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A B S T R A C T

With the explosive growth and rapid changes in the use of data, information systems are constantly evolving.
Timely dynamic updates have become imperative with real-time monitoring of data increasingly common.
Effectively characterizing the approximation space in dynamic environments is of significant concern. This pa-
per investigates a dynamic update mechanism for generalized multi-granulation neighborhood dominant rough
sets, based on a matrix form, in an intuitionistic fuzzy ordered information table. We first define support and
inclusion functions to construct the model of generalized multi-granulation neighborhood dominant rough sets.
Additionally, we analyze the dynamic update process in which objects are added or removed in matrix form.
Corresponding dynamic update algorithms are proposed based on generalized multi-granulation neighborhood
dominant rough sets. Finally, to validate the effectiveness of the matrix-based dynamic approximation update
algorithm, eight UCI datasets are used to perform experiments. The results verify that our matrix-based dynamic
update algorithm is effective in approximating updates for dynamic intuitionistic fuzzy ordered information
datasets.
1. Introduction

As a fundamental method, granular computing can effectively deal
with problems of uncertainty and incompleteness and can simplify
complex phenomena. It has been widely applied and developed in
various modern information fields. Granular computing mainly in-
volves granulating data to form abstract concepts [1], which can pro-
vide useful knowledge. Especially in this age of explosive increases
in volumes of data, granular computing has emerged as an efficient
method for knowledge acquisition. Exploring uncertain information has
gained significant attention as a trending research area. To address the
uncertainty of information in real-world scenarios, researchers have
introduced rough sets, fuzzy sets, and intuitionistic fuzzy sets. Classical
rough set theory (RST) is a data mining technique used to handle
uncertainty and fuzziness. Introduced by mathematician Z. Pawlak [2]
in 1982, rough sets have become an important mathematical tool for
knowledge discovery and representation through approximate reason-
ing. RST does not rely on prior knowledge but mainly depends on
existing data to approximate knowledge, which helps people better
understand and analyze data. RST has found widespread applications
in diverse fields, including data mining[3–5], decision analysis [6],
and pattern recognition[7]. In classical RST, Pawlak used equivalence
relations to construct equivalence classes and used these classes as
elements for set operations. However, the classical RST initially applied
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only to discrete datasets. To extend the applicability of RST to other
types of datasets, many extension models of RST have been proposed
successively by researchers [8–12].

Atanassov [13] proposed intuitionistic fuzzy sets (IFSs) as an ex-
tension of Zadeh’s fuzzy sets [14] in 1986. An IFS is an extension of a
fuzzy set that considers the degree of membership and non-membership
of an object to a target set. In recent years, have seen widespread
attention on combining IFS theory with RST[15]. For instance, Singh
et al. developed an attribute reduction model designed explicitly for
the IFRS model[16]. Huang et al. developed an intuitive fuzzy rough set
model for multi-granular data. They discussed the hierarchical structure
of the intuitive fuzzy rough set and explored uncertainty measures
associated with it [17].

In practical applications, describing objects from multiple perspec-
tives is essential. However, classical single-granulation models can only
provide descriptions from a single perspective. To apply RST more
broadly to complex description processing, Qian et al. introduced the
concept of multi-granulation rough sets [18,19], which use knowledge
from spaces with different granularities to approach concepts approx-
imately. Subsequently, numerous scholars have dedicated their efforts
to researching multi-granulation rough set models, such as approximate
concepts [20] and granularity selection [21]. Researchers have devel-
oped two models: optimistic and pessimistic multi-granulation rough
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Table 1
The review of some extended rough set models for IFIS.

Year Authors Research content Reference

2012 Huang et al. Dominance-based rough set model in IFIS [23]
2014 Gong et al. Variable precision intuitionistic fuzzy rough sets model [24]
2014 Huang et al. Intuitionistic fuzzy multigranulation rough sets [25]
2015 Roy et al. Neighborhood rough set model in IFIS [26]
2017 Zhang et al. Generalized dominance rough set models for dominance IFIS [27]
2018 Shreevastava et al. Intuitionistic fuzzy neighborhood rough set model for feature selection [28]
2022 Zhang et al. Multigranulation rough set methods in intuitionistic fuzzy datasets [29]
2023 Zhang et al. SPRS model and DPRS model for ordered IFIS [30]
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sets. However, the existing multi-granulation rough set models often
face challenges in achieving a balanced level of granularity approxima-
tion, leading to either overly strict or loose descriptions. This restricts
their flexibility and effectiveness in practical applications. To address
this challenge, Xu et al. introduced the generalized multi-granulation
rough set model [22], which extends the concept by incorporating
a principle of majority rule based on real-world scenarios. In recent
years, researchers have successively proposed various extended rough
set models for IFSs, as shown in Table 1.

However, there are two insufficiencies. On the one hand, they did
not consider the generalized multi-granulation neighborhood dominant
rough set (GMNDRS) simultaneously. On the other hand, the dynamic
nature of intuitive fuzzy data has not been considered.

In recent years, incremental approximation updates have attracted
the interest of scholars. Some approximation update methods require
recomputation when new data are added or old data are removed.
This undoubtedly leads to a significant amount of redundant compu-
tation. Therefore, finding suitable approximation update techniques
for dynamic intuitionistic fuzzy data is crucial. Zhang et al. pro-
posed a dynamic updating approximation method for multi-granulation
interval-valued hesitant fuzzy information systems with time-evolving
attributes [31]. Yang et al. proposed an incremental fuzzy probability
decision theory method with dynamic three-way approximations [32].
Guo et al. proposed a method called M-FCCL for handling dynamic
fuzzy data classification and knowledge fusion [33]. Zhang et al. intro-
duced a matrix-based approach for updating dynamic knowledge from
multi-source information, which leverages multi-granulation fusion and
provides a method for dynamically updating knowledge using matri-
ces [34]. Inspired by this, to improve computation time and efficiency,
we will employ a matrix-based approach for dynamic approximation
updates in this paper.

This paper proposes an approximation update algorithm based on
the GMNDRS model for dynamic intuitionistic fuzzy ordered datasets
with temporal evolution characteristics. The main contributions of this
paper are as follows:

(1) A method is presented for studying generalized multi-granulation
neighborhood dominant rough sets using a matrix representation
of generalized neighborhood dominant relations and feature
functions.

(2) A matrix-based dynamic update mechanism adds the latest infor-
mation, deletes redundant information, and effectively processes
the approximate values of GMNDRS.

(3) Experiments were conducted using eight datasets downloaded
from the UCI repository. The experimental results demonstrate
that the proposed matrix dynamic method improves compu-
tational efficiency when the objects in an intuitionistic fuzzy
ordered information system (IFOIS) change.

The remainder of the paper is structured as follows. Section 2
eviews some basic concepts of GMNDRS in IFOISs. Section 3 defines
he GMNDRS based on a matrix representation. Section 4 introduces
he dynamic update mechanism of a GMNDRS, including two cases of
dding and removing objects. Section 5 presents a dynamic algorithm
or updating GMNDRS approximation sets from a matrix perspective.
2

ection 6 describes experimental analyses that were conducted using p
eight datasets. Finally, Section 7 briefly summarizes the paper’s content
and discusses prospects for future research directions. Fig. 1 provides a
concise depiction of the framework employed in this paper.

2. Related work

This section reviews the basic concepts of IFOISs, neighborhood
dominant rough sets, and generalized multi-granulation rough sets
based on IFOISs.

2.1. Intuitionistic fuzzy ordered information systems [35]

An intuitionistic fuzzy information system (IFIS) is an extension
of a classical fuzzy information system. It is designed to address the
problems of fuzziness and uncertainty. Unlike traditional fuzzy sets,
intuitionistic fuzzy sets allow elements to have diverse levels of mem-
bership and non-membership of the set. Intuitionistic fuzzy data are
called an intuitionistic fuzzy information system in RST.

Let 𝐼 = (𝑈,𝐴𝑇 ,𝐺) be an information system, where 𝑈 represents a
finite set of objects and 𝐴𝑇 denotes a finite set of conditional attributes.
For all 𝑔 ∈ 𝐺, 𝑥𝑖 ∈ 𝑈 , and 𝑎 ∈ 𝐴𝑇 , it holds that 𝑔(𝑎, 𝑥𝑖) =
(𝜇𝑥𝑖 (𝑎), 𝜈𝑥𝑖 (𝑎)). Here, 𝜇𝑥𝑖 (𝑎) and 𝜈𝑥𝑖 (𝑎) are functions mapping 𝑈 to the
nterval [0, 1], satisfying 0 ≤ 𝜇𝑥𝑖 (𝑎)+𝜈𝑥𝑖 (𝑎) ≤ 1. They indicate the degree

of membership and non-membership of the object 𝑥𝑖 under attribute 𝑎.
The hesitation degree 𝜔𝑥𝑖 (𝑎) = 1 − 𝜇𝑥𝑖 (𝑎) − 𝜈𝑥𝑖 (𝑎) indicates the level of
uncertainty for 𝑥 under 𝑎, with 𝜔𝑥𝑖 (𝑎) ∈ [0, 1]. When 𝜔𝑥𝑖 (𝑎) = 0, the IFIS
reduces to a classical fuzzy set.

Let 𝐼 = (𝑈,𝐴𝑇 ,𝐺) be an IFIS, ∀𝑎 ∈ 𝐴𝑇 , attribute values can be
compared in the IFIS, and we define

𝑔(𝑥𝑖, 𝑎) ≤ 𝑔(𝑥𝑗 , 𝑎) ⇔ (∀𝑎 ∈ 𝐴𝑇 )[𝜇𝑥𝑖 (𝑎) ≤ 𝜇𝑥𝑗 (𝑎), 𝜈𝑥𝑖 (𝑎) ≥ 𝜈𝑥𝑗 (𝑎)],

(𝑥𝑖, 𝑎) ≥ 𝑔(𝑥𝑗 , 𝑎) ⇔ (∀𝑎 ∈ 𝐴𝑇 )[𝜇𝑥𝑖 (𝑎) ≥ 𝜇𝑥𝑗 (𝑎), 𝜈𝑥𝑖 (𝑎) ≤ 𝜈𝑥𝑗 (𝑎)].
(1)

There are decreasing and increasing partial orders under the IFIS.
n the IFIS, if 𝑎 ∈ 𝐴𝑇 is a criterion, then there exists a relation ≥.
he statement 𝑥𝑖 ≥𝑎 𝑥𝑗 signifies that 𝑥𝑖 exhibits dominance over 𝑥𝑗

n relation to the criterion 𝑎. If all attributes in the table are criteria,
hen 𝐼≥ is an IFOIS and is denoted as 𝐼≥ = (𝑈,𝐴𝑇 ,𝐺). Furthermore, the
ntuitionistic fuzzy ordered decision information table is 𝐼≥ = (𝑈,𝐴𝑇 ∪
{𝑑}, 𝐺), where 𝑅𝑑 = {𝑥𝑗 , 𝑥𝑖 ∈ 𝑈 ∣ 𝑔(𝑥𝑖, 𝑑) = 𝑔(𝑥𝑗 , 𝑑)} is an equivalence
elation.

The increase in neighborhood dominant classes settles the limitation
f the equivalence relation. Based on this, the neighborhood dominant
ST will be introduced.

.2. Dominance-based neighborhood rough sets [29]

The degree of dissimilarity between different intuitionistic fuzzy
bjects varies due to the differences in values within intuitionistic
uzzy datasets. To address this concern, we propose a distance function
o measure the dissimilarity between two intuitionistic fuzzy objects.
his distance function considers the impact of value differences in

ntuitionistic fuzzy datasets, ensuring that it accurately reflects the
xtent of dissimilarity between intuitionistic fuzzy objects. In practical

roblems, objects with different levels of dominance may exist. Hence,
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Fig. 1. The framework of our work.
introducing dominant rough sets based on neighborhood rough sets
allows for a more comprehensive consideration of object relationships.
This facilitates the division of objects into subsets characterized by
neighborhood dominant relationships.

Letting 𝐼≥ = (𝑈,𝐴𝑇 ,𝐺) be an IFOIS, ∀𝑥𝑚, 𝑥𝑛 ∈ 𝑈 , ∀𝐴𝑡 ⊆ 𝐴𝑇 , and
∀𝑡 ∈ {1, 2,… , 𝑠}, the definitions of the neighborhood rough set, domi-
nance rough set, and neighborhood dominance rough set for objects 𝑥𝑚
and 𝑥𝑛 under the attribute set 𝐴𝑡 are as follows:

𝑅𝛿
𝐴𝑡

=
{

(𝑥𝑚, 𝑥𝑛) ∈ 𝑈 |

|

|

�̂�(𝑥𝑚, 𝑥𝑛) ≥ 𝛿
}

,

𝑅≥
𝐴𝑡

=
{

(𝑥𝑚, 𝑥𝑛) ∈ 𝑈 |

|

|

[𝜇𝐴𝑡
(𝑥𝑚) ≤ 𝜇𝐴𝑡

(𝑥𝑛), 𝜈𝐴𝑡
(𝑥𝑚) ≥ 𝜈𝐴𝑡

(𝑥𝑛)]
}

,

𝑅𝛿≥
𝐴𝑡

=
{

(𝑥𝑚, 𝑥𝑛) ∈ 𝑈 |

|

|

[�̂�(𝑥𝑚, 𝑥𝑛) ≥ 𝛿] ∧ [𝜇𝐴𝑡
(𝑥𝑚)

≤ 𝜇𝐴𝑡
(𝑥𝑛), 𝜈𝐴𝑡

(𝑥𝑚) ≥ 𝜈𝐴𝑡
(𝑥𝑛)]

}

.

