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With the continuous advancement of information technology, the information and data covered 
by various information systems become increasingly complex and diverse, it is essential to 
perform knowledge mining from multiple perspectives to extract valuable insights. Fuzzy 
neighborhood multigranulation rough set, as an excellent feature selection model, is capable 
of handling heterogeneous datasets more effectively, significantly improving learning efficiency. 
In this study, we investigate a feature selection method based on a generalized multigranulation 
fuzzy rough set (GMFNRS) in fuzzy decision systems. First, the concepts of fuzzy neighborhood 
rough sets and generalized multigranulation rough sets are introduced. Subsequently, the 
GMFNRS model is established to enable data mining and rule extraction from various 
perspectives. Secondly, from an informational perspective, the study investigates uncertainty 
measurement methods through fuzzy neighborhood joint entropy. Furthermore, a novel fuzzy 
neighborhood generalized composite entropy is proposed by integrating the GMFNRS model 
with uncertainty measures. Finally, a forward greedy feature selection algorithm is considered to 
extract essential information from complex datasets. Experimental results on 15 public datasets 
demonstrate that the proposed model effectively selects important features in fuzzy systems and 
exhibits excellent classification performance.

1. Introduction

In recent years, feature selection has emerged as a crucial step in data preprocessing and has found widespread applications in 
intelligent computing, machine learning, and artificial intelligence domains [42,7,2]. By removing irrelevant or redundant features 
while preserving the classification capacity of the knowledge base, feature selection allows for better extraction of essential features 
from high-dimensional data, thereby reducing time and space complexity [24,9,22]. Rough set theory, as a powerful tool for dealing 
with uncertainty, has garnered extensive research and attention in the field of feature selection [28]. However, the classical rough set 
models [15] are limited to handling symbolic data, and when dealing with continuous data, it is necessary to discretize it, which can 
result in the loss of valuable information [5]. Therefore, researchers have extended the rough set models further to handle diverse 
types of data. Among them, there has been a significant amount of research on feature selection using neighborhood rough set 
(NRS) and fuzzy rough set (FRS) approaches [37,25,30]. Hu et al. proposed a model based on NRS to handle heterogeneous data by 
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assigning different thresholds for each attribute [11]. Barman et al. introduced a novel approach to determine optimal thresholds for 
NRS in the context of hyperspectral band selection [3]. Zhang et al. introduced a novel feature selection algorithm called weighted 
neighborhood rough sets, incorporating different weights into neighborhood relations [41]. Xing et al. proposed a feature selection 
algorithm based on NRS to assess the ability to distinguish different groups by evaluating features [29]. While NRS effectively tackles 
the drawback of discretizing data in classical rough set models, it faces challenges when dealing with samples in a fuzzy context. 
Jensen et al. proposed a greedy feature selection algorithm in FRS by incorporating dependency functions [13]. Das et al. introduced a 
fuzzy graph technique based on fuzzy sets to assess the relevance and redundancy of features [6]. Chen et al. extended the FRS model 
by introducing a fuzzy discernibility matrix for attribute reduction [4]. Sang et al. proposed an active antinoise fuzzy dominance 
rough set model by identifying noise samples based on the density of noisy samples [19]. Dong et al. studied the incremental feature 
selection mechanism of fuzzy rough sets when both samples and features change simultaneously [8]. However, the FRS model has a 
major drawback in that it always relies on the nearest samples to calculate fuzzy upper and lower approximations, thereby increasing 
the vulnerability to noise in the dataset. For this issue, Wang et al. introduced the concept of using the min-max operation to calculate 
the membership degree of samples in fuzzy rough sets. They incorporated this concept into neighborhood rough sets, leading to the 
construction of the fuzzy neighborhood rough set model [27]. Yue et al. introduced the concept of fuzzy neighborhood coverage 
for conducting three-way classification [36]. However, the application of fuzzy neighborhood rough sets in describing features is 
limited, and there is a scarcity of research in this area.

In real life, it is often necessary to describe things from multiple different perspectives. However, most current models are based 
on a single binary relation [22], which means they describe objects from a single perspective. To address this issue, Qian et al. 
extended the single-granularity rough set model to a multi-granularity rough set model, enabling attribute reduction to be performed 
at multiple granularities [17]. Yao et al. investigated rough set models in multi-granular spaces [35]. However, the current research 
on two models, optimistic multi-granularity rough set and pessimistic multi-granularity rough set, has approximation operators that 
are either too loose or too strict, resulting in a lack of flexibility in the models. Xu et al. proposed the generalized multi-granularity 
rough set, which effectively addresses this issue and allows for more flexible descriptions of objects [32]. To better handle mixed 
data, additional relations are introduced in the multi-granularity model. Lin et al. conducted research on neighborhood-based multi-

granularity rough sets [14]. Yang et al. developed a multi-granularity decision rough set model based on tolerance relations for 
incomplete information systems [34]. Sun et al. proposed a novel attribute reduction method based on neighborhood-based multi-

granularity rough sets to handle incomplete neighborhood systems [22]. Zhang et al. introduced hesitant fuzzy tolerance relation 
into the multi-granularity framework and proposed two multi-granularity models [39]. However, there is limited research on further 
extending the generalized multi-granularity rough set model.

It is widely recognized that uncertainty measures have made rapid progress in the field of feature selection. By employing a 
distance-based approach, Wang et al. constructed a fuzzy rough set model to measure fuzzy dependency and attribute importance 
in decision systems [26]. Hu et al. proposed a matrix incremental-based approach to update the approximation space of neighbor-

hood multi-granularity rough sets [10]. Peng et al. discussed uncertainty measures for feature selection based on the fuzzy symmetric 
relation of set-valued information systems [16]. The aforementioned studies primarily focus on uncertainty from an algebraic perspec-

tive, with a focus on describing the influence of features contained in the feature subset through uncertainty measures. Information 
entropy provides an intuitive measure, making it widely applied in the field of feature selection, along with its various derived 
forms. Zhang et al. investigated active incremental feature selection based on fuzzy rough set information entropy [42]. Aremu 
et al. proposed a feature engineering framework for asset data, which utilizes measures of correlation and relative entropy [2]. An 
et al. proposed a granularity entropy theory and designed a innovative feature selection algorithm [1]. Xu et al. developed a feature 
gene selection algorithm by utilizing the fuzzy neighborhood conditional entropy model [30]. Zeng et al. introduced two models of 
multi-granularity entropy to evaluate the significance of features [38]. Xu et al. introduced a novel feature selection approach for 
imbalanced fuzzy data by proposing a concept known as local composite entropy [33]. Huang et al. proposed a novel incremental 
feature selection algorithm that utilizes conditional entropy based on multi-source data [12]. Nonetheless, the assessment of feature 
importance based on information view is limited to describing the influence of features in uncertain classification. Integrating the 
aforementioned perspectives in feature selection to enhance the measurement quality in decision systems is an innovative and chal-

lenging task. Sun et al. introduced an innovative approach to attribute reduction in incomplete neighborhood decision systems based 
on NMRS, utilizing Lebesgue measure and entropy measure [22]. Zhang et al. introduced the concept of neighborhood composite 
entropy based on NRS to reflect the probability of granule pairs in the neighborhood [40]. Sun et al. proposed a novel attribute reduc-

tion algorithm that combines algebraic and information perspectives, based on neighborhood entropy [23]. Song et al. investigated 
uncertainty measures based on the divergence of cross-entropy [20]. Sun et al. proposed a feature subset selection method using 
fuzzy neighborhood pessimistic multigranulation entropy, specifically designed for heterogeneous datasets [21]. However, there has 
been a scarcity of research investigating the measurement of entropy in fuzzy contexts.

Building upon the above insights, to address the limitations of FNRS in singularly describing objects, we further investigate fuzzy 
neighborhood multigranulation rough sets from an algebraic perspective. Moreover, to the best of our knowledge, there is limited 
research on combining FNRS and GMRS for feature selection in fuzzy decision systems. Simultaneously, from an informational 
perspective, we enhanced the descriptive capability of information entropy in capturing feature uncertainty. Therefore, it is crucial 
to investigate uncertainty measures based on GMFNRS from these two aspects, and then develop a forward feature selection algorithm 
specifically designed for fuzzy decision systems dealing with complex datasets. In contrast to existing methods, our novel approach 
offers a comprehensive assessment of features, leading to a significant enhancement in the classification performance of the target. 
2

The main contributions of this paper include:
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Fig. 1. The overall framework diagram of the paper.

(1) Building a fuzzy decision system that integrates FNRS with GMRS, a generalized multigranulation fuzzy neighborhood rough set 
(GMFNRS) model is proposed to better handle heterogeneous datasets and provide a comprehensive characterization of objects 
from multiple perspectives.

(2) By investigating the uncertainty measures of fuzzy neighborhood entropy, a fuzzy domain generalized composite entropy is 
proposed and a corresponding feature subset selection algorithm is designed.

