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Fuzzy-granular Concept-cognitive Learning via Three-way Decision:
Performance Evaluation on Dynamic Knowledge Discovery

Doudou Guo, Weihua Xu, Yuhua Qian, Weiping Ding

Abstract—Concept-cognitive learning (CCL) and three-way de-
cision (3WD) models provide powerful techniques for knowledge
discovery. Some early attempts in the field have successfully
combined CCL and 3WD, i.e., three-way concept learning.
However, only a few attempts were made to combine CCL with
3WD in a dynamic fuzzy context due to two challenges: 1)
three-way concept-cognitive learning incapability; 2) the current
incremental three-way concept learning mechanism is insufficient
to model real-time updating cognitive procedure. Hence, this
paper first shows some new standpoints on improving fuzzy-
based CCL accuracy and then proposes fuzzy-granular three-way
concept-cognitive learning (F3WG-CCL) for concept modeling
and dynamic knowledge learning. Specifically, we first define a
new F3WG-concept to characterize the knowledge embedded in
fuzzy data. Furthermore, a big concept priority principle and
an update mechanism are borrowed for concept recognition and
dynamic concept cognition. Finally, we show that F3WG-CCL
can be implemented simultaneously via theoretical guarantee
and sufficient experimental, including 1) achieving state-of-the-
art dynamic knowledge learning; 2) demonstrating that the three-
way concept is effective in a fuzzy context; 3) discovering that
the big concept is valuable for fuzzy concept recognition. Our
work will provide a powerful approach to research fuzzy-based
CCL and dynamic knowledge discovery.

Index Terms—Concept-cognitive learning; fuzzy context; gran-
ular computing; knowledge discovery; three-way decision.

I. INTRODUCTION

UNCERTAINTY is a universal phenomenon in nature [1].
The description and thinking of the uncertainty phe-

nomenon have become an active topic in many fields, such
as philosophy, cognitive science, computer science, artificial
intelligence, and many more. With the rapid development of
artificial intelligence, various uncertainty information process-
ing methods have attracted significant attention recently. In
order to make the machine have the intelligence of human
brain in perceiving, reasoning, and making decision processes,
all of these require an in-depth study concerning uncertain
information processing. A central notion of this processing is
to represent and discover knowledge embedded in data.

As we all know, granular computing(GrC) is an interesting
and influential theory for studying uncertainty knowledge
discovery and has been shown to be a promising informa-
tion processing paradigm [2]. Currently, various theoretical
models of GrC dealing with uncertainty in knowledge appear
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basically, including approximate operator in rough set, fuzzy
membership of fuzzy set, decision rules for three-way deci-
sion, fuzzy intent of fuzzy concept, etc. Moreover, numerous
viewpoints of GrC have been successfully applied to meet
different requirements of knowledge discovery [3], [4]. Among
them, fuzzy-based CCL, as a newly emerging theory, is a
straightforward approach to conveniently and effectively depict
the general and objective essence of things ontology [5], [6].

Concept-cognitive learning is the science of cognition and
learning things via concepts [7]. In the intelligence era of data
and knowledge dual-driven, the concept-cognitive learning
theory and method is popular and hot in artificial intelligence
and cognitive computing due to its ability to represent, learn,
and cognitive concepts from data. In some sense, CCL is
a novel and practical theoretical framework for a human
to explore the cognitive mechanism of the brain [8], [9].
Now, inspired by machine learning and cognitive computa-
tion, concept-cognitive learning theory and method have been
explored from different aspects, such as granular concept [10],
fuzzy concept [11], three-way concept [12], fuzzy three-way
concept [13], weighted fuzzy concept [14], concept tree [15],
et al. Meanwhile, numerous concept learning ways, such as
progressive learning [6], incremental learning [16], and semi-
supervised learning [17], have been presented to meet different
requirements of concept learning.

In addition, for different problem scenarios, CCL also puts
forward its unique views and solutions from its perspective,
such as a multi-attention CCL for concept generation on the
handwritten numeral [18], multi-level cognitive concept learn-
ing to recognize and distinguish micro-expressions [19], multi-
view concept learning for data representation [20], fuzzy-
based CCL to tumor diagnosis analysis [7], two-way concept-
cognitive learning with multi-source formal context [21],
memory-based CCL for dynamic fuzzy data classification and
knowledge fusion [9], and many more. A detailed analysis of
various concept models under the CCL theory can be found
in reference [22], and the detailed developmental stages of
CCL from a granular computing perspective can be found
in reference [6]. All in all, CCL has made many meaningful
achievements, but there are still many problems to be solved
and further explored in this field. Therefore, enhancing and
enriching the research in this area of CCL via various theories,
frameworks, models, and viewpoints is necessary.

It is worth mentioning that the fuzzy-based CCL is an-
other critical representative study of CCL for discovering
the knowledge structure and information embedded in fuzzy
data. The authors in papers [11], [14] propose CCL based
on the fuzzy or weighted fuzzy concept for the concept
classification. Additionally, the authors in papers [7], [9],
[13] discuss fuzzy three-way concepts grounded on different
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Fig. 1. Framework of the proposed method

information granularities for concept learning. Note that these
studies unify the view of using pseudo-concept for concept
recognition. Moreover, the existing fuzzy-based CCL also has
some ambiguous views when dealing with a classification task,
mainly reflected in 1) Do the fuzzy three-way concepts have
advantages over regular fuzzy concepts? 2) How does the
initial information granular influence fuzzy three-way concept
learning? 3) What is the mechanism by which pseudo-concepts
affect classification performance?

Based on the above analysis, we first show, in this arti-
cle, some new standpoints on the improvement of concept-
cognitive learning accuracy under a fuzzy environment: 1)
fuzzy three-way concepts have superiority over regular fuzzy
concepts in the integrity of knowledge depiction and reduce
cognitive bias (i.e., the fuzzy three-way concept is effec-
tiveness); 2) the fuzzy-granular three-way concept for CCL
is more efficient and significantly does not depend on the
initial information granular (i.e., the fuzzy-granular CCL is
adequate); 3) big concept priority principle in a fuzzy envi-
ronment (i.e., the big concepts are more valuable). The big
concept refers to a formal concept with a larger extent in
concept space, and a more detailed explanation can be found in
subsection IV-C. Alternatively, the current incremental three-
way concept learning mechanism study cannot model real-time
updating cognitive procedure. Following these thoughts, we
build fuzzy-granular concept-cognitive learning via three-way
concept and performance evaluation on dynamic knowledge
discovery. The framework of the proposed method is shown
in Fig.1. The main aspects of contributions are as follows.

1) We discover some ambiguous views of existing fuzzy-
based CCL when dealing with the classification task.
Then we first present some new standpoints on improving
concept-cognitive learning accuracy under a fuzzy envi-
ronment, and the performance of the proposed standpoints
is experimentally justified by conducting experiments.

2) We define a new F3WG-concept for concept-cognitive
learning, which can effectively reduce the complexity of
fuzzy three-way concept learning.

3) We design an update mechanism of cognitive operator
for dynamic data updating and take advantage of past
knowledge to achieve effective dynamic concept learning.

4) We propose a concept recognition mechanism based on
the big concept priority principle for fuzzy-based CCL,
which can enhance the classification performance of
fuzzy data and help explain the critical reason for the
validity of the pseudo-concept.

The remainder of this paper is arranged as follows: we
revisit several notions of fuzzy-based CCL in Section II.
Section III defines a new fuzzy granular concept via three-
way concept analysis. Furthermore, the proposed F3WG-CCL
method is shown in Section IV. The experimental analysis is
presented in Section V. Finally, this work is concluded with
further work in Section VI.

