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Incremental feature selection methods have garnered significant research attention in improving 
the efficiency of feature selection for dynamic datasets. However, there is currently a dearth 
of research on incremental feature selection methods specifically targeted for unbalanced 
mixed-type data. Furthermore, the widely used neighborhood rough set algorithm exhibits low 
classification efficiency for imbalanced data distribution and performs poorly in classifying 
mixed samples. Motivated by these two challenges, we investigate the use of an incremental 
feature reduction algorithm based on k-nearest neighbors and mutual information in this study. 
Firstly, we enhance the capabilities of the neighborhood rough set model by incorporating the 
concept of k-nearest neighbors, thereby improving its ability to handle samples with varying 
densities. Subsequently, we apply information entropy theory and combine neighborhood mutual 
information with the maximum relevance minimum redundancy criterion to construct a novel 
feature importance evaluation function. This function is utilized as the evaluation metric for 
feature selection. Finally, an incremental feature selection algorithm is designed based on the 
above static algorithm. Experiments were conducted on twelve public datasets to evaluate the 
robustness of the proposed feature metrics and the performance of the incremental feature 
selection algorithm. The experimental results validated the robustness of the proposed metrics 
and demonstrated that our incremental algorithm is effective and efficient in feature reduction 
for updating unbalanced mixed data.

1. Introduction

In today’s age of expansive information growth, the swift progress of big data has led to escalated requirements for handling intri-

cate and high-dimensional data. In the context of data feature extraction, the presence of redundant or irrelevant high-dimensional 
data presents a significant challenge. Rough set theory is a specialized theory that deals primarily with the analysis of incomplete 
data, the representation of imprecise knowledge, and the processes of learning and generalization. The primary aim is to extract deci-

sion or classification rules for a problem by using knowledge parsimony, without compromising the classification ability. Therefore, 
it has some advantages in dealing with vague and imprecise data. Firstly, it is crucial to note that the theory solely depends on the 
raw information. As a result, it provides a higher level of objectivity when confronted with uncertain situations. Secondly, attribute 
simplification keeps its classification and decision-making power intact while removing irrelevant and redundant features.
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Extensive research has been carried out both domestically and internationally on the topic of data feature selection. High-

dimensional datasets usually have more noisy and irrelevant features, and the determination of the ideal characteristic subset from 
a provided dataset is considered a crucial area of exploration for numerous training applications. By reviewing the previous theories 
and literature, we can clearly understand the development and improvement of rough set theory.

Rough sets [1] is a theory proposed by Pawlak that is employed to analyze the representation, learning, induction, and other 
aspects of incomplete data and imprecise knowledge. However, with the advent of the data era, data tends to exist in mixed types, 
no longer only in character types in the past. The conventional rough set theory results in incomplete and unreliable data when 
dealing with mixed data types. Lin’s [2] proposal of the concept of neighborhood rough set (NRS) in the literature can improve this 
problem. Hu [3] proposed a neighborhood rough set model that is more suitable for mixed data. Its main idea is to establish the 
characteristics of the samples by dividing them by the distance between them and the neighborhood 𝛿. It can handle numerical and 
mixed data effectively, thus avoiding the problems caused by discretization. On the basis of this, numerous scholars have achieved 
considerable improvement. Qian et al. [4] proposed the local rough set model, one of the newer models in the field of rough set 
theory. It does not need to approximate the target concept by all the objects in the argument domain, but only the objects in the 
target concept need to be considered. This effectively reduces the computation time of the approximation operator. Wang et al. [5]

utilized a semi-supervised approach to attribute approximation with this model, greatly reducing the complexity of the algorithm. 
Zhang et al. [6] proposed a generalized MG-DTRS model called adaptive multi-granularity decision theory rough set (AMG-DTRS), 
which overcomes the inherent weaknesses of the MG-DTRS model by adaptively obtaining a pair of probability thresholds through 
compensation coefficients. Yin et al. [7] proposed parameterized multi-label fuzzy coverage relationships and fuzzy coverage entropy 
measures, and constructed a robust multi-label feature selection (RMSMC) model that considers feature multi-correlation. This model 
can effectively capture the intrinsic information of multi-label data. In addition, many other types of neighborhood rough sets have 
been extensively studied. For instance pseudoscalar neighborhood rough sets [8,9], neighborhood rough sets with nominal metric 
embeddings [10,11], neighborhood multigranularity rough sets [12–14], etc. The NRS based theory has been widely applied in 
feature selection [15–17], multi-label feature selection [18–20], hyperspectral classification [21,22], image annotation [23] and 
credit rating [24]. Thus, NRS can efficiently handle mixed-type data and it is the theoretical basis of this paper.

Information theory plays a crucial role in handling uncertain information by effectively quantifying and processing various forms 
of uncertainty through the concepts of entropy, probabilistic models, coding strategies, and error correction techniques [25]. It finds 
wide applications in domains such as data compression, communication systems, and machine learning. Pawlak [26] proposed 3 
uncertainty measures, namely accuracy, roughness, and approximate accuracy. Over the past few years, numerous scholars have 
achieved significant advancements in this field. Liang et al. [27] propose precision, coarseness, and approximate precision based 
on knowledge granularity by introducing knowledge granularity. Wang [28] unveiled the limitations of the fine-set model in the 
probabilistic phase and proposed an associated monotonic uncertainty measure, thereby laying a robust foundation for attribute 
reduction. Shu et al. [29] introduced an incremental feature selection algorithm that considers the increase in the number of samples. 
Each of the above methods represents a clear advance in neighborhood-based algorithmic technology entropy. The neighborhood 
entropy theory will also be an important theoretical basis of this article.

Another significant theoretical foundation of this paper is mutual information, which is a vital method for quantifying the 
differentiation of attribute features and has garnered considerable research attention from scholars in recent years. Hu et al. [30]

introduced the concepts of neighborhood entropy, neighborhood conditional entropy, and neighborhood mutual information. They 
used neighborhood mutual information to assess the correlation between features and decision attributes. The application of mutual 
information has been enhanced by Lin et al. [20], who introduced an improved algorithm specifically designed for feature metrics 
in the context of multi-label data. However, the aforementioned approaches overlook the interactions and dependencies among 
attributes. To address this limitation, Wan et al. [31] proposed the incorporation of feature interaction by considering it within the 
context of a neighborhood rough set. The algorithm ensures the stability and reliability of the neighborhood rough set by constructing 
a multi-neighborhood radius set that incorporates mixed data. Moreover, this study introduces a novel feature objective evaluation 
function, known as MRmRMI, which is subsequently utilized in the feature selection algorithm. Experimental results demonstrate that 
the proposed approach exhibits superior performance in hybrid data feature classification. Notably, the model effectively reduces 
information loss while simultaneously improving the classification accuracy of the data. Building upon these findings, Xu [16]

proposes a feature selection method for unbalanced distributed mixed data based on the k-nearest neighbor rough set. This model 
integrates neighborhood delta and k-nearest neighbors to enable effective feature selection on datasets that are unevenly distributed. 
However, none of the aforementioned approaches address the challenge of efficiently performing attribute approximation as the 
data sample size increases. Given the algorithmic cost challenges arising from unbalanced distributions and the increasing amount of 
mixed data, there is an immediate need for an incremental feature selection approach that effectively tackles the interaction between 
these data types. With this research’s primary focus on addressing this issue, the paper aims to make the following key contributions:

1) We have designed a neighborhood rough set model that incorporates k-nearest neighbors, the proposed model combines the 
advantages of both k-nearest neighbors and 𝛿-neighborhoods to effectively handle unbalanced mixed data distributions. The 
strategies of this model are in line with the human way of thinking and correspond to the requirements of the practical applica-

tion.

2) By combining mutual information with the principles of maximum relevance and minimum redundancy, we design a robust 
feature importance assessment function. This function is the basis of the feature selection method and heuristic feature selection 
2

strategy in this paper.
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Fig. 1. Flowchart of the algorithm model in this paper.

3) Based on the above static algorithm, we design an incremental feature selection algorithm (IFS-KNCMNI) for improving the 
efficiency of feature selection for unbalanced mixed data.

4) Experiments were conducted on 12 UCI datasets to evaluate the performance of the proposed algorithms in terms of classification 
accuracy, computation time, and number of feature reductions. By comparing our algorithm with five existing algorithms, the 
superiority of our approach was demonstrated.

This paper follows a structured organization. Section 2 provides the theoretical foundations of rough sets, k-nearest neighbor 
rough set, and information theory. Section 3 introduces various characteristic measures of k-nearest neighbor rough set. Section 4

presents both the non-incremental and incremental algorithms. Section 5 includes the experimental setup, analysis of data results, 
and hypothesis testing. Section 6 concludes the paper and outlines future perspectives. Finally, the detailed flow of the paper is 
illustrated in Fig. 1.

2. Related work

In this section, a comprehensive discussion is provided on the fundamental concepts that underpin this research, encompassing 
rough set theory, neighborhood rough set theory, and uncertainty measurement.

2.1. k-nearest neighbor rough set

When dealing with incomplete and uncertain information, rough set theory serves as a mathematical method that operates solely 
based on the available data. It does not rely on any prior information beyond the provided data, making it an effective approach 
for handling such scenarios. The concept was initially introduced by the Polish scholar Pawlak in 1982. Its primary objective is 
to utilize established information or knowledge to estimate uncertain or imprecise target concepts. Later, scholars extended the 
traditional rough set theory and introduced the neighborhood rough set(NRST) as a means to overcome its limitations and enhance 
its capabilities.

Consider a decision table represented by 𝐷𝑇 = (𝑈, 𝐹 , 𝐷), where the universe 𝑈 is a non-empty and finite set of objects, denoted 
as 

{
𝑥1, 𝑥2, ..., 𝑥𝑛

}
. The set of conditional attributes 𝐹 is also a finite and non-empty set, represented as 

{
𝑓1, 𝑓2, ..., 𝑓𝑚

}
. Similarly, the 

set of decision attributes is denoted as 𝐷 =
{
𝑑1, 𝑑2, ..., 𝑑𝑟

}
and is also a non-empty and finite set.

The similarity relation that arises from a neighborhood decision table 𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, 𝛿) with 𝑆 ⊆ 𝐹 can be defined as follows:

𝑁𝑆𝑅𝛿 (𝑆) =
{(
𝑥𝑖, 𝑥𝑗

)
∈𝑈 ×𝑈 ∣ 𝑑𝑆

(
𝑥𝑖, 𝑥𝑗

)
≤ 𝛿

}
.