The remaining structure of this paper is as follows. In section 2, we provide a comprehensive review of the concepts related 
to FNRS, NMRS, and GMRS. In section 3, we present the construction of the GMFNRS model and introduce the concept of fuzzy 
neighborhood generalized composite entropy. Section 4 introduce a heuristic greedy selection algorithm and analyze its complexity 
accordingly. In section 5, we performed experimental analysis on a set of 15 datasets to evaluate the effectiveness and robustness of 
the proposed model. Finally, we summarize the findings of this study and presents future research directions in Section 6. Moreover, 
the overall framework diagram of the paper is shown in Fig. 1.

2. Related work and foundations

In this section, we review some fundamental concepts, including fuzzy neighborhood rough set, neighborhood multi-granulation 
rough set, and generalized multigranulation rough set.

2.1. Fuzzy neighborhood rough set

A quadruple  = (𝑈,𝐴𝑇 ∪𝐷,𝑔) is designated as a fuzzy decision system with a decision, where 𝑈 =
{
𝑥1, 𝑥2,… , 𝑥𝑛

}
is a 

non-empty finite sample set. 𝐴𝑇 =
{
𝑎1, 𝑎2,… , 𝑎𝑡

}
represents a non-empty finite set of condition attributes, 𝐷 = {𝑑} represents a non-

empty finite set of decision attributes and contains only one decision attribute, and additionally, 𝐴𝑇 ∩𝐷 = ∅. 𝑔 ∶𝑈 × (𝐴𝑇 ∪𝐷) → 𝑉

is a mapping function, and 𝑔𝑎(𝑥) ∈ [0, 1] represents the attribute value of object 𝑥 for attribute 𝑎.
Given a fuzzy decision system  = (𝑈,𝐴𝑇 ∪ {𝑑}, 𝑔), 𝑁 ⊆ 𝐴𝑇 induces a fuzzy binary relation 𝑅𝑁 on the domain 𝑈 . For any 

𝑥, 𝑦 ∈𝑈 , when 𝑅𝑁 is a fuzzy similarity relation, the following properties hold:

1) Reflexivity: 𝑅𝑁 (𝑥, 𝑥) = 1
3

2) Symmetry: 𝑅𝑁 (𝑥, 𝑦) =𝑅𝑁 (𝑦, 𝑥)
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The classical fuzzy rough set determines the classification of samples through the maximum-minimum operations. However, when 
data contains noise, it can introduce errors in calculating the membership degrees of samples to different decision classes, thereby 
reducing the accuracy of sample classification. To address this issue, a parameterized fuzzy relation is introduced to determine the 
inclusion relationship between samples and decisions.

For a fuzzy decision system  = (𝑈,𝐴𝑇 ∪ {𝑑}, 𝑔), the fuzzy neighborhood radius of a sample is denoted as 𝛼, which is used to 
describe the similarity between two objects; for any 𝑎 ∈𝐴𝑇 , and ∀𝑥, 𝑦 ∈𝑈 , the fuzzy neighborhood similarity relation between two 
objects 𝑥 and 𝑦 on 𝑎 can be represented as

𝑅𝑎(𝑥, 𝑦) =

{
0, |𝑔𝑎(𝑥) − 𝑔𝑎(𝑦)| > 𝛼
1 − |𝑔𝑎(𝑥) − 𝑔𝑎(𝑦)|, |𝑔𝑎(𝑥) − 𝑔𝑎(𝑦)| ≤ 𝛼 (1)

The fuzzy neighborhood similarity matrix [𝑥]𝑎 (𝑦) =𝑅𝑎(𝑥, 𝑦) can be obtained from Equation (1). Similarly, for 𝑁 ⊆𝐴𝑇 , the fuzzy 
neighborhood similarity matrix based on 𝑁 is denoted as [𝑥]𝑁 (𝑦) =𝑅𝑁 (𝑥, 𝑦) =min𝑎∈𝑁

(
[𝑥]𝑎 (𝑦)

)
.

Given  = (𝑈,𝐴𝑇 ∪ {𝑑}, 𝑔), 𝑁 ⊆𝐴𝑇 , ∀𝑥, 𝑦 ∈ 𝑈 , the fuzzy neighborhood granule of object 𝑥 with respect to 𝑁 is represented 
as

𝛼𝑁 (𝑥) = [𝑥]𝛼
𝑁
(𝑦) =

{
0, 𝑅𝑁 (𝑥, 𝑦) < 1 − 𝛼
𝑅𝑁 (𝑥, 𝑦), 𝑅𝑁 (𝑥, 𝑦) ≥ 1 − 𝛼

(2)

Definition 1. For any 𝑋 ⊆ 𝑈 , 𝛼𝑁 (𝑥) is the fuzzy neighborhood granule of 𝑥 ∈ 𝑈 . Then the fuzzy neighborhood lower and upper 
approximations under 𝑁 are respectively represented as

𝑅𝛼
𝐹𝑁

(𝑋) = {𝑥|𝛼𝑁 (𝑥) ⊆𝑋,𝑥 ∈𝑈},
𝑅𝛼
𝐹𝑁

(𝑋) = {𝑥|𝛼𝑁 (𝑥) ∩𝑋 ≠ ∅, 𝑥 ∈𝑈}.
(3)

The pair 
(
𝑅𝛼
𝐹𝑁

(𝑋),𝑅𝛼
𝐹𝑁

(𝑋)
)

is called fuzzy neighborhood rough set (FNRS).
For any 𝑑𝑗 ∈ 𝑈∕𝑑 = {𝑑1, 𝑑2, … , 𝑑𝑠}, the fuzzy neighborhood positive region of {𝑑} under 𝑁 , as well as its dependency degree, 

are represented as

𝑃𝑂𝑆𝛼
𝑁
(𝑑) =

𝑠⋃
𝑗=1
𝑅𝛼
𝐹𝑁

(𝑑𝑗 ),

Υ𝛼
𝑁
(𝑑) =

|||𝑃𝑂𝑆𝛼𝑁 (𝑑)||||𝑈 | .

(4)

2.2. Neighborhood multi-granulation rough set

To overcome the limitation of classical rough set theory in handling numerical data, we utilize the Euclidean distance to describe 
the neighborhood relation defined on 𝑁 ⊆𝐴𝑇 for any two objects in the domain 𝑈 . When the distance between two objects is less 
than or equal to the given neighborhood radius 𝛿, they are regarded as identical. [𝑥]𝛿

𝑁
represents the neighborhood class of 𝑥 on 𝑁

and is denoted as

[𝑥]𝛿
𝑁
=
{
𝑦|Δ𝑁 (𝑥, 𝑦) ≤ 𝛿, 𝑦 ∈𝑈}

(5)

Definition 2. Let  = (𝑈,𝐴𝑇 ∪ {𝑑}, 𝑔) be a fuzzy decision system. Suppose 𝑋 ⊆𝑈 , 𝑁 ⊆𝐴𝑇 and 𝑁 = {𝑁1, 𝑁2, … , 𝑁𝑟}. Then the 
optimistic neighborhood multigranulation lower and upper approximations of X with respect to 𝑁𝑖 be respectively represented as

𝑂𝑀∑𝑟
𝑖=1𝑅𝑁𝑖

(𝑋) =

{
𝑥 ∈𝑈 | 𝑟⋁

𝑖=1

(
[𝑥]𝛿

𝑁𝑖
⊆ 𝑋

)}
,

𝑂𝑀∑𝑟
𝑖=1𝑅𝑁𝑖

(𝑋) =

{
𝑥 ∈𝑈 | 𝑟⋀

𝑖=1

(
[𝑥]𝛿

𝑁𝑖
∩𝑋 ≠ ∅

)}
,

(6)

where “
⋁

” denotes or, “
⋀

” denotes and, 𝛿𝑅𝑁𝑖 represents the neighborhood class of 𝑥 on 𝑁𝑖 ⊆ 𝑁 , then the pair 
(
𝑂𝑀∑𝑟

𝑖=1𝑅𝑁𝑖
(𝑋),)
4

𝑂𝑀∑𝑟
𝑖=1𝑅𝑁𝑖

(𝑋) is called optimistic multigranulation neighborhood rough set (OMNRS).
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Assuming 𝑑𝑗 ∈ 𝑈∕𝑑 = {𝑑1, 𝑑2, … , 𝑑𝑠} in OMNRS, the optimistic positive region of {𝑑} relative to 𝑁 and its dependency degree 
can be respectively represented as

𝑃𝑂𝑆𝑂
𝑁
(𝑑) =

𝑠⋃
𝑗=1
𝑂𝑀∑𝑟

𝑖=1𝑅𝑁𝑖
(𝑑𝑗 ),

Υ𝑂
𝑁
(𝑑) =

|||𝑃𝑂𝑆𝑂𝐷 (𝑑)||||𝑈 | ,

(7)

where 𝑁𝑖 ⊆ 𝐴, 𝑖 = 1, 2, … , 𝑟.