(2)

Here, �̂� is a distance function between 𝑥𝑖 and 𝑥𝑗 over all attributes,
defined as

�̂�(𝑥𝑖, 𝑥𝑗 ) =
⎛

⎜

⎜

⎝

|
𝐴𝑡|
∑

𝑡=1

(

|

|

|

𝜇𝐴𝑡
(𝑥𝑖) − 𝜇𝐴𝑡

(𝑥𝑗 )
|

|

|

𝑞
+ |

|

|

𝜈𝐴𝑡
(𝑥𝑖) − 𝜈𝐴𝑡

(𝑥𝑗 )
|

|

|

𝑞)⎞
⎟

⎟

⎠

1
𝑞

, (3)

where 𝜇𝐴𝑡
(𝑥𝑖) and 𝜇𝐴𝑡

(𝑥𝑗 ) represent the fuzzy membership degrees of 𝑥𝑖
and 𝑥𝑗 under attribute set 𝐴𝑡, respectively, and 𝜈𝐴𝑡

(𝑥𝑖) and 𝜈𝐴𝑡
(𝑥𝑗 ) are

the non-fuzzy membership degrees of 𝑥𝑖 and 𝑥𝑗 under attribute set 𝐴𝑡.
The neighborhood radius 𝛿 needs to satisfy 𝛿 ≥ 0. The distance function
�̂� can use either the Manhattan or Euclidean distance. When 𝑞 = 1, this
indicates the Manhattan distance, and 𝑞 = 2 the Euclidean distance.

Letting 𝐼≥ = (𝑈,𝐴𝑇 ,𝐺) be an IFOIS, then ∀𝑥𝑚, 𝑥𝑛 ∈ 𝑈 , ∀𝐴𝑡 ⊆ 𝐴𝑇 ,
and ∀𝑡 ∈ {1, 2,… , 𝑠}, the corresponding neighborhood class, dominant
class, and neighborhood dominant class of 𝑥𝑚 and 𝑥𝑛 under the attribute
set 𝐴𝑡, are defined as follows:

[̃𝑥𝑚]
𝛿
𝐴𝑡

=
{

𝑥𝑛 ∈ 𝑈 |

|

|

(𝑥𝑚, 𝑥𝑛) ∈ 𝑅𝛿
𝐴𝑡

}

,

[̃𝑥𝑚]
≥
𝐴𝑡

=
{

𝑥𝑛 ∈ 𝑈 |

|

|

(𝑥𝑚, 𝑥𝑛) ∈ 𝑅≥
𝐴𝑡

}

,

[̃𝑥𝑚]
𝛿≥
𝐴𝑡

=
{

𝑥𝑛 ∈ 𝑈 |

|

|

(𝑥𝑚, 𝑥𝑛) ∈ 𝑅𝛿≥
𝐴𝑡

}

,

(4)

where the neighborhood dominant class [̃𝑥𝑖]
𝛿≥
𝐴𝑡

is a set of objects. For
each pair of objects 𝑥𝑚 and 𝑥𝑛, the distance between them is required
to be less than 𝛿, and all the domains under attributes are completely
pre-ordered according to 𝐴 .
3

𝑡

Let denote

𝑈∕𝑅≥
𝐴𝑡

=
{

[̃𝑥𝑖]
≥
𝐴𝑡

|

|

|

𝑥𝑖 ∈ 𝑈
}

. (5)

In which 𝑖 ∈ {1, 2, 3,… , |𝑈 |}, and [̃𝑥𝑖]
≥
𝐴𝑡

represents the class of the
IFODIS on attribute 𝐴𝑡 with respect to the object set containing 𝑥𝑚,
where 𝑈∕𝑅≥

𝐴𝑡
is a coverage of 𝑈 in the IFODIS over the attribute set

𝐴𝑡.
Suppose we are given an IFOIS 𝐼 = (𝑈,𝐴𝑇 ,𝐺), where 𝐴𝑡 is a

subset of attributes. For all 𝑡 ∈ {1, 2,… , 𝑠}, 𝑋 ⊆ 𝑈 , the upper and
lower approximations of 𝑋 with respect to the neighborhood dominant
relation 𝑅𝛿≥

𝐴𝑡
can be defined as follows:

𝑅𝛿≥
𝐴𝑡

=
{

𝑥 ∈ 𝑈 |

|

|

[̃𝑥𝑖]
𝛿≥
𝐴𝑡

⊆ 𝑋
}

,

𝑅𝛿≥
𝐴𝑡

=
{

𝑥 ∈ 𝑈 |

|

|

[̃𝑥𝑖]
𝛿≥
𝐴𝑡

∩𝑋 ≠ ∅
}

.
(6)

Here, 𝑅𝛿≥
𝐴𝑡

and 𝑅𝛿≥
𝐴𝑡

represent a pair of rough set approximation

operators. When 𝑅𝛿≥
𝐴𝑡

= 𝑅𝛿≥
𝐴𝑡

, 𝑋 is called a definable set. Otherwise,
𝑋 is a rough set.

In terms of the attribute set 𝐴𝑡 and the neighborhood dominant
relation 𝑅𝛿≥

𝐴𝑡
, the negative domain, boundary domain, and positive

domain of set 𝑋 can be defined as follows:

𝑁𝐸𝐺𝛿≥
𝐴𝑡
(𝑋) = 𝑈 − 𝑅𝛿≥

𝐴𝑡
,

𝐵𝑁𝐷𝛿≥
𝐴𝑡
(𝑋) = 𝑅𝛿≥

𝐴𝑡
− 𝑅𝛿≥

𝐴𝑡
,

𝑃𝑂𝑆𝛿≥
𝐴𝑡

(𝑋) = 𝑅𝛿≥
𝐴𝑡
.

(7)

2.3. Optimistic and pessimistic multi-granulation neighborhood dominant
rough sets [36]

In complex practical problems, it is not accurate to characterize
objects only from a single perspective. A domain 𝑈 may not be divided
by a single relation, but often by multiple relations. Considering this,
Qian et al. [24] were the first to propose the notion of multi-granulation
rough sets, aiming to offer a more comprehensive depiction of objects.

Letting 𝐼≥ be an IFOIS, then for 𝐴𝑡 ⊆ 𝐴𝑇 , ∀𝑡 ∈ {1, 2,… , 𝑠}, and 𝑋 ⊆
𝑈 , the optimistic multi-granulation lower and upper approximations of
set 𝑋 based on the neighborhood dominant relation 𝑅𝛿≥ can be defined
𝐴𝑡
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as follows:

𝑂𝑀 𝑠
∑

𝑡=1

𝑅𝛿≥
𝐴𝑡
(𝑋) =

{

𝑥 ∈ 𝑈 |

|

|

𝑠
⋀

𝑡=1

(

[𝑥]𝑅𝛿≥
𝐴𝑡

∩𝑋 ≠ ∅
)

}

,

𝑂𝑀 𝑠
∑

𝑡=1

𝑅𝛿≥
𝐴𝑡
(𝑋)

=

{

𝑥 ∈ 𝑈 |

|

|

𝑠
⋁

𝑡=1

(

[𝑥]𝑅𝛿≥
𝐴𝑡

⊆ 𝑋
)

}

.
(8)

Here, the symbol ⋀ represents ‘‘or’’ and ⋁ represents ‘‘and.’’ Further-
more, if ̇𝑂𝑀(𝑋) ≠ ̇𝑂𝑀(𝑋), then 𝑋 is considered a definable set to the
neighborhood dominant relation 𝑅𝛿≥

𝐴𝑡
; otherwise, 𝑋 is classified as a

ough set.
Continuing from the above, the pessimistic multi-granulation lower

nd upper approximations of set 𝑋 based on the neighborhood domi-
ant relation 𝑅𝛿≥

𝐴𝑡
can be defined as follows:

𝑃𝑀 𝑠
∑

𝑡=1

𝑅𝛿≥
𝐴𝑡
(𝑋) =

{

𝑥 ∈ 𝑈 |

|

|

𝑠
⋁

𝑡=1

(

[𝑥]𝑅𝛿≥
𝐴𝑡

∩𝑋 ≠ ∅
)

}

,

𝑃𝑀 𝑠
∑

𝑡=1

𝑅𝛿≥
𝐴𝑡
(𝑋)

=

{

𝑥 ∈ 𝑈 |

|

|

𝑠
⋀

𝑡=1

(

[𝑥]𝑅𝛿≥
𝐴𝑡

⊆ 𝑋
)

}

.
(9)

If ̇𝑃𝑀(𝑋) ≠ ̇𝑃𝑀(𝑋), then 𝑋 is considered a definable set to the
neighborhood dominant relation 𝑅𝛿≥

𝐴𝑡
. Otherwise, 𝑋 is classified as a

ough set.

.4. Generalized multi-granulation neighborhood dominant rough sets [22]

The concept of a multi-granulation neighborhood dominant rough
et is an emerging research direction in RST. It involves estimating
pper and lower approximations using multiple granular structures.
or an object 𝑥 ∈ 𝑈 , if all the neighborhood dominant classes of
n element 𝑥 are encompassed within the given concept, then 𝑥 is

considered an element in the optimistic lower approximation. Suppose
there is a non-empty intersection between any of the neighborhood
dominant classes of element 𝑥 and the given concept. In that case,

is considered an element in the pessimistic upper approximation.
owever, classical multi-granulation RST, founded on both pessimistic
nd optimistic approximations, is limited in practical applications due
o the overly restrictive nature of optimistic and pessimistic lower
pproximations and the overly relaxed nature of the upper approxi-
ations. To address this problem and better suit real-life applications,
u et al. [34] introduced the generalized multi-granulation rough
et model and investigated the selection of the optimal granulation
ithin this framework. Compared with traditional multi-granulation
ST, the generalized multi-granulation rough set model is more flexible
nd practical. Taking inspiration from this, the generalized multi-
ranulation neighborhood dominant RST will be investigated. First, we
efine a supporting function, which is defined as follows:

Letting 𝐼≥ be an IFOIS, then for 𝐴𝑡 ⊆ 𝐴𝑇 , ∀𝑡 ∈ {1, 2, 3,… , 𝑠}, and

𝑋 ⊆ 𝑈 , the characteristic function 𝑆
𝑅𝛿≥
𝐴𝑡

𝑋 (𝑥) of 𝑥 denotes the inclusion
relation between the neighborhood dominant class [𝑥]𝑅𝐴𝑡

𝛿≥ and the
set 𝑋. Its definition is as follows:

𝑆
𝑅𝛿≥
𝐴𝑡

𝑋 (𝑥) =

⎧

⎪

⎨

⎪

⎩

1, [𝑥]𝑅𝛿≥
𝐴𝑡

⊆ 𝑋

0, otherwise
. (10)

We refer to 𝑆𝑅𝛿≥
𝐴𝑡 𝑋(𝑥) as the supporting characteristic function of

𝑥 ∈ 𝑈 . It indicates whether the object 𝑥 precisely supports the concept
𝑋 with respect to 𝑅𝐴

𝛿≥.
4

𝑡

Property 1. For 𝑥 in 𝑈 , 𝐴𝑡 ⊆ 𝐴𝑇 , and ∀𝑡 ∈ {1, 2, 3,… , 𝑠}, 𝑆
𝑅𝛿≥
𝐴𝑡

𝑋 (𝑥) has
the following properties:

(1) 𝑆
𝑅𝛿≥
𝐴𝑡

∼𝑋 (𝑥) =

⎧

⎪

⎨

⎪

⎩

1, [𝑥]𝑅𝛿≥
𝐴𝑡

∩𝑋 ≠ ∅

0, [𝑥]𝑅𝛿≥
𝐴𝑡

∩𝑋 = ∅

(2) 𝑆
𝑅𝛿≥
𝐴𝑡

∅ (𝑥) = 0, 𝑆
𝑅𝛿≥
𝐴𝑡

𝑈 (𝑥) = 1.

Let 𝐼≥ be an IFOIS, 𝐴𝑡 ⊆ 𝐴𝑇 , ∀𝑡 ∈ {1, 2, 3,… , 𝑠}, and 𝑋 ⊆ 𝑈 . The

characteristic function is 𝑆
𝑅𝛿≥
𝐴𝑡

𝑋 (𝑥) of 𝑥. For all 𝛽 ∈ (0.5, 1], the lower
and upper approximations of 𝑋 concerning [𝑥]𝑅𝛿≥

𝐴𝑡
can be defined as

follows:

𝐺𝑀(𝑋)𝛿≥𝛽 =

⎧

⎪

⎨

⎪

⎩

𝑥 ∈ 𝑈 |

|

|

∑𝑠
𝑡=1 𝑆

𝑅𝛿≥
𝐴𝑡

𝑋 (𝑥)
𝑠

≥ 𝛽

⎫

⎪

⎬

⎪

⎭

,

𝐺𝑀(𝑋)𝛿≥𝛽 =

⎧

⎪

⎨

⎪

⎩

𝑥 ∈ 𝑈 |

|

|

∑𝑠
𝑡=1 1 − 𝑆

𝑅𝛿≥
𝐴𝑡

∼𝑋 (𝑥)
𝑠

> 1 − 𝛽

⎫

⎪

⎬

⎪

⎭

.

(11)

he set 𝑋 is referred to as definable if and only if 𝐺𝑀(𝑋)𝛽𝛿≥ =
𝐺𝑀(𝑋)𝛽𝛿≥. Otherwise, if the lower and upper approximation sets are
istinct, 𝑋 is considered rough. We denote this model as the gener-
lized multi-granulation rough set model, with 𝛽 referred to as the
nformation level with respect to [𝑥]𝑅𝐴𝑡

𝛿≥ .

