function

U a1 a2 a3 a4 a5 a6

x1 [116.48,128.56] [3.00,.007] [115.56,124.65] [67.23,106.58] [45.00,76.25] [70.56,92.98]
x2 [119.58,131.69] [6.00,12.00] [116.68,124.37] [79.03,117.68] [62.59,79.65] [67.34,88.56]
x3 [109.99,112.98] [2.00,10.00] [112.85,121.94] [118.59,178.45] [66.00,84.00] [78.99,99.02]
x4 [126.43,134.97] [2.00,9.00] [121.36,160.48] [60.45,97.98] [83.02,126.58] [66.25,88.29]
x5 [128.45,136.76] [4.00,11.00] [111.97,294.98] [75.59,108.62] [139.28,268.94] [43.00,74.00]
x6 [127.97,215.96] [6.00,16.00] [116.97,125.68] [81.34,162.58] [68.58,87.79] [28.02,61.25]
x7 [143.96,216.26] [4.00,9.00] [177.89,245.34] [84.58,152.97] [77.89,97.65] [30.00,60.02]
x8 [121.59,169.09] [10.00,20.00] [149.97,166.65] [102.25,162.36] [65.02,84.38] [25.06,56.00]
x9 [119.68,150.98] [12.00,21.00] [153.26,268.98] [90.18,138.28] [88.69,164.35] [78.35,88.64]
x10 [142.54,165.86] [8.00,18.00] [177.39,265.98] [96.65,128.46] [109.26,252.97] [39.06,70.00]

Fig. 3  Dynamic situation 1
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where A = {a1, a2,… ap} ( For convenience, Ii can represent 
the ith information source). For all al ∈ A(m = {1, 2,… , n}) , 
the lth attribute of new informtion table after fusion is 
defined as below:

where F = FACEi(D|a) which can be regard as infimum-
measure function.

In this paper, we use Fig. 2 to show the static fusion 
process more intuitively. The different colors of lines 
indicate different information sources, and each square 
represents a corresponding attribute value. Then, accord-
ing to the fusion function to select the value of attribute, 
and it is reconstituted a novel information system.

Example 3 (Continued from Examle 2) For the sake of con-
venience, Ii represent the i-th information system IIvDISi . 
Then, the fuzzy approximate condition entropy of informa-
tion sources for diverse attributes are calculated in Table 6.

The bold values in Table 6 represents the minimum 
conditional entropy of each attribute under different 
sources. Then, according to the definition 7, we can 
obtain the fusion results of Table 7.

4.1  The situation of adding information sources 
and deleting conditional attributes

Let MsIvDISt is the MSIvDIS at time t. The fusion strat-
egy is designed to handle the situations where informa-
tion sources are added and conditional attributes are 
deleted. At time t + 1 , new information sources, denoted as 
{IN+1, IN+2,… , IN+Δn} , are added to the multi-source infor-
mation system. Additionally, certain conditional attributes, 
denoted as {ap+1, ap+2,… , ap+Δp} , are deleted from the sys-
tem at time t + 1 . Specifically as shown in Fig. 3. Then the 
fusion strategy satisfy the following properties:

Proposition 2 For this situation and al ∈ {a1, a2,… , ap} , we 
have the following properties: 

(18)
Inf ER(al) = Infl∈{1,2,⋯,m}(F(I1(al),F(I2(al),… ,F(IN(al))),

 (i) I f  mini∈[N+1,N+2,…,N+Δn} FACEi(D|al) ≥ mini∈{1,2,…,N}

FACEi(D|al) , then Vt+1
al

= Vt
al
;

 (ii) Ifmini∈[N+1,N+2,…,N+Δn} FACEi(D|al) < mini∈{1,2,…,N} FACEi(D|al) , then 
Vt+1
al

= VIi
(al)  ,  w h e r e 

i = argminq∈{N+1,N+2,…,N+Δn} FACEq(D|al)  a n d 
VIi

(al) represents the value of al under Ii;

Proof 

 (i) S i n c e  mini∈[N+1,N+2,…,N+Δn} FACEi(D|al)
≥ mini∈{1,2,…,N} FACEi(D|al)  ,  then we know 
mini∈[1,2,…,N+1,N+2,…,N+Δn} FACEi(D|al) = mini∈{1,2,…,N} FACEi(D|al) , so 
the most information source under attribute a have 
not changed. Therefore, we can get Vt+1

al
= Vt

al
;

 (ii) Since mini∈[N+1,N+2,…,N+Δn} FACEi(D|al) < mini∈{1,2,…,N} FACEi(D|al) , 
when Δn information source {IN+1, IN+2,… , In+Δn} 
are added, we have mini∈[1,2,…,N+1,N+2,…,N+Δn} FACEi(D|al)
= mini∈[N+1,N+2,…,N+Δn} FACEi(D|al) . Therefore, the most 
information source under attribute a have changed, 
t h e n  w e  h a v e  Vt+1

al
= VIi

(al)  ,  w h e r e 
i = argminq∈{N+1,N+2,…,N+Δn} FACEq(D|al).

  ◻

Based on Property 2, we can perform incremental updates 
on the fusion information system when new information 
sources are added and attributes are deleted. To further illus-
trate this, we can continue studying the previous Example 3 
for better understanding.

Example 4 ( Continued from Example 3) In the initial sce-
nario, we collected physical examination results of eight 
patients from two hospitals. However, after consulting with 
experts, it was determined that the “hemoglobin level” and 
“platelet count” attributes were not essential for determin-
ing leukemia in patients. The experts suggested that patients 
should undergo testing at multiple hospitals, which aligns 
with the situation described earlier.