The neighborhood class of an element 𝑥 in the neighborhood decision table 𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, 𝛿) with 𝑆 ⊆ 𝐹 is defined as follows:( ) {( ) ( ) }

3

𝛿𝑆 𝑥𝑖 = 𝑥𝑖, 𝑥𝑗 ∈𝑈 ×𝑈 ∣ 𝑑𝑆 𝑥𝑖, 𝑥𝑗 ≤ 𝛿 ,
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where 𝛿 is the neighborhood parameter,and 𝛿 ∈ [0,1]. If all samples within the 𝛿𝑆 (𝑥𝑖) neighborhood exhibit the same decision 
values, 𝑥𝑖 is deemed consistent within the 𝛿 neighborhood. Conversely, if the decision values of the samples within the neighborhood 
vary, 𝑥𝑖 is classified as an inconsistent sample. In this context, the distance between two samples, denoted as 𝑑𝑆

(
𝑥𝑖, 𝑥𝑗

)
, is used 

as a measure to assess the similarity between samples. The Euclidean distance formula is commonly employed in determining the 
distance between two data points. The formula can be expressed as follows:

𝑑𝑆
(
𝑥𝑖, 𝑥𝑗

)
=
√∑
𝑓∈𝑆

(
𝑓
(
𝑥𝑖
)
− 𝑓

(
𝑥𝑗
))2
.

NRST has three properties that apply to the distance metric 𝑑𝑆
(
𝑥𝑖, 𝑥𝑗

)
.

(1) ∀𝑥, 𝑦 ∈𝑈, 𝑑𝑆 (𝑥, 𝑦) ≥ 0, 𝑑𝑆 (𝑥, 𝑦) = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 𝑦;
(2) ∀𝑥, 𝑦 ∈𝑈, 𝑑𝑆 (𝑥, 𝑦) = 𝑑𝑆 (𝑦,𝑥);
(3) ∀𝑥, 𝑦, 𝑧 ∈𝑈, 𝑑𝑆 (𝑥, 𝑧) ≤ 𝑑𝑆 (𝑥, 𝑦) + 𝑑𝑆 (𝑦, 𝑧).

As the distance function of NRST, 𝑑𝑆 (𝑥, 𝑦) must satisfy non-negativity, symmetry, and triangular inequality.

For any 𝑥 in the neighborhood decision table 𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, 𝛿), and given 𝑆 ⊆ 𝐹 , 𝑘𝑆 (𝑥𝑖) is defined similarly to 𝛿𝑆 (𝑥𝑖).

𝑘𝑆 (𝑥𝑖) =
{
𝑥1
𝑖
, 𝑥2
𝑖
, ..., 𝑥𝑛

𝑖
∣ 𝑑𝑆 (𝑥𝑗 , 𝑥𝑖) > 𝑑𝑆 (𝑥𝑎𝑖 , 𝑥𝑖), 𝑥𝑗 ≠ 𝑥

𝑏
𝑖
, 𝑏, 𝑎 = 1,2, ..., 𝑛

}
.

When using k-nearest neighbors (KNN) and formulas involving 𝑘𝑆 (𝑥𝑖), the formula refers to the set of 𝑛 samples that are closest 
to a given point 𝑥𝑖. The set 𝑘𝑆 (𝑥𝑖) always includes a fixed number of samples, which is denoted as 𝑘. Furthermore, it is necessary to 
define the binary relation 𝑘𝑆 :

𝑘𝑆 =
{
(𝑥𝑖, 𝑥𝑗 ) ∈𝑈 ×𝑈 ∣ 𝑥𝑗 ∈ 𝑘𝑆 (𝑥𝑖)

}
.

The information granularity based on 𝑘-nearest neighbors is defined by the upper approximation, lower approximation, and 
boundary domain, as follows:

(1) 𝐾𝑆 (𝐷𝑗 ) =
{
𝑥𝑖 ∈𝑈 ∣ 𝑘𝑆 (𝑥𝑖) ∩𝐷𝑗 ≠ 𝜙

}
;

(2) 𝐾
𝑆
(𝐷𝑗 ) =

{
𝑥𝑖 ∈𝑈 ∣ 𝑘𝑆 (𝑥𝑖) ⊆𝐷𝑗

}
;

(3) 𝐾𝑅𝑆 (𝐷𝑗 ) =𝐾𝑆 (𝐷𝑗 ) −𝐾𝑆 (𝐷𝑗 ).

In this context, 𝐷𝑗 represents the partitioning of decision classes. Next, the positive domain of decision D and the dependency on 
attribute 𝑆 are defined as follows:

(1) 𝐾𝑃𝑂𝑆𝑆 (𝐷) =
⋃
𝐷𝑗∈𝑈∕𝐷𝐾𝑆 (𝐷𝑗 );

(2) 𝛾𝑘
𝑆
(𝐷) = ||𝐾𝑃𝑂𝑆𝑆 (𝐷)||∕ |𝑈 |.

The k-nearest neighbor rough set model is the name given to the rough approximation described by the equation mentioned 
earlier. After introducing the basic theory, the next section will cover the utilization of information theory in k-nearest neighbor 
rough set.

2.2. Information theory in neighborhood decision table

Mutual information [16] is widely recognized for its robustness in noisy data environments, which makes it a valuable informa-

tion measurement in neighborhood decision table. Here are some other information measurements commonly used in 𝑁𝐷𝑇 . In a 
neighborhood decision table 𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, 𝛿), where 𝛿 ≥ 0 and 𝑆 is any subset of attributes from 𝐹 , the neighborhood relation 
created by the attribute subset 𝑆 is denoted as 𝑁𝑅𝛿

𝑆
. The 𝛿𝑆 (𝑥𝑖) represents the neighborhood class for every 𝑥𝑖 belonging to 𝑈 . The 

definition of neighborhood entropy for the set of samples related to attribute subset 𝑆 is as follows:

𝑁𝐸𝛿(𝑆) = − 1|𝑈 | |𝑈 |∑
𝑖=1

log2
||𝛿𝑆 (𝑥𝑖)|||𝑈 | .

The average level of uncertainty for a sample is expressed as:

𝑁𝐸
𝑥𝑖
𝛿
(𝑆) = − log2

||𝛿𝑆 (𝑥𝑖)|||𝑈 | .
In addition to the fundamental concept of information entropy, we have extended the notion of neighborhood entropy by incor-

porating the principles of joint entropy and conditional entropy from information theory. This expansion allows us to capture more 
comprehensive and intricate relationships within the neighborhood context. In a neighborhood decision table 𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, 𝛿), 
4

where 𝛿 ≥ 0 and for any subsets 𝑆1 and 𝑆2 from the set 𝐹 . The neighborhood relationships determined by the conditional attribute 
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sets 𝑆1 and 𝑆2 are 𝑁𝛿
𝑆1

and 𝑁𝛿
𝑆1∪𝑆2

, respectively. Similarly, the neighborhood classes under the neighborhood relations 𝑁𝛿
𝑆1

and 
𝑁𝛿
𝑆1∪𝑆2

are 𝛿𝑆1 and 𝛿𝑆1∪𝑆2 . The joint entropy of the neighborhoods of 𝑆2 and 𝑆1 is defined as:

𝑁𝐸𝛿(𝑆1, 𝑆2) = − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝛿𝑆1∪𝑆2 (𝑥𝑖)||||𝑈 | .

When the information entropy of 𝑆2 is known, the neighborhood conditional information entropy of attribute set 𝑆1 with respect 
to 𝑆2 can be defined as follows:

𝑁𝐸𝛿(𝑆1 ∣ 𝑆2) = − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝛿𝑆1∪𝑆2 (𝑥𝑖)||||||𝛿𝑆2 (𝑥𝑖)||| .
Based on the entropy relationship in information theory, we have derived the relationship formulas for the three types of entropy.

Proposition 2.1. For a given 𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, 𝛿), 𝑓𝑜𝑟 𝛿 ≥ 0, ∀𝑆1, 𝑆2 ∈ 𝐹 . Then 𝑁𝐸𝛿(𝑆1 ∣ 𝑆2) =𝑁𝐸𝛿(𝑆1, 𝑆2) −𝑁𝐸𝛿(𝑆2).

Proof. According to the previous existing formula, we can get:

𝑁𝐸𝛿(𝑆1, 𝑆2) −𝑁𝐸𝛿(𝑆2)

= − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝛿𝑆1∪𝑆2 (𝑥𝑖)||||𝑈 | + 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝛿𝑆2 (𝑥𝑖)||||𝑈 |
= − 1|𝑈 | |𝑈 |∑

𝑖=1

⎛⎜⎜⎝log2
|||𝛿𝑆1∪𝑆2](𝑥𝑖)||||𝑈 | − log2

|||𝛿𝑆2 (𝑥𝑖)||||𝑈 | ⎞⎟⎟⎠
= − 1|𝑈 | |𝑈 |∑

𝑖=1
log2

|||𝛿𝑆1∪𝑆2 (𝑥𝑖)||||||𝛿𝑆2 (𝑥𝑖)|||
=𝑁𝐸𝛿(𝑆1 ∣ 𝑆2).

As demonstrated in the previous proof process, the calculation of the uncertainty measure for attribute subset 𝑆1 requires the 
utilization of both the joint information entropy of 𝑆1 and 𝑆2 and the neighborhood information entropy of 𝑆2. By incorporating 
these two entropy measures, we can effectively capture the interplay and information dynamics between the two subsets. This 
approach allows us to comprehensively assess the level of uncertainty or information content associated with attribute subset 𝑆1, 
considering its relationship with 𝑆2 and the overall neighborhood context.

Mutual information serves as a metric to evaluate the correlation and dependence between two random variables. It is calculated 
by comparing the joint probability distribution with the respective marginal probability distributions of the variables [32]. Just like 
the previous expansion of entropy, similar reasoning can also be done with mutual information. These extensions provide a more 
comprehensive understanding of the relationships and dependencies between random variables. In a neighborhood decision table 
𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, 𝛿), where 𝛿 ≥ 0 and for any subsets 𝑆1 and 𝑆2 from the set 𝐹 . Similarly, the sets of attributes 𝑆1 and 𝑆2 determine 
the neighborhood relationships 𝑁𝛿

𝑆1
and 𝑁𝛿

𝑆2
, respectively. Under the neighborhood relations 𝑁𝛿

𝑆1
and 𝑁𝛿

𝑆2
, the neighborhood 

classes are denoted as 𝛿𝑆1 and 𝛿𝑆2 . The symbol 𝛿𝑆1∪𝑆2 (𝑥𝑖)) denotes the neighborhood of 𝑥𝑖 within the attribute set 𝑆1 ∪ 𝑆2 with a 
radius of 𝛿. The definition of the neighborhood mutual information between 𝑆1 and 𝑆2 is as follows:

𝑁𝑀𝐼𝛿(𝑆1;𝑆2) = − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝛿𝑆1 (𝑥𝑖)||| ⋅ |||𝛿𝑆2 (𝑥𝑖)||||𝑈 | |||𝛿𝑆1∪𝑆2 (𝑥𝑖)||| .
We give three relevant formulas and the proof process.