Definition 3. Let  = (𝑈,𝐴𝑇 ∪ {𝑑}, 𝑔) be a fuzzy decision system. Suppose 𝑋 ⊆𝑈 , 𝑁 ⊆𝐴𝑇 and 𝑁 = {𝑁1, 𝑁2, … , 𝑁𝑟}. Then the 
pessimistic neighborhood multigranulation lower and upper approximations of X with respect to 𝑁𝑖 be respectively represented as

𝑃𝑀∑𝑟
𝑖=1𝑅𝑁𝑖

(𝑋) =

{
𝑥 ∈𝑈 | 𝑟⋀

𝑖=1

(
[𝑥]𝛿

𝑁𝑖
⊆ 𝑋

)}
,

𝑃𝑀∑𝑟
𝑖=1𝑅𝑁𝑖

(𝑋) =

{
𝑥 ∈𝑈 | 𝑟⋁

𝑖=1

(
[𝑥]𝛿

𝑁𝑖
∩𝑋 ≠ ∅

)}
.

(8)

The pair 
(
𝑃𝑀∑𝑟

𝑖=1𝑅𝑁𝑖
(𝑋), 𝑃𝑀∑𝑟

𝑖=1𝑅𝑁𝑖
(𝑋)

)
is called pessimistic multigranulation neighborhood rough set (PMNRS).

Assuming 𝑑𝑗 ∈ 𝑈∕𝑑 = {𝑑1, 𝑑2, … , 𝑑𝑠} in PMNRS, the pessimistic positive region of {𝑑} relative to 𝑁 and its dependency degree 
can be respectively represented as

𝑃𝑂𝑆𝑃
𝑁
(𝑑) =

𝑠⋃
𝑗=1
𝑃𝑀∑𝑟

𝑖=1𝑅𝑁𝑖
(𝑑𝑗 ),

Υ𝑃
𝑁
(𝑑) =

|||𝑃𝑂𝑆𝑃𝑁 (𝑑)||||𝑈 | ,

(9)

where 𝑁𝑖 ⊆𝑁 , 𝑖 = 1, 2, … , 𝑟.

2.3. Generalized multigranulation rough set

An object 𝑥 ∈ 𝑈 is considered a pessimistic lower approximation element only if its equivalence class is a subset of the target 
concept’s equivalence class in all granularities; and if the equivalence class of 𝑥 is contained in only one granularity, it can be 
considered a member of the optimistic lower approximation. From the above perspective, pessimism is too strict, and optimistic 
ones are too lenient, making them both unsuitable for practical applications. Therefore, scholars have proposed the generalized 
multi-granulation rough set model, which effectively addresses this problem.

Let  = (𝑈,𝐴𝑇 ∪ {𝑑}, 𝑔) be a fuzzy decision system, 𝐴 ⊆𝐴𝑇 , 𝐴𝑖 = {𝐴1, 𝐴2, … , 𝐴𝑟}, let 𝑃
𝑅𝐴𝑖
𝑋

(𝑥) be the support characteristic 
function of 𝑥 describing the equivalence class [𝑥]𝐴𝑖 and the inclusion relationship of 𝑋, which is represented as

𝑃
𝑅𝐴𝑖
𝑋

(𝑥) =

{
1, [𝑥]𝐴𝑖 ⊆ 𝑋
0, otherwise

(10)

Definition 4. For a support characteristic function 𝑃
𝑅𝐴𝑖
𝑋

(𝑥) (𝑖 = 1, 2, … , 𝑟), and the threshold 𝛽 ∈ (0.5, 1], then the generalize multi-

granulation lower and upper approximations are represented as

𝐺𝑀
𝛽∑𝑟
𝑖=1𝑅𝐴𝑖

(𝑋) =
⎧⎪⎨⎪⎩𝑥 ∈𝑈 |∑𝑟

𝑖=1 𝑃
𝑅𝐴𝑖
𝑋

(𝑥)
𝑟

≥ 𝛽

⎫⎪⎬⎪⎭ ,

𝐺𝑀
𝛽∑𝑟
𝑖=1𝑅𝐴𝑖

(𝑋) =
⎧⎪⎨⎪⎩𝑥 ∈𝑈 |∑𝑟

𝑖=1

(
1 − 𝑃

𝑅𝐴𝑖
∼𝑋 (𝑥)

)
𝑟

≥ 1 − 𝛽
⎫⎪⎬⎪⎭ ,

(11)

where 𝛽 is the ratio between the value of the support function and 𝑟, as 𝛽 increases, our requirements become stricter. Then the pair (
𝛽 𝛽

)

5

𝐺𝑀∑𝑟
𝑖=1𝑅𝐴𝑖

(𝑋),𝐺𝑀∑𝑟
𝑖=1𝑅𝐴𝑖

(𝑋) is called generalize multigranulation rough set (GMRS).
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The generalized multigranulation positive region of {𝑑} relative to 𝐴 and its dependency degree can be respectively represented 
as

𝑃𝑂𝑆
𝐺,𝛽

𝐴
(𝑑) =

𝑠⋃
𝑗=1
𝐺𝑀

𝛽∑𝑟
𝑖=1𝑅𝐴𝑖

(𝑑𝑗 ),

Υ
𝐺,𝛽

𝐴
(𝑑) =

|||𝑃𝑂𝑆𝐺,𝛽𝐴 (𝑑)||||𝑈 | ,

(12)

where 𝐴𝑖 ⊆ 𝐴, 𝑖 = 1, 2, … , 𝑟, 𝑑𝑗 ∈𝑈∕𝑑 and 𝑗 = 1, 2, … , 𝑠.

3. Uncertainty measures of the GMFNRS model based on fuzzy neighborhood entropy

Optimistic multi-Granulation rough set and pessimistic multi-Granulation rough set were proposed by Xu et al. [32]. However, 
the optimistic and pessimistic scenarios are not applicable in real-life situations. Thus, we propose the generalized multi-granulation 
fuzzy neighborhood rough set, which offers a higher degree of flexibility by incorporating a threshold. This allows us to strike a 
balance between optimism and pessimism, making the model more adaptable and applicable in real-world scenarios.

3.1. GMFNRS model

Given  = (𝑈,𝐴𝑇 ∪ {𝑑}, 𝑔), 𝑁 ⊆𝐴𝑇 , 𝑁𝑖 = {𝑁1, 𝑁2, … , 𝑁𝑟}, let 𝑃
𝑅𝑁𝑖
𝑋

(𝑥) be the support characteristic function of 𝑥 describing 
the fuzzy neighborhood granules 𝛼𝑁𝑖 (𝑥) and the inclusion relationship of 𝑋, which is represented as

𝑃
𝑅𝑁𝑖
𝑋

(𝑥) =

{
1, 𝛼𝑁𝑖 (𝑥) ⊆𝑋
0, otherwise

(13)

Definition 5. For a threshold 𝛽 ∈ (0.5, 1], the generalize multigranulation fuzzy neighborhood lower and upper approximations are 
represented as

𝐺𝑀
𝛼,𝛽∑𝑟
𝑖=1𝑅𝑁𝑖

(𝑋) =
⎧⎪⎨⎪⎩𝑥 ∈𝑈 |∑𝑟

𝑖=1 𝑃
𝑅𝑁𝑖
𝑋

(𝑥)
𝑟

≥ 𝛽

⎫⎪⎬⎪⎭ , (14)

𝐺𝑀
𝛼,𝛽∑𝑟
𝑖=1𝑅𝑁𝑖

(𝑋) =
⎧⎪⎨⎪⎩𝑥 ∈𝑈 |∑𝑟

𝑖=1

(
1 − 𝑃

𝑅𝑁𝑖
∼𝑋 (𝑥)

)
𝑟

≥ 1 − 𝛽
⎫⎪⎬⎪⎭ . (15)

The pair 

(
𝐺𝑀

𝛼,𝛽∑𝑟
𝑖=1𝑅𝑁𝑖

(𝑋),𝐺𝑀𝛼,𝛽∑𝑟
𝑖=1𝑅𝑁𝑖

(𝑋)

)
is called generalize multigranulation fuzzy neighborhood rough set (GMFNRS).

And the generalized multigranulation fuzzy neighborhood positive region of {𝑑} relative to 𝑁 and its dependency degree can be 
respectively represented as

𝑃𝑂𝑆
𝐺,𝛽

𝑁
(𝑑) =

𝑠⋃
𝑗=1
𝐺𝑀

𝛼,𝛽∑𝑟
𝑖=1𝑅𝑁𝑖

(𝑑𝑗 ), (16)

Υ
𝐺,𝛽

𝑁
(𝑑) =

|||𝑃𝑂𝑆𝐺,𝛽𝑁 (𝑑)||||𝑈 | , (17)

where 𝑁𝑖 ⊆𝑁 , 𝑖 = 1, 2, … , 𝑟, 𝑑𝑗 ∈𝑈∕𝑑 and 𝑗 = 1, 2, … , 𝑠.

Proposition 1. Given  = (𝑈,𝐴𝑇 ∪ {𝑑}, 𝑔) with any 𝑋 ⊆𝑈 , 𝑃 ⊆𝑄 ⊆𝐴𝑇 , the following properties hold:

1) 𝑃𝑂𝑆
𝐺,𝛽

𝑃
(𝑑) ⊆ 𝑃𝑂𝑆𝐺,𝛽

𝑄
(𝑑).