Assuming that at time t, the MsIvDIS has two information 
sources I1 and I2 , and six attributes a1 to a6 . In time t + 1 , two 
new information sources I3 and I4 are added to MsIvDIS, and 
simultaneously, attributes a5 and a6 are removed from the 
original attribute set. Based on Proposition 2, we only need 
to compute FACEj(D|ai) , where i = 1, 2, 3, 4 and j = 3, 4 . 
The minFACEj(D|ai) values for i = 3, 4 represent the pre-
vious information that does not require recomputation. 
We then update the minFACEj(D|ai) values for i = 1, 2 to 
minFACEj(D|ai) for i = 1, 2 using the new sources I3 and 
I4 . Next, we simulate the dynamic update mechanism in this 
situation, and the results of the fuzzy conditional entropy are 
displayed in Table 8.

Table 8  The fuzzy approximate conditional entropy of dynamic situ-
ation 1

A I1 I2 I3 I4
a1 0.929975 0.878091 0.956675 0.736975
a2 1.341667 1.258771 1.195430 1.205198
a3 0.941145 0.891750 1.001344 1.186731
a4 1.091394 1.449511 1.309411 1.362049
a5 1.002595 0.964111
a6 1.309759 1.381374
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According to the table shown above, at time t + 1 , we only 
need to calculate the conditional entropy for the cells high-
lighted in green. We can compare the entropy values in these 
cells with the minimum entropy from the previous source. 
Under attribute a1 , the minimum entropy from the previ-
ous source is denoted as FACE2(D|a1) . After incorporat-
ing the new source and updating the minimum entropy, the 
minimum entropy under attribute a1 becomes FACE4(D|a4) , 
which is highlighted in a red box. For the cells with lower 
entropy values under attribute a3 and attribute a4 , there is no 
need to update the fusion results.

4.2  The situation of information sources 
and conditional attributes increase at the same 
time

Let MsIvDISt is the MSIvDIS at time t, assume that informa-
tion sources {IN+1, IN+2,… , IN+Δn} and conditional attributes 
{ap+1, ap+2,… , ap+Δp} are inserted into the MsIvDIS at time 
t + 1 . Specifically as shown in Fig. 4. Then we can get the 
following properties:

Proposition 3 For this situation and al ∈ {a1, a2,… , ap} , we 
have the following properties: 

 (i) I f  mini∈[N+1,N+2,…,N+Δn} FACEi(D|al) ≥ mini∈{1,2,…,N} FACEi(D|al)  , 
then Vt+1

al
= Vt

al
;

 (ii) Ifmini∈[N+1,…,N+Δn} FACEi(D|al) < mini∈{1,2,…,N} FACEi(D|al) , then 
Vt+1
al

= VIi
(al)  ,  w h e r e 

i = argminq∈{N+1,…,N+Δn} FACEq(D|al) and VIi
(al) 

represents the value of al under Ii;

Proof Same as proposition 2 above.   ◻

P r o p o s i t i o n  4  Fo r  t h i s  s i t u a t i o n  a n d 
{ap+1,… , ap+Δp} ,  we have the Val

= VIi
(al) ,  where 

Fig. 4  Dynamic situation 2

Table 9  The fuzzy approximate conditional entropy of dynamic situ-
ation 2

A I1 I2 I3 I4
a1 0.929975 0.878091 0.956675 0.736975
a2 1.341667 1.258771 1.195430 1.205198
a3 0.941145 0.891750 1.001344 1.186731
a4 1.091394 1.449511 1.309411 1.362049
a5 1.002595 0.964111 1.160842 1.256408
a6 1.309759 1.381374 1.349524 1.335237
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i = argminq∈{1,…,N+Δn} FACEq(D|al) and VIi
(al) represents 

the value of al under Ii.

Proof According to the proposit ion of fusion 
function(definition 9), this proof is obvious.   ◻

Next, we will explore the fusion process of dynamic 
interval-valued data when there is an increase in both attrib-
utes and information sources. This can be accomplished 
by applying Proposition 3 and Proposition 4. To provide a 
clearer understanding, we will present an example to illus-
trate the fusion process.

Example 5 (Continued from Example 3) Similarly, in 
dynamic case 2, where the original attributes are a1 to a4 
and there are two existing information sources I1 and I2 , we 
can update the fusion results with the aid of Property 3 when 
new attributes and data sources are added. This situation 
serves as a simulation of dynamic case 2. Let us now delve 
into the details of how to update the fusion results in this 
scenario. The results of fuzzy similarity conditional entropy 
are presented in Table 9.

At time t, the calculation results of fuzzy similarity condi-
tional entropy are shown in the white background in Table 9. 
When new attributes and new data sources are added, we 

only need to calculate FACEj(D|ai) , where j = 3, 4 and 
i = 1, 2, 3, 4 , FACEj(D|ai) , where j = 1, 2, 3, 4 and i = 5, 6 . 
That is, only the conditional entropy results of the green 
background in Table 8 need to be calculated. From Table 9, 
we can intuitively see that minj∈{1,2,3,4} FACEj(D|ai)(i = 1, 2) 
has changed, and the minj∈{1,2,3,4} FACEj(D|ai)(i = 3, 4) 
are the former information which do not need to recalcu-
late it. Then update minj∈{1,2,3,4} FACEj(D|ai)(i = 1, 2) 
t o  minj∈{3,4} FACEj(D|ai)(i = 1, 2)  a n d  c a l c u l a t e 
minj∈{,2,3,4} FACEj(D|ai)(i = 5, 6) . Finally, the fusion results 
are updated according to the minimum conditional entropy.