. Generalized multi-granulation neighborhood dominant rough
ets based on matrix representation

This section focuses on a novel matrix representation of the neigh-
orhood dominant relation and feature function for studying the GM-
DRS. The framework of the approach can be seen in Fig. 2.

efinition 1. Let 𝐼≥ = (𝑈,𝐴𝑇 ,𝐺) be an IFOIS, for 𝑈 = 𝑥1, 𝑥2,… , 𝑥𝑛,
𝑡 ⊆ 𝐴𝑇 , ∀𝑡 ∈ {1, 2,… , 𝑠}. Then 𝑅𝛿

𝐴𝑡
, 𝑅≥

𝐴𝑡
, 𝑅𝛿≥

𝐴𝑡
represent the neighbor-

ood relation, dominant relation, and neighborhood dominant relation
f a single granularity 𝐴𝑡, respectively. The neighborhood dominant
elation matrix 𝑀𝛿≥

𝐴𝑡
= [𝑚𝛿≥

𝑖𝑗,𝐴𝑡
]𝑛×𝑛 and 𝑚𝛿≥

𝑖𝑗,𝐴𝑡
with respect to 𝐴𝑡 can be

efined as follows:

𝑀𝛿≥
𝐴𝑡

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑚𝛿≥
11,𝐴𝑡

𝑚𝛿≥
12,𝐴𝑡

𝑚𝛿≥
13,𝐴𝑡

… 𝑚𝛿≥
1𝑛,𝐴𝑡

𝑚𝛿≥
21,𝐴𝑡

𝑚𝛿≥
22,𝐴𝑡

𝑚𝛿≥
23,𝐴𝑡

… 𝑚𝛿≥
2𝑛,𝐴𝑡

𝑚𝛿≥
31,𝐴𝑡

𝑚𝛿≥
32,𝐴𝑡

𝑚𝛿≥
33,𝐴𝑡

… 𝑚𝛿≥
3𝑛,𝐴𝑡

⋮ ⋮ ⋮ ⋱ ⋮

𝑚𝛿≥
𝑛1,𝐴𝑡

𝑚𝛿≥
𝑛2,𝐴𝑡

𝑚𝛿≥
𝑛3,𝐴𝑡

… 𝑚𝛿≥
𝑛𝑛,𝐴𝑡

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (12)

nd

𝑚𝛿≥
𝑖𝑗,𝐴𝑡

=

{

1, (�̂�(𝑥𝑖, 𝑥𝑗 ) ≤ 𝛿) ∧ [𝜇𝐴𝑡
(𝑥𝑖) ≤ 𝜇𝐴𝑡

(𝑥𝑗 ), 𝜈𝐴𝑡
(𝑥𝑖) ≥ 𝜈𝐴𝑡

(𝑥𝑗 )]
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

where ∀𝑥𝑖, 𝑥𝑗 ∈ 𝑈 , 𝛿 ≥ 0, 𝛿 is the neighborhood radius, �̂�(𝑥𝑖, 𝑥𝑗 ) denotes
the distance function with respect to 𝐴𝑡, and 𝑚𝛿≥

𝑖𝑗,𝐴𝑡
is the basic element

of the neighborhood dominant relation matrix 𝑀𝛿≥
𝐴𝑡

.

Definition 2. Let 𝐼≥ = (𝑈,𝐴𝑇 ,𝐺) be an IFOIS, where 𝑈 = {𝑥1, 𝑥2,… ,
𝑥𝑛}, 𝐴𝑡 ⊆ 𝐴𝑇 , ∀𝑡 ∈ {1, 2,… , 𝑠}. For all 𝑥𝑖 ∈ 𝑈 , [𝑥𝑖]𝑅𝛿≥

𝐴𝑡
represents the

neighborhood dominant class of 𝑥𝑖 with respect to 𝐴𝑡. Let 𝑋 ⊆ 𝑈 , and
let 𝑥𝑖 be represented by the feature column vector with respect to 𝐴𝑡(𝑡 =
1, 2,… , 𝑠), which is denoted as 𝐻𝑥𝑖 (𝐴𝑡) = [ℎ𝐴1

(𝑥𝑖), ℎ𝐴2
(𝑥𝑖),… , ℎ𝐴𝑠

(𝑥𝑖)]𝑇

and 𝐿 (𝐴 ) = [𝑙 (𝑥 ), 𝑙 (𝑥 ),… , 𝑙 (𝑥 )]𝑇 , where the feature elements
𝑥𝑖 𝑡 𝐴1 𝑖 𝐴2 𝑖 𝐴𝑠 𝑖
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Fig. 2. The brief framework of this section.
Table 2
An IFOIS about housing evaluation.

U 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5
𝑥1 (0.3,0.5) (0.6,0.4) (0.5,0.2) (0.7,0.1) (0.5,0.4)
𝑥2 (0.2,0.7) (0.1,0.8) (0.4,0.5) (0.7,0.1) (0.2,0.8)
𝑥3 (0.2,0.7) (0.1,0.8) (0.4,0.5) (0.7,0.1) (0.2,0.8)
𝑥4 (0.1,0.8) (0.1,0.8) (0.2,0.7) (0.1,0.8) (0.2,0.8)
𝑥5 (0.9,0.1) (0.8,0.1) (0.8,0.1) (0.9,0.0) (0.7,0.1)
𝑥6 (0.4,0.6) (0.8,0.1) (0.6,0.3) (0.9,0.0) (0.7,0.1)
𝑥7 (0.3,0.5) (0.7,0.3) (0.5,0.1) (0.7,0.1) (0.6,0.3)
𝑥8 (0.8,0.2) (0.8,0.1) (0.7,0.1) (1.0,0.0) (0.7,0.1)
𝑥9 (0.8,0.2) (0.9,0.0) (0.7,0.1) (0.8,0.2) (1.0,0.0)
𝑥10 (0.9,0.1) (0.9,0.0) (0.8,0.1) (0.6,0.3) (1.0,0.0)

are as follows:

ℎ𝑋𝐴𝑡
(𝑥𝑖) =

{

1, [𝑥𝑖]𝑅𝛿≥
𝐴𝑡

⊆ 𝑋

0, otherwise
𝑡 ∈ {1, 2,… , 𝑠}, 𝑥𝑖 ∈ 𝑈,

𝑙∼𝑋𝐴𝑡
(𝑥𝑖) =

⎧

⎪

⎨

⎪

⎩

1, [𝑥𝑖]𝑅𝛿≥
𝐴𝑡

∩𝑋 = ∅

0, [𝑥𝑖]𝑅𝛿≥
𝐴𝑡

∩𝑋 ≠ ∅
𝑡 ∈ {1, 2,… , 𝑠}, 𝑥𝑖 ∈ 𝑈.

(13)

According to Definition 2, we assign a value of 1 to the feature
element ℎ𝑋𝐴𝑡

(𝑥𝑖) of object 𝑥𝑖 if its neighborhood dominant class to
𝐴𝑡(𝑡 = 1, 2,… , 𝑠) is contained in the target concept 𝑋, and 0 if not.
Similarly, we assign a value of 1 to the feature element 𝑙𝑋𝐴𝑡

(𝑥𝑖) of object
𝑥𝑖 if the intersection of the neighborhood dominant class of 𝑥𝑖 under
attribute 𝐴𝑡 and ∼ 𝑋 is empty, and 0 if not.

Definition 3. Let 𝐼≥ = (𝑈,𝐴𝑇 ,𝐺) be an IFOIS, where
𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛} and 𝐴𝑡 ⊆ 𝐴𝑇 , ∀𝑡 ∈ {1, 2,… , 𝑠}. For all 𝑥𝑖 ∈ 𝑈 ,
we can define the two characteristic functions of 𝑥𝑖 under 𝐴:

𝐻𝑋
𝑥𝑖
(𝐴) =

∑

ℎ𝑋𝐴𝑡
(𝑥𝑖)

𝑠
𝑡 ∈ {1, 2,… , 𝑠},

𝐿∼𝑋
𝑥𝑖

(𝐴) =

∑

𝑙∼𝑋𝐴𝑡
(𝑥𝑖)

𝑠
𝑡 ∈ {1, 2,… , 𝑠}.

(14)

The characteristic function 𝐻𝑋
𝑥𝑖
(𝐴) represents the average degree of

inclusion of object 𝑥𝑖 with respect to 𝑋 across all attributes 𝐴𝑡. On the
other hand, 𝐻∼𝑋

𝑥𝑖
(𝐴) represents the average degree of inclusion of object

𝑥𝑖 with respect to the complement of the target set 𝑋 across attributes
𝐴𝑡.

Example 1. Consider an IFOIS for housing evaluation given by Table 2,
where 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10} is the domain, consisting
of 10 houses and 𝐴𝑇 = {𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5} denotes the set of condition
attributes associated with the system, including geographic location,
5

floor, price, area, and layout. Let the target set 𝑋 = {𝑥5, 𝑥6, 𝑥8, 𝑥9}.
From Table 2, we can obtain the neighborhood dominant relation
matrices 𝑀𝛿≥

𝐴1
, 𝑀𝛿≥

𝐴2
, 𝑀𝛿≥

𝐴3
, and 𝑀𝛿≥

𝐴4
with respect to 𝐴1 = {𝑏1, 𝑏2},

𝐴2 = {𝑏3, 𝑏4, 𝑏5}, 𝐴3 = {𝑏1, 𝑏2, 𝑏3, 𝑏4}, and 𝐴4 = {𝑏2, 𝑏3, 𝑏4, 𝑏5}, letting
𝛿 = 1.0.

According to Definition 2, we can calculate the feature column
vectors for each object.

𝐻𝑥1 (𝐴) = [0, 0, 0, 0]𝑇 ,𝐻𝑥2 (𝐴) = [0, 0, 0, 0]𝑇 ,
𝐻𝑥3 (𝐴) = [0, 0, 0, 0]𝑇 ,𝐻𝑥4 (𝐴) = [0, 0, 0, 0]𝑇 ,
𝐻𝑥5 (𝐴) = [0, 0, 1, 1]𝑇 ,𝐻𝑥6 (𝐴) = [1, 1, 1, 1]𝑇 ,
𝐻𝑥7 (𝐴) = [0, 0, 0, 0]𝑇 ,𝐻𝑥8 (𝐴) = [0, 0, 1, 1]𝑇 ,
𝐻𝑥9 (𝐴) = [0, 0, 1, 1]𝑇 ,𝐻𝑥10 (𝐴) = [0, 0, 0, 0]𝑇 ,
𝐿𝑥1 (𝐴) = [1, 1, 1, 1]𝑇 , 𝐿𝑥2 (𝐴) = [1, 1, 1, 1]𝑇 ,
𝐿𝑥3 (𝐴) = [1, 1, 1, 1]𝑇 , 𝐿𝑥4 (𝐴) = [1, 1, 1, 1]𝑇 ,
𝐿𝑥5 (𝐴) = [0, 0, 0, 0]𝑇 , 𝐿𝑥6 (𝐴) = [0, 0, 0, 0]𝑇 ,
𝐿𝑥7 (𝐴) = [1, 1, 1, 1]𝑇 , 𝐿𝑥8 (𝐴) = [0, 0, 0, 0]𝑇 ,
𝐿𝑥9 (𝐴) = [0, 0, 0, 0]𝑇 , 𝐿𝑥10 (𝐴) = [1, 1, 1, 1]𝑇 .

According to Definition 3, we can get the corresponding character-
istic functions for 𝑥𝑖.

𝐻𝑋
𝑥1
(𝐴) = 0,𝐻𝑋

𝑥2
(𝐴) = 0,𝐻𝑋

𝑥3
(𝐴) = 0,𝐻𝑋

𝑥4
(𝐴) = 0,𝐻𝑋

𝑥5
(𝐴) = 1

2 ,

𝐻𝑋
𝑥6
(𝐴) = 1,𝐻𝑋

𝑥7
(𝐴) = 0,𝐻𝑋

𝑥8
(𝐴) = 1

2 ,𝐻
𝑋
𝑥9
(𝐴) = 1

2 ,𝐻
𝑋
𝑥10

(𝐴) = 0,

𝐿∼𝑋
𝑥1

(𝐴) = 1, 𝐿∼𝑋
𝑥2

(𝐴) = 1, 𝐿∼𝑋
𝑥3

(𝐴) = 1, 𝐿∼𝑋
𝑥4

(𝐴) = 1, 𝐿∼𝑋
𝑥5

(𝐴) = 0,

𝐿∼𝑋
𝑥6

(𝐴) = 0, 𝐿∼𝑋
𝑥7

(𝐴) = 1, 𝐿∼𝑋
𝑥8

(𝐴) = 0, 𝐿∼𝑋
𝑥9

(𝐴) = 0, 𝐿∼𝑋
𝑥10

(𝐴) = 1.

𝑀𝛿≥
𝐴1

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 1 0 1 1 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝑀𝛿≥
𝐴2

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

,

⎝ 0 0 0 0 0 0 0 0 0 1 ⎠
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4
m

t
n
f
n
e
d
o
o

d
s
d

𝐴
m
o
a

𝐺

c
q
g
t

D }
a
m
n
a

𝑀

𝑀𝛿≥
𝐴3

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠,

𝑀𝛿≥
𝐴4

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠ .

Based on the dominant relation matrices of each granular struc-
ture, we define feature column vectors and characteristic functions
for all such structures, which can be further used to construct the
positive, negative, and boundary domain vectors of generalized multi-
granulation rough sets. It is also possible to analyze the optimistic and
pessimistic positive, negative, and boundary domain vectors.

Definition 4. Let 𝐼≥ = (𝑈,𝐴𝑇 ,𝐺) be an IFOIS, where 𝐴𝑡 ⊆ 𝐴𝑇
for all 𝑡 ∈ {1, 2,… , 𝑠} and 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛}. For any 𝑥𝑖 ∈ 𝑈 , let
𝛼 ∈ [0, 0.5), 𝛽 ∈ (0.5, 1], and let 𝐴 = 𝐴1 ∪𝐴2 ∪⋯∪𝐴𝑠 be the granularity.
Further, let 𝐺𝑃𝑂𝑆

𝐴 (𝑋) = [𝑔𝑃𝑂𝑆
𝐴 (𝑥𝑖)]𝑛×1, 𝐺𝐵𝑁𝐷

𝐴 (𝑋) = [𝑔𝐵𝑁𝐷
𝐴 (𝑥𝑖)]𝑛×1, and

let 𝐺𝑁𝐸𝐺
𝐴 (𝑋) = [𝑔𝑁𝐸𝐺

𝐴 (𝑥𝑖)]𝑛×1 represent the boundary domain and
negative domain, respectively.