II. PRELIMINARIES

This section revisits several notions of fuzzy-based CCL,
then gives several forms of fuzzy concept.

A. Fuzzy Decision Formal Context

In this subsection, we characterize a fuzzy decision formal
context and then introduce several fuzzy concept forms in
CCL. These notions also can be found in [6], [10], [11], [23].

Let (Ω,Ψ, Ĩ) and (Ω, D, J) be two formal contexts, then
a quintuple (Ω,Ψ, Ĩ, D, J) is referred to as a fuzzy decision
formal context, where the following holds.

1) Ω = {x1, x2, . . . , xn} is a nonempty finite object set.
2) Ψ = {a1, a2, . . . , am} is a nonempty finite attribute set.
3) Ĩ = {< (x, a), Ĩ(x, a) > |(x, a) ∈ Ω × Ψ} is a fuzzy

relation on Ω × Ψ, where Ĩ : Ω × Ψ → [0, 1], Ĩ(x, a)
denotes the membership degree of x with respect to a.

4) Ω/D = {D1, D2, . . . , Dl} is a decision division based
on decison class D, where D = D1 ∪D2∪, . . . ,∪Dl.

5) J : Ω × D → {D1, D2, . . . , Dl} is a binary relation on
Ω×D, where J : Ω×D → {0, 1}.

In fuzzy decision formal context (Ω,Ψ, Ĩ, D, J), 2Ω and 2D

are the power sets of Ω and Ψ, ΓΨ is the union of all fuzzy
sets on Ψ. A pair of set-valued mappings L̃ : 2Ω → ΓΨ and
H : ΓΨ → 2Ω can be considered as two cognitive operators.

Furthermore, for any X1, X2 ⊆ Ω and Ã ∈ ΓΨ, the
following statements hold:

1) X1 ⊆ X2 ⇒ L̃(X2) ⊆ L̃(X1);
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2) L̃(X1 ∪X2) ⊆ L̃(X2) ∩ L̃(X1);
3) H(Ã) = {x ∈ Ω|Ã ⊆ L̃(x)}.
Thus, given a fuzzy decision formal context (Ω,Ψ, Ĩ, D, J),

a pair (X, Ã) is called a fuzzy concept if only L̃(X) = Ã
and H(Ã) = X hold, and then X and Ã are the extent
and intent of the fuzzy concept (X, Ã). From a view of
philosophy, definition II-A can characterize three clear cogni-
tive semantic interpretations. Then, using these two set-valued
mappings(i.e., L̃ and H), we can discover the knowledge via
a cognitive concept from the formal context.

B. Several Forms of Fuzzy Concept

During the past few years, concept-cognitive learning has
been an active research topic in knowledge discovery, espe-
cially fuzzy-based concept-cognitive learning is a straightfor-
ward, simple, and efficient method to discover knowledge em-
bedded in continuous data. This subsection mainly introduces
some popular fuzzy concept forms.

Definition 1. A quintuple (Ω,Ψ, Ĩ, D, J) is a fuzzy decision
formal context, for any X ⊆ Ω, A ⊆ Ψ and Ã ∈ ΓΨ, the
cognitive operator L̃ and H can be defined as follows:

L̃(X)(a) =
∧
x∈X

Ĩ(x, a), a ∈ Ψ,

H(Ã) = {x ∈ Ω|∀a ∈ A, Ã(a) 6 Ĩ(x, a)},

The three-way decision based on SMV conceptual model,
coined by Yao in his seminal paper [24], is a compelling
and interesting three-level granular computing paradigm for
studying the high-level conception of data science. Inspired
by this theory, the authors [25], [26] combine 3WD with
the formal concept to study formal concept analysis (FCA)
from positive and negative information, i.e., three-way concept
analysis (3WFCA). Subsequently, CCL models based on three-
way decision have been investigated in different fields to
address different problem needs [7], [27].

Let Ĩ− = {< (x, a), 1 − Ĩ(x, a) > |(x, a) ∈ Ω × Ψ} be
the complement of Ĩ , where 1 − Ĩ(x, a) reflects the non-
membership degree. Then we denote by Ĩ−(x, a) = 1 −
Ī(x, a). Assumed that the L̃− : 2Ω → ΓΨ and H− : ΓΨ → 2Ω

are a pair of negative cognitive operators. In this case, we say
that L̃ and H are a pair of positive cognitive operators.

Definition 2. Given a fuzzy decision formal context
(Ω,Ψ, Ĩ, D, J), for any X ⊆ Ω and Ã ∈ ΓΨ, the negative
cognitive operator L̃− and H− can be defined as follows:

L̃−(X)(a) =
∧
x∈X

Ĩ−(x, a), a ∈ Ψ,

H−(Ã) = {x ∈ Ω|∀a ∈ A, Ã(a) 6 Ĩ−(x, a)},

where Ã is the fuzzy set on the complement of Ψ.

Then, to simultaneously express positive and negative infor-
mation, we can combine the positive and negative cognitive
operators to form a unique cognitive operator called the three-
way cognitive operator.

Definition 3. A quintuple (Ω,Ψ, Ĩ, D, J) is a fuzzy decision
formal context. For any X ⊆ Ω and Ã1, Ã2 ∈ ΓΨ × ΓΨ,
the fuzzy three-way concept cognitive operator L̃∇ : 2Ω →
ΓΨ × ΓΨ and H∇ : ΓΨ × ΓΨ → 2Ω are defined by:

L̃∇(X) = (L̃(X), L̃−(X)),

H∇(Ã1, Ã2) = H(Ã1) ∩H−(Ã2).

Then, we say that (X, (Ã1, Ã2)) is a fuzzy three-
way concept if L̃∇(X) = (Ã1, Ã2),H∇(Ã1, Ã2) =
X hold. Obviously, (H∇L̃∇(X), L̃∇(X)) and
(H∇(Ã1, Ã2), L̃∇H∇(Ã1, Ã2)) represent the object-oriented
and attribute-oriented fuzzy three-way concept, respectively.
Moreover, (X, (Ã1, Ã2)) is referred to as a subconcept of
(X ′, (Ã′1, Ã

′
2)) if X ⊆ X ′ or (Ã′1, Ã

′
2) ≥ (Ã1, Ã2), denoted

by (X, (Ã1, Ã2)) ≤ (X ′, (Ã′1, Ã
′
2)).

According to definitions 1-3, some scholars have con-
structed different fuzzy concept forms (e,g., (HL̃(X), L̃(X)),
(H(Ã), L̃(Ã)), (HL̃(X), L̃(X), w), (H∇L̃∇(X), L̃∇(X)),
and (H∇(Ã1, Ã2), L̃∇H∇(Ã1, Ã2))) for CCL and achieved
good results in data classification. More details about them can
be found in the corresponding papers [7], [10], [11], [13], [14].
Nevertheless, we can also know that learning the attribute-
oriented concept in a fuzzy context is sometimes immensely
challenging without giving the initial clues Ã1, Ã2 ∈ ΓΨ×ΓΨ.
The object-oriented concept is usually utilized in fuzzy con-
cept learning to complete a particular learning task, such
as classification or recognition. Hence, hereinafter we only
discuss the concept-cognitive learning situation under the
object-oriented fuzzy three-way concept.

III. FUZZY GRANULAR CONCEPT VIA THREE-WAY
CONCEPT ANALYSIS

In this section, we aim to introduce a novel fuzzy concept
based on the three-way concept analysis (i.e., F3WG-concept).
We will first show some new notions and properties for the
proposed concept as follows.