2) Υ
𝐺,𝛽

𝑃
(𝑑) ≤ Υ

𝐺,𝛽

𝑄
(𝑑).

Proof. 1) For any 𝑃 ⊆ 𝑄 and 𝑥, 𝑦 ∈ 𝑈 , suppose that 𝑃𝑖 ⊆ 𝑃 ⊆ 𝐴𝑇 , 𝑄𝑖 ⊆ 𝑄 ⊆ 𝐴𝑇 , 𝑖 = 1, 2, … , |𝑃 | and 𝑗 = 1, 2, … , |𝑄|, according 
to the concept of fuzzy similarity relation, it follows that 𝑅𝑃 ⊆ 𝑅𝑄, and 𝛼𝑃 (𝑥) ⊆ 𝛼𝑄(𝑥) holds. For any 𝑋 ⊆ 𝑈 , from Eq. (14), 
𝐺𝑀

𝛼,𝛽∑𝑟
𝑖=1𝑅𝑃𝑖

(𝑋) ⊆𝐺𝑀𝛼,𝛽∑𝑟
𝑖=1𝑅𝑄𝑖

(𝑋) can be obtained. Therefore, it follows that 𝑃𝑂𝑆𝐺,𝛽
𝑃

(𝑑) ⊆ 𝑃𝑂𝑆𝐺,𝛽
𝑄

(𝑑).
6

2) Clearly, according to 1), it satisfies Υ𝐺,𝛽
𝑃

(𝑑) ≤ Υ
𝐺,𝛽

𝑄
(𝑑).
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Table 1

A fuzzy decision system.

𝑈 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑑

𝑥1 0.58 0.13 1 0.78 0.16 0.51 1

𝑥2 0.45 0.4 0.73 0.57 0 0.82 1

𝑥3 0.4 0.33 0.8 0.63 0.1 0.77 1

𝑥4 0.36 0.48 0.45 0.59 0.24 0.2 2

𝑥5 0.85 0.39 0.51 0.29 0.02 0.15 2

𝑥6 0.55 0.63 0.42 0.75 0.88 0.07 2

Example 1. A fuzzy information system with decisions is illustrated in Table 1, where 𝛼 = 0.3. The domain of we studied is 𝑈 =
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}, and N consists of six conditional attributes {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6}, with 𝑑 being the decision attribute. We 
have 𝑈∕𝑑 = {𝑑1, 𝑑2}, where 𝑑1 = {𝑥1, 𝑥2, 𝑥3} and 𝑑2 = {𝑥4, 𝑥5, 𝑥6}. To facilitate subsequent calculations, we divide the conditional 
attributes into granules, with every two attributes forming one granule, that is, 𝑁1 = {𝑎1, 𝑎2}, 𝑁2 = {𝑎3, 𝑎4} and 𝑁3 = {𝑎5, 𝑎6}.

To obtain the approximation in the generalized multi-granularity fuzzy neighborhood, we first calculate the fuzzy neighborhood 
similarity matrix between any two objects for each attribute, and then derive the fuzzy neighborhood granule matrix for each 
granularity. If the calculated fuzzy neighborhood similarity is 0, it indicates that there is no fuzzy similarity relationship between 
these two objects. In other words, one object is not in the fuzzy neighborhood class of the other.

According to 𝑁1 = {𝑎1, 𝑎2}, and the fuzzy neighborhood similarity matrices [𝑥]𝑎1 (𝑦) and [𝑥]𝑎2 (𝑦) for attributes 𝑎1 and 𝑎2, the 
fuzzy neighborhood granule matrix 𝑀1 is:

[𝑥]𝑎1 (𝑦) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0.87 0.82 0.78 0.73 0.97
0.87 1 0.95 0.91 0 0.9
0.82 0.95 1 0.96 0 0.85
0.78 0.91 0.96 1 0 0.81
0.73 0 0 0 1 0.7
0.97 0.9 0.85 0.81 0.7 1

⎤⎥⎥⎥⎥⎥⎥⎦
, [𝑥]𝑎2 (𝑦) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0.73 0.8 0 0.74 0
0.73 1 0.93 0.92 0.99 0.77
0.8 0.93 1 0.85 0.94 0.7
0 0.92 0.85 1 0.91 0.85

0.74 0.99 0.94 0.91 1 0.76
0 0.77 0.7 0.85 0.76 1

⎤⎥⎥⎥⎥⎥⎥⎦
.

𝑀1 = min
(
[𝑥]𝑎1 (𝑦), [𝑥]𝑎2 (𝑦)

)
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0.73 0.8 0 0.73 0
0.73 1 0.93 0.91 0 0.77
0.8 0.93 1 0.85 0 0.7
0 0.91 0.85 1 0 0.81

0.73 0 0 0 1 0.7
0 0.77 0.7 0.81 0.7 1

⎤⎥⎥⎥⎥⎥⎥⎦
.

Then, the fuzzy neighborhood classes on 𝑁1 are:

𝛼𝑁1
(𝑥1) = {𝑥1, 𝑥2, 𝑥3, 𝑥5}, 𝛼𝑁1

(𝑥2) = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥6}, 𝛼𝑁1
(𝑥3) = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥6},

𝛼𝑁1
(𝑥4) = {𝑥2, 𝑥3, 𝑥4, 𝑥6}, 𝛼𝑁1

(𝑥5) = {𝑥1, 𝑥5, 𝑥6}, 𝛼𝑁1
(𝑥6) = {𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}.

According to 𝑁2 = {𝑎3, 𝑎4}, the fuzzy neighborhood granule matrix 𝑀2 is:

𝑀2 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0.73 0.8 0 0 0
0.73 1 0.93 0.72 0.72 0
0.8 0.93 1 0 0 0
0 0.72 0 1 0.7 0.84
0 0.72 0 0.7 1 0
0 0 0 0.84 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
.

Similarly, the fuzzy neighborhood classes on 𝑁2 are:

𝛼𝑁2
(𝑥1) = {𝑥1, 𝑥2, 𝑥3}, 𝛼𝑁2

(𝑥2) = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}, 𝛼𝑁2
(𝑥3) = {𝑥1, 𝑥2, 𝑥3},

𝛼𝑁2
(𝑥4) = {𝑥2, 𝑥4, 𝑥5, 𝑥6}, 𝛼𝑁2

(𝑥5) = {𝑥2, 𝑥4, 𝑥5}, 𝛼𝑁2
(𝑥6) = {𝑥4, 𝑥6}.

According to 𝑁3 = {𝑎5, 𝑎6}, the fuzzy neighborhood granule matrix 𝑀3 is:

𝑀3 =

⎡⎢⎢⎢⎢⎢
1 0 0.74 0 0 0
0 1 0.9 0 0 0

0.74 0.9 1 0 0 0
0 0 0 1 0.78 0
0 0 0 0.78 1 0

⎤⎥⎥⎥⎥⎥ .
7

⎢⎣ 0 0 0 0 0 1 ⎥⎦
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We obtain the fuzzy neighborhood classes on 𝑁3 are:

𝛼𝑁3
(𝑥1) = {𝑥1, 𝑥3}, 𝛼𝑁3

(𝑥2) = {𝑥2, 𝑥3}, 𝛼𝑁3
(𝑥3) = {𝑥1, 𝑥2, 𝑥3},

𝛼𝑁3
(𝑥4) = {𝑥4, 𝑥5}, 𝛼𝑁3

(𝑥5) = {𝑥4, 𝑥5}, 𝛼𝑁3
(𝑥6) = {𝑥6}.

Assuming 𝛽 = 0.6, we can obtain that 𝐺𝑀𝛼,𝛽∑𝑟
𝑖=1𝑅𝑁𝑖

(𝑑1) = {𝑥1, 𝑥3}, 𝐺𝑀𝛼,𝛽∑𝑟
𝑖=1𝑅𝑁𝑖

(𝑑2) = {𝑥6}.

3.2. Fuzzy neighborhood composite entropy

The rough set model is employed to quantify the uncertainty arising from the disparity between lower approximation and upper 
approximation. This measure of uncertainty solely captures the uncertainty associated with the features present in the attribute 
subset. Therefore, in order to enhance decision analysis, we propose a joint entropy based on the generalized multigranulation fuzzy 
neighborhood rough set.