𝑔𝑃𝑂𝑆
𝐴 (𝑥𝑖) =

{

1, 𝐼𝑓 𝐻𝑋
𝑥𝑖
(𝐴) ≥ 𝛽

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

𝑔𝐵𝑁𝐷
𝐴 (𝑥𝑖) =

{

1, 𝐼𝑓 𝐻𝑋
𝑥𝑖
(𝐴) < 𝛽,𝐿∼𝑋

𝑥𝑖
(𝐴) < 𝛼

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

𝑔𝑁𝐸𝐺
𝐴 (𝑥𝑖) =

{

1, 𝐼𝑓 𝐿∼𝑋
𝑥𝑖

(𝐴) ≥ 𝛽
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

(15)

Here, 𝑥𝑖 can be seen to belong to the positive domain by com-
paring its characteristic function 𝐻𝑋

𝑥𝑖
(𝐴) under attribute 𝐴 with the

parameter 𝛽. The positive domain vector 𝐺𝑃𝑂𝑆
𝐴 (𝑋) is obtained from the

functions 𝑔𝑃𝑂𝑆
𝐴 (𝑥𝑖)(𝑥𝑖 ∈ 𝑈 ) for all objects. Similarly, we can calculate

the boundary domain vector 𝐺𝐵𝑁𝐷
𝐴 (𝑋) and the negative domain vector

𝐺𝑁𝐸𝐺
𝐴 (𝑋).

Example 2 (Continuing Example 1). Based on Definition 4, we define
𝐴 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4. We can calculate the basic positive domain
vector 𝐺𝑃𝑂𝑆

𝐴 (𝑋), the basic boundary domain vector 𝐺𝐵𝑁𝐷
𝐴 (𝑋), and the

basic negative domain vector 𝐺𝑁𝐸𝐺
𝐴 (𝑋) under granularity 𝐴.

Let 𝛼 = 1
5 , 𝛽 = 1, we can obtain

𝐺𝑃𝑂𝑆
𝐴 (𝑋) = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

𝐺𝐵𝑁𝐷
𝐴 (𝑋) = [0, 0, 0, 0, 1, 0, 0, 1, 1, 0],

𝐺𝑁𝐸𝐺
𝐴 (𝑋) = [1, 1, 1, 1, 0, 0, 1, 0, 0, 1].

Let 𝛼 = 1
4 , 𝛽 = 2

3 , we can obtain

𝐺𝑃𝑂𝑆
𝐴 (𝑋) = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

𝐺𝐵𝑁𝐷
𝐴 (𝑋) = [0, 0, 0, 0, 1, 0, 0, 1, 1, 0],
𝑁𝐸𝐺
6

𝐺𝐴 (𝑋) = [1, 1, 1, 1, 0, 0, 1, 0, 0, 1].
Let 𝛼 = 1
3 , 𝛽 = 1

2 , we can obtain

𝐺𝑃𝑂𝑆
𝐴 (𝑋) = [0, 0, 0, 0, 1, 1, 0, 1, 1, 0],

𝐺𝐵𝑁𝐷
𝐴 (𝑋) = [0, 0, 0, 0, 1, 0, 0, 1, 1, 0],

𝐺𝑁𝐸𝐺
𝐴 (𝑋) = [1, 1, 1, 1, 0, 0, 1, 0, 0, 1].

. Theory of matrix approximation dynamic update
ulti-granulation neighborhood dominant rough sets

In an age characterized by the abundance of big data, informa-
ion is constantly changing in a complex and interconnected man-
er. It is, therefore, crucial to promptly incorporate the latest in-
ormation while eliminating redundant data. Matrix dynamic tech-
iques, being a significant strategy in the field of data mining, are
mployed to effectively manage data updates. This section introduces
ynamic matrix-based mechanisms to update the approximate values
f multi-granulation neighborhood dominant rough sets when adding
r deleting data structures.

As the number of objects in an IFOIS increases, the neighborhood
ominant relation matrices need to be updated for each granularity
tructure. We first discuss the update mechanism for the neighborhood
ominant relation matrix when objects are added.

Let 𝐼≥ = (𝑈,𝐴𝑇 ,𝐺) be an IFOIS, where 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛},
𝑡 ⊆ 𝐴𝑇 , ∀𝑡 ∈ {1, 2,… , 𝑠}, and the neighborhood dominant relation
atrix with respect to 𝐴𝑡 is 𝑀𝛿≥

𝐴𝑡
= [𝑚𝛿≥

𝑖𝑗,𝐴𝑡
]𝑛×𝑛. After the addition of 𝑛

bjects, the updated positive, negative, and boundary domain vectors
re defined as follows:

𝐺𝑃𝑂𝑆
𝐴 (𝑋) = [𝑔𝑃𝑂𝑆

𝐴 (𝑥1), 𝑔𝑃𝑂𝑆
𝐴 (𝑥2),… , 𝑔𝑃𝑂𝑆

𝐴 (𝑥𝑛), 𝑔𝑃𝑂𝑆
𝐴 (𝑥𝑛+1′ ),… , 𝑔𝑃𝑂𝑆

𝐴 (𝑥𝑛+𝑛′ )],
𝐵𝑁𝐷
𝐴 (𝑋) = [𝑔𝐵𝑁𝐷

𝐴 (𝑥1), 𝑔𝐵𝑁𝐷
𝐴 (𝑥2),… , 𝑔𝐵𝑁𝐷

𝐴 (𝑥𝑛), 𝑔𝐵𝑁𝐷
𝐴 (𝑥𝑛+1′ ),… , 𝑔𝐵𝑁𝐷

𝐴 (𝑥𝑛+𝑛′ )],

𝐺𝑁𝐸𝐺
𝐴 (𝑋) = [𝑔𝑁𝐸𝐺

𝐴 (𝑥1), 𝑔𝑁𝐸𝐺
𝐴 (𝑥2),… , 𝑔𝑁𝐸𝐺

𝐴 (𝑥𝑛), 𝑔𝑁𝐸𝐺
𝐴 (𝑥𝑛+1′ ),… , 𝑔𝑁𝐸𝐺

𝐴 (𝑥𝑛+𝑛′ )].

(16)

In addition to objects being added to the IFOIS, there may also be
ases in which some objects are removed.Removing objects also re-
uires updating the neighborhood dominant relation matrices for each
ranularity structure. Next, we discuss the mechanism for performing
hese updates.

efinition 5. Let 𝐼≥ = (𝑈,𝐴𝑇 , 𝐹 ) be an IFOIS, where 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛
nd 𝐴𝑡 ⊆ 𝐴𝑇 , ∀ 𝑡 ∈ {1, 2,… , 𝑠}. The neighborhood dominant relation
atrix 𝑀𝛿≥

𝐴𝑡
= [𝑚𝛿≥

𝑖𝑗,𝐴𝑡
]𝑛×𝑛 for 𝐴𝑡. After adding 𝑛 objects, the new

eighborhood dominant relation matrix 𝑀𝛿≥′

𝐴𝑡
for attribute 𝐴𝑡 is defined

s follows:

𝛿≥′

𝐴𝑡
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑚𝛿≥
11,𝐴𝑡

𝑚𝛿≥
12,𝐴𝑡

… 𝑚𝛿≥
1,𝑛,𝐴𝑡

𝑚𝛿≥′

1,𝑛+1′ ,𝐴𝑡
… 𝑚𝛿≥′

1,𝑛+𝑛′ ,𝐴𝑡

𝑚𝛿≥
21,𝐴𝑡

𝑚𝛿≥
22,𝐴𝑡

… 𝑚𝛿≥
2,𝑛,𝐴𝑡

𝑚𝛿≥′

1 2,𝑛+1′ ,𝐴𝑡
… 𝑚𝛿≥′

2,𝑛+𝑛′ ,𝐴𝑡

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑚𝛿≥
𝑛,1,𝐴𝑡

𝑚𝛿≥
𝑛,2,𝐴𝑡

… 𝑚𝛿≥
𝑛,𝑛,𝐴𝑡

𝑚𝛿≥′

𝑛′ ,𝑛+1′ ,𝐴𝑡
… 𝑚𝛿≥′

𝑛,𝑛+𝑛′𝐴𝑡

𝑚𝛿≥′

𝑛+1′ ,1,𝐴𝑡
𝑚𝛿≥′

𝑛+1′ ,2,𝐴𝑡
… 𝑚𝛿≥′

𝑛+1′ ,𝑛,𝐴𝑡
𝑚𝛿≥′

𝑛+1′ ,𝑛+1′ ,𝐴𝑡
… 𝑚𝛿≥′

𝑛+1′ ,𝑛+𝑛′ ,𝐴𝑡

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑚𝛿≥′

𝑛+𝑛′ ,1,𝐴𝑡
𝑚𝛿≥′

𝑛+𝑛′ ,2,𝐴𝑡
… 𝑚𝛿≥′

𝑛+𝑛′ ,𝑛,𝐴𝑡
𝑚𝛿≥′

𝑛+𝑛′ ,𝑛+1′ ,𝐴𝑡
… 𝑚𝛿≥′

𝑛+𝑛′ ,𝑛+𝑛′ ,𝐴𝑡

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠.
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For all 𝑖, 𝑗 = {1, 2,… , 𝑛}, we can obtain

𝑚𝛿≥′

𝑖,𝑛+𝑗 =

{

1, 𝐼𝑓 𝑥𝑛+𝑗 ∈ [̃𝑥𝑖]
𝛿≥
𝐴𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑖 = 1, 2,… , 𝑛, 𝑗 = 1, 2,… , 𝑛′,

𝑚𝛿≥′

𝑛+𝑖,𝑗 =

{

1, 𝐼𝑓 𝑥𝑗 ∈ [̃𝑥𝑛+𝑖]
𝛿≥
𝐴𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑖 = 1, 2,… , 𝑛′, 𝑗 = 1, 2,… , 𝑛,

𝑚𝛿≥′

𝑛+𝑖,𝑛+𝑗 =

{

1, 𝐼𝑓 𝑥𝑛+𝑗 ∈ [̃𝑥𝑛+𝑖]
𝛿≥
𝐴𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑖 = 1, 2,… , 𝑛′, 𝑗 = 1, 2,… , 𝑛′.

(17)

As mentioned above,each granularity structure’s neighborhood dom-
inant relation matrix plays a fundamental role in calculating the
multi-granulation neighborhood dominant rough sets. When adding
objects, the key step in performing these calculations is to update each
granularity’s neighborhood dominant relation matrix. On the basis of
the updated neighborhood dominant relation matrix, we can further
discuss the inclusion relationship between the updated neighborhood
classes and the target set. Therefore, the following theorem elaborates
the dynamic update mechanism of the global characteristic matrix after
adding objects.

Definition 6. Let 𝐼≥ = (𝑈,𝐴𝑇 , 𝐹 ) be an IFOIS, where 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛
and 𝐴𝑡 ⊆ 𝐴𝑇 , ∀ 𝑡 ∈ {1, 2,… , 𝑠}. After adding 𝑛 objects, the domain of
discourse becomes 𝑈+, and the global characteristic matrix of 𝑈+ is
updated as follows:

𝐻𝑈+ (𝐴𝑡) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ℎ𝐴1
(𝑥1) ℎ𝐴2

(𝑥1) ℎ𝐴3
(𝑥1) … ℎ𝐴𝑠

(𝑥1)
ℎ𝐴1

(𝑥2) ℎ𝐴2
(𝑥2) ℎ𝐴3

(𝑥2) … ℎ𝐴𝑠
(𝑥2)

⋮ ⋮ ⋮ ⋮ ⋮
ℎ𝐴1

(𝑥𝑛) ℎ𝐴2
(𝑥𝑛) ℎ𝐴3

(𝑥𝑛) … ℎ𝐴𝑠
(𝑥𝑛)

ℎ𝐴1
(𝑥𝑛+1′ ) ℎ𝐴2

(𝑥𝑛+1′ ) ℎ𝐴3
(𝑥𝑛+1′ ) … ℎ𝐴𝑠

(𝑥𝑛+1′ )
⋮ ⋮ ⋮ ⋮ ⋮

ℎ𝐴1
(𝑥𝑛+𝑛′ ) ℎ𝐴2

(𝑥𝑛+𝑛′ ) ℎ𝐴3
(𝑥𝑛+𝑛′ ) … ℎ𝐴1

(𝑥𝑛+𝑛′ )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝐿𝑈+ (𝐴𝑡) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑙𝐴1
(𝑥1) 𝑙𝐴2

(𝑥1) 𝑙𝐴3
(𝑥1) … 𝑙𝐴𝑠

(𝑥1)
𝑙𝐴1

(𝑥2) 𝑙𝐴2
(𝑥2) 𝑙𝐴3

(𝑥2) … 𝑙𝐴𝑠
(𝑥2)

⋮ ⋮ ⋮ ⋮ ⋮
𝑙𝐴1

(𝑥𝑛) 𝑙𝐴2
(𝑥𝑛) 𝑙𝐴3

(𝑥𝑛) … ℎ𝐴𝑠
(𝑥𝑛)

𝑙𝐴1
(𝑥𝑛+1′ ) 𝑙𝐴2

(𝑥𝑛+1′ ) 𝑙𝐴3
(𝑥𝑛+1′ ) … 𝑙𝐴𝑠

(𝑥𝑛+1′ )
⋮ ⋮ ⋮ ⋮ ⋮

𝑙𝐴1
(𝑥𝑛+𝑛′ ) 𝑙𝐴2

(𝑥𝑛+𝑛′ ) 𝑙𝐴3
(𝑥𝑛+𝑛′ ) … 𝑙𝐴1

(𝑥𝑛+𝑛′ )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

For all 𝑖, 𝑗 = {1, 2,… , 𝑛}, we can obtain

ℎ𝑋𝐴𝑡
(𝑥𝑛+𝑖) =

⎧

⎪

⎨

⎪

⎩

1, [̃𝑥𝑛+𝑖]
𝛿≥
𝐴𝑡

⊆ 𝑋

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑖 = 1, 2,… , 𝑛′, 𝑡 ∈ {1, 2,… , 𝑠},

𝑙∼𝑋𝐴𝑡
(𝑥𝑛+𝑖) =

⎧

⎪

⎨

⎪

⎩

1, [̃𝑥𝑛+𝑖]
𝛿≥
𝐴𝑡

∩𝑋 = ∅

0, [̃𝑥𝑛+𝑖]
𝛿≥
𝐴𝑡

∩𝑋 ≠ ∅
𝑖 = 1, 2,… , 𝑛′, 𝑡 ∈ {1, 2,… , 𝑠}.