Definition 4. A quintuple (Ω,Ψ, Ĩ, D, J) is a fuzzy decision
formal context, for any X ⊆ Ω and Ã ∈ ΓΨ, the positive
cognitive operators L̃ and H can be defined as follows:

L̃(X)(a) =
∧
x∈X

(Ĩ(x, a)− µ(a)), a ∈ Ψ,

H(Ã) = {x ∈ Ω|∀a ∈ A, Ĩ(x, a) ≥ Ã(a)− µ(a)},

Similarly, the negative cognitive operators L̃− and H− can
be defined as follows:

L̃−(X)(a) =
∧
x∈X

(Ĩ−(x, a)− v(a)), a ∈ Ψ,

H−(Ã) = {x ∈ Ω|∀a ∈ A, Ĩ−(x, a) ≥ Ã(a)− v(a)},

where 0 ≤ µ(a) ≤ 1 and 0 ≤ v(a) ≤ 1 are a pair of thresholds
of a.

Intuitively, the above definition shows the cognitive process
between objects and attributes from the fuzzy formal context,
fuzzy subset Ã, membership Ĩ (or non-membership Ĩ−),
and thresholds (µ(a), v(a)). Note that definition 4 can also
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represent the form of definitions 1 and 2 by µ(a) = v(a) = 0.
Essentially, introducing a pair of parameters can appropriately
reduce the extent range of the concept, thereby enhancing the
cognitive ability for fuzzy concept ontology in the following
concept cognitive process. In addition, the positive and nega-
tive cognitive operators satisfy the following properties.

Property 1. Let (Ω,Ψ, Ĩ, D, J) be a fuzzy decision for-
mal context, L̃ and H be two cognitive operators. For any
X1, X2 ⊆ Ω and Ã ∈ ΓΨ, the following statements hold.

1) X1 ⊆ X2 ⇒ L̃(X2) ⊆ L̃(X1);
2) X1 ⊆ X2 ⇒ L̃−(X2) ⊆ L̃−(X1);
3) L̃(X1 ∪X2)=L̃(X2) ∩ L̃(X1);
4) L̃−(X1 ∪X2)=L̃−(X2) ∩ L̃−(X1);
5) H(Ã) = {x ∈ Ω|Ã ⊆ L̃(x)};
6) H−(Ã) = {x ∈ Ω|Ã ⊆ L̃−(x)}.

Proof. See Appendix I for the proof of Property 1.
Furthermore, we can construct its fuzzy three-way concept

form based on its positive and negative cognitive operators in
definition 4. Obviously, in a fuzzy formal context, given an
object set or two attribute sets, we can obtain a fuzzy three-
way concept according to the cognitive operators in defintion 3
and 4. It means that the object x ∈ Ω can be used to construct
an F3WG-concept. Then, the following property hold.

Property 2. Let (Ω,Ψ, Ĩ, D, J) be a fuzzy decision formal
context, for any x ∈ Ω, (HL̃(x)∩H−L̃−(x), (L̃(x), L̃−(x)))
is a fuzzy three-way concept.

Proof: See Appendix I for the proof of Property 2.

IV. THE PROPOSED F3WG-CCL METHOD

Here, we will first show the proposed method F3WG-CCL,
which utilizes F3WG-concept in section III to initial concept
space generation and then discuss the concept-cognitive pro-
cess under the dynamic environment to cognitive things. In
this section, we utilize Fig.2 to show the overall procedure
of the proposed method, which includes three main stages:
concept learning, concept cognitive, and concept recognition.
The detailed flowchart of the F3WG-CCL is shown in Fig.2.

A. Initial F3WG-concept Space Learning

Based on the analysis in section III, one can learn the
fuzzy-granular concept via three-way concept analysis (i.e.,
F3WG-concept) from the whole object set(i.e., Ω) in a fuzzy
formal context. However, in what follows, we learn the F3WG-
concept from the local sub-object set (i.e., Di ∈ Ω/D) and
then initial F3WG-concept space generation.

Given a fuzzy decision formal context (Ω,Ψ, Ĩ, D, J),
Ω/D = {D1, D2, . . . , Dl} be a decision division. For any
x ∈ Dk(k = 1, 2, . . . , l), two pair set-valued mappings
L̃k : 2Dk → ΓΨ and Hk : ΓΨ → 2Dk , L̃−k : 2Dk → ΓΨ

and H−k : ΓΨ → 2Dk are respectively called the positive and
negative cognitive operators with a local sub-object set Dk.

Property 3. Let (Ω,Ψ, Ĩ, D, J) be a fuzzy decision formal
context, for any Di ∈ Ω/D and x ∈ Di, (HkL̃k(x) ∩
H−k L̃

−
k (x), (L̃k(x), L̃−k (x))) is a F3WG-concept.

Proof: See Appendix I for the proof of Property 3.
Intuitively, property 3 shows that F3WG-concept is an

object-oriented fuzzy-granular three-way concept from a local
fuzzy decision formal context. It should be pointed out that
the object-oriented fuzzy three-way concept(or fuzzy concept)
usually performs well for the classification problem without
the need to learn attribute-oriented fuzzy concepts, as illus-
trated in works [7], [11], [13].

Definition 5. Let (Ω,Ψ, Ĩ, D, J) be a fuzzy decision formal
context, for any Dk ∈ Ω/D and x ∈ Dk, the (HkL̃k(x) ∩
H−k L̃

−
k (x), (L̃k(x), L̃−k (x))) is a F3WG-concept. Then the set

of all F3WG-concepts in Di are represented as follows:

G̃Dk = {(HkL̃k(x) ∩H−k L̃
−
k (x), (L̃k(x), L̃−k (x)))|x ∈ Dk}.

where G̃Dk is referred to as the F3WG-concept subspace of
sub-object set Dk.

As indicated in Definition 5, we only consider the situation
that object-oriented fuzzy-granular three-way concept (i.e.,
F3WG-concept). Meanwhile, the initial F3WG-concept space
G̃ = {G̃D1 , G̃D2 , . . . , G̃Dl} can be constructed by means of
sub-object set Dk ∈ Ω. The initial F3WG-concept space learn-
ing process is shown in Algorithm 1, and its time complexity
is O(|Ω|2|Ψ|).

Algorithm 1 Initial F3WG-concept space learning
Input: A formal context (Ω,Ψ, Ĩ, D, J), parameter µ(a) and v(a);
Output: F3WG-concept space G̃ = {G̃D1 , G̃D2 , . . . , G̃Dl};
1: Initial G̃ = ∅;
2: for Dk ⊆ Ω/D do
3: Initial G̃Dk = ∅;
4: for all x ∈ Dk do
5: Learn F3WG-concept (HkL̃k(x)∩H−

k L̃
−
k (x), (L̃k(x), L̃−k (x)))

according to definition 4 and property 3;
6: Construct F3WG-concept subspace G̃Dk ← (HkL̃k(x) ∩
H−

k L̃
−
k (x), (L̃k(x), L̃−k (x))) according to definition 5;

7: end for
8: end for
9: Initial F3WG-concept space G̃ ← G̃Dk ;

10: return G̃ = {G̃D1 , G̃D2 , . . . , G̃Dl}.

B. Concept-cognitive Process

Considering the information on the object set and attribute
set will be updated as time goes by in the real world. Hence,
we sign an update mechanism for the proposed CCL system
in this subsection.

Suppose ΩD
i = {ΩD1

i ,ΩD2
i , . . . ,ΩDl

i } is referred to as the
object set under the i-th cognitive state. For brevity, for any
Dk ⊆ D, the s object sets ΩDk

1 ,ΩDk
2 , . . . ,ΩDk

s with ΩDk
1 ⊆

ΩDk
2 ⊆ . . . ⊆ ΩDk

s are denoted by {ΩDk
t } ↑ and similarly, the

m attribute sets Ψ1,Ψ2, . . . ,Ψm with Ψ1 ⊆ Ψ2 ⊆ · · · ⊆ Ψm

are denoted by {Ψt} ↑.