Given  = (𝑈,𝐴𝑇 ∪ {𝑑}, 𝑔), 𝑈 =
{
𝑥1, 𝑥2,… , 𝑥𝑛

}
, 𝑁 ⊆𝐴𝑇 , where 𝑈∕𝑑 = {𝑑1, 𝑑2, … , 𝑑𝑠}. The fuzzy decision induced by {𝑑}

for the samples can be represented as

𝐹𝐷 = {𝐹𝐷1, 𝐹𝐷2,… , 𝐹𝐷𝑠} (18)

where 𝐹𝐷𝑗 = {𝐹𝐷𝑗 (𝑥1), ̃𝐹𝐷𝑗 (𝑥2), … , ̃𝐹𝐷𝑗 (𝑥𝑛)} represents the fuzzy neighborhood decision equivalence class of objects partitioned 
by {𝑑}. When 𝑘 = 1, 2, … , 𝑛, 𝑖 = 1, 2, … , 𝑟, for any 𝑥, 𝑦 ∈ 𝑈 , 𝐹𝐷𝑗 (𝑥𝑘) represents the degree of membership of 𝑥𝑘 ∈ 𝑈 to 𝐹𝐷𝑗 on 𝑁
and represented as

𝐹𝐷𝑗 (𝑥𝑘) =
|||[𝑥𝑘]𝑁 (𝑦) ∩ 𝑑𝑗

||||||[𝑥𝑘]𝑁 (𝑦)||| (19)

where 
[
𝑥𝑘

]
𝑁
(𝑦) is the fuzzy neighborhood similarity degree of objects on 𝑁 , 𝑑𝑗 ∈𝑈∕𝑑, and 𝑗 = 1, 2, … , 𝑠.

Definition 6. Let 𝛼𝑁 (𝑥) be the fuzzy neighborhood granule of object 𝑥, the fuzzy neighborhood entropy of 𝑁 and the fuzzy neigh-

borhood joint entropy regarding 𝑁 and {𝑑} are respectively represented as

𝐹𝑁𝐸(𝑁) = −
𝑛∑
𝑘=1

||𝛼𝑁 (𝑥𝑘)|||𝑈 | log2
||𝛼𝑁 (𝑥𝑘)|||𝑈 | ,

𝐹𝑁𝐸(𝑁,𝑑) = −
𝑠∑
𝑗=1

𝑛∑
𝑘=1

|||𝛼𝑁 (𝑥𝑘) ∩ 𝐹𝐷𝑗 ||||𝑈 | log2

|||𝛼𝑁 (𝑥𝑘) ∩ 𝐹𝐷𝑗 ||||𝑈 |
(20)

where 𝑥𝑘 ∈ 𝑈 , 𝑘 = {1, 2, … , 𝑛}, 𝐹𝐷𝑗 represents the fuzzy neighborhood decision equivalence class of objects, 𝑗 = {1, 2, … , 𝑠}, and |||𝛼𝑁 (𝑥𝑘) ∩ 𝐹𝐷𝑗 ||| denotes the count of objects in 𝛼𝑁 (𝑥𝑘) with a membership degree is not greater than 𝐹𝐷𝑗 .

Definition 7. Given  = (𝑈,𝐴𝑇 ∪ {𝑑}, 𝑔), 𝑈 =
{
𝑥1, 𝑥2,… , 𝑥𝑛

}
, 𝑁 ⊆ 𝐴𝑇 , 𝑁𝑖 = {𝑁1, 𝑁2, … , 𝑁𝑟} and 𝑈∕𝑑 = {𝑑1, 𝑑2, … , 𝑑𝑠}, the 

fuzzy neighborhood generalized composite entropy (FNGCE) regarding {𝑑} in relation to 𝑁𝑖 is represented as

𝐹𝑁𝐺𝐶𝐸(𝑁,𝑑) =
(
1 −Υ

𝐺,𝛽

𝑁
(𝑑)

)⎡⎢⎢⎣−
𝑟∑
𝑖=1

𝑠∑
𝑗=1

𝑛∑
𝑘=1

|||𝛼𝑁𝑖 (𝑥𝑘) ∩ 𝐹𝐷𝑗 ||||𝑈 | log2

|||𝛼𝑁𝑖 (𝑥𝑘) ∩ 𝐹𝐷𝑗 ||||𝑈 | ⎤⎥⎥⎦ (21)

where Υ𝐺,𝛽
𝑁

(𝑑) denotes the generalized multigranulation fuzzy neighborhood dependency degree of {𝑑} on 𝑁𝑖, 𝑖 = {1, 2, … , 𝑟}, 
𝛼𝑁𝑖 (𝑥𝑘) represents the fuzzy neighborhood granules of 𝑥𝑘 ∈ 𝑈 under 𝑁𝑖, and |||𝛼𝑁𝑖 (𝑥𝑘) ∩ 𝐹𝐷𝑗 ||| denotes the count of objects in 
𝛼𝑁𝑖 (𝑥𝑘) with a membership degree is not greater than 𝐹𝐷𝑗 , 𝑗 = {1, 2, … , 𝑠}.

Proposition 2. Given  = (𝑈,𝐴𝑇 ∪ {𝑑}, 𝑔) with any 𝑁𝑖 ⊆ 𝑁 ⊆ 𝐴𝑇 , 𝑁𝑖 = {𝑁1, 𝑁2, … , 𝑁𝑟}, then one has 𝐹𝑁𝐺𝐶𝐸(𝑁, 𝑑) =∑𝑟
𝑖=1

(
1 −Υ

𝐺,𝛽

𝑁
(𝑑)

)
× 𝐹𝑁𝐸(𝑁𝑖, 𝑑) ≥ 0.

Proof. According to the definition of fuzzy neighborhood decision classes, it can be inferred 
|||𝛼𝑁𝑖 (𝑥𝑘)∩𝐹𝐷𝑗 ||||𝑈 | ∈ [0, 1] for all target 

decision, log2
|||𝛼𝑁𝑖 (𝑥𝑘)∩𝐹𝐷𝑗 ||||𝑈 | ≤ 0 for 𝑖 = {1, 2, … , 𝑟}. Furthermore, based on the definition of generalized multi-granularity fuzzy neigh-

borhood dependency, Υ𝐺,𝛽
𝑁

(𝑑) ≥ 0 holds, then 𝐹𝑁𝐺𝐶𝐸(𝑁, 𝑑) ≥ 0. □
8

Proposition 3. Given  = (𝑈,𝐴𝑇 ∪ {𝑑}, 𝑔) with any 𝑋 ⊆𝑈 , 𝑃 ⊆𝑄 ⊆𝐴𝑇 , then 𝐹𝑁𝐺𝐶𝐸(𝑃 , 𝑑) ≤ 𝐹𝑁𝐺𝐶𝐸(𝑄, 𝑑).
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Algorithm 1 Feature selection algorithm based on fuzzy neighborhood generalized composite entropy (FSAFNGCE).

Input:

1. A fuzzy decision system  = (𝑈, 𝐴𝑇 ∪ {𝑑}, 𝑔), where 𝑈∕𝑑 = {𝑑1, 𝑑2, … , 𝑑𝑠};

2. The radius of fuzzy neighborhood 𝛼, the threshold 𝛽 ∈ (0.5, 1].
Output: An optimal attribute subset 𝐶 .

1: Initialize 𝐶 ← ∅, 𝐵← ∅.

2: Compute 𝐹𝑁𝐺𝐶𝐸(𝐴𝑇 , 𝑑) of feature set 𝐴𝑇 .

3: Compute 𝐹𝑁𝐺𝐶𝐸(𝐴𝑇 −𝑁𝑖, 𝑑) for 𝑁𝑖 ⊆ 𝐴𝑇 .

4: for 𝑖 = 1 to |𝐴𝑇 | do

5: Compute 𝑆𝐼𝑀𝑖𝑛(𝑁𝑖, 𝐴𝑇 , 𝑑).
6: if 𝑆𝐼𝑀𝑖𝑛(𝑁𝑖, 𝐴𝑇 , 𝑑) > 0 then

7: 𝐶 ← 𝐶 ∪𝑁𝑖 .
8: end if

9: end for

10: Let 𝐵←𝐴𝑇 −𝐶 .

11: while 𝐹𝑁𝐺𝐶𝐸(𝐶, 𝑑) ≠ 𝐹𝑁𝐺𝐶𝐸(𝐴𝑇 , 𝑑) do

12: for 𝑗 = 1 to |𝐵| do

13: Compute 𝑆𝐼𝑀𝑜𝑢𝑡(𝑁𝑗, 𝐶, 𝑑).
14: end for

15: Choose 𝑁𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑁𝑗⊆𝐵 𝑆𝐼𝑀𝑜𝑢𝑡(𝑁𝑗,𝐶,𝑑).
16: 𝐶 ← 𝐶 ∪𝑁𝑗 and 𝐵←𝐵 −𝑁𝑗 .
17: Compute 𝐹𝑁𝐺𝐶𝐸(𝐶, 𝑑).
18: end while

19: for 𝑘 = 1 to |𝐶| do

20: if 𝐹𝑁𝐺𝐶𝐸(𝐶 −𝑁𝑘, 𝑑) = 𝐹𝑁𝐺𝐶𝐸(𝐶, 𝑑) then

21: 𝐶 ← 𝐶 −𝑁𝑘
22: end if

23: end for

24: return The optimal attribute subset 𝐶 .