(18)

Based on Definition 6, when adding a set of objects 𝑈+, we can
update the characteristic matrix directly without recalculating the pre-
viously retained results. Based on the updated characteristic matrix, we
can calculate the basic positive domain vector 𝐺𝑃𝑂𝑆

𝐴 (𝑋), the basic neg-
ative domain vector 𝐺𝑁𝐸𝐺

𝐴 (𝑋), and the basic boundary domain vector
𝐺𝐵𝑁𝐷
𝐴 (𝑋) of the multi-granulation neighborhood dominant rough sets

after adding objects.
Let 𝐼≥ = (𝑈,𝐴𝑇 , 𝐹 ) be an IFOIS, where 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛} and

𝐴𝑡 ⊆ 𝐴𝑇 , ∀ 𝑡 ∈ {1, 2,… , 𝑠}. After adding 𝑛 objects, the updated basic
7

positive, basic negative, and basic boundary domain vectors are as
follows:

𝐺𝑃𝑂𝑆
𝐴 (𝑋) = [𝑔𝑃𝑂𝑆

𝐴 (𝑥1), 𝑔𝑃𝑂𝑆
𝐴 (𝑥2),… , 𝑔𝑃𝑂𝑆

𝐴 (𝑥𝑛), 𝑔𝑃𝑂𝑆
𝐴 (𝑥𝑛+1′ ),… , 𝑔𝑃𝑂𝑆

𝐴 (𝑥𝑛+𝑛′ )],

𝐺𝐵𝑁𝐷
𝐴 (𝑋) = [𝑔𝐵𝑁𝐷

𝐴 (𝑥1), 𝑔𝐵𝑁𝐷
𝐴 (𝑥2),… , 𝑔𝐵𝑁𝐷

𝐴 (𝑥𝑛), 𝑔𝐵𝑁𝐷
𝐴 (𝑥𝑛+1′ ),… , 𝑔𝐵𝑁𝐷

𝐴 (𝑥𝑛+𝑛′ )],

𝐺𝑁𝐸𝐺
𝐴 (𝑋) = [𝑔𝑁𝐸𝐺

𝐴 (𝑥1), 𝑔𝑁𝐸𝐺
𝐴 (𝑥2),… , 𝑔𝑁𝐸𝐺

𝐴 (𝑥𝑛), 𝑔𝑁𝐸𝐺
𝐴 (𝑥𝑛+1′ ),… , 𝑔𝑁𝐸𝐺

𝐴 (𝑥𝑛+𝑛′ )].

(19)

In addition to adding objects, there may also be situations in which
some objects are removed from the IFOIS.Removing objects also re-
quires updating the neighborhood dominant relation matrices for each
granularity structure. Next, we discuss the mechanism by which these
updates are performed.

Definition 7. Let 𝐼≥ = (𝑈,𝐴𝑇 , 𝐹 ) be an IFOIS,
where 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛} and 𝐴𝑡 ⊆ 𝐴𝑇 , ∀ 𝑡 ∈ {1, 2,… , 𝑠}. The
neighborhood dominant relation matrix 𝑀𝛿≥

𝐴𝑡
= [𝑚𝛿≥

𝑖𝑗,𝐴𝑡
]𝑛×𝑛 for 𝐴𝑡, after

removing 𝑛 objects, the new neighborhood dominant relation matrix
𝑀𝛿≥′

𝐴𝑡
for attribute 𝐴𝑡 is defined as follows:

𝑀𝛿≥′

𝐴𝑡
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑚𝛿≥
11,𝐴𝑡

… 𝑚𝛿≥
1,𝑛−𝑛′−1,𝐴𝑡

𝑚𝛿≥′

1,𝑛−𝑛′ ,𝐴𝑡
… 𝑚𝛿≥′

1,𝑛,𝐴𝑡

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑚𝛿≥

𝑛−𝑛′−1,1,𝐴𝑡
… 𝑚𝛿≥

𝑛−𝑛′−1,𝑛−𝑛′−1,𝐴𝑡
𝑚𝛿≥′

𝑛−𝑛′−1,𝑛−𝑛′ ,𝐴𝑡
… 𝑚𝛿≥′

𝑛−𝑛′−1,𝑛,𝐴𝑡

𝑚𝛿≥′

𝑛−𝑛′ ,1,𝐴𝑡
… 𝑚𝛿≥′

𝑛−𝑛′ ,𝑛−𝑛′−1,𝐴𝑡
𝑚𝛿≥′

𝑛−𝑛′ ,𝑛−𝑛′ ,𝐴𝑡
… 𝑚𝛿≥′

𝑛−𝑛′ ,𝑛,𝐴𝑡

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑚𝛿≥′

𝑛,1,𝐴𝑡
… 𝑚𝛿≥′

𝑛,𝑛−𝑛′−1,𝐴𝑡
𝑚𝛿≥′

𝑛,𝑛−𝑛′ ,𝐴𝑡
… 𝑚𝛿≥′

𝑛,𝑛,𝐴𝑡

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

For all 𝑖, 𝑗 = {1, 2,… , 𝑛}, we can obtain

𝑚𝛿≥′

𝑖,𝑛−𝑗 =

{

1, 𝐼𝑓 𝑥𝑛−𝑗 ∈ [̃𝑥𝑖]
𝛿≥
𝐴𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑖 = 1, 2,… , 𝑛, 𝑗 = 1, 2,… , 𝑛′,

𝑚𝛿≥′

𝑛−𝑖,𝑗 =

{

1, 𝐼𝑓 𝑥𝑗 ∈ [̃𝑥𝑛−𝑖]
𝛿≥
𝐴𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑖 = 1, 2,… , 𝑛′, 𝑗 = 1, 2,… , 𝑛,

𝛿≥′

𝑛−𝑖,𝑛−𝑗 =

{

1, 𝐼𝑓 𝑥𝑛−𝑗 ∈ [̃𝑥𝑛−𝑖]
𝛿≥
𝐴𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑖 = 1, 2,… , 𝑛′, 𝑗 = 1, 2,… , 𝑛′.

(20)

As mentioned above, the neighborhood dominant relation matrix
f each granular structure Definition 7 explains the changes in neigh-
orhood dominant relations at each granularity structure in the ma-
rix form when removing objects. To update the global characteristic
atrix, we use the updated results for the neighborhood dominant

elations in matrix form and their inclusion relationship with the target
oncept. Then, we obtain the global feature in matrix form when
emoving objects.

efinition 8. Let 𝐼≥ = (𝑈,𝐴𝑇 , 𝐹 ) be an IFOIS, where 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛
nd 𝐴𝑡 ⊆ 𝐴𝑇 , ∀𝑡 ∈ {1, 2,… , 𝑠}. After removing 𝑛 objects, the universe
f discourse becomes 𝑈−, and the updated global characteristic matrix
f 𝑈− is as follows:

𝑈− (𝐴𝑡) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ℎ𝐴1
(𝑥1) ℎ𝐴2

(𝑥1) ℎ𝐴3
(𝑥1) … ℎ𝐴𝑠

(𝑥1)
ℎ𝐴1

(𝑥2) ℎ𝐴2
(𝑥2) ℎ𝐴3

(𝑥2) … ℎ𝐴𝑠
(𝑥2)

⋮ ⋮ ⋮ ⋮ ⋮
ℎ𝐴1

(𝑥𝑛−𝑛′−1) ℎ𝐴2
(𝑥𝑛−𝑛′−1) ℎ𝐴3

(𝑥𝑛−𝑛′−1) … ℎ𝐴𝑠
(𝑥𝑛−𝑛′−1)

ℎ𝐴1
(𝑥𝑛−𝑛′ ) ℎ𝐴2

(𝑥𝑛−𝑛′ ) ℎ𝐴3
(𝑥𝑛−𝑛′ ) … ℎ𝐴𝑠

(𝑥𝑛−𝑛′ )
⋮ ⋮ ⋮ ⋮ ⋮

ℎ𝐴1
(𝑥𝑛) ℎ𝐴2

(𝑥𝑛) ℎ𝐴3
(𝑥𝑛) … ℎ𝐴1

(𝑥𝑛)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝑈− (𝐴𝑡) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑙𝐴1
(𝑥1) 𝑙𝐴2

(𝑥1) 𝑙𝐴3
(𝑥1) … 𝑙𝐴𝑠

(𝑥1)
𝑙𝐴1

(𝑥2) 𝑙𝐴2
(𝑥2) 𝑙𝐴3

(𝑥2) … 𝑙𝐴𝑠
(𝑥2)

⋮ ⋮ ⋮ ⋮ ⋮
𝑙𝐴1

(𝑥𝑛−𝑛′−1) 𝑙𝐴2
(𝑥𝑛−𝑛′−1) 𝑙𝐴3

(𝑥𝑛−𝑛′−1) … 𝑙𝐴𝑠
(𝑥𝑛−𝑛′−1)

𝑙𝐴1
(𝑥𝑛−𝑛′ ) 𝑙𝐴2

(𝑥𝑛−𝑛′ ) 𝑙𝐴3
(𝑥𝑛−𝑛′ ) … 𝑙𝐴𝑠

(𝑥𝑛−𝑛′ )
⋮ ⋮ ⋮ ⋮ ⋮

𝑙𝐴1
(𝑥𝑛) 𝑙𝐴2

(𝑥𝑛) 𝑙𝐴3
(𝑥𝑛) … 𝑙𝐴1

(𝑥𝑛)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.



Applied Soft Computing 163 (2024) 111915X.Y. Zhang et al.

5

i
a
i
T
w
A
N
e

5

p
v
a
t
b
A
a
r
t
n
d
s
o
o
2
n
r

5

f
f

v
o
c
t
a
e
S
𝑀
a
m
n
a
p
n

w
c
r
o
c
t
c
S

For all 𝑖, 𝑗 = {1, 2,… , 𝑛}, we can obtain

ℎ𝑋𝐴𝑡
(𝑥𝑛+𝑖) =

⎧

⎪

⎨

⎪

⎩

1, [̃𝑥𝑛−𝑖]
𝛿≥
𝐴𝑡

⊆ 𝑋

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑖 = 1, 2,… , 𝑛′, 𝑡 ∈ {1, 2,… , 𝑠},

𝑙∼𝑋𝐴𝑡
(𝑥𝑛+𝑖) =

⎧

⎪

⎨

⎪

⎩

1, [̃𝑥𝑛−𝑖]
𝛿≥
𝐴𝑡

∩𝑋 = ∅

0, [̃𝑥𝑛−𝑖]
𝛿≥
𝐴𝑡

∩𝑋 ≠ ∅
𝑖 = 1, 2,… , 𝑛′, 𝑡 ∈ {1, 2,… , 𝑠}.

(21)

Definition 8 explains the dynamic update process for the global
characteristic matrix when objects are removed from the set 𝑈−. Based
on the updated characteristic matrix, we can calculate the positive
domain vector 𝐺𝑃𝑂𝑆

𝐴 (𝑋), the negative domain vector 𝐺𝑁𝐸𝐺
𝐴 (𝑋), and the

boundary domain vector 𝐺𝐵𝑁𝐷
𝐴 (𝑋) of the multi-granulation neighbor-

hood dominant rough set after removing objects.
Let 𝐼≥ = (𝑈,𝐴𝑇 , 𝐹 ) be an IFOIS, where 𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛} and

𝐴𝑡 ⊆ 𝐴𝑇 , ∀𝑡 ∈ {1, 2,… , 𝑠}. After removing 𝑛 objects, the updated
positive domain vector, negative domain vector, and boundary domain
vector are as follows:

𝐺𝑃𝑂𝑆
𝐴 (𝑋) = [𝑔𝑃𝑂𝑆

𝐴 (𝑥1), 𝑔𝑃𝑂𝑆
𝐴 (𝑥2),… , 𝑔𝑃𝑂𝑆

𝐴 (𝑥𝑛−𝑛′−1), 𝑔𝑃𝑂𝑆
𝐴 (𝑥𝑛−𝑛′ ),… , 𝑔𝑃𝑂𝑆

𝐴 (𝑥𝑛)],

𝐺𝐵𝑁𝐷
𝐴 (𝑋) = [𝑔𝐵𝑁𝐷

𝐴 (𝑥1), 𝑔𝐵𝑁𝐷
𝐴 (𝑥2),… , 𝑔𝐵𝑁𝐷

𝐴 (𝑥𝑛−𝑛′−1), 𝑔𝐵𝑁𝐷
𝐴 (𝑥𝑛−𝑛′ ),… , 𝑔𝐵𝑁𝐷

𝐴 (𝑥𝑛)],

𝐺𝑁𝐸𝐺
𝐴 (𝑋) = [𝑔𝑁𝐸𝐺

𝐴 (𝑥1), 𝑔𝑁𝐸𝐺
𝐴 (𝑥2),… , 𝑔𝑁𝐸𝐺

𝐴 (𝑥𝑛−𝑛′−1), 𝑔𝑁𝐸𝐺
𝐴 (𝑥𝑛−𝑛′ ),… , 𝑔𝑁𝐸𝐺

𝐴 (𝑥𝑛)].

(22)

. Algorithm design

On the basis of the matrix dynamic update mechanism proposed
n the previous section, this section discusses the design of dynamic
lgorithms for updating the neighborhood dominant rough set approx-
mation from a matrix perspective when objects are added or removed.
he tests were performed on a personal computer running Windows 11
ith an AMD Ryzen 7 5800H 3.2 GHz processor and 16 GB of memory.
ll the algorithms were implemented using Python in the Anaconda
avigator environment, and the computation time was the primary
valuation metric.

.1. Matrix static approximation set algorithm

Here we present the matrix static approximation algorithm, which
lays two crucial roles. First, it establishes the groundwork and pro-
ides initial computation results for the subsequent matrix dynamic
pproximation update algorithm. Second, by employing the computa-
ion results of the matrix static approximation algorithm as a reference
enchmark, the feasibility of the dynamic algorithm is demonstrated.
lgorithm 1 represents a matrix static approach for calculating the
pproximation sets of the multi-granulation neighborhood dominant
ough set. It consists of several parts: first, an IFOIS is input as the
est system together with the target concept 𝑋. Steps 1–3 calculate the
eighborhood dominant matrix of the IFOIS based on the neighborhood
ominant relation. Steps 4–10 calculate the characteristic elements of a
ingle object, and steps 11–12 provide the characteristic column vector
f the object for all granularities. Steps 13–21 determine whether an
bject belongs to the negative, positive, or boundary domains. Step
2 returns the positive, negative, and boundary domain vectors of the
eighborhood dominant rough set approximation when the object set
emains unchanged.