Definition 6. Let ΩDk
i−1 and ΩDk

i be object sets of {ΩDk
t } ↑,

Ψi−1 and Ψi be attribute sets of {Ψt} ↑; Denote ∆ΩDk
i−1 =

ΩDk
i − ΩDk

i−1, ∆Ψi−1 = Ψi −Ψi−1. Suppose

1) L̃k,i−1 : 2Ω
Dk
i−1 → ΓΨi−1 , Hk,i−1 : ΓΨi−1 → 2Ω

Dk
i−1 ,

2) L̃
k,∆Ω

Dk
i−1

: 2∆Ω
Dk
i−1 → ΓΨi−1 , H

k,∆Ω
Dk
i−1

: ΓΨi−1 → 2∆Ω
Dk
i−1 ,
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Fig. 2. Processes of the proposed F3WG-CCL method

3) L̃k,∆Ψi−1 : 2Ω
Dk
i → Γ∆Ψi−1 , Hk,∆Ψi−1 : Γ∆Ψi−1 → 2Ω

Dk
i ,

4) L̃k,i : 2Ω
Dk
i → ΓΨi , Hk,i : ΓΨ → 2Ω

Dk
i ;

5) L̃−
k,i−1 : 2Ω

Dk
i−1 → ΓΨi−1 , H−

k,i−1 : ΓΨi−1 → 2Ω
Dk
i−1 ,

6) L̃−
k,∆Ω

Dk
i−1

: 2∆Ω
Dk
i−1 → ΓΨi−1 , H−

k,∆Ω
Dk
i−1

: ΓΨi−1 → 2∆Ω
Dk
i−1 ,

7) L̃−
k,∆Ψi−1

: 2Ω
Dk
i → Γ∆Ψi−1 , H−

k,∆Ψi−1
: Γ∆Ψi−1 → 2Ω

Dk
i ,

8) L̃−
k,i : 2Ω

Dk
i → ΓΨi , H−

k,i : ΓΨ → 2Ω
Dk
i ;

be eight pairs of cognitive operators satisfying the following
properties:

L̃k,i(x) =

{
L̃k,i−1(x) ∪ L̃k,∆Ψi−1(x), if x ∈ Ω

Dk
i−1

L̃
k,∆Ω

Dk
i−1

(x) ∪ L̃k,∆Ψi−1(x), else

Hk,i(a) =

{
Hk,i−1(a) ∪H

k,∆Ω̃
Dk
i−1

(a), if a ∈ Ψi−1

Hk,∆Ψi−1(a), else

L̃−
k,i(x) =

 L̃−
k,i−1(x) ∪ L̃−

k,∆Ψi−1
(x), if x ∈ Ω

Dk
i−1

L̃−
k,∆Ω

Dk
i−1

(x) ∪ L̃−
k,∆Ψi−1

(x), else

H−
k,i(a) =

{
H−

k,i−1(a) ∪H−
k,∆Ω̃

Dk
i−1

(a), if a ∈ Ψi−1

H−
k,∆Ψi−1

(a), else

where L̃
k,∆Ω

Dk
i−1

, L̃−
k,∆Ω

Dk
i−1

, H
k,∆Ω

Dk
i−1

, and H−
k,∆Ω

Dk
i−1

are

empty sets when ∆ΩDk
i−1 = ∅; L̃k,∆Ψi−1 , L̃−k,∆Ψi−1

, Hk,∆Ψi−1 ,
and H−k,∆Ψi−1

are empty sets when ∆Ψi−1 = ∅. Then we say
L̃k,i and Hk,i are extended cognitive operators of L̃k,i−1 and
Hk,i−1 with the update information ∆ΩDk

i−1 and ∆Ψi−1.

Intrinsically, definition 6 characterizes updating the knowl-
edge representation of cognitive operators. L̃k,i−1 and Hk,i−1

can be regarded as the last stage of knowledge expression.
Then L̃k,i and Hk,i can be regarded as the current stage
of knowledge expression, which results from updating the
last state of knowledge expression with the newly input
information L̃

k,∆Ω
Dk
i−1

, L̃
k,∆Ψ

Dk
i−1

, H
k,∆Ω

Dk
i−1

, and H
k,∆Ψ

Dk
i−1

.
Note that the concept-cognitive process was often con-

sidered incremental due to the whole being something else

than the sum of its part [6], [10], [28]. In what follows, by
analyzing the update mechanism of the cognitive operator. The
F3WG-concept cognitive mechanism with object updated is
investigated as follows.

Property 4. Let ΩDk
i be a object set about Dk under i-th

cognitive state. For any object x ∈ ΩDk
i , then the following

statements hold:
1) for any x ∈ ΩDk

i , if x ∈ ΩDk
i−1, then

(Hk,iL̃k,i(x) ∩H−
k,iL̃

−
k,i(x), (L̃k,i(x), L̃−

k,i(x)))

= ((Hk,i−1L̃k,i−1(x) ∩H−
k,i−1L̃

−
k,i−1(x)) ∪ (H

k,∆Ω
Dk
i−1

L̃k,i−1(x)

∩H−
k,∆Ω

Dk
i−1

L̃−
k,i−1(x)), (L̃k,i−1(x), L̃−

k,i−1(x))).

2) for any x ∈ ΩDk
i , if x /∈ ΩDk

i−1, then

(Hk,iL̃k,i(x) ∩H−
k,iL̃

−
k,i(x), (L̃k,i(x), L̃−

k,i(x)))

= ((Hk,i−1L̃
k,∆Ω

Dk
i−1

(x) ∩H−
k,i−1L̃

−
k,∆Ω

Dk
i−1

(x)) ∪ (H
k,∆Ω

Dk
i−1

L̃
k,∆Ω

Dk
i−1

(x) ∩H−
k,∆Ω

Dk
i−1

L̃−
k,∆Ω

Dk
i−1

(x)), (L̃
k,∆Ω

Dk
i−1

(x), L̃−
k,∆Ω

Dk
i−1

(x))).

Proof: See Appendix I for the proof of Property 4.

Definition 7. Let ΩDk
i be a object set about Dk under i-th

cognitive state. For any object x ∈ ΩDk
i , the object-oriented

F3WG-concept space about Dk under i-th cognitive state can
be defined as follows:

G̃Dk
i = {(Hk,iL̃k,i(x) ∩H−

k,iL̃
−
k,i(x), (L̃k,i(x), L̃−

k,i(x)))|x ∈ Ω
Dk
i }.

Based on the above discussion, one can update the
F3WG-concept space under i-th cognitive states (i.e., G̃i =
{G̃D1

i , G̃D2
i , ..., G̃Dl

i }) through our concept-cognitive process.
The details are shown in Algorithm 2, and its time complexity
is O(|Ωi||Ωi−1||Ψ|).

So far, a concept-cognitive process of the proposed method
F3WG-CCL is completed, and it is obvious that all F3WG-
CCL have been learned, and the concept space has been
updated at different cognition stages. However, in the classi-
fication problem, although using concept space to replace the
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Algorithm 2 Concept-cognitive process
Input: F3WG-concept subspace G̃Dk

i−1, the added object set ∆Ωi−1;
Output: F3WG-concept space G̃Dk

i ;
1: Initial G̃i = {G̃D1

i , G̃D2
i , ..., G̃Dl

i };
2: for all x ∈ Ω

Dk
i do

3: if x ∈ Ω
Dk
i−1 then

4: Update F3WG-concept (Hk,iL̃k,i(x) ∩ H−
k,iL̃

−
k,i(x),

(L̃k,i(x), L̃−k,i(x))) according to item 1) of property 4;
5: else Update F3WG-concept (Hk,iL̃k,i(x) ∩ H−

k,iL̃
−
k,i(x),

(L̃k,i(x), L̃−k,i(x))) according to item 2) of property 4;
6: end if
7: G̃Dk

i ← (Hk,iL̃k,i(x) ∩H−
k,iL̃

−
k,i(x), (L̃k,i(x), L̃−k,i(x)));

8: end for
9: return G̃Dk

i .

concept lattice can improve the efficiency of concept learning,
it still has concept redundancy, especially in the fuzzy formal
context. Next, we will introduce concept recognition based on
big concept priority to complete the proposed method.