Proof. For any 𝑃 ⊆𝑄 ⊆𝐴𝑇 , 𝑋 ⊆𝑈 , 𝑥 ∈𝑈 , according to Proposition 1, Υ𝐺,𝛽
𝑃

(𝑑) ≤ Υ
𝐺,𝛽

𝑄
(𝑑). From Proposition 2 in [21], it follows that 

𝐹𝑁𝐸(𝑃 , 𝑑) ≤ 𝐹𝑁𝐸(𝑄, 𝑑). When 𝛼𝑃 (𝑥) = 𝛼𝑄(𝑥), one has Υ𝐺,𝛽
𝑃

(𝑑) = Υ
𝐺,𝛽

𝑄
(𝑑) and 𝐹𝑁𝐸(𝑃 , 𝑑) = 𝐹𝑁𝐸(𝑄, 𝑑). Thus, 𝐹𝑁𝐺𝐶𝐸(𝑃 , 𝑑) ≤

𝐹𝑁𝐺𝐶𝐸(𝑄, 𝑑) holds. □

4. Feature selection algorithm based on fuzzy neighborhood generalized composite entropy

In the fuzzy neighborhood generalized composite entropy, the degree of dependence can be adjusted by controlling the threshold 
value 𝛽, thereby determining the level of strictness required and allowing the rough set model to be more flexible and adaptable to 
real-world situations.

Definition 8. Let  = (𝑈,𝐴𝑇 ∪ {𝑑}, 𝑔), 𝑁 ′ ⊆ 𝑁 ⊆ 𝐴𝑇 , for ∀𝑁𝑖 ⊆ 𝑁 ′, 𝑖 = {1, 2, … , 𝑟}, when 𝐹𝑁𝐺𝐶𝐸(𝑁 ′, 𝑑) = 𝐹𝑁𝐺𝐶𝐸(𝑁, 𝑑)
and 𝐹𝑁𝐺𝐶𝐸(𝑁 ′, 𝑑) ≠ 𝐹𝑁𝐺𝐶𝐸(𝑁 −𝑁𝑖, 𝑑), then 𝑁𝑖 represents the reduction of 𝑁 with respect to {𝑑}.

According to Definition 8, we ensure the effectiveness of the reduction. Firstly, we guarantee that the discernibility of the re-

maining feature subsets after reduction is the same as that of the original feature set. Secondly, the remaining feature subsets after 
reduction are all essential and cannot be omitted. Next, we define two attribute importance measures to assist us in selecting the 
necessary attribute subsets.

Let  = (𝑈,𝐴𝑇 ∪ {𝑑}, 𝑔) be a fuzzy decision system, 𝑁 ′ ⊆𝑁 ⊆𝐴𝑇 , 𝑁𝑖 = {𝑁1, 𝑁2, … , 𝑁𝑟}, 𝑖 = {1, 2, … , 𝑟}, for ∀𝑁𝑖 ⊆𝑁 ′, the 
FNGCE-based inner significance measure of attribute subset 𝑁𝑖 in relation to 𝑁 is represented as

𝑆𝐼𝑀𝑖𝑛(𝑁𝑖,𝑁,𝑑) = 𝐹𝑁𝐺𝐶𝐸(𝑁 −𝑁𝑖,𝑑) − 𝐹𝑁𝐺𝐶𝐸(𝑁,𝑑) (22)

If the value of 𝑆𝐼𝑀𝑖𝑛(𝑁𝑖, 𝑁, 𝑑) is higher, it indicates that the attribute subset 𝑁𝑖 is more important compared to 𝑁 . Hence, we 
choose the attribute subset of 𝑆𝐼𝑀𝑖𝑛(𝑁𝑖, 𝑁, 𝑑) > 0 as the essential feature subset from the attribute set.

And for ∀𝑁𝑖 ⊆𝑁 −𝑁 ′, the FNGCE-based outer significance measure of attribute subset 𝑁𝑖 in relation to 𝑁 is represented as

𝑆𝐼𝑀𝑜𝑢𝑡(𝑁𝑖,𝑁,𝑑) = 𝐹𝑁𝐺𝐶𝐸(𝑁,𝑑) − 𝐹𝑁𝐺𝐶𝐸(𝑁 ∪𝑁𝑖,𝑑) (23)

The outer importance plays a crucial role in the selection of feature subsets by identifying significant features that impact the 
decision outcome while eliminating redundant features with negligible effects. We iteratively choose the most optimal feature subsets 
that meet the criteria of 𝑎𝑟𝑔𝑚𝑎𝑥𝑁𝑖⊆𝑁 𝑆𝐼𝑀

𝑜𝑢𝑡(𝑁𝑖,𝑁,𝑑), ultimately obtaining the reduction.

Algorithm 1 presents the Feature selection algorithm based on fuzzy neighborhood generalized composite entropy (FSAFNGCE), 
designed on the basis of 𝑆𝐼𝑀𝑖𝑛 and 𝑆𝐼𝑀𝑜𝑢𝑡. The time complexity for calculating the FNGCE of the original conditional attribute set 
in step 3 is approximately (|𝐴𝑇 |2). The first loop, in steps 5–10, selects the attribute subset belonging to the core from the original 
conditional attribute set based on inner significance measures, and the second loop, in steps 12–19, sequentially adds the attributes 
9

with the highest external importance measures to the necessary feature subset, the time complexity of these two loops is (|𝐴𝑇 |3)
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Fig. 2. The process of selecting optimal subsets based on 𝐹𝑁𝐺𝐶𝐸.

and (|𝐵|2), respectively. The time complexity involved in obtaining the optimal reduction subset by eliminating redundant feature 
subsets in steps 20–24 is (|𝐶|2) (Fig. 2).

5. Experimental decision and analysis

In this section, we have designed a series of experiments to validate the efficiency and effectiveness of the proposed algorithm 
(FSAFNGCE) through the following three aspects: (1) the classification accuracy performance of different feature selection algo-

rithms under different classifiers; (2) time comparison for selection algorithm reduction; (3) the impact of different combinations of 
parameters 𝛼 and 𝛽 on the algorithm reduction results.

5.1. Experimental design
10

Four feature selection algorithms were chosen as comparative methods, and they are detailed below.



Fuzzy Sets and Systems 486 (2024) 108971X. Zhang and W. Zhao

Table 2

Dataset description.

Nos. Datasets Abbreviation Samples Features Class

1 Wine Wine 178 13 3

2 Seeds Seeds 210 7 3

3 Wisconsin diagnostic breast cancer Wdbc 569 31 2

4 Hill with noise Hill 606 100 2

5 Breast cancer Breast 699 10 2

6 Wine quality-red Wine-red 1599 11 6

7 Cardiotocography Card 2126 20 3

8 Statlog (Image Segmentation) Image 2310 19 7

9 Spambase Spambase 4601 57 2

10 Page-blocks Page 5473 10 5

11 Musk (Version 2) Musk2 6598 165 2

12 Electrical Grid Stability Simulated Data EGSS 10000 13 2

13 DLBCL-Harvard DLBCL 77 7130 2

14 LungCancer-BrighamAndWomenHospital LungCancer-1 181 12533 2

15 LungCancer-DanaFarberCancerInstitute LungCancer-2 203 12600 5

(1) Infinite feature selection (Inf-UFS) [18]: The feature subset is treated as paths in the graph in the filter feature selection algorithm, 
effectively addressing issues of relevance and redundancy.

(2) The interval-valued feature selection (IGUFS) [31]: A graph-theory-based feature selection method was employed, and its opti-

mization was achieved using the properties of matrix power series, resulting in a significant reduction in time complexity.

(3) Multigranularity entropy-based feature selection [38]: Extended the classical entropy model to a multigranularity entropy model 
and proposed two MGE models.

Moreover, all experiments were performed on PyCharm 2020.3.5 (Community Edition) with the following configuration. Win-

dows 10 operating system, with the processor being Intel(R) Core(TM) i5-8250U @1.60 GHz 1.80 GHz, and 8.0 GB memory. We 
downloaded 15 datasets from the UCI and DBC databases, which are summarized in Table 2. To capture objects from multiple per-

spectives, simulating a multi-granularity context, in the following experiments, we formed feature subsets in the low-dimensional 
UCI datasets by combining every two features and in the three high-dimensional datasets by combining every four features. When 
the features cannot be evenly divided, the remaining features are grouped into a feature subset.

To evaluate our algorithm, as well as the four comparative algorithms and the classification performance of the original data, using 
three classification methods, including decision trees (DT), k-nearest neighbors (KNN), and support vector machines (SVM). During 
the classification experiments, we employed a ten-fold cross-validation approach for assessment. Additionally, provide the feature 
selection times for the five algorithms, and compare and analyze them. Furthermore, the impact of different parameter combinations 
on algorithm classification performance was explored. As two parameters, 𝛼 controls the proportion of fuzzy neighborhood classes, 
and 𝛽 determines the level of strictness in constructing composite entropy. Based on the definitions, varying parameter combinations 
can result in different classification outcomes. Thus, we set the range for parameter 𝛼 from 0 to 0.5 with a step size of 0.05. 
Simultaneously, 𝛽 was set to values between 0.6 and 0.9 with a step size of 0.1. Finally, a hypothesis test was conducted to delve 
deeper into the distinctions among our algorithm and the other algorithms.