Fig. 5  Dynamic situation 3

Table 10  The fuzzy approximate conditional entropy of dynamic sit-
uation 3

A I1 I2 I3 I4
a1 0.929975 0.878091 0.956675 0.736975
a2 1.341667 1.258771 1.195430 1.205198
a3 0.941145 0.891750 1.001344 1.186731
a4 1.091394 1.449511 1.309411 1.362049
a5 1.002595 0.964111 1.160842 1.256408
a6 1.309759 1.381374 1.349524 1.335237
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4.3  Situations in which both conditional attributes 
and information sources decrease at the same 
time.

Let MsIvDISt is the MSIvDIS at time t, at this time, there 
are N + Δn sources in the MsIvDIst . Assume that informa-
tion sources {IN+1, IN+2,⋯ , IN+Δn} and conditional attributes 
{ap+1, ap+2,… , ap+Δp} are deleted from the MsIvDIS at time 
t + 1 . Specifically as shown in Fig. 5 Then we can obtain the 
following properties:

Proposition 5 In this case, for al ∈ {a1, a2,… , al} , we have 
the following properties: 

 (i) I f  mini∈[N+1,N+2,…,N+Δn} FACEi(D|al) ≥ mini∈{1,2,…,N} FACEi(D|al)  , 
then Vt+1

al
= Vt

al
;

 (ii) If mini∈[N+1,N+2,…,N+Δn} FACEi(D|al) < mini∈{1,2,…,N} FACEi(D|al) , 
t h e n  Vt+1

al
= VIi

(al)  ,  w h e r e 
i = argminq∈{1,2,…,N} FACEq(D|al) and VIi

(al) repre-
sents the value of al under Ii.

Proof 

 (i) S i n c e  mini∈[N+1,…,N+Δn} FACEi(D|al) ≥
mini∈{1,2,…,N} FACEi(D|al)  ,  t h e n  we  ko nw 
mini∈[1,2,N+1,…,N+Δn} FACEi(D|al) = mini∈{1,2,…,N}

FACEi(D|al) , This means that the information 

sources with the most relevant information under 
attribute al have not changed. Therefore, Therefore, 
we can conclude that Vt+1

al
= Vt

al
;

 (ii) when Δn information source {IN+1, IN+2,… , IN+Δn} 
are deleted from the original information system, we 
have n information sources in MsIvDIst+1 . So, the 
most information source under attribute a have 
changed, then we can obtain Vt+1

al
= VIi

(al) , where 
i = argminq∈{1,2,…,N} FACEq(D|al).

  ◻

According to Proposition 5, we can fuse dynamic inter-
val-valued data while reducing the number of attributes 
and information sources. To illustrate this fusion pro-
cess, we provide an example scenario. The details are as 
follows:

Fig. 6  Dynamic situation 4

Table 11  The fuzzy approximate conditional entropy of dynamic sit-
uation 4

A I1 I2 I3 I4
a1 0.929975 0.878091 0.956675 0.736975
a2 1.341667 1.258771 1.195430 1.205198
a3 0.941145 0.891750 1.001344 1.186731
a4 1.091394 1.449511 1.309411 1.362049
a5 1.002595 0.964111
a6 1.309759 1.381374
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Example 6 (Continued from Example 3) In this example, 
we simulated dynamic situation 3. We have a multi-source 
information system with six attributes and four existing 
information sources. In this scenario, two attributes, namely 
a5 and a6 , and two existing sources, I3 and I4 , were removed 
from the system. According to the property described in the 
example, when both the attributes and existing data sources 
are reduced, there is no need to recalculate the fuzzy approx-
imate conditional entropy. Instead, we only need to update 
the minimum values of minj∈{1,2} FACEj(D|ai)(i = 1, 2, 3, 4) 
for the remaining attributes and sources.

Table 10 shows the calculation results of fuzzy approxi-
mate conditional entropy. The red box marks the updated 
minimum conditional entropy. It is easy to know that if 
minj∈{1,2} FACEj(D|ai)(i = 3, 4) = minj∈{1,2,3,4} FACEj(D|ai)(i = 3, 4) 
has not changed, there is no need to update the 
values of new table attr ibutes a3 and a4 .  But 
minj∈{1,2} FACEj(D|ai)(i = 1, 2) ≠ minj∈{1,2,3,4} FACEj(D|ai)(i = 1, 2)  , 
and it needs to be updated minj∈{1,2} FACEj(D|ai)(i = 1, 2) , 
and the corresponding new table fusion results also need to 
be updated.

4.4  Situations where the number of information 
sources decreases and the number 
of conditional attributes increases

Let MsIvDISt is the MSIvDIS at time t, at this time, there are 
N + Δn sources in the MsIvDISt . Assume that information 
sources {IN+1, IN+2,… , IN+Δn} are deleted from the MsIvDIS 
and conditional attributes {ap+1, ap+2,… , ap+Δp} are added 
into the MsIvDIS at time t + 1 . Specifically as shown in 
Fig. 6. Then we can obtain the following properties:

Proposition 6 In this case, for {a1, a2,… , ap} , we have the 
following properties: 

 (i) If mini∈[N+1,N+2,…,N+Δn} FACEi(D|al) ≥ mini∈{1,2,…,N} FACEi(D|al) , 
then Vt+1

al
= Vt

al
;

 (ii) Ifmini∈[N+1,N+2,…,N+Δn} FACEi(D|al) < mini∈{1,2,…,N} FACEi(D|al) , then 
Vt+1
al

= VIi
(al)  ,  w h e r e 

i = argminq∈{1,2,…,N} FACEq(D|al) and VIi
(al) repre-

sents the value of al under Ii.