C. Concept Recognition based on Big Concept Priority
As we all know, fuzzy concepts bring different information

values and significance for concept recognition. As mentioned
above, some studies [7], [9], [11], [13], [14] unify the view
of using pseudo-concept for fuzzy concept recognition. At
this point, two questions are worth considering: 1) why the
pseudo-concept is used and 2) whether the pseudo-concept
is interpretable. Subsequently, we pondered the following
answer: big concepts are more effective (i.e., big concept
priority). Specifically, a pseudo-concept is a big concept in its
own right, but its extent and intent cannot refer to each other
and lack interpretability in some sense. The fuzzy concept
space needs to be simplified by fusing fuzzy concepts with
extent inclusion relations.

Hence, we put forward a new view for concept recognition
in this subsection, which can identify concepts effectively and
avoid learning pseudo-concepts. Of course, the big concept
priority principle mainly points out why previous studies prefer
pseudo-concepts. It is not to deny pseudo-concepts but to
provide a new viewpoint for other fuzzy-based CCL methods.
In order to illustrate and verify this view, we will use this
simple way to verify the big concept in the concept recognition
effect for the proposed method.

Definition 8. Let ΩDk
i be a object set about Dk under i-th

cognitive state, for all F3WG-concept (Xi,j , (Ãi,j,1, Ãi,j,2)) ∈
G̃Dk
i , we say that (Xi,bu , (Ãi,bu,1, Ãi,bu,2)) is a big concept

if there exists Xi,1 ⊆ Xi,2 ⊆, . . . ,⊆ Xi,bu ⊆ ΩDk
i . Then, the

fuzzy big concept subspace B̃G
Dk

i can be defined as follows:

B̃G
Dk

i = {(Xi,bu , (Ãi,bu,1, Ãi,bu,2))|i = 1, 2, . . .},

where, i = 1, 2, . . ., j = 1, 2, . . ., and bu = 1, 2, . . . , j.

Property 5. Let ΩDk
i be a object set about Dk under i-th

cognitive state, the B̃G
Dk

i is a fuzzy big concept subspace
about the F3WG-concept subspace G̃Dk

i . Then, the following
inequality holds.

1 ≤ |B̃G
Dk

i | ≤ |G̃
Dk
i |.

Proof: See Appendix I for the proof of Property 5.
For brevity, B̃G

Dk

i is referred to as big concept space
of F3WG-concept about G̃Dk

i , then we have B̃Gi =

{B̃G
D1

i , B̃G
D2

i , . . . , B̃G
Dl

i }. Furthermore, we can define a con-
cept recognition based on big concept priority.

Definition 9. Let ∆Ωi−1 = Ωi − Ωi−1 be a new object set
under i-th cognitive state, for x ∈ ∆Ωi−1, (x, (Ã(x), Ã−(x)))
be a new data. For any (X, (Ã1, Ã2)) ∈ G̃Dk

i , the concept
recognition degree betweent the two can be defined by:

CRE =

√
‖Ã1 − Ã(x)‖2 + ‖Ã2 − Ã−(x)‖2.

The smaller the value of CRE, the stronger the relationship
between the two. Therefore, for any added object x, from
definition 9, we can compute the recognition degree between
x and any concept in G̃Dk

i . Additionally, we can compute the
global minimum concept recognition degree between the new
data (x, (Ã(x), Ã−(x))) and G̃i, denoted by R∗ = min CRE.
The details are shown in Algorithm 3, and its time complexity
is O(|Ω|(|Ω|2 + |Ψ|)).

Algorithm 3 Concept recognition via big concept priority
Input: F3WG-concept space G̃i = {G̃D1

i , G̃D2
i , . . . , G̃Dl

i }, the added object
set ∆Ωi−1;

Output: R∗
h,Dk

and D∗
k;

1: Get the big concept space B̃Gi = {B̃G
D1

i , B̃G
D2

i , . . . , B̃G
Dl
i } according

to definition 8;
2: for all x ∈ ∆Ωi−1 do
3: Get the data (x, (Ã(x), Ã−(x)));
4: end for
5: for all G̃Dk

i ⊆ G̃i do
6: for all (Xh,k, (Ãh,k,1, ã

−
h,k,2)) ∈ G̃Dk

i do
7: Compute the recognitive degree CREh,Dk

according to defini-
tion 9;

8: R∗
h,Dk

← min CREh,Dk
;

9: D∗
k ← argminh,Dk

R∗
h,Dk

;
10: end for
11: end for
12: return R∗

h,Dk
and D∗

k .

V. EXPERIMENTS

In the subsequent experiments, we aim to answer the
following research questions(Rqs): 1) Rq.1. Does the proposed
F3WG-CCL model outperform related state-of-the-art peers?
2) Rq.2. What are the differences between F3WG-CCL and
other CCL mechanisms? 3) Rq.3. How do our new standpoints
influence the performance of F3WG-CCL?

A. General Settings

In this section, twelve public datasets from UCI Machine
Learning Repository1 are selected to demonstrate the per-
formance of the proposed method compared to others. The
detailed information about datasets is shown in Table I, and
they are first fuzzified according to the following equation.

Ĩ(x, a) =
f(x, a)−min(f(a))

max(f(a))−min(f(a))
,

1http://archive.ics.uci.edu/ml/datasets.php
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where the f(x, a) denotes the value of object x under feature
a, the max(f(a)) and min(f(a)) are the maximum and
minimum values of all objects on feature a.

TABLE I
BASIC DESCRIPTION OF SELECTED DATASETS

No.s Dataset Object Feature Class
D1 BreastTissue 106 10 6
D2 Parkinsons 195 23 2
D3 Seeds 210 8 3
D4 Hill 606 101 2
D5 BreastCancer 683 10 2
D6 Mice Protein Expression 1077 68 8
D7 Cardiotocography 2126 23 3
D8 Abalone 4177 9 3
D9 Spambase 4597 57 2

D10 Ring 7400 20 2
D11 EGS 10000 14 2
D12 Nursery 12960 9 5

In order to illustrate the effectiveness of the proposed
method, We compare F3WG-CCL with nine related state-of-
the-art fuzzy classification methods, including DMPWFC [14],
ILMPFTC [13], FGA-CCL(ours), FKNN [29], FENN [30],
KNN(K=3) [31], Random Forest(RF) [31], Naive Bayes(NB)
[31], Decision Tree(DT) [31], and ssODM [32]. It is noted
that 70% data of each dataset is trained as the training set
for constructing concept space, and the remaining 30% data
is regarded as testing data for evaluating the classification
performance of compared methods. Specifically, the testing
data is divided into ten equal parts and added to the testing set
to verify the dynamic classification performance. Meanwhile,
to reduce the randomness of the experiment, we still ran ten
times on each time node to obtain the average results.

B. Performance Comparison (Rq.1)

To further demonstrate the superiority of F3WG-CCL, in
this part, we compare it with seven other popular fuzzy
classification methods from classification accuracy, precision,
recall, and F1-score as shown in Fig.3. Table II only records
the detailed classification accuracy on 12 datasets, with the
optimal results in bold.