Proposition 2.2. For a given 𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, 𝛿), 𝑓𝑜𝑟 𝛿 ≥ 0, ∀𝑆1, 𝑆2 ∈ 𝐹 . Then the following equation holds:

(1) 𝑁𝑀𝐼𝛿(𝑆1; 𝑆2) =𝑁𝑀𝐼𝛿(𝑆2; 𝑆1);
(2) 𝑁𝑀𝐼𝛿(𝑆1; 𝑆2) =𝑁𝐸𝛿(𝑆1) +𝑁𝐸𝛿(𝑆2) −𝑁𝐸𝛿(𝑆1, 𝑆2);
5

(3) 𝑁𝑀𝐼𝛿(𝑆1; 𝑆2) =𝑁𝐸𝛿(𝑆1) −𝑁𝐸𝛿(𝑆2 ∣ 𝑆1)=𝑁𝐸𝛿(𝑆2) −𝑁𝐸𝛿(𝑆1 ∣ 𝑆2).



International Journal of Approximate Reasoning 172 (2024) 109218W. Xu and C. Liu

Proof. (1) Based on the 𝑁𝑀𝐼 formula provided above, we can obtain that:

𝑁𝑀𝐼𝛿(𝑆1;𝑆2)

= − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝛿𝑆1 (𝑥𝑖)||| ⋅ |||𝛿𝑆2 (𝑥𝑖)||||𝑈 | |||𝛿𝑆1∪𝑆2 (𝑥𝑖)|||
= − 1|𝑈 | |𝑈 |∑

𝑖=1
log2

|||𝛿𝑆2 (𝑥𝑖)||| ⋅ |||𝛿𝑆1 (𝑥𝑖)||||𝑈 | |||𝛿𝑆2∪𝑆1 (𝑥𝑖)|||
=𝑁𝑀𝐼𝛿(𝑆2;𝑆1).

(2) Based on the 𝑁𝐸 formula provided above, we can obtain that:

𝑁𝐸𝛿(𝑆1) +𝑁𝐸𝛿(𝑆2) −𝑁𝐸𝛿(𝑆1, 𝑆2)

=− 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝛿𝑆1 (𝑥𝑖)||||𝑈 | − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝛿𝑆2 (𝑥𝑖)||||𝑈 | −
⎛⎜⎜⎝− 1|𝑈 | |𝑈 |∑

𝑖=1
log2

|||𝛿𝑆1∪𝑆2 (𝑥𝑖)||||𝑈 | ⎞⎟⎟⎠
= − 1|𝑈 | |𝑈 |∑

𝑖=1
log2

⎛⎜⎜⎝
|||𝛿𝑆1 (𝑥𝑖)||||𝑈 | ⋅

|||𝛿𝑆2 (𝑥𝑖)||||𝑈 | ⋅
|𝑈 ||||𝛿𝑆1∪𝑆2 (𝑥𝑖)|||

⎞⎟⎟⎠
= − 1|𝑈 | |𝑈 |∑

𝑖=1
log2

|||𝛿𝑆1 (𝑥𝑖)||| ⋅ |||𝛿𝑆2 (𝑥𝑖)||||𝑈 | |||𝛿𝑆1∪𝑆2 (𝑥𝑖)|||
=𝑁𝑀𝐼𝛿(𝑆1;𝑆2).

(3) Combining Proposition 2.1 and Proposition 2.2(2) can be obtained as established.

In a neighborhood decision table 𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, 𝛿), where 𝛿 ≥ 0 and for any subsets 𝑆1, 𝑆2 and 𝑆3 from the set 𝐹 . The 
neighborhood conditional mutual information entropy of 𝑆1 and 𝑆3 under the attribute set 𝑆2 is defined as:

𝑁𝐶𝑀𝐼𝛿(𝑆1;𝑆3 ∣ 𝑆2) = − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝛿𝑆1∪𝑆2 (𝑥𝑖) |⋅|𝛿𝑆3∪𝑆2 (𝑥𝑖)||||||𝛿𝑆2 (𝑥𝑖) |⋅| 𝛿𝑆1∪𝑆2∪𝑆3 (𝑥𝑖)||| .
Proposition 2.3. For a given 𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, 𝛿), 𝑓𝑜𝑟 𝛿 ≥ 0, ∀𝑆1, 𝑆2, 𝑆3 ∈ 𝐹 . Then 𝑁𝐶𝑀𝐼𝛿(𝑆1; 𝑆3 ∣ 𝑆2) =𝑁𝐸𝛿(𝑆1, 𝑆2) +𝑁𝐸𝛿(𝑆3, 𝑆2) −
𝑁𝐸𝛿(𝑆1, 𝑆3, 𝑆2) −𝑁𝐸𝛿(𝑆2).

Proof.

𝑁𝐸𝛿(𝑆1, 𝑆2) +𝑁𝐸𝛿(𝑆3, 𝑆2) −𝑁𝐸𝛿(𝑆1, 𝑆3, 𝑆2) −𝑁𝐸𝛿(𝑆2)

= − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝛿𝑆1∪𝑆2 (𝑥𝑖)||||𝑈 | − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝛿𝑆3∪𝑆2 (𝑥𝑖)||||𝑈 |
+ 1|𝑈 | |𝑈 |∑

𝑖=1
log2

|||𝛿𝑆1∪𝑆3∪𝑆2 (𝑥𝑖)||||𝑈 | + 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝛿𝑆2 (𝑥𝑖)||||𝑈 |
= − 1|𝑈 | |𝑈 |∑

𝑖=1
log2

⎛⎜⎜⎝
|||𝛿𝑆1∪𝑆2 (𝑥𝑖)||||𝑈 | ⋅

|||𝛿𝑆3∪𝑆2 (𝑥𝑖)||||𝑈 | ⋅
|𝑈 |

𝛿𝑆1∪𝑆3∪𝑆2 (𝑥𝑖)
⋅

|𝑈 ||||𝛿𝑆2 (𝑥𝑖)|||
⎞⎟⎟⎠

= − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝛿𝑆1∪𝑆2 (𝑥𝑖) |⋅|𝛿𝑆3∪𝑆2 (𝑥𝑖)||||||𝛿𝑆2 (𝑥𝑖) |⋅| 𝛿𝑆1∪𝑆2∪𝑆3 (𝑥𝑖)|||
=𝑁𝐶𝑀𝐼𝛿(𝑆1;𝑆3 ∣ 𝑆2).

The formula introduced in this section reflects that neighborhood mutual information entropy (𝑁𝑀𝐼) represents the degree of 
interdependence between two attribute sets, and neighborhood conditional mutual information entropy (𝑁𝐶𝑀𝐼) can reflect the 
6

degree of independence between two attribute sets.
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3. Information measure of k-nearest neighbor rough set

This section presents the information entropy calculation method in the context of combining k-nearest neighbor rough sets and 
𝛿 neighborhood rough sets. Firstly, we introduce the distance formula calculation method for mixed data. Secondly, we introduce 
the formula for information entropy in this context. Finally, we discuss the degree of interaction and dependence between features 
by integrating a formula for evaluating feature importance.

3.1. Distance measurement under hybrid data

Real-world applications often involve diverse types of data, such as numerical, categorical, and mixed data. To handle this 
heterogeneity and perform intersection operations in neighborhood relations, the Heterogeneous Chebyshev-Overlap Metric (HCOM) 
is defined. HCOM enables the calculation of distances between instances with different types of attributes, facilitating the analysis 
and processing of mixed data in neighborhood-based operations. The HCOM distance function expression for mixed-type data is as 
follows:

𝐻𝐶𝑂𝑀𝐹 (𝑥, 𝑦) =
|𝐹 |∑
𝑖=1

(
𝑑𝜏
𝑓𝑖
(𝑥, 𝑦)

) 1
𝜏
,

where 𝑑𝑖(𝑥, 𝑦)=

⎧⎪⎪⎨⎪⎪⎩

||𝑓 (𝑥,𝑓𝑖) − 𝑓 (𝑦,𝑓𝑖)|| , if 𝑓𝑖 represents a numerical feature;

1, if 𝑓𝑖 represents a categorical feature and 𝑓 (𝑥,𝑓𝑖) ≠ 𝑓 (𝑦,𝑓𝑖);
0, if 𝑓𝑖 represents a categorical feature and 𝑓 (𝑥,𝑓𝑖) = 𝑓 (𝑦,𝑓𝑖);
1, if the feature value of either 𝑥 or 𝑦 is unknown with respect to 𝑓𝑖 .

In particular, when 𝑓𝑖 is a numerical feature, the above formula can be simplified to 𝐻𝐶𝑂𝑀𝐹 (𝑥, 𝑦) = 𝑑𝑓 (𝑥, 𝑦), where 𝜏 = +∞, 
based on the distance function described in section 2.1. This simplification allows for a direct calculation of the distance between 
instances 𝑥 and 𝑦 using the specific numerical distance function. The neighborhood class of instance 𝑥 in relation to set 𝑆 can be 
characterized as:

𝛿𝑆 (𝑥𝑖) =
{
𝑥𝑖 ∈𝑈 ∣𝐻𝐶𝑂𝑀𝑆 (𝑥𝑖, 𝑥𝑗 ) ≤ 𝛿

}
.

We know that the size of the neighborhood 𝛿 in NRS (Neighborhood Rough Set) has an impact on classification accuracy. The 
objective of classification is to minimize the dissimilarities among samples belonging to the same class while increasing the dissim-

ilarities between samples from different classes, thereby achieving accurate classification. Nevertheless, when dealing with complex 
samples, the basic definition of neighborhood 𝛿 in NRS may produce insufficient classification results. Consequently, selecting the 
appropriate granularity becomes crucial for the classification model.

3.2. Calculation of k-nearest neighbor rough set entropy

Let’s consider a k-nearest neighborhood decision table, denoted as 𝐾𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, △, 𝛿, 𝐾), where ∀𝑆 ⊆ 𝐹 , the universe 𝑈
is defined as the set of all instances or objects, denoted as 𝑈 =

{
𝑥1, 𝑥2, ...𝑥𝑛

}
. 𝐹 denotes the feature set, consisting of attributes that 

describe the instances, denoted as 𝐹 =
{
𝑓1, 𝑓2, ...𝑓𝑚

}
. 𝐷 represents the decision set, comprising possible decision classes, denoted as 

𝐷 =
{
𝑑1, 𝑑2, ...𝑑𝑟

}
. △ signifies the distance or similarity measure used to calculate the distance between instances. 𝛿 represents the 

neighborhood parameter, which determines the size of the neighborhood radius, and 𝛿 ∈ [0,1]. 𝐾 indicates the number of nearest 
neighbors used in the classification process. The neighborhood of an instance 𝑥𝑖, which belongs to the universe 𝑈 , with respect to 
set 𝑆 , can be described as:

𝜏𝑆 (𝑥𝑖) =
{
𝑥𝑗 ∈𝑈 ∣ 𝑥𝑗 ∈ 𝛿𝑆 (𝑥𝑖) ∩ 𝑘𝑆 (𝑥𝑖)

}
,

where 𝜏𝑆 (𝑥𝑖) is the intersection of 𝛿𝑆 (𝑥𝑖) and 𝑘𝑆 (𝑥𝑖), and combining the advantages of both. Similar to the expansion principles of 
entropy discussed in section 2, entropy is also expanded in the context of the k-nearest neighbor rough set. For a given 𝐾𝑁𝐷𝑇 =
(𝑈, 𝐹 , 𝐷, △, 𝛿, 𝐾), where ∀𝑆 ⊆ 𝐹 , the neighborhood information entropy of the sample set with respect to set 𝑆 is defined as follows:

𝑁𝐸𝜏 (𝑆) = − 1|𝑈 | |𝑈 |∑
𝑖=1

log2
||𝜏𝑆 (𝑥𝑖)|||𝑈 | .