For {ap+1, ap+2,⋯ , ap+Δp} , we have the Val
= VIi

(al) , where 
i = argminq∈{1,2,…,N+Δn} FACEq(D|al) and VIi

(al) represents 
the value of al under Ii.
Proof Same as proposition 5 and proposition 6 above.  
 ◻

According to the property 5, we can fuse the the dynamic 
interval-valued data with reduced attributes and informa-
tion sources at the same time. We give an example to illus-
trate the fusion process of this situation. The details are as 
follows:

Example 7 (Continued from Example 3) For this exam-
ple, we simulated the scene of dynamic situation 4. There 
are four attributes a1 − a4 and four data sources I1 − I4 
in MsIvDISt . and two old sources I3 and I4 are removed 
and two new attributes a5 and a6 are added at time t + 1 . 
Table 11 shows the calculation results of FACE. In this case, 
we just need to calculate FACEj(D|ai) , where j = 1, 2 and 
i = 1, 2, 3, 4, 5, 6.

F r o m  Ta b l e   1 1 ,  we  c a n  e a s i ly  k n ow 
minj∈{1,2} FACEj(D|ai)(i = 3, 4) = minj∈{1,2,3,4} FACEj(D|ai)(i = 3, 4) 
has not  changed,  the cor responding merged 
new table does not need to be updated. But 
minj∈{1,2} FACEj(D|ai)(i = 1, 2) ≠ minj∈{1,2,3,4} FACEj(D|ai)(i = 1, 2)  , 
so we require to update minj∈{1,2} FACEj(D|ai)(i = 1, 2),and 
the attribute values corresponding to the new table.

5  Design of the algorithms

In this section, we present a static fusion algorithm based 
on fuzzy approximate conditional entropy. This algorithm is 
designed to fuse the information from multiple sources in a 
static scenario, where there are no changes in the conditional 
attributes and information sources. The fuzzy approximate 
conditional entropy measure is utilized to assess the uncer-
tainty and similarity between the interval-valued data. Addi-
tionally, we propose dynamic update algorithms that address 
dynamic data scenarios where there are simultaneous changes 
in the conditional attributes and information sources. These 
update algorithms allow for efficient and accurate fusion of 
the dynamic data by considering the modified set of attributes 
and sources. By leveraging the properties of fuzzy approxi-
mate conditional entropy, we can effectively update the fusion 
results and accommodate the changing information landscape.

5.1  FACE‑based information fusion algorithm

From the above, we can obtain fusion Algorithm 1 based on 
fuzzy approximate condition entropy. In Steps 3–6, the com-
putation of the fuzzy similarity class for conditional attribute 
set can be completed in O(||U2|| × |A| × N) . Steps 8–17 are to 
compute the fuzzy approximate condition entropy, and its the 
complexity is O(|U| × m) . The time complexity of Steps 1–15 
are O(|U| × N × |A| × (m + |U|)) . The time complexity of 
Steps 16–24 are O(|A| × N) . Therefore, the total time complex-
ity of algorithm 1 is O(|U| × N × |A| × (m + |U|) + |A| × N).
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Algorithm 1  The static fusion algorithm of MsIvDIS based FACE

5.2  Dynamic fusion algorithm based FACE‑IF

In this subsection, we present the dynamic fusion algo-
rithm for the four different situations described in Sect. 4. 
We also analyze the complexity of the algorithm. Proposi-
tions 2 to 6 provide dynamic fusion strategies to update the 
fusion results when there are changes in both conditional 
attributes and information sources. Algorithm 2 specifically 
addresses the scenario where the attribute value decreases 
and the number of sources increases in the original data. 
In this algorithm, Steps 1–12 are divided into two parts to 
update the fusion table: 

(1) Calculates the fuzzy approximate conditional entropy 
of the new source under the remaining attribute sets 
after deleting the attribute sets from steps 1–5, whose 
time complexity is O(Δn × p × |U| × (|U| + m));

(2) Updates the minimum fuzzy approximate conditional 
entropy corresponding to each attribute, whose time 
complexity is O(p).

Thus, the total complexity of dynamic situation 1 is 
O(Δn × p × |U| × (|U| + m) + p)
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Algorithm 2  The algorithm of dynamic fusion when inserting sources and deleting attributes

the Algorithm 3 shows the situation that the number 
of attribute sets and information sources in the origi-
nal data table increases at the same time. For Algo-
rithm  3, Steps 1–22 can be divided into three parts: 
calculating the FACE of new sources under all attrib-
utes, and the information entropy of different old 
sources under new attributes, and updating the mini-
mum FACE of all attributes under different sources. 
The worst case of total complexity of Algorithm  3 is 
O((Δn × (p + Δp) + N × Δp) × |U| × (|U| + m) + p + Δp).