From the classification accuracy, the F3WG-CCL perfor-
mances better than the other seven popular classification
methods in ten datasets, except Datasets 10 and 12. Mean-
while, the F3WG-CCL obtains the highest average accuracy
(80.46) and minimum average rank (1.46), significantly better
than other compared methods in classification performance.
Moreover, the F3WG-CCL achieves the optimal classification
results of precision, recall, and F1-score for 9, 10, and 10
times in 12 datasets. The average classification performance
of these compared methods is also shown in Fig.3. The above
observations show that F3WG-CCL has apparent advantages
compared with the selected methods.

In order to evaluate whether there exists a statistical differ-
ence in classification performance between different methods,
Friedman’s test [33] and Nemenyi’s posthoc test [34] are
adopted to make the test at a significance level of P = 0.1.

(a) Value (b) Rank

Fig. 3. Average classification performance of F3WG-CCL and other fuzzy
classification methods. (a) and (b) show the average value and rank of
compared methods on 12 datasets.

The null hypothesis for the statistical tests is that the classifi-
cation performance of compared methods is the same, and it
could be rejected when the tested P-value is smaller than the
significance level. When comparing F3WG-CCL with seven
selected popular fuzzy classification methods, the test P-values
of Friedman test in accuracy, precision, recall, and F1-score
are 3.98× 10−5, 2.76× 10−5, 1.91× 10−6, and 1.90× 10−6

all smaller than 0.1, which shows a statistically significant
difference among these methods. Hence, Nemenyi’s post hoc
test is adopted and the test results are shown in Fig.4. In
particular, the CD value is 2.78 on 12 datasets when comparing
eight methods at P = 0.1, which can be computed as follows:

CD = qP

√
k(k + 1)

6N
,

where qP=0.1 = 2.78, k = 8 and N = 12. The classifica-
tion performance of any two compared methods significantly
differs when the test value exceeds the CD value. Fig.4
shows that the F3WG-CCL performs best in all classification
performances and is significantly better than the other six
methods in classification accuracy. According to the above
analysis, the proposed F3WG-CCL outperforms the related
state-of-the-art methods in classification performance.

C. The Differences Between the Fuzzy-based CCLs(Rq.2)

In the last subsection, we only verify the superiority of
F3WG-CCL over some popular classification methods in clas-
sification performance. And then, we compare the F3WG-CCL
with two start-of-the-art fuzzy-based CCL methods (dynamic
concept learning mechanisms), i.e., DMPWFC and ILMPFTC,
to show differences between the Fuzzy-based CCLs.

The dynamic classification accuracy of DMPWFC,
ILMPFTC, and F3WG-CCL on 12 datasets is shown in Table
III, where the last column shows the average accuracy(Ave)
and standard deviation(Std). All the optimal classification
results are in bold. From this table, we could find that the
accuracy of the proposed F3WG-CCL is higher than that of
DMPWFC and ILMPFTC in all datasets, except in Datasets
1 and 5. Note that the DMPWFC is invalid in Dataset 12
due to ignoring the concept that does not need updating.
In addition, the other average classification performance of
different algorithms on 12 datasets is shown in Tables IV
and Fig.5. Specifically, F3WG-CCL performs better than
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TABLE II
CLASSIFICATION ACCURACY (%) COMPARISON WITH OTHER SEVEN CLASSIFICATION METHODS ON 12 DATASETS

No.s FKNN FENN KNN RF DT ssODM NB Our
D1 58.77±1.02 60.93±1.04 70.08±1.88 63.01±2.23 58.69±2.51 54.01±2.89 68.76±1.97 75.40±1.78

D2 47.68±1.94 45.77±1.90 47.68±1.94 53.99±1.82 50.17±1.27 44.28±2.92 55.59±1.27 83.19±1.18

D3 85.16±0.61 86.72±0.58 85.32±0.60 85.80±0.98 81.65±0.96 66.17±2.09 81.40±0.74 95.90±0.42

D4 62.41±0.26 44.68±0.69 60.83±0.36 72.27±0.82 47.91±0.25 41.38±2.28 32.25±0.82 81.31±1.78

D5 99.67±0.05 99.42±0.05 99.21±0.08 98.91±0.18 95.79±0.26 99.64±0.05 99.12±0.07 99.83±0.03

D6 38.22±1.42 38.22±1.42 39.15±1.50 51.63±1.49 20.28±0.57 22.33±1.57 40.77±1.18 59.32±1.30

D7 61.58±0.29 59.65±0.37 61.10±0.34 66.49±0.40 61.10±0.75 28.83±1.62 37.27±1.05 73.92±1.36

D8 53.70±0.34 52.17±0.49 53.17±0.26 60.00±0.67 28.90±0.28 57.47±1.66 29.13±1.71 60.56±0.37

D9 82.36±0.49 81.88±0.49 81.55±0.48 91.02±0.45 78.01±0.51 87.00±0.47 32.73±1.05 92.17±0.44

D10 37.33±1.62 23.75±1.95 50.89±1.21 93.05±0.35 81.31±0.22 73.00±0.50 96.62±0.11 88.99±0.12

D11 83.78±0.37 82.81±0.45 85.02±0.33 99.86±0.01 100.0±0.00 95.57±0.11 98.58±0.02 87.29±0.38

D12 64.67±0.90 65.07±0.97 64.16±0.93 38.85±2.21 35.71±2.41 7.13±1.17 49.76±2.00 67.68±1.53

Ave. 64.61±0.78 61.76±0.87 66.51±0.82 72.91±0.97 61.63±0.83 56.4±1.44 60.17±1.00 80.46±0.89

Rank 4.46 5.31 4.46 3.00 5.77 6.15 5.15 1.46

(a) Accuracy (b) Precision (c) Recall (d) F1-score

Fig. 4. Nemenyi test on F3WG-CCL and seven other methods. (a)-(d) show the results between these methods in accuracy, precision, recall, and F1-score.

other concept methods in average accuracy for 11 datasets
except in Dataset 1. F3WG-CCL achieves the highest value
nine times in 12 datasets for the average precision index.
Moreover, F3WG-CCL performs well at ten datasets of all
datasets in average precision except for Dataset 1. Compared
with DMPWFC and ILMPFTC, F3WG-CCL also obtains
the maximum value of the average F1-score 9 times except
for Datasets 1, 4, and 7. All the above results illustrate the
superiority of the fuzzy-granular concept compared with
DMPWFC and ILMPFTC in a dynamic environment.

Fig. 5. Average classification performance of three CCLs on 12 datasets.

In order to evaluate whether there exists a statistical dif-
ference in classification performance between several fuzzy-
based CCLs (note that FG-CCL and FGA-CCL are two

mechanisms of our proposed and also are discussed in the
following subsection), Friedman’s test and Nemenyi’s post hoc
test are adopted to make the test at a significance level of
P = 0.1. When comparing F3WG-CCL with other CCLs, the
test P-values of Friedman test in accuracy, precision, recall,
and F1-score are 2.19× 10−5, 2.19× 10−5, 7.00× 10−6, and
1.36 × 10−5, lowering than 0.1 and indicating that there is
a statistically significant difference between F3WG-CCL and
the four classical concept-cognitive learning methods. Note
that the DMPWFC is invalid in Dataset 12. Thus the statistical
test in concept-cognitive learning mechanisms is carried out
on other 11 datasets. To further test the difference between
F3WG-CCL and each other concept-cognitive learning mech-
anism, Nemenyi’s post hoc test is conducted, and the value of
the critical difference(CD) is 1.6585 at the confidence level
of P = 0.1. From Fig.6, we know the F3WG-CCL ranks first
among these CCL methods in classification performances and
is significantly better than FGA-CCL and DMPWFC.