In the case of 𝐾𝑁𝐷𝑇 , where 𝑆1 and 𝑆2 are subsets of the attribute set 𝐹 , the neighborhood joint entropy of 𝑆1 and 𝑆2 can be 
defined as follows:

𝑁𝐸𝜏 (𝑆1, 𝑆2) = − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝜏𝑆1∪𝑆2 (𝑥𝑖)||||𝑈 | .

In particular, when the information entropy of 𝑆2 is known, the conditional entropy of 𝑆1 relative to 𝑆2 can be mathematically 
7

expressed as:
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𝑁𝐸𝜏 (𝑆1 ∣ 𝑆2) = − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝜏𝑆1∪𝑆2 (𝑥𝑖)||||||𝜏𝑆1𝑥𝑖||| .

The neighborhood mutual information between 𝑆1 and 𝑆2 is defined as:

𝑁𝑀𝐼𝜏 (𝑆1;𝑆2) = − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝜏𝑆1 (𝑥𝑖)||| ⋅ |||𝜏𝑆2 (𝑥𝑖)||||𝑈 | ⋅ |||𝜏𝑆1∪𝑆2 (𝑥𝑖)||| .
Similar to the approach used in Proposition 2.2 to prove the entropy formula, we can apply the same principle to derive three 

formulas for mutual information. These formulas provide a quantitative measure of the information shared and the degree of depen-

dence between random variables.

Proposition 3.1. For a given 𝐾𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, △, 𝛿, 𝐾), 𝑓𝑜𝑟 𝛿 ≥ 0, ∀𝑆1, 𝑆2 ∈ 𝐹 . Then the following equation holds:

(1) 𝑁𝑀𝐼𝜏 (𝑆1; 𝑆2) =𝑁𝑀𝐼𝜏 (𝑆2; 𝑆1);
(2) 𝑁𝑀𝐼𝜏 (𝑆1; 𝑆2) =𝑁𝐸𝜏 (𝑆1) +𝑁𝐸𝜏 (𝑆2) −𝑁𝐸𝜏 (𝑆1, 𝑆2);
(3) 𝑁𝑀𝐼𝜏 (𝑆1; 𝑆2) =𝑁𝐸𝜏 (𝑆1) −𝑁𝐸𝜏 (𝑆2 ∣ 𝑆1)=𝑁𝐸𝜏 (𝑆2) −𝑁𝐸𝜏 (𝑆1 ∣ 𝑆2).

Proof. According to the principle of Proposition 2.2, the appeal certification process is similar.

For a given 𝐾𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, △, 𝛿, 𝐾), ∀𝑆1, 𝑆2, 𝑆3 ⊆ 𝐹 . The neighborhood conditional mutual information of 𝑆1 and 𝑆3, given the 
knowledge of 𝑆2, is defined as:

𝑁𝐶𝑀𝐼𝜏 (𝑆1;𝑆3 ∣ 𝑆2) = − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

|||𝜏𝑆1∪𝑆2 (𝑥𝑖) |⋅| 𝜏𝑆3∪𝑆2 (𝑥𝑖)||||||𝜏𝑆2 (𝑥𝑖) |⋅| 𝜏𝑆1∪𝑆2∪𝑆3 (𝑥𝑖)||| .
3.3. Feature relevance measure in k-nearest neighborhood decision table

Indeed, it is well-established that a stronger correlation between features and classes indicates a higher ability of those features to 
distinguish samples. [33,34] In information theory, features that exhibit stronger relevance to classes are considered more informative 
in categorizing them into distinct categories. Mutual information is a widely used metric for quantifying the correlation between 
features and classes and finding applications in various domains and tasks. For a given 𝐾𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, △, 𝛿, 𝐾), the relationship 
between the selected feature subset and the decision set can be described as the correlation between them. The formula is as follows:

𝑅𝑒𝑙(𝑓𝐹
𝑗
, 𝑑) =𝑁𝑀𝐼𝜏 (𝑓𝐹𝑗 ;𝑑)

= − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

||||𝜏𝐹𝑓𝑗 (𝑥𝑖) |⋅| 𝜏𝑑 (𝑥𝑖)|||||||𝑈 |⋅| 𝜏{𝑓𝑗𝐹 }∪{𝑑}(𝑥𝑖)||| ,
where 𝜏𝐹

𝑓𝑗
(𝑥𝑖) denotes the neighborhood of 𝑥𝑖 on 𝑓𝐹

𝑗
, 𝜏𝑑 (𝑥𝑖) denotes the neighborhood of 𝑥𝑖 on 𝑑 and 𝜏{𝑓𝑗𝐹 }∪{𝑑}(𝑥𝑖) denotes the 

neighborhood of 𝑥𝑖 on two samples. In order to select features for analysis, we employ a prioritization approach based on the concept 
of neighborhood mutual information between the features and the classes. Specifically, we focus on identifying the feature that 
exhibits the highest neighborhood mutual information, which is referred to as the maximum-relevance criterion (MR). This selection 
criterion, also known as MR, is formally defined by [35]. The redundancy between a selected feature subset and the decision set 
refers to the degree of overlap or duplication in the information provided by the features regarding the decision or outcome being 
predicted. The formula for calculating redundancy between two features is as follows:

𝑅𝑑𝑑(𝑓𝐹
𝑗
, 𝑓𝑠) =𝑁𝑀𝐼𝜏 (𝑓𝐹𝑗 ;𝑓𝑠)

= − 1|𝑈 | |𝑈 |∑
𝑖=1

log2

||||𝜏𝐹𝑓𝑗 (𝑥𝑖) |⋅| 𝜏𝑓𝑠 (𝑥𝑖)|||||||𝑈 |⋅| 𝜏{𝑓𝑗𝐹 }∪{𝑓𝑠}(𝑥𝑖)||| .
Where 𝑓𝑠 is the selected feature, to address the issue of redundancy between selected and unselected features, we can utilize the 

concept of neighborhood mutual information. This metric quantifies redundancy while disregarding class information. Our objective 
is to enhance the chosen feature set and eliminate any redundancies, thus we have decided to employ the minimum redundancy 
criterion (mR). The aim of the mR criterion is to select characteristics that offer non-redundant and distinctive information. With 
the mR criterion, we can balance the relevance of characteristics and their redundancy concerning the chosen features. By applying 
8

this method, we can ensure that the selected feature subset consists of informative and non-redundant features, leading to an 
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improvement in the system’s classification performance [36]. This allows us to choose the most relevant features for decision-making 
while reducing redundancy in the selected features.

3.4. Feature interaction measure in k-nearest neighborhood decision table

To measure the extent of interaction between attributes, researchers use various methods that consider relationships and depen-

dencies between features. These methods aim to capture how attributes interact with each other and how these interactions impact 
classification accuracy. The mutual information-based interaction measure is a commonplace tool for assessing attribute interaction. 
This metric quantifies the amount of information that is shared among several attributes, indicating their degree of interdependence 
or interaction. Subsequently, we will introduce techniques for calculating the degree of interaction between these properties. For a 
given 𝐾𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, △, 𝛿, 𝐾), when the selected feature 𝑓𝑠 is already known, we define the neighborhood conditional mutual 
information between the current candidate feature 𝑓𝐹

𝑗
and the decision class 𝑑 as follows:

𝐼𝑡𝑟𝑠(𝑓𝐹
𝑗
, 𝑓𝑠, 𝑑) =𝑁𝑀𝐼𝜏 (𝑓𝐹𝑗 ;𝑑 ∣ 𝑓𝑠)

= − 1|𝑈 | |𝑈 |∑
𝑖=1

log2 .
|||𝜏{𝑓𝑗𝐹 }∪{𝑑}(𝑥𝑖)||| ⋅ |||𝜏{𝑑}∪{𝑓𝑠}(𝑥𝑖)||||||𝜏𝑓𝑠 (𝑥𝑖)||| ⋅ |||𝜏{𝑓𝑗𝐹 }∪{𝑑}∪{𝑓𝑠}(𝑥𝑖)||| .

𝐼𝑡𝑟𝑆 is a metric used to quantify the contribution or reduction in uncertainty of classification provided by the current candidate 
feature 𝑓𝐹

𝑗
when the selected feature 𝑓𝑠 is known. It represents the degree of interaction between the candidate feature and the 

selected feature by utilizing the principles of information theory [37].

In the study referenced as [38], the researchers have leveraged the concepts from information theory to measure the amount 
of information contributed by adding new features to the classification task, given the knowledge of the existing features. This 
information-based approach allows for the estimation of the degree of interaction between the current candidate feature and the 
selected feature, providing insights into their combined impact on the classification process. We define the interaction of class 
dependence between 𝑓𝐹

𝑗

′
and 𝑑, given that 𝑓𝐹

𝑗
is known, as follows:

𝐼𝑡𝑟𝑐(𝑓𝐹
𝑗
, 𝑓𝐹
𝑗

′
, 𝑑) =𝑁𝑀𝐼𝜏 (𝑓𝐹𝑗

′;𝑑 ∣ 𝑓𝐹
𝑗
)

= − 1|𝑈 | |𝑈 |∑
𝑖=1

log2 .

|||||𝜏{𝑓𝐹𝑗 ′}∪{𝑑}(𝑥𝑖)
||||| ⋅
|||||𝜏{𝑑}∪{𝑓𝐹𝑗 }(𝑥𝑖)|||||||||𝜏𝑓𝐹𝑗 (𝑥𝑖)|||| ⋅ |||||𝜏{𝑓𝑗𝐹 }∪{𝑑}∪{𝑓𝐹𝑗 ′}(𝑥𝑖)|||||

.

This formula uses information theory principles to quantify the impact of features 𝑓𝐹
𝑗

′
on the further selection of remaining 

candidate features. The first formula calculates the interaction degree between the candidate feature 𝑓𝐹
𝑗

and the selected features 
𝑓𝑠, taking into account their mutual information and conditional probabilities. It quantifies how the candidate feature 𝑓𝐹

𝑗
interacts 

with the already selected features, providing information about their joint contribution to the classification task. The second formula 
calculates the interaction degree between the candidate feature 𝑓𝐹

𝑗
and the remaining set of candidate features 𝑓𝐹

𝑗

′
. It measures 

the interaction between the candidate feature 𝑓𝐹
𝑗

and the other candidate features that have not been selected yet. This interaction 
degree helps assess how the candidate feature 𝑓𝐹

𝑗
interacts with the remaining features in terms of their information sharing and 

joint impact on the classification task.