Table 12  Time complexity 
between of the static algorithm

Situations Static algorithm

(1) O((N + Δn) × p × |U| × (|U| + m) + p × N)

(2) O(((N + Δn) × (p + Δp)) × |U| × (|U| + m) + (p + Δp) × N)

(3) O(N × p × |U| × (|U| + m) + p × N)

(4) O(N × (p + Δp) × |U| × (|U| + m) + (p + Δp) × N)

Table 13  The time complexity of the dynamic algorithm

Situations Dynamic algorithm

(1) O(Δn × p × |U| × (|U| + m) + p)

(2) O((N × Δp + Δn × (p + Δp)) × |U| × (|U| + m) + p + Δp)
(3) O(p)

(4) O(N × Δp × |U| × (|U| + m) + p + Δp)
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Algorithm 3  The algorithm of dynamic fusion when inserting arrtibutes and data sources

Table 14  The description of 
experimental data sets

No Data set name Abbreviation Objects Attributes Decision 
classes

1 Breast cancer Wisconsin BCW 569 30 2
2 Hill-valley HV 606 100 2
3 Credit approval CA 690 16 2
4 Diabetic retinopathy debrecen data set Diabetic 1151 20 2
5 Wine quality-red WQR 1599 12 6
6 Car evaluation CE 1728 7 4
7 Page blocks PB 5473 10 5
8 Shill bidding SB 6321 13 2
9 Electrical grid stability simulated data Ele 10,000 14 2



3638 International Journal of Machine Learning and Cybernetics (2024) 15:3619–3645

The Algorithm 4 shows that the attribute values and infor-
mation sources in the original data table are reduced at the 
same time. In Algorithm 4, it is not necessary to recalculate 
the value of FACE, but only to update the minimum value 
of FACE for different sources in the remaining attributes. 
Therefore, the time complexity of this algorithm is O(p).

Table 15  Description of the experimental environment

Name Model Parameter

CPU AMD Ryzen 7 R7-5800H 3.2 GHz
System Windows11 64 bit
Platform Python 3.9
Memory DDR4 16 GB; 3200 MHz
Hard Disk SKHynix_HFS512GDE9X084N 512G

Table 16  Comparison of 
classification accuracy based 
on KNN

Datasets KNN

FACE-IF MixF MaxF MeanF HF CF

BCW (k = 8) 61.69±3.44 59.58 ± 2.49 58.00 ± 3.18 60.47 ± 4.58 59.93 ± 2.99 56.77 ± 4.34
HV (k = 12) 51.14 ± 5.86 50.31 ± 5.31 50.81 ± 6.14 50.65 ± 5.89 48.82 ± 5.72 50.64 ± 6.00
CA (k = 9) 64.06 ± 5.41 63.77 ± 6.32 60.87 ± 6.11 60.87 ± 5.23 61.30 ± 7.25 61.30 ± 7.25
Diabetic (k = 6) 52.65 ± 2.82 51.17 ± 3.65 51.52 ± 4.86 52.47 ± 4.11 49.17 ± 4.03 52.30 ± 2.27
WQR (k = 9) 43.30 ± 3.01 42.28 ± 3.83 42.21 ± 3.00 41.53 ± 2.40 41.90 ± 3.51 42.71 ± 3.11
CE (k = 16) 72.11 ± 2.52 71.05 ± 2.70 71.36 ± 2.17 71.70 ± 3.25 70.89 ± 2.10 71.29 ± 2.63
PB (k = 3) 88.42 ± 0.92 88.38 ± 0.98 88.05 ± 1.13 88.38 ± 1.04 88.03 ± 1.13 88.29 ± 0.90
SB (k = 9) 89.31 ± 1.24 89.28 ± 1.24 89.22 ± 1.25 89.25 ± 1.24 89.21 ± 1.24 89.27 ± 1.28
Ele (k = 3) 56.15 ± 1.26 56.10 ± 1.47 55.49 ± 1.33 55.50 ± 0.94 54.91 ± 2.25 55.22 ± 1.25

Table 17  Comparison of classification accuracy based on PNN

Datasets PNN

FACE-IF MixF MaxF MeanF HF CF

BCW ( � = 0.1) 59.75 ± 4.74 58.17 ± 5.43 56.77 ± 5.58 58.88 ± 5.77 54.83 ± 6.41 55.89 ± 5.09
HV ( � = 0.8) 52.49 ± 5.04 52.33 ± 5.02 51.99 ± 4.88 52.01 ± 5.10 50.16 ± 6.49 52.01 ± 5.10
CA ( � = 0.1) 61.88 ± 7.01 61.88 ± 7.42 58.99 ± 7.53 59.57 ± 8.36 57.39 ± 6.19 60.72 ± 5.96
Diabetic ( � = 0.45) 53.25 ± 4.81 53.17 ± 4.91 53.08 ± 4.81 53.07 ± 4.87 47.86 ± 3.18 52.99 ± 4.61
WQR ( � = 0.4) 43.38 ± 3.02 42.90 ± 3.23 42.46 ± 2.54 42.27 ± 2.28 42.34 ± 3.29 42.52 ± 2.42
CE ( � = 0.21) 70.78 ± 1.92 70.08 ± 2.02 70.26 ± 2.05 70.26 ± 2.05 69.91 ± 2.78 70.60 ± 2.14
PB ( � = 0.35) 89.80 ± 1.03 89.84 ± 1.03 89.76 ± 1.04 89.76 ± 1.04 88.78 ± 1.04 89.40 ± 0.99
SB ( � = 0.18) 88.83 ± 1.10 88.67 ± 1.69 88.05 ± 1.15 88.66 ± 1.13 80.90 ± 1.21 88.28 ± 1.23
Ele ( � = 0.1) 54.18 ± 0.80 54.41 ± 1.73 55.35 ± 1.61 53.97 ± 1.13 53.39 ± 2.10 53.43 ± 1.59