D. Influence of the Proposed Standpoints(Rq.3)

To test the influence of our proposed standpoints, we verify
the rationality of the proposed view from three aspects: 1)
verifying the three-way concept is more effective in a fuzzy
context for classification tasks, 2) showing that big concepts
are more valuable for concept recognition, 3) the update
mechanism is effective.

1) Fuzzy-granular Three-way Concept is Practical: As sec-
tion III mentions, the F3WG-concept constructs the fuzzy con-
cept by combing positive and negative information, providing
a more comprehensive method to characterize the relationship
between objects and features. To demonstrate the superiority of
the three-way concept in dynamic classification, we record the
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(a) Accuracy (b) Precision (c) Recall (d) F1-score

Fig. 6. Nemenyi Test on F3WG-CCL and four CCLs. (a)-(d) show the results betweent these methods in accuracy, precision, recall, and F1-score.

TABLE III
CLASSIFICATION ACCURACY OF THREE CONCEPT-COGNITIVE METHODS IN DYNAMIC ENVIRONMENT ON 12 DATASETS

No.s Method t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Ave±Std

D1
DMPWFC 50.00 75.00 83.33 75.00 70.00 75.00 71.43 62.50 55.56 55.00 67.28±10.91

ILMPFTC 100.00 100.00 100.00 87.50 80.00 83.33 78.57 68.75 61.11 60.00 81.93±15.33

F3WG-CCL 100.00 100.00 100.00 75.00 70.00 66.67 64.29 62.50 55.56 60.00 75.40±17.77

D2
DMPWFC 40.00 30.00 26.67 20.00 32.00 43.33 48.57 55.00 60.00 64.00 41.96±14.87

ILMPFTC 40.00 40.00 60.00 50.00 60.00 66.67 71.43 75.00 77.78 80.00 62.09±14.80

F3WG-CCL 100.00 100.00 100.00 75.00 76.00 76.67 71.43 75.00 77.78 80.00 83.19±11.80

D3
DMPWFC 100.00 75.00 83.33 79.17 80.00 72.22 66.67 68.75 68.52 71.67 76.53±9.90

ILMPFTC 100.00 91.67 94.44 91.67 90.00 91.67 92.86 87.50 85.19 86.67 91.17±4.26

F3WG-CCL 100.00 100.00 100.00 100.00 96.67 94.44 95.24 93.75 88.89 90.00 95.90±4.20

D4
DMPWFC 5.56 2.78 1.85 1.39 1.11 16.67 28.57 37.50 44.44 49.44 18.93±19.38

ILMPFTC 100.00 86.11 87.04 87.50 88.89 76.85 66.67 59.03 53.70 48.89 75.47±17.33

F3WG-CCL 94.44 97.22 98.15 95.83 96.67 82.41 73.02 64.58 58.02 52.78 81.31±17.83

D5
DMPWFC 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.75 98.89 99.00 99.66±0.54

ILMPFTC 72.41 48.28 44.83 39.66 33.10 39.08 39.41 39.22 40.23 38.62 43.48±10.92

F3WG-CCL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.12 97.22 95.50 99.08±1.60

D6
DMPWFC 45.16 24.19 16.13 12.10 10.32 15.05 23.04 23.79 31.90 31.61 23.33±10.73

ILMPFTC 74.19 58.06 59.14 52.42 49.68 51.08 49.77 51.61 49.10 53.55 54.86±7.61

F3WG-CCL 90.32 72.58 63.44 55.65 52.26 52.69 51.61 52.02 48.75 53.87 59.32±12.98

D7
DMPWFC 60.32 67.406 53.44 51.19 49.52 50.26 50.57 54.56 57.85 58.89 55.41±5.72

ILMPFTC 61.90 69.84 64.02 64.68 67.62 70.37 67.12 68.65 69.49 70.32 67.40±2.95

F3WG-CCL 71.43 85.71 84.66 86.90 86.67 82.54 71.88 62.90 55.91 50.63 73.92±13.57

D8
DMPWFC 0.00 0.00 0.00 0.00 1.92 2.13 4.34 16.30 25.60 33.04 8.33±12.23

ILMPFTC 49.60 47.60 45.33 45.20 48.00 49.60 52.34 50.50 49.24 48.96 48.64±2.20

F3WG-CCL 62.40 58.40 60.00 61.20 64.32 64.93 64.80 59.40 56.00 54.16 60.56±3.70

D9
DMPWFC 9.49 6.57 4.93 3.94 3.28 15.64 26.19 34.39 40.88 16.15 16.15±13.42

ILMPFTC 94.16 94.89 94.89 91.24 91.39 91.48 84.88 78.56 74.86 72.41 86.88±8.62

F3WG-CCL 94.89 97.08 95.86 95.26 93.72 94.16 91.55 89.05 86.29 83.80 92.17±4.42

D10
DMPWFC 13.57 12.67 14.63 14.59 14.93 29.03 39.11 46.61 52.39 57.10 29.46±17.84

ILMPFTC 93.21 94.34 94.12 94.80 94.66 91.18 85.33 81.50 78.03 75.02 88.22±7.62

F3WG-CCL 87.33 87.33 87.78 88.69 88.87 89.44 89.79 90.33 90.15 90.23 88.99±1.18

D11
DMPWFC 93.65 90.97 91.86 86.62 76.52 69.79 65.36 61.37 58.31 56.29 75.07±14.75

ILMPFTC 84.62 81.44 80.94 81.10 83.34 84.28 84.66 84.99 85.32 85.65 83.63±1.82

F3WG-CCL 90.97 91.81 92.20 90.22 87.89 86.12 85.00 83.61 82.83 82.27 87.29±3.83

D12
DMPWFC - - - - - - - - - - -
ILMPFTC 21.91 40.85 30.07 45.10 56.08 63.40 66.94 62.50 62.40 66.16 51.54±16.14

F3WG-CCL 65.21 36.08 48.97 61.73 69.38 74.48 76.44 79.38 81.67 83.51 67.69±15.27

TABLE IV
AVERAGE CLASSIFICATION PERFORMANCE OF THREE CONCEPT-COGNITIVE METHODS IN DYNAMIC ENVIRONMENT ON 12 DATASETS

No.s Mechanism Accuracy Precision Recall F1-score No.s Mechanism Accuracy Precision Recall F1-score