Algorithm 𝐾𝑁𝐶𝑀𝐼 provides a heuristic feature selection approach for 𝐾𝑁𝐷𝑇 , and its detailed descriptions are presented 
below. To establish an objective evaluation function for the KNMRmRMI (k-nearest neighborhood max-relevance min-redundancy 
max-interaction) approach, which considers the feature correlations discussed in sections 3.1-3.3, we introduce the original feature 
evaluation function LKNCMI. This function is defined as follows:

𝜄𝑠𝑖𝑔(𝑓𝐹𝑗 ) =𝑁𝑀𝐼𝜏 (𝑓
𝐹
𝑗
;𝑑) − 1|𝑅𝐸𝐷| ∑

𝑓𝑠∈𝑅𝑒𝑑
𝑁𝑀𝐼𝜏 (𝑓𝐹𝑗 ;𝑓𝑠) +

1|𝐹 −𝑅𝐸𝐷|− 1
∑

𝑓𝐹
𝑗

′∈𝐹−𝑅𝑒𝑑−
{
𝑓𝐹
𝑗

}𝑁𝐶𝑀𝐼𝜏 (𝑓𝐹𝑗 ′;𝑑 ∣ 𝑓𝐹
𝑗
).

In the LKNCMI feature evaluation function, 𝑁𝑀𝐼𝜏 (𝑓𝐹𝑗 ; 𝑓𝑠) and 𝑁𝐶𝑀𝐼𝜏 (𝑓𝐹𝑗
′; 𝑑 ∣ 𝑓𝐹

𝑗
) are the previously introduced redundancy 

and interaction degrees, respectively. The 𝜄𝑠𝑖𝑔(𝑓𝐹𝑗 ) denotes the attribute importance of the candidate feature 𝑓𝐹
𝑗

. This measure 
quantifies the relevance or significance of each attribute in the classification task. al We can obtain a list of attributes sorted by their 
importance score by calculating their importance using 𝜄𝑠𝑖𝑔(𝑓𝐹𝑗 ) and ranking them accordingly. By using this ranking, the optimal 
feature combination that creates the chosen feature subset, designated as denotes, can be chosen. Therefore, the LKNCMI function 
can identify groups of features that collaboratively produce the most pertinent information for the classification task that decreases 
9

redundancy and accounts for attribute interactions.
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Table 1

Dataset case.

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑑

𝑥1 0.34 0.33 0.28 0.49 0.65 0.78 1

𝑥2 0.37 0.56 0.61 0.63 0.70 0.55 1

𝑥3 0.45 0.57 0.43 0.55 0.83 0.21 1

𝑥4 0.35 0.57 0.33 0.63 0.71 0.65 1

𝑥5 0.42 0.68 0.57 0.47 0.23 0.1 2

𝑥6 0.20 0.38 0.71 0.73 0.50 0.30 2

𝑥7 0.36 0.76 0.34 0.52 0.72 0.43 1

𝑥8 0.06 0.16 0.07 0.17 0.26 0.17 2

4. Incremental neighborhood conditional entropy of the hybrid data

When the number of data samples increases, it is possible to update the distance between each attribute sample. This can lead 
to the preservation of previously calculated distances. In addition to this, model computation time can be saved by updating the 
neighborhood entropy. Next, we describe the mechanism for updating the domain class and neighborhood conditional entropy after 
data addition.

In a neighborhood decision table 𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, 𝛿), where 𝛿 ≥ 0 and 𝑆 are any subset of attributes from 𝐹 . The 𝑈 ={
𝑥1, 𝑥2, ..., 𝑥𝑚

}
represents a complete set of samples in the data set. Each instance is denoted 𝑥𝑖, where 𝑖 ranges from 1 to 𝑚. That 

is, there are 𝑚 original samples. We introduced the distance formula for mixed data earlier, so we can get the domain classes under 
the feature subset 𝑆1. The original neighborhood class is 𝛿𝑆1 (𝑥𝑖) =

{
𝑥𝑖 ∈𝑈 ∣𝐻𝐶𝑂𝑀𝑆1 (𝑥𝑖, 𝑥𝑗 ) ≤ 𝛿

}
. When 𝑛 samples are added, 

at which point new samples 𝑈 ′ =
{
𝑥1, 𝑥2, ..., 𝑥𝑚, 𝑥𝑚+1, ..., 𝑥𝑛

}
. At this stage, the updated formula for neighborhood classification is 

outlined as follows:

𝛿′
𝑆1
(𝑥𝑖) = 𝛿𝑆1 (𝑥𝑖)

⋃
𝛿𝑆1 (𝑥𝑖)

′, 𝑖 ≤𝑚,

where 𝛿′
𝑆1
(𝑥𝑖) denotes the updated neighborhood class, 𝛿𝑆1 (𝑥𝑖) denotes the originally computed neighborhood class. To avoid double 

counting, we only need to calculate the distance to the newly added sample. Thus the specific equation for 𝛿𝑆1 (𝑥𝑖)
′ is expressed as 

follows:

𝛿𝑆1 (𝑥𝑖)
′ =

{
𝑥𝑖 ∈𝑈 ∣𝐻𝐶𝑂𝑀𝑆1 (𝑥𝑖, 𝑥𝑗 ) ≤ 𝛿

}
, 𝑖 ≤𝑚,𝑚 ≤ 𝑗 ≤ 𝑛.

Next, we’ll give a simple case study of updating neighborhood classes. A simple data table is shown in Table 1. Given a neighbor-

hood decision table 𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, 𝛿), 𝑓𝑜𝑟 𝛿 ≥ 0, ∀𝑆1, 𝑆2 ⊆ 𝐹 . The original sample 𝑈 =
{
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6

}
, the set of features 

𝐹 =
{
𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6

}
. Two new samples, 𝑥7 and 𝑥8, have been added. We set 𝛿 to 0.4. The subset of features 𝑆 =

{
𝑓1, 𝑓2, 𝑓3, 𝑓4

}
. 

Calculating from the distance formula we know that 𝐻𝐶𝑂𝑀𝑆 (𝑥1, 𝑥1) = 0, 𝐻𝐶𝑂𝑀𝑆 (𝑥1, 𝑥2) = 0.42, 𝐻𝐶𝑂𝑀𝑆 (𝑥1, 𝑥3) = 0.30, 
𝐻𝐶𝑂𝑀𝑆 (𝑥1, 𝑥4) = 0.28, 𝐻𝐶𝑂𝑀𝑆 (𝑥1, 𝑥5) = 0.46, 𝐻𝐶𝑂𝑀𝑆 (𝑥1, 𝑥6) = 0.51. So 𝛿𝑠 =

{
𝑥1, 𝑥3, 𝑥4

}
. When new samples are added, the 

𝐻𝐶𝑂𝑀𝑆 (𝑥1, 𝑥7) = 0.43 and 𝐻𝐶𝑂𝑀𝑆 (𝑥1, 𝑥8) = 0.50. So 𝛿𝑆 (𝑥1)′ is an empty set and Neighborhood classes do not change. Incremen-

tal computation demonstrates the time savings from this step as we get larger amounts of data.

Then, we will introduce the formula update of neighborhood entropy. In a neighborhood decision table 𝑁𝐷𝑇 = (𝑈, 𝐹 , 𝐷, 𝛿), 
where 𝛿 ≥ 0 and for any subsets 𝑆1 and 𝑆2 from the set 𝐹 . The new neighborhood entropy of the set of samples concerning 𝑆1 is 
defined as follows:

𝑁𝐸′
𝛿
(𝑆1) = − 1|𝑈 ′|

||𝑈 ′||∑
𝑖=1

log2

|||𝛿𝑆1 (𝑥𝑖)|||+ |||𝛿𝑆1 (𝑥𝑖)′||||𝑈 ′| ,

where 𝑈 ′ denotes the dataset after the addition of new samples, ||𝛿𝑆 (𝑥𝑖)′|| denotes the number of new samples belonging to the 
neighborhood class. Similarly to the principle, we also improve the formulae in neighborhood conditional entropy and joint entropy. 
Simply add the new number of neighborhood classes without recalculating the previous number of neighborhood classes. Next, we 
give new formulas for neighborhood conditional entropy and joint entropy, respectively. The formula for the conditional entropy of 
the neighborhood after a new sample is added is:

𝑁𝐸′
𝛿
(𝑆1 ∣ 𝑆2) = − 1|𝑈 ′|

||𝑈 ′||∑
𝑖=1

log2

|||𝛿𝑆1∪𝑆2 (𝑥𝑖)|||+ |||𝛿𝑆1∪𝑆2 (𝑥𝑖)′||||||𝛿𝑆2 (𝑥𝑖)|||+ |||𝛿𝑆2 (𝑥𝑖)′||| .

The neighborhood mutual information entropy after adding new samples is as follows:

𝑁𝑀𝐼 ′ (𝑆1;𝑆2) = − 1
||𝑈 ′||∑

log2
(|||𝛿𝑆1 (𝑥𝑖)|||+ |||𝛿𝑆1 (𝑥𝑖)′|||) ⋅ (|||𝛿𝑆2 (𝑥𝑖)|||+ |||𝛿𝑆2 (𝑥𝑖)′|||)

.

10

𝛿 |𝑈 ′|
𝑖=1 |𝑈 ′| ⋅ (|||𝛿𝑆1∪𝑆2 (𝑥𝑖)|||+ |||𝛿𝑆1∪𝑆2 (𝑥𝑖)′|||)
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In the context of the k-nearest neighbor rough set, assuming that the value of 𝑘 is already set, we focus on updating the original 
neighborhood entropy by considering the k-nearest neighbors. The neighborhood entropy of the updated sample set, denoted as 𝑆 , 
can be defined as follows:

𝑁𝐸′
𝜏
(𝑆) = − 1|𝑈 ′|

||𝑈 ′||∑
𝑖=1

log2

|||𝜏′𝑆 (𝑥𝑖)||||𝑈 ′|
= − 1|𝑈 ′|

||𝑈 ′||∑
𝑖=1

log2
(|||𝛿𝑆1 (𝑥𝑖)|||+ |||𝛿𝑆1 (𝑥𝑖)′|||) ∩ ||𝑘𝑈 ′ (𝑥𝑖)|||𝑈 ′| .

In this formula, the value of 𝑘 is determined based on the sample size’s magnitude. Specifically, 𝑘 is established within the range 
of [0.01n, 0.1n], where 𝑛 denotes the number of samples in the dataset. This range offers flexibility in determining the appropriate 
𝑘 value based on the dataset size. The conditional information entropy of 𝑆1 relative to 𝑆2 can be expressed as:

𝑁𝐸′
𝜏
(𝑆1 ∣ 𝑆2) = − 1|𝑈 ′|

||𝑈 ′||∑
𝑖=1

log2

|||𝜏′𝑆1∪𝑆2 (𝑥𝑖)||||||𝜏′𝑆1𝑥𝑖|||
= − 1|𝑈 ′|

||𝑈 ′||∑
𝑖=1

log2

||||(𝛿𝑠1∪𝑠2 (𝑥𝑖) ∪ 𝛿𝑠1∪𝑠2 (𝑥𝑖)′) ∩ 𝑘𝑈 ′ (𝑥𝑖)
||||||||(𝛿𝑠1 (𝑥𝑖) ∪ 𝛿𝑠1 (𝑥𝑖)′) ∩ 𝑘𝑈 ′ (𝑥𝑖)

||||
.