Table 18  Friedman test Classifiers Mean ranking �2

F
FF P value

FACE-IF HF MinF MaxF MeanF CF

KNN 1.00 5.28 3.11 4.33 3.33 3.95 27.2293 12.2581 5.15 × 10−5

PNN 1.33 5.89 2.33 3.89 2.83 3.72 30.8842 17.5033 9.87 × 10−6
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Algorithm 4  The algorithm of dynamic fusion when deleting data sources and attributes

Algorithm 5 is used to give a description of the pro-
cess of dynamic fusion of MsIvDIS with the addition of 
new condition attributes and the deleted of information 
sources. The Algorithm 5 consists of two parts, namely, 
calculating the conditional entropy of the remaining 

sources under the newly added attributes and updating the 
minimum FACE values of the remaining sources under 
all attributes. The time complexity of this algorithm is 
O(N × Δp × |U| × (|U| + m) + p + Δp).

Fig. 7  Accuracy comparison with four distance measures on classifiers KNN and PNN
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Fig. 8  Running time comparison diagram of four situations

Fig. 9  Speed up of four situations
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Algorithm 5  The algorithm of dynamic fusion when deleting sources and inserting attributes

To sum up, in order to compare the efficiency of dynamic 
fusion algorithm with that of static fusion algorithm of 
FACE-IF more intuitively, we use a stable to show it. Spe-
cific as the Tables 12 and 13.

6  Experimental analysis

In this section, we evaluate the effectiveness and effi-
ciency of the proposed approach by conducting compara-
tive experiments on nine data sets obtained from the UCI 
database (https:// archi ve. ics. uci. edu/ ml/ index. php). The 
details of these data sets are provided in Table 14. The 
experimental programs were executed on a personal com-
puter with specific hardware and software configurations, 
as described in Table 15.

As is known to all, the MsIIvDIS cannot be obtained 
directly from any common databases. So we can use the 
method in [42] to generate MsIvDIS. The detailed steps 
are as below: 

(1) Convert single-valued data in the original data-
set to interval-valued data: Let V(x,  a) represents 

the value of x under attribute a, ∀x ∈ U, a ∈ A , 
f −(x, a) = V(x, a)-2�a , f −(x, a) = V(x, a) + 2�a , where 
�a denotes the standard deviation of the attribute a in 
the same decision class.

(2) Generate MsIIvDIS: First of all, m random num-
bers {r1, r2, r3,… , rm} that obey Gaussian distribu-
tion N(0, 0.1) are generated randomly. If ri > 0 , then 
f −
i
(x, a) = f −(x, a)(1 − r) and f +

i
(x, a) = f +(x, a)(1 + r) , 

o t h e r w i s e  f −
i
(x, a) = f −(x, a)(1 + r)  a n d 

f +
i
(x, a) = f +(x, a)(1 − r).

We evaluate the effectiveness of the proposed fusion 
method by comparing with the existing methods. As 
shown below respectively.

We generate n = 20 sources, then the other three fusion 
approaches are expressed as below: 

(i) Max fusion approach can be written as MaxF: MaxF 
f −(x, a) = min

{
f −
1
(x, a), f −

2
(x, a), f −

3
(x, a),… , f −

n
(x, a)

}
 , 

MaxF f+(x, a) = max
{

f+1 (x, a), f+2 (x, a), f+3 (x, a),… , f+n (x, a)
}  , 

where f −(x, a) and f +(x, a) are the left and right end-
points of max fusion result, respectively;

https://archive.ics.uci.edu/ml/index.php


3642 International Journal of Machine Learning and Cybernetics (2024) 15:3619–3645

(ii) Min fusion method can be written as MinF: MinF 
f−(x, a) = max

{

f−1 (x, a), f−2 (x, a), f−3 (x, a),… , f−n (x, a)
}  ,  MinF 

f +(x, a) = min
{
f +
1
(x, a), f +

2
(x, a), f +

3
(x, a),… , f +

n
(x, a)

}
 , 

where f −(x, a) and f +(x, a) are the left and right end-
points of min fusion result, respectively;

(iii) Mean fusion method can be written as MeanF: MeanF 
f −(x, a) = mean

{
f −
1
(x, a), f −

2
(x, a), f −

3
(x, a),… , f −

n
(x, a)

}  , 
MeanF f +(x, a) = mean

{
f +
1
(x, a), f +

2
(x, a), f +

3
(x, a),… , f +

n
(x, a)

} , 
where f −(x, a) and f +(x, a) are the left and right end-
points of mean fusion result, respectively;

(iv) The method of information are introduced by Huang 
et al. [42] (written as HF);

(v) The fusion approach are inroduced by Zhang et al. [43] 
(written as CF).

6.1  Analysis of classification effect based on FACE‑IF 
fusion method

In this study, we evaluate the performance of the fusion 
method based on FACE-IF, proposed in this paper, in com-
parison to other existing fusion methods, using classification 
accuracy as the evaluation metric. We employ two popular 
classification learning algorithms, namely the K-nearest 
neighbor (KNN) classifier and the probabilistic neural net-
work (PNN) classifier, to assess the effectiveness of different 
fusion algorithms.

To ensure the reliability of our results, we utilize ten-fold 
cross-validation, which involves dividing the dataset into 
ten subsets, performing the classification on nine subsets, 
and evaluating the accuracy on the remaining subset. This 
process is repeated ten times to obtain robust and representa-
tive performance measures. The mean classification preci-
sion and standard deviation are calculated based on the ten 
repetitions.