.2. Matrix dynamic approximate update algorithms

In Algorithms 2 and 3, we introduced a dynamic update mechanism
or the multi-granulation neighborhood dominant rough set matrix
8

ramework. Algorithm 2 is for the scenario in which objects are added. a
Algorithm 1: The matrix static algorithm of computing approx-
imation sets for the neighborhood dominant multi-granulation
rough set in an IFOIS.

Input: An IFOIS 𝐼≥ = (𝑈,𝐴𝑇 ,𝐺), 𝐴𝑡 ⊆ 𝐴𝑇 (𝑡 = 1,… , 𝑠),
𝑈 = {𝑥1, 𝑥2,… , 𝑥𝑛}, 𝑋 ⊆ 𝑈 .

Output: The positive domain, negative domain, and boundary
domain of multi-granulation neighborhood dominant
rough sets

1 while 𝑡 > 0 do
2 Computing neighborhood dominant matrix 𝑀𝛿≥

𝐴𝑡
;

3 end
4 while 𝑡 > 0 do
5 if [̃𝑥𝑖]

𝛿≥
𝐴𝑡

⊆ 𝑋 then
6 ℎ𝑋𝐴𝑡

(𝑥𝑖) = 1;
7 else
8 𝑙∼𝑋𝐴𝑡

(𝑥𝑖) = 1;
9 end
10 end
11 𝐻𝑥𝑖 (𝐴𝑡) = [ℎ𝐴1

(𝑥𝑖), ℎ𝐴2
(𝑥𝑖),… , ℎ𝐴𝑠

(𝑥𝑖)]𝑇 ,calculation 𝐻𝑋
𝑥𝑖
(𝐴);

12 𝐿𝑥𝑖 (𝐴𝑡) = [𝑙𝐴1
(𝑥𝑖), 𝑙𝐴2

(𝑥𝑖),… , 𝑙𝐴𝑠
(𝑥𝑖)]𝑇 ,calculation𝐿∼𝑋

𝑥𝑖
(𝐴);

13 while 𝑖 > 0 do
14 if 𝐻𝑋

𝑥𝑖
(𝐴) ≥ 𝛽 then

15 𝑔𝑃𝑂𝑆
𝐴 (𝑥𝑖) = 1;

16 else
17 if 𝐻𝑋

𝑥𝑖
(𝐴) < 𝛽,𝐿∼𝑋

𝑥𝑖
(𝐴) < 𝛼 then

18 𝑔𝐵𝑁𝐷
𝐴 (𝑥𝑖) = 1;

19 else
20 𝑔𝑁𝐸𝐺

𝐴 (𝑥𝑖) = 1;
21 end
22 end
23 end
24 return 𝐺𝑃𝑂𝑆

𝐴 (𝑋),𝐺𝐵𝑁𝐷
𝐴 (𝑋),𝐺𝑁𝐸𝐺

𝐴 (𝑋).

The input of Algorithm 2 includes an IFOIS, the neighborhood dom-
inant relation matrix 𝑀𝛿≥

𝐴𝑡
before adding objects, the feature column

ectors 𝐻𝑥𝑖 (𝐴𝑡) and 𝐿𝑥𝑖 (𝐴𝑡), the threshold values 𝛼 and 𝛽, and the added
bjects 𝑈+ = {𝑥𝑖|| 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + 𝑛′}. The algorithm’s output
omprises the updated positive, negative, and boundary domains of
he multi-granulation neighborhood dominant rough set. Steps 1–3
nalyze the target set 𝑋 after adding objects. Steps 4–23 calculate the
lements of the neighborhood dominant matrix after adding objects.
tep 24 calculates the updated neighborhood dominant relation matrix
𝛿≥′

𝐴𝑡
, and steps 25–34 calculate the global feature matrices 𝐻𝑈+ (𝐴𝑡)

nd 𝐿𝑈+ (𝐴𝑡) based on the updated neighborhood dominant relation
atrix 𝑀𝛿≥′

𝐴𝑡
and the target concept 𝑋. Step 35 determines the positive,

egative, and boundary domains based on the global feature matrices
nd the threshold values 𝛼 and 𝛽. Finally, step 36 returns the updated
ositive, negative, and boundary domains of the multi-granulation
eighborhood dominant rough set.

Algorithm 3 is a dynamic algorithm to compute approximation sets
hen objects are removed. The input includes an IFOIS, the target

oncept 𝑋, the neighborhood dominant relation matrix 𝑀𝛿≥
𝐴𝑡

before
emoving objects, the threshold values 𝛼 and 𝛽, and the removed
bjects 𝑈− = {𝑥𝑖|| 𝑖 = 𝑛 − 𝑛′ + 1, 𝑛 − 𝑛′ + 2,… , 𝑛}. The output
onsists of the updated positive, negative, and boundary domains of
he multi-granulation neighborhood dominant rough set. Steps 1–3
alculate the changes in target concept 𝑋 after removing objects.
teps 4–12 update the neighborhood dominant relation matrix 𝑀𝛿≥′

𝐴𝑡

fter removing objects. In steps 13–21, we update the global feature
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Algorithm 2: Matrix dynamic algorithm of computing ap-
proximation sets for adding objects to the multi-granulation
neighborhood dominant rough set in an IFOIS.

Input: An IFOIS 𝐼≥ = (𝑈,𝐴𝑇 , 𝐹 ), 𝐴𝑡 ∈ 𝐴𝑇 (𝑡 = 1,… , 𝑠),
𝑈+ = {𝑥𝑖|| 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + 𝑛′},target concept set
𝑋 ⊆ 𝑈 , neighborhood dominant relation matrix 𝑀𝛿≥

𝐴𝑡
,

threshold 𝛼, 𝛽, feature column vector 𝐻𝑥𝑖 (𝐴𝑡), 𝐿𝑥𝑖 (𝐴𝑡)
Output: The updated positive domain, negative domain, and

boundary domain of the multi-granulation
neighborhood dominant rough set.

1 Add objects 𝑈+ = {𝑥𝑖|| 𝑖 = 𝑛 + 1, 𝑛 + 2,… , 𝑛 + 𝑛′};
2 if 𝑋+ ⊆ 𝑈+ then
3 𝑋′ = 𝑋 ∪𝑋+;
4 end
5 while 𝑡 > 0 do
6 while 𝑖 > 0 do
7 while 𝑗 ≥ 𝑛 + 1 do
8 if 𝑥𝑗 ∈ [̃𝑥𝑖]

𝛿≥
𝐴𝑡
then

9 𝑚𝛿≥
𝑖𝑗,𝐴𝑡

= 1;
10 else
11 𝑚𝛿≥

𝑖𝑗,𝐴𝑡
= 0;

12 end
13 end
14 end
15 while 𝑖 ≥ 𝑛 + 1 do
16 while 𝑗 > 0 do
17 if 𝑥𝑗 ∈ [̃𝑥𝑖]

𝛿≥
𝐴𝑡
then

18 𝑚𝛿≥
𝑖𝑗,𝐴𝑡

= 1;
19 else
20 𝑚𝛿≥

𝑖𝑗,𝐴𝑡
= 0;

21 end
22 end
23 end
24 end
25 Update neighborhood dominant relation matrix 𝑀𝛿≥′

𝐴𝑡
;

26 Update global feature matrix updated for 𝑈+: 𝐻𝑈+ (𝐴𝑡) and
𝐿𝑈+ (𝐴𝑡);

27 Return to steps 13-21 in Algorithm 1, and calculate the
updated 𝐺𝑃𝑂𝑆

𝐴 (𝑋), 𝐺𝐵𝑁𝐷
𝐴 (𝑋), 𝐺𝑁𝐸𝐺

𝐴 (𝑋);
28 return 𝐺𝑃𝑂𝑆

𝐴 (𝑋), 𝐺𝐵𝑁𝐷
𝐴 (𝑋), 𝐺𝑁𝐸𝐺

𝐴 (𝑋).

matrices 𝐻𝑈− (𝐴𝑡) and 𝐿𝑈− (𝐴𝑡) after removing objects 𝑈−. Then step
3 calculates the updated positive, negative, and boundary domains.
tep 24 returns the updated positive, negative, and boundary domains
f the multi-granulation neighborhood dominant rough set.

. Experiments and analysis

In this section, we describe a series of experiments that were con-
ucted to validate the proposed matrix dynamic algorithm’s compu-
ational performance against general dynamic and static methods. We
valuated its efficiency on the eight datasets shown in Table 3. During
he experiments, we compared the computational performance dur-
ng the addition and removal of objects in the approximate updating
rocess.

.1. Comparative analysis of methods

Our study is grounded in intuitionistic fuzzy datasets, which we
onstructed by normalizing the numerical values in the downloaded
9

Algorithm 3: Matrix dynamic algorithm of computing approx-
imation sets for removing objects from the multi-granulation
neighborhood dominant rough set in an IFOIS.

Input: An IFOIS 𝐼≥ = (𝑈,𝐴𝑇 , 𝐹 ),
𝑈− = {𝑥𝑖|| 𝑖 = 𝑛 − 𝑛′ + 1, 𝑛 − 𝑛′ + 2,… , 𝑛},
𝐴𝑡 ∈ 𝐴𝑇 (𝑡 = 1,… , 𝑠), target concept set 𝑋 ⊆ 𝑈 ,
neighborhood dominant relation matrix 𝑀𝛿≥

𝐴𝑡
, threshold

𝛼, 𝛽, feature column vector 𝐻𝑥𝑖 (𝐴𝑡), 𝐿𝑥𝑖 (𝐴𝑡)
Output: Updated positive domain, negative domain, and

boundary domain of the multi-granulation
neighborhood dominant rough set.

1 Removing objects 𝑈− = {𝑥𝑖|| 𝑖 = 𝑛 − 𝑛′ + 1, 𝑛 − 𝑛′ + 2,… , 𝑛};
2 if 𝑋− ⊆ 𝑈− then
3 𝑋′ = 𝑋 −𝑋+;
4 end
5 while 𝑡 > 0 do
6 while 𝑛 − 𝑛′ ≥ 𝑖 > 0 do
7 while 𝑛 − 𝑛′ ≥ 𝑖 = 𝑗 > 0 do
8 𝑚𝛿≥′

𝑖𝑗,𝐴𝑡
= 𝑚𝛿≥

𝑖𝑗,𝐴𝑡
;

9 𝑚𝛿≥′

𝑗𝑖,𝐴𝑡
= 𝑚𝛿≥

𝑗𝑖,𝐴𝑡
;

10 end
11 end
12 end
13 Update the neighborhood dominant relation matrix 𝑀𝛿≥′

𝐴𝑡
;

14 while 𝑖 > 0 do
15 while 𝑡 > 0 do
16 if [̃𝑥𝑖]

𝛿≥′

𝐴𝑡
⊆ 𝑋′ then

17 ℎ𝑋𝐴𝑡
(𝑥𝑖) = 1;

18 end

19 else if [̃𝑥𝑖]
𝛿≥′

𝐴𝑡
∩𝑋′ = ∅ then

20 𝑙∼𝑋𝐴𝑡
(𝑥𝑖) = 1;

21 end
22 end
23 end
24 Update the global feature matrix for 𝑈+: 𝐻𝑈− (𝐴𝑡) and 𝐿𝑈− (𝐴𝑡);
25 Return to steps 13-21 in Algorithm 1, and calculate the

updated 𝐺𝑃𝑂𝑆
𝐴 (𝑋), 𝐺𝐵𝑁𝐷

𝐴 (𝑋), 𝐺𝑁𝐸𝐺
𝐴 (𝑋);

26 return 𝐺𝑃𝑂𝑆
𝐴 (𝑋), 𝐺𝐵𝑁𝐷

𝐴 (𝑋), 𝐺𝑁𝐸𝐺
𝐴 (𝑋).

Table 3
Summary of the experimental datasets.

Data set Samples Attributes Classes

Sobar 72 19 2
Glass 214 9 6
Wholesale customers 440 3 6
Indian Liver Patient Dataset 583 9 2
Banknote authentication 1372 4 2
Wireless 2000 7 4
Customer Churn 3334 10 2
Page blocks 5473 10 5

UCI datasets. Moreover, considering the total number of objects, we
partitioned each dataset into two equal segments. One portion re-
mained unaltered, preserving the original dataset, while the other was
further divided into ten parts and treated as the added or removed
datasets. We selected the first decision class as the target concept. To
ensure generality, we chose two pairs of parameters, (𝛼 = 0.5, 𝛽 =
0.2) and (𝛼 = 0.6, 𝛽 = 0.25). Moreover, for ease of computation and
understanding, we selected attribute sets 𝐴1 = {𝑏1, 𝑏2}, 𝐴2 = {𝑏2, 𝑏3},
and 𝐴3 = {𝑏3, 𝑏4}.
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Fig. 3. The calculation chart of our proposed when deleting a certain proportion of objects for various experimental datasets (𝛼 = 0.5, 𝛽 = 0.2).
The final experimental results are shown in Tables 4–7, where the
computation time is measured in seconds. ‘‘Static,’’ ‘‘Dynamic,’’ and
‘‘Matrix’’ refer to the static, dynamic, and matrix dynamic algorithms,
respectively. ‘‘Ratio’’ represents the ratio of removed or added objects
to initial objects. The experimental section includes time comparisons
for dynamic updates under two threshold values, 𝛼 and 𝛽. To better
compare the effect of object removal between the matrix dynamic,
general dynamic, and classical methods, we plotted three-dimensional
surface graphs based on Tables 4 and 5. Detailed information is shown
in Figs. 2 and 3. In the subgraph depicted in Fig. 2, the 𝑥-axis cor-
responds to the ratio of removed objects to initial objects. The 𝑦-axis
represents the static, dynamic, and matrix dynamic methods, while
the 𝑧-axis illustrates the computation time for these three methods.
As the number of removed objects increases, the classical method
becomes time-consuming but shows a decreasing trend. The dynamic
method exhibits a notable reduction in computation time compared
with the classical method, and the time variation remains minimal
as the number of removed objects increases. There is no significant
difference between the general dynamic and matrix dynamic methods
when computing small datasets. However, for larger datasets, the time
cost for the general dynamic method increases significantly, while
the rate of increase for the matrix dynamic method remains stable.
Hence, the cardinality of the object set within the dataset emerges as
the crucial factor influencing the performance of the three methods.
Notably, the matrix dynamic method is more efficient than the general
dynamic and static methods for computations involving large datasets.