Similarly, when a new sample is added, the k-nearest neighbor mutual information of the sample under the feature sets 𝑆1 and 
𝑆2 can be defined as:

𝑁𝑀𝐼 ′
𝜏
(𝑆1;𝑆2) = − 1|𝑈 ′|

||𝑈 ′||∑
𝑖=1

log2

|||𝜏′𝑆1 (𝑥𝑖)||| ⋅ |||𝜏′𝑆2 (𝑥𝑖)||||𝑈 ′| ⋅ |||𝜏′𝑆1∪𝑆2 (𝑥𝑖)|||
= − 1|𝑈 ′|

||𝑈 ′||∑
𝑖=1

log2

||||(𝛿𝑠1 (𝑥𝑖) ∪ 𝛿𝑠1 (𝑥𝑖)′) ∩ 𝑘𝑈 ′ (𝑥𝑖)
|||| ⋅ ||||(𝛿𝑠2 (𝑥𝑖) ∪ 𝛿𝑠2 (𝑥𝑖)′) ∩ 𝑘𝑈 ′ (𝑥𝑖)

|||||𝑈 ′| ⋅ ||||(𝛿𝑠1∪𝑠2 (𝑥𝑖) ∪ 𝛿𝑠1∪𝑠2 (𝑥𝑖)′) ∩ 𝑘𝑈 ′ (𝑥𝑖)
||||

,

the function 𝑁𝑀𝐼 ′
𝜏
(𝑆1; 𝑆2) represents the degree of mutual dependence between two feature subsets. A higher value indicates a 

stronger correlation between the two subsets. 𝑁𝑀𝐼 ′
𝜏
(𝑆1; 𝑆2) is the core component of the feature evaluation function and a key 

element of the algorithm model. When adding a new sample, we need to calculate the number of new neighborhood classes after 
combining the 𝑘 nearest neighbors, which corresponds to 𝜏′

𝑆1
(𝑥𝑖) and 𝜏′

𝑆2
(𝑥𝑖). The formula (𝛿𝑠1 (𝑥𝑖) ∪ 𝛿𝑠1 (𝑥𝑖)

′ ∩ 𝑘𝑈 ′ (𝑥𝑖)) represents 
the change in the neighborhood class, effectively utilizing the initially calculated neighborhood class 𝛿𝑠1 (𝑥𝑖), and only requiring the 
calculation of the neighborhood class for the added sample 𝛿𝑠1 (𝑥𝑖)

′. The 𝑘𝑈 ′ (𝑥𝑖) is determined solely by the sample size. As the 
number of samples increases, we only need to adjust the 𝑘 value in the model.

To summarize, in order to leverage the benefits of k-nearest neighbors, we perform intersection processing between the traditional 
neighborhood set and the k-nearest neighbors. However, as the sample size increases, the appropriate value of 𝑘 may change. 
Therefore, during each update, the focus is on updating the traditional neighborhood classes for the calculation of new samples and 
then performing union processing with the neighborhood classes from the non-updated stage. This approach of selectively updating 
saves computational resources and reduces computational time compared to recalculating the entire neighborhood classes.

To verify the computational effectiveness of our update mechanism, we have developed two feature selection algorithms: Al-

gorithm 1, a non-incremental feature selection algorithm, and Algorithm 2, an improved incremental algorithm. In the following 
algorithm flow chart, we will explain these two algorithms in detail, leveraging our previous theoretical knowledge.

Next, we will detail the main flow of Algorithm 1 and the algorithmic time complexity it consumes. The algorithm is divided into 
three main core steps. First input data set U, which contains n samples and m attributes. We performed a min-max normalization 
of the data, i.e., data pre-processing. Then the mixed data distances were calculated for each sample value in each column and the 
neighborhood classes were divided under 𝐾 and 𝛿 to form a new neighborhood relation matrix (steps 3-8). The time complexity here 
is 𝑂(𝑚𝑛). In the second step, the correlation between the feature to be selected 𝑓𝐹

𝑗
and the decision 𝑑 is calculated. Then the feature 

with the maximum value 𝑓𝐹
𝑗

is taken as the first selected feature 𝑓𝑠(steps 9-14). The time complexity here is O(m). In the third 
step, loop the number of features 𝑓𝐹

𝑗
. Calculate the redundancy between the alternative features and the other selected features. 

Next, calculate the interaction between the current candidate feature 𝑓𝐹
𝑗

and the feature 𝑓𝐹 ′
𝑗

in the remaining candidate feature 
subset, taking into account the class 𝑑. This interaction analysis aims to assess the mutual influence and relationship between the 
two features when considering their impact on the assigned class. Furthermore, feature importance is determined using the feature 
objective evaluation function KNMRmRMI, which helps quantify the relevance of each attribute. The features are sorted according to 
their importance values and the number of selected features is determined by evaluating the classification accuracy of the classifier 
11

(steps 15-29). The time complexity of this process is 𝑂(𝑚𝑛), and the computational complexity is 𝑂(𝑚3). Considering that the selected 
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Algorithm 1: The feature selection algorithm based on k-nearest neighborhood conditional mutual information (KNCMI).

Input : A 𝐾𝑁𝐷𝑇=(𝑈,𝐹 ,𝐷, 𝛿,𝐾) with 𝑈 =
(
𝑥1, 𝑥2, ..., 𝑥𝑛

)
, 𝐹 =

(
𝑓1, 𝑓2, ...𝑓𝑚

)
,𝛿 ∈ [0.5,1.0]. It is in steps of 0.1, 𝐾 ∈ [0.01𝑛,0.1𝑛], 𝑛 is the 

number of samples.

Output : The best subset of features Redbest

1 for 𝛿← 0.5 to 1.0 do

2 for 𝐾 ← 0.01𝑁 to 0.1𝑁 do

3 Pre-processing the data;

4 for each 𝑓𝐹
𝑗
∈ 𝐹 do

5 for each 𝑖 ∈ 𝑛 do

6 Compute the domain classes under 𝐾 and 𝛿.
7 end

8 end

9 for each 𝑓𝐹
𝑗
∈ 𝐹 do

10 Compute Rel 
(
𝑓𝐹
𝑗
, 𝑑

)
;//Calculate the maximum correlation of features.

11 end

12 𝑓𝑠←max𝑅𝑒𝑙
(
𝑓𝐹
𝑗
, 𝑑

)
;

13 𝑅𝑒𝑑← 𝑓𝑠 ;
14 𝐹 ← 𝐹 ⧵ 𝑓𝑠 ;
15 for each 𝑓𝐹

𝑗
∈ 𝐹 do

16 for each 𝑓𝑠 ∈𝑅𝑒𝑑 do

17 Compute Rdd
(
𝑓𝐹
𝑗
, 𝑓𝑠

)
;//Calculating feature redundancy

18 end

19 for each 𝑓𝐹 ′

𝑗
∈ 𝐹 −𝑅𝑒𝑑 −

{
𝑓𝐹
𝑗

}
do

20 Compute ItrS
(
𝑓𝐹
𝑗
, 𝑓𝐹

′

𝑗
, 𝑑

)
;

21 end

22 Compute 𝑙𝑠𝑖𝑔
(
𝑓𝐹
𝑗

)
; //The maximum value of 𝑙𝑠𝑖𝑔

(
𝑓𝐹
𝑗

)
is the most important attribute.

23 Update 𝑅𝑒𝑑←𝑅𝑒𝑑 ∪ {𝑓};

24 𝐹 ← 𝐹 ⧵ {𝑓};

25 end

26 return Redbest;//The best subset after reductiony

27 end

28 end

29 Finally, selecting the best feature subset Redbest and the best combination of 𝛿 and 𝐾 by using different classifiers;

data set usually contains more samples than the number of feature attributes and the increased computational load, the overall time 
complexity of the algorithm can be approximated as 𝑂(2𝑚𝑛2).

Correspondingly, we will analyze Algorithm 2 in detail next and give the time complexity of each step. The basic core idea of the 
algorithm remains unchanged, and again, after going to data pre-processing, the relationship between each attribute and decision 
attribute 𝑑 is computed to calculate the desired attribute importance. The main change is that when new additions to the data come 
in, we first update the good 𝑈 , and then after normalization, we update the neighborhood relationship matrix, if the number of rows 
or columns of the loop is under the original Ma, it is directly assigned to the new matrix and goes to the next loop, this eliminates 
the need to recalculate the time between the old samples and only the relationship between the new samples and the old samples 
(steps 2-11). The time complexity of this step of Algorithm 1 is 𝑂(𝑚𝑛2). After updating the conditional entropy. Consistent with the 
steps of Algorithm 1, since the mutual information calculation still requires sample values under each column attribute.

5. Experimental analysis

This section describes a set of experiments performed to evaluate the effectiveness of our proposed iterative algorithm. This 
collection contains 12 datasets from the UCI repository. Table 2 gives a summary of each dataset, where the largest sample dataset 
is Electrical grid data, which has a size of 1000*14. The smallest sample data set is Sonar, its size is 208*60. The overall 12 data sets 
include three types of numerical, categorical, and mixed data. During data preprocessing, we normalize numerical features to the 
range [0, 1]. This experiment was conducted on a Windows 10 PC equipped with Intel(R) Core(TM) i5-8300H CPU @ 2.30 GHz and 
8 GB RAM. Pycharm2020 is used as the integrated development environment, and Python is used to implement the algorithm of this 
article and other comparison algorithms.

This paper examines the performance of Algorithm 2 in this paper by comparing the following three parts, namely calculation 
time, feature subset size reduction, and classification accuracy. In addition, in order to prove the effectiveness of our proposed 
12

incremental algorithm, we selected four contrasting algorithms to compare time and accuracy.
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Algorithm 2: The incremental feature selection algorithm based on k-nearest neighborhood conditional mutual information 
(IFS-KNCMNI).

Input : A 𝐾𝑁𝐷𝑇=
(
𝑈1, 𝐹 ,𝐷, 𝛿,𝐾

)
with 𝑈1 =

(
𝑥1, 𝑥2, ..., 𝑥𝑛

)
, 𝐹 =

(
𝑓1, 𝑓2, ...𝑓𝑚

)
, new data 𝑈2 , select the best combination of 𝛿 and K in 

Algorithm 1, Original Neighborhood Matrix 𝑀𝑓 .

Output : A new reduce feature subset 𝑅𝑒𝑑𝑏𝑒𝑠𝑡′
1 Firstly, Update datasets and neighborhood classes;

2 Update 𝑈 ←𝑈1 ∪
{
𝑈2

}
;

3 for 𝑖 ∈𝑈.𝑐𝑜𝑙𝑢𝑚𝑛 do

4 The 𝑥 is the value of the sample under each attribute.

5 for 𝑗 ∈𝑈.𝑟𝑜𝑤 do

6 for 𝑞 ∈ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥) do

7 Compute new martix 𝑀𝑓 ′ ;

8 //If the number of rows or columns of the loop is under the original 𝑀𝑓 , it is directly assigned to the new matrix and goes to 
the next loop. Otherwise, the value is calculated according to Algorithm 1.