Tables 16 and 17 present the mean classification preci-
sion and standard deviation, respectively, obtained through 
the ten-times ten-fold cross-validation. In these tables, the 
bold values indicate the highest classification effectiveness 
among the different fusion methods. It is important to note 
that the performance of the KNN and PNN classifiers can be 
influenced by their respective parameters, such as the value 
of k for KNN and the parameter � for PNN. These parame-
ters can be adjusted to achieve optimal results, making these 
classifiers more flexible and adaptable to different situations.

The results presented in Tables 16 and 17 clearly dem-
onstrate that, in most scenarios, the fusion approach based 
on FACE-IF outperforms the other five fusion methods, 
namely MaxF, MinF, MeanF, HF, and CF, in terms of clas-
sification accuracy. This indicates the superior effective-
ness of the proposed approach in fusing interval-valued 
data for classification tasks.

Based on the results presented in Tables 16 and 17, 
it is evident that the fusion method based on FACE-IF 
achieves superior classification performance compared to 
other existing approaches, particularly when employing 
the K-nearest neighbor (KNN) classifier. Across almost 
all datasets, FACE-IF consistently outperforms the other 
fusion methods in terms of classification accuracy.

When considering the probabilistic neural network 
(PNN) classifier, it is worth noting that the fusion algo-
rithm based on FACE-IF demonstrates excellent classifica-
tion performance in seven out of the nine datasets, with the 
exceptions of the PB dataset and the Ele dataset. Although 
in the PB dataset, the classification accuracy of FACE-IF 
is slightly lower compared to the MinF method, it still out-
performs the MaxF, MeanF, HF, and CF algorithms. Simi-
larly, in the Ele dataset, FACE-IF demonstrates superior 
classification performance compared to the MeanF, CF, 
and HF methods. These nuanced observations contribute 
to a more comprehensive understanding, reinforcing the 
overall dominance of FACE-IF, especially when coupled 
with the KNN classifier.

The findings clearly highlight the superiority of the FACE-
IF algorithm in achieving high classification effectiveness 
compared to other fusion methods, particularly when com-
bined with the KNN classifier. Even in scenarios where FACE-
IF may exhibit slightly lower performance compared to cer-
tain methods, it still maintains competitive performance and 
showcases its ability to effectively handle interval-valued data 
fusion for classification tasks.

6.2  Statistical analysis

In this subsection, we conduct a systematic investigation of 
the statistical performance of different fusion algorithms in 
terms of classification accuracy. To achieve this, we employ 
the Friedman test followed by a post hoc test to compare the 
performance of the fusion methods. The Friedman statistic is 
described [47] as:

where N represents the number of data sets, while k rep-
resents the number of methods; Rj(j = 1, 2,… , k) repre-
sents the Average ranking of a certain approach on all data 
sets. and FF represents an F-distribution with (k − 1) and 
(k − 1)(N − 1) degrees of freedom. Then the critical differ-
ence is expressed [46, 47] as:

�2
F
=

12N

k(k + 1)

(
k∑

j=1

R2
j
−

k(k + 1)2

4

)
,

FF =
(N − 1)�2

F

N(k − 1) − �2
F

,
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where � expresses the significance level and q� represents a 
critical value [47].

For all data sets, we use following the statistical test. The 
values of average ranking are obtained by averaging the sorting 
of classification accuracy. The best level value for accuracy 
measurement is set to 1; the second is set to 2, and so on. 
Tables 16 and 17 shows the changes of fusion classification 
accuracy of nine data sets under six different fusion algorithm, 
the Friedman tests are accomplished by the comparison of this 
paper’s method based FACE-IF with MinF, MaxF, MeanF, 
HF and CF. When all algorithms are equal in measures of 
classification accuracy, the null hypothesis of Friedman’s 
test can be established. Then, the rankings of the six models 
can be lightly computed and their average order are acquired 
under the KNN and PNN. Thus, the values of �2

F
 and FF can 

be calculated. Table 17 shows the average sort results of the 
six models and the values of �2

F
 and FF under the classifier 

KNN and PNN. When the significance level is equal 10% . It 
follows from [45],by calculation, one has the critical point of 
F(6 − 1, (6 − 1) × (9 − 1)) in the F-distance is calculated to be 
1.997, and the critical point q0.1 in the Nemenyi test is 2.589, 
the critical difference is 2.829, that is, CD = 2.829 . So, all 
null hypotheses are refused, and the six fusion algorithm are 
various under KNN and PNN (Table 18).

So as to compare the differences between the fusion results 
under different measures more intuitively, we use CD critical 
charts [46] to connect methods that do not differ significantly 
from each other, and then in these graphs the critical values 
between all models can be clearly illustrated. Figure 7 is the 
CD critical diagram which shows the comparison of the fusion 
result based FACE-IF with the other five fusion algorithm. As 
can be seen from Fig. 7, we can know the significant differ-
ences in fusion results under six fusion methods. In Fig. 7a, 
under the classifier KNN, The average ranking of fusion 
approach based on FACE-IFis the lowest, and the performance 
of fusion method proposed in this paper is clearly better than 
HF, MeanF, CF and MaxF. Likewise, as shown in Fig. 7b on 
the PNN, we can find the fusion result based on FACE-IF 
outperforms the HF, MaxF and HF, and is similar to MinF and 
MeanF. In conclusion, the fusion effect using FACE-IF really 
outperforms the other five approaches under the outcomes of 
the Friedman statistic test.