5.2. Experimental analysis

The feature selection method, particularly under multi-granularity entropy, exhibited excessive time consumption on low-

dimensional datasets, with the longest running for over 2 million seconds, approximately equivalent to one month. As a result, 
experiments on three high-dimensional feature datasets were terminated.

Table 3, Table 4, and Table 5 present the classification accuracy for the original data as well as data reduced using the four 
comparative methods and our proposed algorithm, under the DT, SVM, and KNN classifiers. The bolded numbers within each row 
of the three tables indicate the highest classification accuracy achieved for the corresponding dataset across all six algorithms. We 
consider the first 12 low-dimensional feature datasets as normal datasets, while the remaining three datasets (DLBCL, LungCancer-1 
and lungCancer-2) have high-dimensional features. As seen in the tables, the classification accuracy of our proposed FSAFNGCE 
is notably higher than that of the other methods, except for two datasets with DT classifiers, four datasets with SVM classifiers, 
and four datasets with KNN classifiers. Especially with the DT classifier, our proposed FSAFNGCE method remains superior in 
classification accuracy compared to other algorithms, except for the Breast dataset where it is only 0.73% lower than the PMGE 
method, and the Image dataset where it is only 0.56% lower than the IGUFS algorithm. Furthermore, the FSAFNGCE algorithm 
demonstrates significantly improved and the highest average classification accuracy across the three classifiers on low-dimensional 
datasets. Moreover, for the three high-dimensional datasets, except for the DLBCL dataset under the SVM classifier, our algorithm 
outperforms the other two selection algorithms in terms of accuracy in SVM and in both DT and KNN classifiers. Table 6 provides a 
comparison of the reduction time for the five algorithms across seven datasets. The bold numbers in the table represent the minimum 
time spent by the algorithm proposed in this paper across seven datasets. While our algorithm is only faster than the other three 
11

on three of the low-dimensional datasets, it is still faster than OMGE and PMGE on the remaining nine datasets. Although the 
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Table 3

The accuracy of data reduction based on DT (%).

Datasets ODP Inf-UFS IGUFS OMGE PMGE FNGCE

Wine 89.38±8.37 83.17±8.57 90.42±6.69 91.47±8.21 89.90±5.43 92.22±6.67

Seeds 90.00±6.88 83.81±6.1 91.43±7.00 90.00±6.88 89.52±7.62 93.33±5.71

Wdbc 92.98±3.59 79.07±5.75 93.86±3.25 94.03±3.06 92.79±2.42 94.38±3.31

Hill 53.14±3.41 52.81±4.08 52.83±5.47 52.81±2.93 54.14±4.82 55.30±5.03

Breast 93.56±2.27 93.41±2.39 92.09±3.86 94.15±2.06 95.17±1.85 94.44±1.91

Wine-red 59.04±2.90 59.04±3.45 55.97±2.83 58.85±2.40 58.04±3.44 59.73±2.34

Card 83.16±3.14 62.70±3.27 77.71±2.87 66.74±3.33 81.42±3.22 83.16±2.34

Image 93.90±1.14 87.19±1.56 94.72±1.30 70.65±2.30 85.97±2.28 94.16±1.15

Spambase 91.81±0.59 85.24±1.70 88.02±0.80 87.94±1.59 65.46±2.30 92.07±0.54

Page 96.53±1.12 95.80±0.85 94.28±0.77 96.49±0.77 93.55±1.15 96.73±0.72

Musk2 96.51±0.60 46.74±2.15 38.13±3.91 18.52±2.30 36.95±3.53 96.80±0.60

EGSS 99.98±0.04 77.18±1.08 77.85±1.39 65.97±1.09 82.42±1.27 99.99±0.01

Average 86.67±2.84 75.51±3.41 78.94±3.35 73.97±3.08 77.11±3.28 87.69±2.53

DLBCL 76.61±16.28 79.46±15.07 78.39±12.33 – – 85.89±10.82

LungCancer-1 90.64±6.51 91.32±10.02 88.98±6.50 – – 93.98±6.17

LungCancer-2 87.14±6.36 85.71±4.08 63.02±5.71 – – 90.57±7.24

Table 4

The accuracy of data reduction based on SVM (%).

Datasets ODP Inf-UFS IGUFS OMGE PMGE FNGCE

Wine 94.97±4.62 86.54±8.33 97.75±3.72 96.63±3.71 94.93±4.62 98.33±2.55

Seeds 93.33±4.36 90.48±5.22 93.33±5.30 93.33±4.36 93.33±4.36 94.29±3.56

Wdbc 94.02±3.94 86.47±3.43 95.78±2.1 95.43±3.44 95.25±3.05 95.08±2.92

Hill 56.27±4.45 57.75±3.14 55.78±3.76 56.27±4.45 54.78±4.50 56.27±4.54

Breast 96.19±1.88 94.44±3.17 95.03±2.08 96.19±1.88 95.91±1.92 96.63±1.74

Wine-red 62.98±3.05 59.16±3.00 56.28±2.30 62.98±3.05 62.85±3.74 63.10±4.06

Card 90.92±1.87 65.05±3.64 84.05±1.72 75.40±3.13 90.83±1.70 92.19±2.20

Image 97.06±1.04 86.62±2.62 97.97±0.75 69.13±2.87 88.92±1.61 97.49±0.54

Spambase 93.61±0.86 86.33±1.55 86.09±1.16 89.02±0.85 64.23±2.41 93.94±0.87

Page 90.72±0.96 94.62±0.47 93.81±0.69 92.91±0.97 93.82±0.60 94.65±1.13

Musk2 91.75±1.78 41.59±1.56 40.42±1.73 24.16±1.98 40.48±1.86 91.77±1.80

EGSS 99.17±0.30 79.58±1.44 81.06±1.43 66.44±1.25 92.84±0.56 99.39±0.23

Average 88.42±2.43 77.39±3.13 81.45±2.23 76.49±2.66 80.68±2.58 89.43±2.18

DLBCL 73.93±11.72 88.21±13.49 96.07±6.02 – – 77.86±9.98

LungCancer-1 82.89±8.71 98.33±3.56 97.11±4.97 – – 98.89±3.70

LungCancer-2 88.19±3.81 92.14±4.91 67.93±6.58 – – 92.71±6.05

time is somewhat longer on these nine datasets compared to Inf-UFS and IGUFS, our algorithm outperforms these two in terms of 
classification accuracy across the three classifiers. Furthermore, on the three high-dimensional datasets, DLBCL and LungCancer-

1 exhibit significantly lower time complexity compared to Inf-UFS and IGUFS. Even though the time on LungCancer-2 is not the 
shortest, it is still competitive with these two algorithms. Moreover, the classification accuracy on all three classifiers, except for one 
dataset under SVM, surpasses that of Inf-UFS and IGUFS, with differences ranging from 0.56% to 29.07%. Across different classifiers 
and datasets, it is evident that our proposed algorithm excels at selecting essential features, resulting in a substantial enhancement 
in classification accuracy, as indicated by the data presented in Tables 3, 4, and 5. It consistently demonstrates strong classification 
performance, displaying a competitive edge.

5.3. Statistical testing

To further examine whether there are significant differences in the classification performance among different algorithms, we 
employed the Wilcoxon test method to validate the effectiveness of algorithm comparison. At a significance level of 0.05, for each 
hypothesis test, the null hypothesis suggests no significant difference between our proposed algorithm and other algorithms. The 
P-values obtained from the Wilcoxon test are presented in Table 7.

When rejecting the null hypothesis, it implies a significant distinction between our algorithm and the others. From the table, 
it’s evident that the feature selection algorithm proposed in this paper, whether tested in DT, SVM, or KNN classifiers, consistently 
rejects the null hypothesis. It suggests that FSAFNGCE displays a significant distinction from other feature selection algorithms.

5.4. Experimental parameter

Furthermore, to delve into the impact of the fuzzy domain parameter 𝛼 and information level parameter 𝛽 on the classification 
12

accuracy of the proposed FSAFNGCE algorithm under different combinations, we provided the optimal parameter combinations for 



Fuzzy Sets and Systems 486 (2024) 108971X. Zhang and W. Zhao

Table 5

The accuracy of data reduction based on KNN (%).