Tables 6 and 7 show a comparison of the time taken by the matrix
dynamic, general dynamic, and static methods during object addition
in an IFOIS. We divided each dataset into two parts. One was used as
the initial dataset, while the other part served as the added dataset.
The original object set of the added dataset is denoted as 𝐾. The added
dataset was split into ten parts, which were added to the initial dataset
sequentially, up to a maximum of ten times. The experimental results
are shown in Figs. 4 and 5, where we have also plotted the computation
time as a three-dimensional surface. The 𝑥-axis corresponds to the ratio
of added objects to the initial dataset, the 𝑦-axis represents the static,
dynamic, and matrix dynamic methods, and the 𝑧-axis corresponds to
the computation time. As the number of added objects increases, it is
evident from the results in the figures that the computation time for
each method increases. Still, the matrix dynamic method maintains a
significant advantage in terms of time cost. By comparing the compu-
tation time for each dataset, we conclude that the larger the object set
10

in the dataset, the longer the time required to update the approximate
set, and the matrix dynamic method performs better in object addition
(see Fig. 6).

6.2. Comparative analysis of algorithms

In this section, we describe comparative experiments conducted
using the same eight datasets shown in Table 3. First, for the algorithms
that involve adding new objects, we selected 50% of the datasets as
the base set and then sequentially added the remaining objects in five
iterations, with each iteration adding 10% of the objects to the base
set. Similarly, we used all the datasets as the base set for the algorithms
involving the removal of objects. We performed five iterations of object
removal, with each iteration randomly removing 10% of the objects.
Finally, we compared this algorithm with the other four to assess its
effectiveness. All times are measured in seconds. We used 𝛼 = 0.5 and
𝛽 = 0.2 because the GMNDRS exhibited a higher computational time
than the other threshold groups on most datasets. The details of the
four selected comparative algorithms are as follows:

(1) Infinite feature selection (INF-FS) [37] is a feature selection
framework that considers the feature selection problem as a
regularization problem, in which features are represented as
nodes in a weighted fully connected graph and selected based
on the length of paths.

(2) Hybrid kernel-based fuzzy complementary mutual information
(HKCMI) [38] is a novel approach to unsupervised
mixed-attribute reduction that uses a hybrid kernel function to
define a fuzzy complementary entropy.

(3) The 𝑘-nearest neighborhood conditional mutual information
method (KNCMI) [39] is a new feature selection method that
effectively integrates the advantages of 𝑘-neighborhood and 𝑘-
nearest neighbors while considering both heterogeneous data
and feature interaction.

(4) Weighted dominance-based neighborhood conditional entropy
(WDNCE) [40] is a weighted dominance-based neighborhood
rough set method that assigns different weights to conditional
attributes and evaluates attribute significance using a matrix-
based conditional entropy. Moreover, heuristic algorithms and
corresponding incremental mechanisms are introduced based on
entropy to handle object addition.

Tables 8–11 compare the approximate update times for the GMN-
DRS method with INF-FS, KNCMI, HKCMI, and WDNCE when deleting
objects at different proportions (10%, 20%, 30%, 40%, 50%). Similarly,

Tables 12–15 compare the approximate update times when adding
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Fig. 4. The calculation chart of our proposed when deleting a certain proportion of objects for various experimental datasets (𝛼 = 0.6, 𝛽 = 0.25).

Fig. 5. The calculation chart of our proposed when adding a certain proportion of objects for various experimental datasets (𝛼 = 0.5, 𝛽 = 0.2).

Fig. 6. The calculation chart of our proposed when adding a certain proportion of objects for various experimental datasets (𝛼 = 0.6, 𝛽 = 0.25).
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Table 4
Computational time of algorithms for deleting a certain proportion of objects in GMNDRS (𝛼 = 0.5, 𝛽 = 0.2).

Ratio Method 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Static 0.616 0.571 0.569 0.517 0.512 0.469 0.449 0.410 0.396 0.342
S General dynamic 0.0 0.0 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003

Matrix dynamic 0.0 0.0 0.001 0.017 0.018 0.0 0.017 0.002 0.005 0.006

Static 5.498 5.216 5.020 4.744 4.389 4.186 3.909 3.574 3.331 2.909
G General dynamic 0.0 0.002 0.002 0.019 0.025 0.030 0.019 0.036 0.037 0.044

Matrix dynamic 0.024 0.033 0.018 0.019 0.018 0.028 0.018 0.037 0.018 0.026

Static 18.692 17.601 16.673 15.591 14.533 13.625 12.736 11.704 10.710 9.793
Wc General dynamic 0.132 0.199 0.140 0.098 0.163 0.126 0.117 0.159 0.164 0.108

Matrix dynamic 0.087 0.088 0.100 0.088 0.098 0.096 0.092 0.105 0.090 0.086

Static 31.974 30.328 28.704 26.886 25.152 23.594 21.992 20.424 18.743 16.677
ILPD General dynamic 0.395 0.353 0.298 0.326 0.318 0.259 0.196 0.293 0.315 0.401

Matrix dynamic 0.174 0.162 0.163 0.154 0.157 0.154 0.152 0.162 0.159 0.192

Static 136.646 130.964 122.617 115.277 108.859 101.302 93.911 88.059 80.598 72.518
Ba General dynamic 4.952 3.361 4.206 4.040 4.989 3.901 3.597 3.845 3.471 3.830

Matrix dynamic 0.844 0.857 0.850 0.830 0.828 0.860 0.831 0.846 0.857 0.860

Static 135.955 127.555 126.186 117.444 109.618 102.443 96.643 88.695 80.279 72.330
W General dynamic 8.212 11.216 12.036 14.502 13.711 15.652 14.252 14.450 13.945 15.920

Matrix dynamic 2.159 2.496 2.171 2.259 2.303 2.311 2.517 2.290 2.270 2.289

Static 231.218 229.539 223.815 221.109 217.003 215.412 212.051 208.761 204.296 198.467
CC General dynamic 13.445 12.602 13.296 14.031 13.002 13.463 13.519 13.288 12.433 11.104

Matrix dynamic 5.410 5.032 5.116 5.252 5.454 5.235 5.700 5.180 5.316 5.579

Static 358.095 344.173 329.658 307.653 277.117 269.305 297.084 281.352 263.891 255.296
Pb General dynamic 46.781 47.906 48.074 48.434 45.155 43.226 43.150 45.118 44.585 45.027

Matrix dynamic 12.582 13.163 12.091 11.664 12.295 12.746 12.095 13.015 12.421 12.090
Table 5
Computational time of algorithms for deleting a certain proportion of objects in GMNDRS (𝛼 = 0.6, 𝛽 = 0.25).

Ratio Method 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Static 0.640 0.593 0.537 0.522 0.495 0.474 0.450 0.410 0.396 0.350
S General dynamic 0.0 0.0 0.0 0.001 0.001 0.002 0.002 0.001 0.001 0.003

Matrix dynamic 0.0 0.0 0.002 0.003 0.005 0.005 0.005 0.004 0.004 0.003

Static 5.462 5.215 5.012 4.756 4.340 4.183 3.916 3.751 3.284 2.910
G General dynamic 0.0 0.002 0.002 0.014 0.025 0.033 0.019 0.034 0.035 0.042

Matrix dynamic 0.021 0.023 0.018 0.019 0.018 0.024 0.019 0.033 0.020 0.026

Static 18.551 17.470 16.873 15.581 14.533 13.625 12.736 11.704 10.710 9.780
Wc General dynamic 0.130 0.198 0.138 0.095 0.165 0.122 0.121 0.160 0.162 0.110

Matrix dynamic 0.083 0.078 0.001 0.015 0.068 0.093 0.092 0.104 0.090 0.094

Static 32.000 30.415 28.710 26.880 25.160 23.580 22.001 21.013 19.012 16.750
ILPD General dynamic 0.395 0.349 0.290 0.330 0.312 0.264 0.231 0.312 0.297 0.311

Matrix dynamic 0.168 0.162 0.163 0.149 0.167 0.149 0.155 0.166 0.159 0.155

Static 135.131 128.934 120.683 114.710 106.210 100.003 92.051 85.019 78.046 72.518
Ba General dynamic 4.829 3.318 4.209 4.039 4.089 3.513 3.759 3.335 3.174 3.380

Matrix dynamic 0.804 0.843 0.816 0.830 0.828 0.812 0.839 0.836 0.829 0.858

Static 135.315 125.018 126.495 115.058 107.006 101.030 94.034 86.345 78.279 70.083
W General dynamic 8.833 10.941 12.161 13.882 14.091 15.553 14.612 13.230 13.813 14.782

Matrix dynamic 2.161 2.367 2.217 2.224 2.343 2.309 2.357 2.303 2.210 2.231

Static 230.113 229.443 221.024 220.199 216.763 215.414 213.937 210.115 204.513 197.259
CC General dynamic 13.430 12.790 13.487 13.893 13.114 13.706 13.232 13.281 12.844 11.964

Matrix dynamic 5.410 5.032 5.030 5.335 5.655 5.625 5.024 5.082 5.732 5.179

Static 358.547 343.718 328.189 306.293 274.273 267.371 295.331 280.305 260.095 254.007
Pb General dynamic 46.880 46.995 47.314 46.309 45.045 43.894 43.225 45.090 44.310 45.620

Matrix dynamic 12.418 12.403 12.916 12.568 12.593 12.077 12.697 13.254 12.031 12.882
objects. The unit of time consumption is seconds. The eight tables
show that the proposed GMNDRS algorithm requires less time in most
datasets. These time results reflect the effectiveness of the GMNDRS
and the matrix dynamic update mechanism.

To facilitate a more concise and intuitive comparison between
GMNDRS and the other four algorithms, we have generated a 3D bar
chart based on the data in Tables 8–15. Further details can be found
in Figs. 7 and 8. In one subplot of Fig. 7, the 𝑥-axis represents the
proportion of removed objects, taking values from 10% to 50% with a
step of 10%, and on the 𝑧-axis are GMNDRS and the four comparison al-
gorithms sorted in order of increasing approximate update times, from
left to right. The 𝑦-axis displays the computation time for these five
12
algorithms. Figs. 7 and 8 provide a visual representation highlighting
the effectiveness of the GMNDRS dynamic update algorithm.

7. Conclusions and future work

With the rapid development of technology, dynamic changes in
data have led to increased time consumption in approximate updates.
To address this challenge, GMNDRS offers an efficient approach by
leveraging multiple levels and reducing redundant computation. Ob-
taining the most recent knowledge, built on previous knowledge, ren-
ders the dynamically updating approximations set remarkably efficient
in a time-evolving information system. This paper discussed the ba-
sic concepts of generalized multi-granulation neighborhood dominant
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Table 6
Computational time of algorithms for adding a certain proportion of objects in GMNDRS (𝛼 = 0.5, 𝛽 = 0.2).

Ratio Method 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Static 0.301 0.323 0.389 0.402 0.433 0.477 0.480 0.511 0.549 0.602
S General dynamic 0.000 0.073 0.170 0.169 0.159 0.245 0.257 0.314 0.349 0.460

Matrix dynamic 0.003 0.004 0.005 0.006 0.006 0.005 0.004 0.002 0.004 0.005

Static 3.192 3.394 3.547 3.875 4.126 4.322 4.254 5.451 5.757 6.218
G General dynamic 0.380 0.728 1.362 1.328 1.968 2.182 2.483 2.854 3.710 3.773

Matrix dynamic 0.028 0.025 0.025 0.025 0.017 0.020 0.022 0.020 0.020 0.022

Static 14.276 14.759 15.183 16.246 16.182 16.585 17.211 17.415 18.170 18.410
Wc General dynamic 1.122 2.358 3.219 4.515 4.820 5.137 7.063 8.261 8.967 10.284

Matrix dynamic 0.168 0.170 0.174 0.174 0.175 0.166 0.168 0.168 0.162 0.178

Static 23.281 24.750 25.921 26.130 28.004 29.010 30.507 32.801 36.265 38.704
ILPD General dynamic 3.908 4.490 5.162 6.290 7.357 9.903 10.577 11.315 12.587 12.988

Matrix dynamic 0.218 0.229 0.223 0.222 0.217 0.226 0.225 0.226 0.223 0.225

Static 55.203 57.450 62.033 67.715 72.097 75.898 81.955 85.414 88.990 91.105
Ba General dynamic 21.256 21.805 22.761 23.156 23.801 24.010 24.993 25.898 25.298 26.484

Matrix dynamic 1.315 1.256 1.279 1.344 1.325 1.320 1.380 1.373 1.364 1.383

Static 80.042 88.014 96.330 101.224 107.794 113.261 119.926 124.940 130.736 138.690
W General dynamic 31.903 32.666 34.150 35.587 36.924 37.525 38.487 39.685 41.808 43.730

Matrix dynamic 2.104 2.180 2.182 2.212 2.209 2.130 2.133 2.280 2.219 2.178

Static 160.308 175.082 183.475 200.925 223.270 259.180 271.310 261.074 250.684 268.189
CC General dynamic 50.090 55.078 57.017 57.980 59.700 53.974 56.074 57.062 61.989 55.648

Matrix dynamic 3.946 4.770 3.996 4.080 4.039 4.076 3.890 3.780 3.557 3.914

Static 335.452 349.757 365.311 380.190 391.120 402.805 420.070 436.729 453.292 469.064
Pb General dynamic 99.830 102.904 109.037 114.702 119.910 126.322 130.421 139.202 145.460 151.900

Matrix dynamic 11.651 11.501 11.591 10.643 11.905 11.313 11.577 11.949 11.778 11.846
Table 7
Computational time of algorithms for adding a certain proportion of objects in GMNDRS (𝛼 = 0.6, 𝛽 = 0.25).