9 end

10 end

11 end

12 Secondly, update the neighborhood conditional entropy;

13 for each 𝑖 ∈ 𝐹 do

14 Compute new 𝑁𝐸′
𝜏
(𝑓 ∣ 𝑑) ;

15 end

16 Lastly, Update the Redbest. //Reference Algorithm 1 Step 9 to Step 21.

17 return 𝑅𝑒𝑑𝑏𝑒𝑠𝑡′;

Table 2

Dataset description.

No. Datasets Cases Features Classes Data type

1 Sonar 208 60 2 Numerical

2 WDBC 569 31 2 Numerical

3 Australian 690 14 2 Hybrid

4 Blood 748 5 2 Numerical

5 German-Credit 1000 20 2 Hybrid

6 Flare 1066 11 6 Categorical

7 Car 1728 6 4 Categorical

8 Segment 2310 20 7 Numerical

9 wine 4998 11 2 Numerical

10 Page-blocks 5472 10 5 Numerical

11 Twonorm 7400 20 2 Numerical

12 Electrical Grid data 10000 14 2 Numerical

5.1. Feature subset size

In the following, Table 3 illustrates the number of optimal features found by the two algorithms. Column “𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠” in the 
table indicates the number of features in the original data set. The remaining two columns represent the best number of features for 
attribute simplification under Algorithm 1 and Algorithm 2, respectively.

From Table 3, we know that the number of attribute simplifications is approximately the same for both algorithms, which reflects 
the effectiveness of incremental Algorithm 2.

5.2. Classification accuracy

In this subsection, we will focus on evaluating the classification accuracy of the algorithm, which is considered one of the most 
effective and direct measures to assess the quality of feature selection algorithms. To ensure reliable results and mitigate the impact 
of data sparsity and computational randomness, we average the classification accuracy of the same feature selection algorithm 
across different datasets. The “Average” rows in the results display this averaged classification accuracy. To establish a baseline 
for experimental comparison, we exploit the average classification accuracy on raw data for k-nearest neighbor (KNN) classifiers, 
(Support Vector Machine) SVM, and (Random Forest) RF. The KNN classifier is evaluated using a 5-fold cross-validation approach, 
where the original dataset is randomly divided into five subsets. Four subsets are used as the training set, while the remaining subset 
serves as the test set. This process is repeated five times, with each subset used as the test set once. The classifier is trained using the 
features selected by the feature selection algorithm on the training set, and its performance is evaluated on the test set. The average 
performance across the five test sets is considered the final classification performance. By comparing the classification accuracies 
13

obtained from different feature selection algorithms, we can assess the effectiveness of our proposed incremental algorithm.
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Table 3

Average feature size of the two feature selection algorithms.

No. Datasets Features KNN SVM RF

KNCMI IFS-KNCMI KNCMI IFS-KNCMI KNCMI IFS-KNCMI

1 Sonar 60 29 30 16 14 33 33

2 WDBC 31 11 10 15 15 13 13

3 Blood 5 4 3 3 3 4 4

4 Segment 20 9 8 11 11 14 13

5 Page-blocks 10 6 6 5 6 5 5

6 Twonorm 20 16 17 14 13 15 14

7 Car 6 5 5 5 5 5 5

8 wine 11 9 8 8 9 8 8

9 Flare 11 8 8 7 7 9 8

10 Australian 14 10 9 8 8 8 9

11 German-Credit 20 11 10 13 13 17 16

12 Electrical Grid data 14 10 9 10 11 10 10

Table 4

Comparison of classification accuracy of seven algorithms on KNN classifier.

Datasets Original data HKCMI IFS-NCMI INF-FS KNCMI IGUFS IFS-KNCMI

Sonar 79.70 ± 3.94 76.73 ± 2.18 85.37 ± 0.31 81.64 ± 3.19 86.48 ± 3.86 77.78 ± 1.74 86.95± 3.97

WDBC 82.90 ± 2.86 90.05 ± 0.84 89.15 ± 0.98 81.51 ± 2.99 95.07± 1.19 94.71 ± 2.16 95.06 ± 1.23
Blood 67.60 ± 1.34 75.65 ± 0.47 75.12 ± 0.54 75.12 ± 1.78 82.09 ± 3.28 80.42 ± 2.01 82.49± 2.32

Segment 93.89 ± 0.95 94.71 ± 0.73 95.21 ± 0.36 93.25 ± 1.13 95.28± 0.85 94.29 ± 2.38 94.86 ± 0.82
Page-blocks 95.61 ± 0.25 94.95 ± 0.14 95.43 ± 0.56 93.96 ± 0.49 95.72 ± 0.18 93.23 ± 0.87 95.81± 0.23

Twonorm 96.07 ± 0.54 90.67 ± 0.21 94.48 ± 0.92 88.24 ± 0.83 97.21 ± 0.29 95.57 ± 0.78 97.48± 0.51

Flare 69.92 ± 3.40 72.92 ± 2.48 74.75 ± 0.32 72.25 ± 1.84 72.58 ± 2.64 77.55± 3.13 72.58 ± 2.65
Wine 48.08 ± 1.37 52.81 ± 1.12 54.27 ± 1.26 48.94 ± 2.15 57.84 ± 1.36 55.69 ± 2.58 58.02± 1.17

Car 92.48 ± 0.82 93.06 ± 0.94 93.44 ± 1.87 92.59 ± 1.03 96.56 ± 1.04 93.34 ± 1.91 96.81± 1.19

Australian 62.89 ± 1.91 85.68 ± 2.76 86.81 ± 2.28 84.05 ± 3.39 86.95 ± 1.25 87.05± 2.24 86.53 ± 1.41
German-Credit 65.66 ± 2.88 70.52 ± 2.59 75.82 ± 0.34 69.35 ± 3.06 84.87± 2.35 71.27 ± 2.77 83.95 ± 2.33
Electrical Grid 83.04 ± 0.97 84.67 ± 1.09 82.16 ± 1.32 80.97 ± 1.14 86.96 ± 1.22 85.45 ± 1.24 87.45± 1.49

Average 78.15 ± 1.77 81.87 ± 1.30 83.50 ± 0.92 80.16 ± 1.92 86.46 ± 1.62 83.86 ± 1.98 86.50± 1.60

In Table 4, Table 5 and Table 6, we show the score statistics of 12 data sets after applying the algorithm using KNN classifier, 
SVM classifier and RF classifier respectively. These scores are compared with those obtained from other feature selection algorithms. 
The aim is to showcase the effectiveness and robustness of our proposed algorithm by comparing it with existing feature selection 
methods. In total, we include five comparison algorithms for this evaluation.

1) Hybrid-kernel based fuzzy complementary mutual information(HKCMI)[34]. The HKCMI is a feature selection algorithm 
that utilizes fuzzy complementary mutual information. It is well-suited for clustering tasks involving datasets with multiple types 
of attributes. The algorithm selects a subset of features that exhibit high relevance and dependency, taking into account their 
fuzzy and complementary nature. By incorporating hierarchical k-means clustering, HKCMI enhances the clustering performance 
of the dataset.

2) An interaction feature selection algorithm based on neighborhood conditional mutual information (IFS-NCMI)[32]. 
The IFS-NCMI algorithm synergistically leverages the benefits of NRS in handling mixed and uncertain data with information-

theoretic measures of feature relevance. This integration aims to enhance classification performance, resulting in higher accuracy 
and improved stability.

3) Infinite feature selection (INF-FS)[39]. The feature selection approach treats subsets of features as paths in a graph, resulting 
in high classification accuracy and effective removal of redundancy.

4) Graph-based unsupervised feature selection for interval-valued information system(IGUFS)[40]. An unsupervised feature 
selection method based on graph theory is employed. The method utilizes the properties of matrix power series to optimize 
the computation process while efficiently and swiftly performing feature selection by incorporating the principles of maximum 
relevance and minimum redundancy.

5) Feature selection for unbalanced distribution hybrid data based on k-nearest neighborhood rough set (KNCMI)[16]. The 
algorithm takes into account the interaction of heterogeneous data and features, combines well the advantages of 𝛿-neighborhood 
and k-nearest neighbor, and utilizes mutual information entropy for feature extraction.
14
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Fig. 2. Comparison of accuracy of different algorithms based on KNN, SVM and RF classifiers. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Table 5

Comparison of classification accuracy of seven algorithms on SVM classifier.

Datasets Original data HKCMI IFS-NCMI INF-FS KNCMI IGUFS IFS-KNCMI

Sonar 72.11 ± 4.56 78.37 ± 0.31 76.38 ± 1.34 76.32 ± 3.56 83.56 ± 3.61 84.07± 5.07 83.67 ± 3.67
WDBC 91.28 ± 2.27 95.24 ± 0.65 94.96 ± 1.49 88.20 ± 1.87 97.88± 0.55 97.00 ± 1.04 97.83 ± 0.54
Blood 75.46 ± 2.53 77.23 ± 2.45 76.84 ± 0.96 76.20 ± 2.38 80.75 ± 0.48 78.54 ± 0.67 80.87± 0.44

Segment 93.75 ± 0.73 93.29 ± 0.86 94.53 ± 0.95 94.68 ± 1.45 96.92± 1.25 95.82 ± 1.92 96.28 ± 1.82
Page-blocks 94.38 ± 0.46 95.68 ± 0.24 94.75 ± 0.55 91.39 ± 0.32 95.72 ± 0.18 90.29 ± 0.48 97.07± 0.23

Twonorm 94.59 ± 0.52 95.75 ± 0.37 95.67 ± 0.63 94.56 ± 0.44 96.21 ± 0.23 94.85 ± 0.67 96.48± 0.28

Flare 71.45 ± 2.38 75.32 ± 2.76 76.74 ± 2.87 72.35 ± 3.06 77.94± 1.94 74.23 ± 1.82 77.65 ± 1.93
Wine 56.45 ± 1.19 58.26 ± 0.29 60.02 ± 1.33 58.44 ± 1.23 63.83 ± 0.27 62.92 ± 0.86 64.06± 0.19

Car 94.09 ± 0.71 97.68 ± 0.39 96.23 ± 0.64 91.59 ± 1.11 99.30± 0.68 90.38 ± 1.68 99.30 ± 0.59
Australian 82.75 ± 2.39 86.71 ± 2.62 85.42 ± 2.48 84.49 ± 2.55 87.68± 2.25 84.92 ± 2.56 87.21 ± 2.12
German-Credit 69.97 ± 3.70 78.58 ± 2.80 77.92 ± 0.85 72.87 ± 3.04 82.38 ± 2.19 72.77 ± 4.24 82.48± 2.79

Electrical Grid 91.06 ± 0.94 88.68 ± 0.72 92.47 ± 0.21 91.48 ± 0.41 93.74 ± 0.72 93.60 ± 0.97 94.21± 0.26

Average 82.28 ± 1.86 85.07 ± 1.21 85.16 ± 1.19 82.71 ± 1.78 87.99 ± 1.21 84.95 ± 1.83 88.09± 1.24

We show the scores of various algorithms in Fig. 2. The y-axis displays the algorithm’s classification accuracy, and the x-axis 
shows the algorithm type. The red line illustrates the score trend of the algorithm on the KNN classifier. The blue line represents 
the score trend of the algorithm using the SVM classifier, while the green line depicts the score trend of the algorithm on the RF 
classifier. Overall, in the case of SVM, KNN and RF, the INF-FS algorithm has the lowest scores in most cases. On average, the 
algorithm produces scores that are only about 2 points higher than the raw score. The score of our dynamic algorithm IFS-KNCMI is 
basically the same as the score of the static algorithm KNCMI. This demonstrates the reliability of our proposed dynamic algorithm 
as it aligns with the results of the static algorithm. In most cases, our proposed IFS-KNCMI algorithm outperforms other algorithms, 
demonstrating its advantages. Only in the Flare dataset, the IFS-KNCMI score does not perform as well as the other algorithms, but 
it still outperforms the original algorithm and the INF-FS algorithm. Therefore, based on the classification scores displayed in the 12 
15

dataset line graphs, we can conclude that our IFS-KNCMI algorithm is superior to previous algorithms.
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Table 6

Comparison of classification accuracy of seven algorithms on RF classifier.