Datasets ODP Inf-UFS IGUFS OMGE PMGE FNGCE

Wine 94.97±9.77 87.09±8.24 97.78±5.09 96.08±4.35 95.52±4.85 96.67±6.67

Seeds 92.86±3.84 87.14±8.53 91.90±5.65 92.86±3.84 92.86±3.84 93.33±3.16

Wdbc 96.84±1.53 84.87±6.61 96.49±1.92 95.25±2.24 95.26±2.48 97.37±1.62

Hill 51.01±6.47 50.18±7.19 51.5±5.90 51.01±6.47 49.36±7.31 51.34±6.50

Breast 96.64±2.26 94.73±3.33 95.47±2.55 96.64±2.26 95.47±2.63 96.35±2.69

Wine-red 57.60±2.92 57.41±2.91 54.22±2.87 57.60±2.92 57.66±3.42 58.10±3.71

Card 80.99±2.51 66.18±2.10 80.71±2.03 71.72±3.77 81.93±2.85 81.23±3.01

Image 96.32±1.03 81.60±2.59 96.28±1.24 70.22±3.36 87.88±2.27 96.75±1.12

Spambase 90.22±1.21 80.63±2.39 82.96±1.42 86.68±1.50 40.73±3.21 90.41±1.14

Page 95.52±0.50 94.04±0.62 93.75±0.64 94.61±0.73 93.75±0.64 95.72±0.87

Musk2 96.57±0.87 41.15±1.92 39.35±1.43 21.14±1.88 40.24±1.30 96.71±0.73

EGSS 90.06±0.94 78.72±0.94 79.72±1.57 63.15±1.73 88.00±1.04 90.19±0.93

Average 86.63±2.82 75.31±3.95 80.01±2.69 74.75±2.92 76.56±2.99 87.01±2.68

DLBCL 85.71±13.39 87.32±14.8 86.21±16.04 – – 88.57±14.22

LungCancer-1 91.73±5.09 92.84±3.50 92.84±4.29 – – 98.36±2.50

LungCancer-2 90.12±5.90 90.60±3.56 64.95±8.07 – – 94.02±3.75

Table 6

The reduction time of different algorithms(s).

Datasets

Algorithms
Inf-UFS IGUFS OMGE PMGE FNGME

Wine 1.180517912 1.803053379 199.2320955 32.94587159 0.384840727

Seeds 0.773453236 1.204103708 106.3903317 6.037920475 0.333144665

Breast 3.502872705 5.165860415 610434.4502 287.4281721 3.432308197

DLBCL 1.88 × 104 3.05 × 104 – – 𝟎.𝟔𝟏 × 𝟏𝟎𝟒
LungCancer-1 1.09 × 105 1.23 × 105 – – 𝟎.𝟔𝟗 × 𝟏𝟎𝟓
LungCancer-2 1.45 × 105 𝟏.𝟏𝟑 × 𝟏𝟎𝟓 – – 𝟏.𝟏𝟖 × 𝟏𝟎𝟓

Table 7

P value of Wilcoxon test on three classifiers.

ODP Inf-UFS IGUFS OMGE PMGE

KNN 8.36 × 10−3 6.71 × 10−3 0.02 0.03 0.04

SVM 9.79 × 10−4 6.71 × 10−3 0.01 5.85 × 10−3 9.77 × 10−4
DT 9.81 × 10−4 6.10 × 10−5 1.83 × 10−4 4.88 × 10−4 9.77 × 10−4

all datasets under different classifiers, as shown in Table 8. Additionally, we plotted the classification accuracy obtained by various 
parameter combinations for the 15 datasets under three classifiers, as illustrated in Figs. 3, 4, 5 and 6, where each row represents 
the classification accuracy results of the same dataset under different classifiers, and each column represents the same classifiers, 
from left to right, DT, SVM, and KNN classifiers, respectively. According to Table 8, varying datasets have distinct optimal parameter 
combinations that lead to the best classification results. For instance, observations indicate that datasets like Seeds, Wdbc, Wine-red, 
and Breast require a larger fuzzy neighborhood radius to achieve optimal classification performance. Conversely, datasets such as 
Image, Musk2, EGSS, and three high-dimensional feature datasets need a smaller 𝛼. By manipulating the confidence level parameter 
𝛽, the stringency required for each dataset can be controlled, aiming to achieve the optimal classification performance for each 
dataset.

The illustrations clearly demonstrate the significance of exploring different combinations of parameters 𝛼 and 𝛽. This exploration 
reveals that varying parameter combinations lead to noticeable differences in the classification accuracy results. And with the increase 
in the values of the fuzzy neighborhood parameter and the information level, in most datasets, the classification accuracy tends to 
stabilize after decreasing with the increase of 𝛼 and 𝛽. This is because as the control parameter 𝛽 increases, as defined in this paper, 
the strictness gradually enhances, demanding higher standards for the data. This results in minimal fluctuations in the entropy value. 
For every dataset, we have the flexibility to choose the most appropriate combination of 𝛼 and 𝛽 parameters to attain a relatively 
possible classification performance. For instance, under the DT classifier, the Seeds dataset exhibited relatively optimal performance 
at the combination 𝛼 = 0.15 and 𝛽 = 0.9. Similarly, the SVM classifier demonstrated good classification performance for the Page 
dataset with the combination 𝛼 = 0.20 and 𝛽 = 0.6. Additionally, the KNN classifier showcased relatively best classification accuracy 
for the high-dimensional feature dataset Lungcancer-2 at 𝛼 = 0.05 and 𝛽 = 0.6. Therefore, opting for suitable combinations of 𝛼 and 
𝛽 parameters is crucial to maximize the relative optimal classification performance of the FSAFNGCE algorithm.

In conclusion, the FSAFNGCE algorithm demonstrates effective performance across the DT, SVM, and KNN classifiers, highlighting 
13

its efficiency as a feature selection approach.
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Fig. 3. Classification accuracy of Wine, Seeds, Wdbc and Hill datasets under DT (left column), SVM (middle column) and KNN (right column) classifier based on 

various parameters 𝛼 and 𝛽 .
14
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Fig. 4. Classification accuracy of Breast, Wine-red, Card and Image datasets under DT (left column), SVM (middle column) and KNN (right column) classifier based 

on various parameters 𝛼 and 𝛽 .
15
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Fig. 5. Classification accuracy of Spambase, Page, Musk2 and EGSS datasets under DT (left column), SVM (middle column) and KNN (right column) classifier based 

on various parameters 𝛼 and 𝛽 .
16
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Fig. 6. Classification accuracy of DLBCL, LungCancer-1 and LungCancer-2 datasets under DT (left column), SVM (middle column) and KNN (right column) classifier 
based on various parameters 𝛼 and 𝛽 .

6. Conclusion

The optimistic multi-granulation rough set model requires only one condition to be satisfied, while the pessimistic ones require 
all conditions to be satisfied. Both optimistic and pessimistic rough set models fail to meet practical requirements. Therefore, we 
introduce the generalized multi-granulation rough set model, which allows adjusting the strictness level based on people’s preferences 
through an information level parameter. By studying fuzzy neighborhood joint entropy and integrating it into the GMFNRS model, 
a method for uncertainty measurement based on fuzzy neighborhood generalized composite entropy is proposed. This entropy 
measure is specifically designed to address the uncertainty and fuzziness present in fuzzy decision systems that handle mixed data. 
Furthermore, we have developed a corresponding heuristic feature selection algorithm. The classification results on 15 publicly 
available datasets demonstrate that our proposed model is capable of selecting feature subsets that exhibit superior classification 
performance. However, due to the subset-based nature of the proposed feature selection algorithm, it cannot perfectly extract essential 
features. Some redundant attributes may still be included in the selected features. In future work, it is imperative to delve deeper into 
uncertainty measurement methods for GMFNRS to enhance our classification efficiency. Based on the research findings of this paper, 
future development can be proceeded in two aspects. On the one hand, the importance of each feature varies, but in this study, 
each feature is assigned the same weight by default. Therefore, it is worth considering assigning different weights to attributes. 
17

This approach can also be applied to medical decision-making problems, where different physiological indicators may have varying 
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Table 8

Optimal parameter combinations under different classifiers.

𝐷𝑇 𝑆𝑉𝑀 𝐾𝑁𝑁

Data sets 𝛼 𝛽 𝛼 𝛽 𝛼 𝛽

Wine 0.35 0.8 0.10 0.7 0.05 0.7

Seeds 0.15 0.9 0.25 0.6 0.25 0.7

Wdbc 0.25 0.8 0.15 0.6 0.10 0.6

Hill 0.45 0.7 0.05 0.6 0.05 0.6

Breast 0.05 0.7 0.25 0.7 0.20 0.6

Wine-red 0.15 0.6 0.10 0.6 0.10 0.6

Card 0.10 0.7 0.10 0.6 0.05 0.7

Image 0.05 0.6 0.05 0.6 0.05 0.6

Spambase 0.30 0.7 0.05 0.7 0.05 0.8

Page 0.05 0.7 0.20 0.6 0.15 0.6

Musk2 0.05 0.6 0.05 0.7 0.10 0.7

EGSS 0.05 0.6 0.05 0.6 0.05 0.6

DLBCL 0.50 0.9 0.05 0.6 0.05 0.6

LungCancer-1 0.20 0.6 0.05 0.7 0.05 0.6

LungCancer-2 0.20 0.6 0.05 0.6 0.05 0.6

levels of importance, optimizing treatment strategies accordingly. Therefore, it is worth considering assigning different weights to 
attributes. This approach can also be applied to medical decision-making problems, where different physiological indicators may 
have varying levels of importance, optimizing treatment strategies accordingly.
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