Ratio Method 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Static 0.342 0.383 0.392 0.423 0.440 0.498 0.496 0.531 0.584 0.644
S General dynamic 0.041 0.075 0.126 0.162 0.195 0.241 0.260 0.326 0.355 0.456

Matrix dynamic 0.005 0.005 0.006 0.006 0.006 0.005 0.004 0.001 0.004 0.005

Static 3.183 3.403 3.637 3.951 4.178 4.437 4.816 5.231 5.694 6.110
G General dynamic 0.398 0.743 1.125 1.481 1.768 2.137 2.473 2.854 3.310 3.670

Matrix dynamic 0.028 0.025 0.025 0.025 0.027 0.022 0.025 0.023 0.022 0.024

Static 14.051 14.570 15.013 15.463 15.988 16.544 17.031 17.561 18.149 18.421
Wc General dynamic 1.681 2.238 3.010 4.015 4.930 5.178 7.006 8.122 8.908 10.014

Matrix dynamic 0.168 0.174 0.171 0.174 0.175 0.166 0.163 0.168 0.167 0.170

Static 23.322 25.137 25.282 27.836 28.074 29.039 31.568 33.799 36.515 39.903
ILPD General dynamic 3.845 4.980 5.583 6.950 8.117 9.139 10.735 11.810 13.005 12.665

Matrix dynamic 0.220 0.230 0.227 0.225 0.227 0.230 0.219 0.226 0.223 0.228

Static 57.202 60.125 64.062 67.751 71.812 75.325 79.874 83.359 87.190 91.105
Ba General dynamic 20.350 20.095 21.060 22.542 22.831 23.020 23.390 24.033 25.093 26.648

Matrix dynamic 1.328 1.315 1.372 1.344 1.405 1.326 1.397 1.352 1.359 1.370

Static 79.712 89.322 96.695 98.679 105.098 111.959 117.922 124.821 131.736 137.568
W General dynamic 33.153 33.810 35.426 36.475 36.315 37.730 38.411 39.159 41.832 43.805

Matrix dynamic 2.202 2.240 2.266 2.129 2.132 2.129 2.240 2.107 2.132 2.093

Static 162.440 177.565 189.742 203.956 230.137 265.910 270.505 263.098 255.191 273.163
CC General dynamic 54.133 56.917 55.212 57.036 58.109 53.006 54.890 58.083 60.025 53.344

Matrix dynamic 4.050 4.057 3.913 4.091 4.131 4.159 4.140 3.982 4.078 4.294

Static 338.082 351.791 364.417 380.050 392.178 405.130 422.073 439.129 456.015 473.755
Pb General dynamic 98.730 102.650 108.047 115.595 120.480 126.700 133.016 139.220 145.312 152.436

Matrix dynamic 10.601 11.305 11.669 10.803 11.075 12.013 11.406 11.746 11.527 11.830
Table 8
Computation time of different algorithms for deleting a certain proportion of objects (𝛼 = 0.5, 𝛽 = 0.2).

Datasets 10% 20% 30% 40% 50%

GMNDRS INF-FS GMNDRS INF-FS GMNDRS INF-FS GMNDRS INF-FS GMNDRS INF-FS

S 0 0.375 0.017 0.394 0 0.403 0.002 0.429 0.006 0.583
G 0.033 0.119 0.019 0.098 0.028 0.173 0.037 0.24 0.026 0.218
Wc 0.088 0.324 0.088 0.352 0.096 0.337 0.105 0.2667 0.086 0.283
ILPD 0.162 0.2582 0.154 0.216 0.154 0.246 0.162 0.219 0.192 0.221
Ba 0.357 0.241 0.43 0.221 0.36 0.189 0.426 0.198 0.396 0.236
W 2.496 2.398 2.259 2.927 2.311 2.872 2.29 2.205 2.289 2.617
CC 5.032 5.678 5.252 5.768 5.235 6.426 5.18 6.503 5.579 6.883
Pb 13.163 13.187 11.664 14.278 12.746 12.293 13.015 14.294 12.09 13.498
13
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Table 9
Computation time of different algorithms for deleting a certain proportion of objects (𝛼 = 0.5, 𝛽 = 0.2).

Datasets 10% 20% 30% 40% 50%

GMNDRS KNCMI GMNDRS KNCMI GMNDRS KNCMI GMNDRS KNCMI GMNDRS KNCMI

S 0 0.021 0.017 0.026 0 0.034 0.002 0.023 0.006 0.036
G 0.033 0.023 0.019 0.027 0.028 0.042 0.037 0.04 0.026 0.048
Wc 0.088 0.101 0.088 0.132 0.096 0.157 0.105 0.136 0.086 0.163
ILPD 0.162 0.242 0.154 0.335 0.154 0.272 0.162 0.448 0.192 0.297
Ba 0.357 0.591 0.43 0.630 0.36 0.587 0.426 0.612 0.396 0.608
W 2.496 2.63 2.259 3.124 2.311 2.35 2.29 3.124 2.289 2.863
CC 5.032 7.387 5.252 7.294 5.235 6.982 5.18 6.695 5.579 7.092
Pb 13.163 15.109 11.664 15.284 12.746 14.982 13.015 14.294 12.09 16.233
Table 10
Computation time of different algorithms for deleting a certain proportion of objects (𝛼 = 0.5, 𝛽 = 0.2).

Datasets 10% 20% 30% 40% 50%

GMNDRS HKCMI GMNDRS HKCMI GMNDRS HKCMI GMNDRS HKCMI GMNDRS HKCMI

S 0 0.011 0.017 0.03 0 0.036 0.002 0.027 0.006 0.04
G 0.033 0.068 0.019 0.092 0.028 0.178 0.037 0.239 0.026 0.41
Wc 0.088 0.571 0.088 0.63 0.096 0.873 0.105 0.638 0.086 0.472
ILPD 0.162 1.087 0.154 1.2821 0.154 2.198 0.162 2.671 0.192 1.972
Ba 0.357 6.298 0.43 5.293 0.36 6.293 0.426 7.342 0.396 7.193
W 2.496 2.879 2.259 2.382 2.311 2.471 2.29 2.084 2.289 3.983
CC 5.032 14.245 5.252 15.134 5.235 15.031 5.18 14.928 5.579 14.963
Pb 13.163 16.234 11.664 15.294 12.746 13.435 13.015 14.602 12.09 16.293
Table 11
Computation time of different algorithms for deleting a certain proportion of objects (𝛼 = 0.5, 𝛽 = 0.2).

Datasets 10% 20% 30% 40% 50%

GMNDRS WDNCE GMNDRS WDNCE GMNDRS WDNCE GMNDRS WDNCE GMNDRS WDNCE

S 0 0.125 0.017 0.157 0 0.19 0.002 0.231 0.006 0.279
G 0.033 1.872 0.019 1.382 0.028 1.423 0.037 1.83 0.026 2.08
Wc 0.088 1.372 0.088 1.583 0.096 1.489 0.105 1.393 0.086 1.872
ILPD 0.162 2.414 0.154 2.418 0.154 2.3981 0.162 2.491 0.192 2.984
Ba 0.357 2.452 0.43 2.376 0.36 2.9163 0.426 3.0291 0.396 2.7831
W 2.496 5.184 2.259 4.652 2.311 5.33 2.29 4.483 2.289 4.835
CC 5.032 14.138 5.252 13.235 5.235 13.392 5.18 14.284 5.579 14.284
Pb 13.163 18.235 11.664 18.421 12.746 17.583 13.015 17.284 12.09 17.683
Fig. 7. The computation time of different algorithms when deleting a certain proportion of objects (𝛼 = 0.5, 𝛽 = 0.2).
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Table 12
Computation time of different algorithms for adding a certain proportion of objects (𝛼 = 0.5, 𝛽 = 0.2).

Datasets 10% 20% 30% 40% 50%

GMNDRS INF-FS GMNDRS INF-FS GMNDRS INF-FS GMNDRS INF-FS GMNDRS INF-FS

S 0.004 0.484 0.006 0.5 0.005 0.479 0.002 0.422 0.005 0.355
G 0.025 0.102 0.025 0.006 0.02 0.097 0.02 0.097 0.022 0.098
Wc 0.17 0.306 0.174 0.32 0.166 0.313 0.168 0.294 0.178 0.292
ILPD 0.229 0.222 0.222 0.263 0.226 0.247 0.226 0.276 0.225 0.366
Ba 1.256 0.322 1.344 0.321 1.32 0.322 1.373 0.323 1.383 0.324
W 2.18 2.077 2.212 2.683 2.13 3.194 2.28 3.392 2.178 4.11
CC 4.77 5.224 4.08 5.275 4.07 6.218 3.78 6.276 3.91 7.273
Pb 11.501 11.269 10.643 12.348 11.313 12.01 11.949 14.401 11.846 13.441
Table 13
Computation time of different algorithms for adding a certain proportion of objects (𝛼 = 0.5, 𝛽 = 0.2).

Datasets 10% 20% 30% 40% 50%

GMNDRS KNCMI GMNDRS KNCMI GMNDRS KNCMI GMNDRS KNCMI GMNDRS KNCMI

S 0.004 0.006 0.006 0.006 0.005 0.007 0.002 0.009 0.005 0.012
G 0.025 0.02 0.025 0.027 0.02 0.035 0.02 0.044 0.022 0.055
Wc 0.17 0.264 0.174 0.278 0.166 0.264 0.168 0.281 0.178 0.281
ILPD 0.229 0.145 0.222 0.262 0.226 0.273 0.226 0.325 0.225 0.503
Ba 1.256 0.438 1.344 0.555 1.32 0.73 1.373 0.92 1.383 1.137
W 2.18 2.376 2.212 2.864 2.13 2.433 2.28 3.082 2.178 3.809
CC 4.77 5.235 4.08 7.084 4.07 9.283 3.78 11.686 3.91 14.471
Pb 11.501 13.106 10.643 13.216 11.313 15.991 11.949 17.782 11.846 18.14
Table 14
Computation time of different algorithms for adding a certain proportion of objects (𝛼 = 0.5, 𝛽 = 0.2).

Datasets 10% 20% 30% 40% 50%

GMNDRS HKCMI GMNDRS HKCMI GMNDRS HKCMI GMNDRS HKCMI GMNDRS HKCMI

S 0.004 0.046 0.006 0.061 0.005 0.081 0.002 0.101 0.005 0.122
G 0.025 0.181 0.025 0.247 0.02 0.318 0.02 0.404 0.022 0.493
Wc 0.17 0.5 0.174 0.683 0.166 0.889 0.168 1.130 0.178 1.32
ILPD 0.229 1.331 0.222 1.819 0.226 2.350 0.226 2.763 0.225 2.955
Ba 1.256 3.495 1.344 4.564 1.32 5.934 1.373 6.515 1.383 7.958
W 2.18 2.247 2.212 4.426 2.13 4.47 2.28 5.106 2.178 5.527
CC 4.77 14.456 4.08 15.738 4.07 15.004 3.78 16.149 3.91 18.931
Pb 11.501 14.592 10.643 16.254 11.313 16.88 11.949 17.608 11.846 18.224
Table 15
Computation time of different algorithms for adding a certain proportion of objects (𝛼 = 0.5, 𝛽 = 0.2).

Datasets 10% 20% 30% 40% 50%

GMNDRS WDNCE GMNDRS WDNCE GMNDRS WDNCE GMNDRS WDNCE GMNDRS WDNCE

S 0.004 0.145 0.006 0.167 0.005 0.17 0.002 0.233 0.005 0.224
G 0.025 0.963 0.025 0.962 0.02 0.954 0.02 0.982 0.022 1.188
Wc 0.17 2.155 0.174 2.148 0.166 2.143 0.168 2.145 0.178 2.236
ILPD 0.229 2.375 0.222 2.481 0.226 2.525 0.226 2.697 0.225 2.868
Ba 1.256 3.059 1.344 4.357 1.32 4.015 1.373 4.66 1.383 6.295
W 2.18 4.533 2.212 4.992 2.13 4.143 2.28 5.854 2.178 5.778
CC 4.77 13.022 4.08 12.985 4.07 13.006 3.78 12.994 3.91 13.125
Pb 11.501 15.482 10.643 17.028 11.313 18.029 11.949 18.054 11.846 19.702
intuitionistic fuzzy rough sets and the matrix-based GMNDRS. Gen-
erally, neighborhood relations cannot extract the samples needed by
decision-makers to solve real-world problems. Therefore, we proposed a
generalized multi-granulation rough set model based on neighborhood
dominant relations and adjusted the strictness of the rough set model
conditions by setting threshold values. In addition, we also studied two
matrix dynamic mechanisms for object changes with attribute preser-
vation in IFOIS, including adding and deleting objects. Finally, we
conducted two sets of comparative experiments on eight datasets. The
first set compared the times required by the matrix dynamic algorithm,
general dynamic algorithm, and classical algorithm for approximate
computations. The second set of experiments compared the proposed
GMNDRS matrix dynamic algorithm with the other four algorithms
in terms of the time needed for dynamic approximate updates. The
results of these experiments confirmed the effectiveness of dynamic
algorithms. They also showed that when object changes occur in IFOIS,
the matrix dynamic method reduces time consumption and improves
15
computational efficiency. However, this work has some limitations.
On the one hand, the matrix-based dynamic approximation update re-
quires more computational resources than other methods for handling
data. On the other hand, although it achieves remarkable efficiency
in dynamic approximation updates, it does not incorporate feature
selection.

In the future, there are two important research directions in this
field. First, we have only considered the matrix dynamic mechanism
for object changes. We have not implemented the dynamic update
mechanism for when attribute changes occur, nor the situation in which
both attributes and objects change simultaneously. Because dynamic
approximation updates are part of data processing, the ultimate goal
is to fully utilize the approximation updates’ results in the feature
selection process. Therefore, the second direction is to conduct research
on feature selection based on the results of the approximation updates
in this method.
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Fig. 8. The computation time of different algorithms when adding a certain proportion of objects (𝛼 = 0.5, 𝛽 = 0.2)(𝛼 = 0.6, 𝛽 = 0.25).
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