6.3  Efficiency analysis

In this subsection, we aim to evaluate the efficiency of the 
dynamic updating algorithms by comparing the running time 
of the static fusion algorithm with that of the dynamic fusion 
algorithm. Figure 8 illustrates the comparison of running times 
between the static algorithm and the dynamic fusion algorithm 

CD� = q�

√
k(k + 1)

6N
,

across nine datasets. In the presented graph, the x-axis rep-
resents the combination of attributes and sources, while the 
y-axis indicates the corresponding running time. Orange bars 
represent the runtime of the static fusion algorithm at each 
coordinate, and purple bars illustrate the dynamic fusion 
algorithm’s runtime as the number of attributes and sources 
changes between the previous and current coordinates. The 
results depicted in the graph clearly demonstrate the efficiency 
of the proposed dynamic updating algorithm, specifically in 
reducing the runtime required for updating fusion results when 
both attributes and sources undergo simultaneous changes. 
This provides robust evidence supporting the efficacy of the 
designed dynamic fusion algorithm.

The above experiments were conducted to verify that 
our proposed dynamic update algorithm can reduce the 
time required for fusion and improve fusion efficiency. To 
further validate the effectiveness of the aforementioned 
dynamic updating algorithm, we increased the number of 
sources in the corresponding datasets to 100. To analyze 
the computational efficiency under the four dynamic situ-
ations. We calculate the acceleration ratio by simultane-
ously varying the attributes and sources by 10%, 20%, 30%, 
40%, and 50% in each of the four dynamic scenarios, where 
Ratio = Tstaticalgorithm∕Tincrementalalgorithm . When augment-
ing the number of sources, we employ a strategy wherein 
50% of the initial number of sources serves as the baseline. 
For instance, in a scenario with 100 sources, the baseline 
is set at 50, incremented subsequently by 10%, 20%,..., up 
to 50%. Essentially, this translates to an increase from 50 to 
100. Conversely, when reducing the number of sources, we 
decrease by 10% from the original count, diminishing it from 
100 to 90. Continuing this pattern, reductions progress in 
10% increments, ultimately reaching a 50% reduction from 
the original count, bringing it down from 100 to 50.Simi-
larly, for variations in the number of attributes, a comparable 
methodology is applied. However, since some datasets have 
a small number of attributes, our approach may vary slightly. 
Take the BCW dataset, for example, featuring 30 conditional 
attributes. When increasing attributes, 50% of the original 
count serves as the base, increasing by 10%, resulting in a 
rise from 15 to 18. Subsequent increments of 20% lead to an 
increase from 15 to 21, while a 50% increment results in an 
increase from 15 to 30. Conversely, when reducing attrib-
utes, a 10% decrement from 30 brings it down to 27, and 
so forth. For datasets with a smaller number of conditional 
attributes like WQR, CE, PB, SB, and Ele, attribute count 
adjustments are made in 10% increments, using a step size 
of 1. However, for Diabetic and CA datasets, a step size of 2 
is employed when increasing or decreasing attributes. Fol-
lowing the computation of the speedup ratio, the results are 
visualized as a heatmap in Fig. 9, allowing for the observa-
tion of changing trends through variations in color intensity.
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From Fig. 9, in all four dynamic scenarios, the speedup 
ratio of the dynamic algorithm compared to the static algo-
rithm is greater than 1. This indicates that our proposed 
dynamic update algorithm is effective in reducing runtime 
and improving fusion efficiency. It is noticeable that the 
speedup ratio is particularly significant in the third dynamic 
scenario, where both the number of attributes and the num-
ber of sources are reduced simultaneously. This indicates 
that the dynamic update algorithm proposed in this paper has 
a particularly significant effect in the third dynamic scenario. 
Furthermore, we observe that for the same dataset, the high-
est speedup ratio is achieved when both the attributes and 
sources vary by 10% simultaneously in all four scenarios.

7  Conclusion

In this article, we propose an information fusion method 
based on fuzzy approximate conditional entropy to enhance 
the classification performance of multi-source interval-val-
ued information systems. Firstly, we apply the principle of 
statistical distribution to treat interval values as probability 
distributions. Subsequently, we utilize the Kullback–Leibler 
divergence to quantify the disparities between two interval 
value distributions, constructing a fuzzy similarity relation. 
This relation is then employed to establish fuzzy decisions. 
Secondly, based on the fuzzy similarity relation, we define 
the interval fuzzy information granular structure. Further-
more, by combining this information granular structure with 
fuzzy decision, we proposed a novel entropy measure named 
as fuzzy approximate conditional entropy and constructed 
a information fusion approach based FACE. Thirdly, based 
on the properties of the proposed entropy measure, we ana-
lyze four dynamic update mechanisms in different dynamic 
environments. These mechanisms aim to efficiently reduce 
computation time and improve fusion efficiency. Finally, 
the results of extensive experiments demonstrate that our 
proposed fusion method significantly enhances fusion per-
formance to a considerable extent. Moreover, the introduced 
dynamic update algorithms prove effective in reducing com-
putation time and avoiding redundant calculations, thereby 
enhancing the overall efficiency of the fusion process. Due 
to the inherently high computational complexity of entropy 
fusion, in future work, we will continue to explore more effi-
cient fusion strategies and consider dynamic fusion methods 
for heterogeneous information systems where three dimen-
sions change simultaneously.
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