Datasets Original data HKCMI IFS-NCMI INF-FS KNCMI IGUFS IFS-KNCMI

Sonar 78.29 ± 5.35 77.48 ± 3.93 79.83 ± 2.43 80.95 ± 1.82 83.70± 3.42 82.17 ± 5.47 83.45 ± 3.67
WDBC 94.73 ± 1.90 89.96 ± 1.32 95.35 ± 1.29 93.47 ± 1.92 96.29 ± 1.81 96.12 ± 2.27 96.47± 1.54

Blood 74.46 ± 2.52 75.26 ± 2.05 77.33 ± 1.72 72.66 ± 1.61 77.85 ± 3.47 80.61± 1.53 77.33 ± 1.52
Segment 95.68 ± 1.11 96.87 ± 1.25 95.89 ± 1.02 93.68 ± 1.29 97.92± 1.04 96.58 ± 2.21 97.28 ± 1.73
Page-blocks 97.38 ± 0.60 90.37 ± 0.24 96.75 ± 0.48 94.48 ± 0.64 97.72± 0.44 95.22 ± 0.95 97.40 ± 0.28
Twonorm 97.06 ± 0.55 92.64 ± 0.64 94.73 ± 1.82 91.56 ± 1.91 97.44 ± 0.23 93.93 ± 0.88 97.56± 0.24

Flare 72.20 ± 2.26 72.12 ± 2.84 74.27 ± 1.96 72.35 ± 3.06 72.86 ± 2.84 75.18± 1.62 73.05 ± 2.20
Wine 67.76 ± 1.47 68.12 ± 1.61 67.89 ± 1.23 65.43 ± 1.52 71.22 ± 2.12 70.13 ± 2.97 71.62± 1.79

Car 96.16 ± 0.56 95.43 ± 0.67 96.23 ± 0.64 94.92 ± 1.24 97.85 ± 0.81 96.06 ± 1.28 98.10± 0.42

Australian 84.33 ± 2.83 87.23 ± 2.52 85.21 ± 2.28 88.12 ± 2.38 89.13± 3.03 84.05 ± 3.07 88.78 ± 3.46
German-Credit 75.28 ± 3.46 72.43 ± 2.28 75.84 ± 2.89 73.74 ± 2.86 79.56 ± 3.47 78.40 ± 3.42 80.40± 3.04

Electrical Grid 90.78 ± 0.15 85.45 ± 2.52 91.52 ± 0.49 89.43 ± 1.44 93.42± 0.92 92.89 ± 0.32 92.87 ± 0.86

Average 85.34 ± 1.89 83.61 ± 1.82 85.90 ± 1.52 84.23 ± 1.81 87.91± 1.96 86.77 ± 2.16 87.86 ± 1.73

Table 7

Average ranking of algorithm classification accuracy.

Classifiers HKCMI IFS-NCMI INF-FS KNCMI IGUFS IFS-KNCMI 𝐹𝐹 𝜒2
𝐹

P value

KNN 2.50 3.42 1.25 5.0 3.58 5.08 13.46 33.02 8.30 × 10−9
SVM 2.91 2.75 1.58 5.25 2.91 5.5 20.08 38.76 1.02 × 10−11
RF 1.83 3.08 1.83 5.25 3.83 5.08 17.40 36.76 1.30 × 10−10

5.3. Statistical analysis

In this subsection, in order to enhance the comparison of experimental results between different algorithms, the Friedman test 
was employed as a statistical method to assess the validity of the algorithm comparison. The Friedman test is a non-parametric 
statistical test, and its null hypothesis states that all the experimental algorithms exhibit the same classification performance. The 
formula for the Friedman test is defined as follows:

𝐹𝐹 =
(𝑇 − 1)𝜒2

𝐹

𝑇 (𝑠− 1) − 𝜒2
𝐹

,

𝜒2
𝐹
= 12𝑇
𝑠(𝑠+ 1)

(
𝑠∑
𝑖=1
𝑅2
𝑖
− 𝑠(𝑠+ 1)2

4

)
.

The first formula here is the calculation formula for the Friedman statistic, and the second formula is the calculation formula 
for the parameter 𝜒2

𝐹
. 𝑇 represents the experimental dataset, comprising a total of 12 datasets, while 𝑠 represents the number of 

experimental algorithms being compared, totaling 6 algorithms. Here, 𝑅𝑖 represents the average rank value of the classification 
accuracy results for the 6 algorithms across 3 classifiers.

From Table 7, it can be observed that the two algorithms proposed in this study exhibit higher average ranking of accuracy 
across the three classifiers. Furthermore, by conducting the Friedman hypothesis test, we obtained p-values below 0.05 for all three 
classifiers, indicating significant superiority or effectiveness of the proposed algorithm compared to the other algorithms being 
compared.

5.4. Computational time

In order to assess the computational efficiency, we measured the algorithm times for IFS-NCMI, INF-FS, KNCMI, and IFS-KNCMI. 
However, due to the extended execution time of the HKCMI algorithm, it was not included in the algorithm comparison graph.

To differentiate the computation time among these algorithms, we employed a specific methodology. For each dataset, we ex-

tracted 50% of the features as the original feature set, and then gradually added 20%, 40%, 60%, 80%, and 100% of the remaining 
features to the original set. The figure presents more detailed variation trendlines for each algorithm and the corresponding datasets 
with dynamic feature sets. In each subgraph, the X coordinate represents the size of the dynamic feature set, while the Y coordinate 
indicates the time consumption in seconds.

As seen in Fig. 3, the computation time for each algorithm increases with the dataset. However, based on the trend lines of both 
algorithms, It is found that in most cases, INF-FS (blue line) has the least computation time, while the proposed IFS-KNCMI (red 
line) has the second least computation time. The IFS-KNCMI has the least time only in the dataset “Australian”. IFS-NCMI is the most 
time-consuming among the four algorithms.

The primary reason for this is the following. In data increment, IFS-KNCMI(Algorithm 2) performs feature selection by updating 
the neighborhood information entropy and updating the neighborhood class, while KNCMI (Algorithm 1) is required to start calcu-
16

lating each step from scratch again. Although IFS-NCMI also has a part that utilizes the previous computation, it takes more time 
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because it divides the dominant neighborhood itself more than the k-nearest neighbor-based algorithms do. So the static algorithm 
KNCMI is also less time-consuming than the IFS-NCMI algorithm. INF-FS is a feature selection algorithm based on graph theory, 
which can calculate the importance of each feature by the knowledge of the graph, and then sort the attribute importance to select 
the best combination of features. So there is no need to cycle through the entropy between the features and the feature neighborhood, 
which greatly saves time.

Repeatedly performing incremental feature selection calculations is very time-consuming. Instead, many recalculations are 
avoided by using previous results on dynamic datasets instead of recalculating new datasets, which saves the time of repeated 
calculations. We can also verify this conclusion with the following detailed example.

For example, for the blood dataset, the first time 20% of the data is added, the time for static KNCMI is 6.26 s, while the 
time required for incremental IFS-KNCMI is 4.09 s, and when the data is added for the fifth time, the time for KNCMI is 18.09 s 
and the time for IFS-KNCMI is 11.88 s. The efficiency of IFS-KNCMI is about 34% improvement. The INF-FS algorithm exhibited a 
consistently low growth rate, taking only 3.09 s on its first run and 4.69 s on its fifth run. This provides empirical evidence that the 
algorithm is highly efficient in terms of time-saving measures. Although the INF-FS algorithm requires less time, its accuracy in KNN 
classification is only 75.12%, while IFS-KNCMI has an accuracy of 82.49%. Furthermore, IFS-KNCMI is more accurate than INF-FS 
on SVM. Another example is the “Twononrm” dataset, which is inherently large and presents challenges for static algorithms due 
to the time-consuming nature of processing it. However, after five updates, it becomes clear that the dynamic algorithm is not only 
more efficient than KNCMI each time but also becomes increasingly time-efficient over time, as evidenced by the emerging trend. 
Overall, the IFS-KNCMI algorithm takes less time than the static KNCMI algorithm and much less time than the IFS-NCMI algorithm 
for the 12 datasets. Except for the “Australian” dataset, IFS-KNCMI takes longer than the INF-FS algorithm, but it is more accurate. In 
conclusion, the IFS-KNCMI algorithm is an efficient and accurate method for selecting dynamic environmental data. It is an algorithm 
for feature selection of dynamic environmental data.

Hence, it can be deduced that IFS-KNCMI handles incremental data with greater efficiency and computational superiority over 
non-incremental KNCMI. This is confirmed by examining the 12 subgraphs presented in Fig. 3.

6. Conclusion and future work

In the era of data explosion, the increasing presence of mixed-type data presents significant challenges to traditional feature 
selection methods. This study investigates an incremental feature selection method specifically designed for mixed-type data in 
the context of k-nearest neighbors. Experimental evaluations are conducted on a set of 12 public datasets. The findings from the 
experiments are summarized as follows: (1) The IFS-KNCMI algorithm exhibits superior classification capability for hybrid data. 
(2) The IFS-KNCMI algorithm demonstrates higher efficiency in incremental hybrid data classification, leading to cost savings in 
computational power. (3) The proposed incremental feature selection algorithm has been experimentally validated and subjected to 
hypothesis testing, confirming its reliability.

In our future research, we intend to concentrate on enhancing the IFS-KNCMI algorithm to effectively address the dynamic chal-

lenge of data attribute changes. Furthermore, we aim to investigate the integration of the IFS-KNCMI algorithm with the INF-FS 
algorithm to improve both efficiency and accuracy. These prospective research directions will steer the development of more ad-

vanced and efficient feature selection methods, thereby facilitating decision-making and knowledge discovery in constantly evolving 
data environments.
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Fig. 3. Comparison of time consumption between two algorithms.
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