D1
DMPWFC 67.28±1.09 58.93±1.28 49.56±1.54 53.21±1.38

D7
DMPWFC 55.41±0.57 49.63±0.52 47.28±1.15 47.98±0.75

ILMPFTC 81.93±1.53 74.68±2.15 72.53±2.19 73.29±2.15 ILMPFTC 67.40±0.30 54.40±0.67 51.85±1.14 52.89±0.88

F3WG-CCL 75.40±1.78 63.78±2.70 59.83±2.94 61.43±2.82 F3WG-CCL 73.92±1.36 52.47±0.93 51.39±0.18 51.65±0.54

D2
DMPWFC 41.96±1.49 44.01±0.98 38.19±1.56 39.47±1.25

D8
DMPWFC 8.33±1.22 20.49±1.81 14.52±1.79 15.12±1.79

ILMPFTC 62.09±1.48 62.25±1.11 57.53±2.17 58.43±1.78 ILMPFTC 48.64±0.22 43.27±0.74 34.99±1.52 37.93±1.25

F3WG-CCL 83.19±1.18 87.18±0.93 83.61±1.36 85.04±1.09 F3WG-CCL 60.56±0.37 45.49±0.91 39.28±1.38 41.82±1.21

D3
DMPWFC 76.53±0.99 67.94±1.51 62.20±1.92 64.70±1.71

D9
DMPWFC 15.48±1.36 55.33±0.75 22.52±2.50 26.23±2.64

ILMPFTC 91.17±0.43 73.58±1.68 72.49±1.94 72.95±1.79 ILMPFTC 86.88±0.86 58.23±1.08 54.10±0.99 56.08±1.03

F3WG-CCL 95.90±0.42 97.03±0.31 95.51±0.47 96.25±0.39 F3WG-CCL 92.17±0.44 63.73±1.78 61.52±1.8 62.59±1.79

D4
DMPWFC 18.93±1.94 56.22±0.88 25.85±2.59 29.02±2.81

D10
DMPWFC 29.46±1.78 59.14±1.04 36.96±2.59 41.21±2.52

ILMPFTC 75.47±1.73 54.26±1.62 52.32±1.71 53.20±1.66 ILMPFTC 88.22±0.76 66.74±1.69 66.86±1.75 66.31±1.60

F3WG-CCL 81.31±1.78 55.69±0.66 50.44±0.25 52.88±0.43 F3WG-CCL 88.99±0.12 68.94±1.97 72.25±2.44 69.88±2.10

D5
DMPWFC 34.20±1.57 54.29±0.60 33.94±2.52 37.46±2.23

D11
DMPWFC 75.07±1.48 62.98±0.94 58.37±0.85 60.57±0.89

ILMPFTC 43.48±1.09 38.05±0.63 35.55±0.82 36.57±0.68 ILMPFTC 83.63±0.18 71.87±1.62 71.88±2.12 71.60±1.85

F3WG-CCL 99.83±0.03 99.89±0.02 99.63±0.07 99.76±0.04 F3WG-CCL 87.29±0.38 72.85±1.62 72.77±1.86 72.74±1.73

D6
DMPWFC 23.33±1.07 23.01±0.82 16.53±1.11 18.49±0.99

D12
DMPWFC - - - -

ILMPFTC 54.86±0.76 40.16±0.66 32.85±1.21 35.79±0.99 ILMPFTC 51.54±1.61 38.36±0.81 30.49±1.86 32.34±1.53

F3WG-CCL 59.32±1.30 42.86±0.64 36.40±0.97 39.15±0.81 F3WG-CCL 67.68±1.53 54.39±1.82 47.19±2.70 49.59±2.37
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TABLE V
CLASSIFICATION PERFORMANCE BETWEENT F3WG-CCL, FG-CCL AND FGA-CCL ON 12 DATASETS

No.s Accuracy Precision Recall F1-score

FG-CCL FGA-CCL F3WG-CCL FG-CCL FGA-CCL F3WG-CCL FG-CCL FGA-CCL F3WG-CCL FG-CCL FGA-CCL FG-CCL
D1 62.87±2.88 73.28±1.92 75.40±1.78 42.22±4.10 54.93±3.25 63.78±2.70 53.67±3.35 61.30±3.04 59.83±2.94 45.79±3.89 57.61±3.14 61.43±2.82

D2 32.46±2.19 59.17±1.30 83.19±1.18 18.45±1.29 60.04±0.79 87.18±0.93 34.30±1.92 55.23±1.96 83.61±1.36 22.36±1.45 56.22±1.55 85.04±1.09

D3 35.62±1.77 82.19±0.74 95.90±0.42 54.56±2.13 62.43±2.01 97.03±0.31 35.49±2.13 59.49±2.39 95.51±0.47 41.38±2.22 60.65±2.20 96.25±0.39

D4 67.91±1.07 83.56±1.72 81.31±1.78 50.76±0.17 66.30±1.64 55.69±0.66 44.88±0.73 57.89±1.54 50.44±0.25 47.42±0.47 61.60±1.53 52.88±0.43

D5 8.15±1.27 99.83±0.03 99.83±0.03 4.07±0.64 99.89±0.02 99.89±0.02 20.00±2.58 99.63±0.07 99.63±0.07 6.50±0.98 99.76±0.04 99.76±0.04

D6 13.63±0.80 54.96±0.60 59.32±1.30 18.41±1.16 44.94±0.62 42.86±0.64 9.22±0.63 36.04±1.06 36.40±0.97 11.05±0.62 39.62±0.84 39.15±0.81

D7 63.68±1.45 60.54±0.96 73.92±1.36 41.11±0.96 46.34±0.63 52.47±0.93 47.42±0.26 40.23±1.03 51.39±0.18 43.68±0.67 42.80±0.82 51.65±0.54

D8 7.20±1.17 49.61±0.14 60.56±0.37 21.14±1.74 44.50±0.82 45.49±0.91 13.42±1.72 35.94±1.56 39.28±1.38 7.29±0.955 39.01±1.30 41.82±1.21

D9 22.94±1.18 84.18±0.31 92.17±0.44 55.02±0.71 60.75±1.42 63.73±1.78 26.46±2.41 58.73±2.08 61.52±1.80 31.30±2.33 59.48±1.74 62.59±1.79

D10 41.10±1.51 89.08±0.12 88.99±0.12 60.75±1.22 69.00±1.97 68.94±1.97 44.11±2.60 72.32±2.45 72.25±2.44 48.10±2.31 69.95±2.11 69.88±2.10

D11 75.49±0.76 87.29±0.38 87.29±0.38 70.87±1.64 72.85±1.62 72.85±1.62 66.74±2.30 72.77±1.86 72.77±1.86 68.14±1.99 72.74±1.73 72.74±1.73

D12 4.19±0.70 67.68±1.53 67.68±1.53 1.64±0.27 54.39±1.82 54.39±1.82 4.66±0.60 47.19±2.70 47.19±2.70 2.24±0.36 49.59±2.37 49.59±2.37

Ave. 36.27±1.39 74.28±0.81 80.46±0.89 36.58±1.34 61.36±1.38 67.03±1.19 33.36±1.77 58.06±1.81 64.15±1.37 31.27±1.52 59.09±1.61 65.23±1.28

Fig. 7. Average classification performance of three cases on 12 datasets.

average results of F3WG-CCL and FG-CCL(without the three-
way concept in F3WG-CCL) in TableV. This table shows that
F3WG-CCL performs better than FG-CCL in all experimented
datasets, and references [7], [9], [13] also confirms fuzzy three-
way concept can show superior performance in classification
problems, fully proving the persuasiveness of the three-way
concept in the fuzzy context.

2) Big Concept Priority Principle is Reasonable: More-
over, to illustrate the rationality of the principle of big concept
priority, we further compare the F3WG-CCL with FGA-
CCL(i.e., use all F3WG-concepts for concept recognition),
which designs the classification mechanism based on all fuzzy
concepts. The dynamic average classification performance
of FGA-CCL and F3WG-CCL is shown in Table V. Com-
pared with FGA-CCL, the proposed F3WG-CCL mechanism
achieves better classification performance in most datasets,
which can be reflected in the maximum average values of
F3WG-CCL in accuracy, precision, recall, and F1-score. Fig. 7
shows the effectiveness and rationality of the fuzzy-granular
three-way concept and big concept priority principle in dy-
namic classification.

3) Update Mechanism of F3WG-CCL is Effective: To ef-
ficiently update the F3WG-CCL-concept space, we give the
update mechanism in our methods and display the process in
Alg.2. To demonstrate the superiority of the update mecha-
nism, we record and analyze the time consumption of these
two mechanisms for updating fuzzy concept space at different
times in this subsection. For convenience, the dynamic update
mechanism (i.e., F3WG-CCL(D)) and corresponding static
mechanism (i.e., F3WG-CCL(S)) are shown in Fig.8, where
the units of consuming time are seconds(s).

Compared with the static mechanism, the dynamic mecha-
nism, i.e., F3WG-CCL, consumes less time, and the average
dynamic concept learning time is significantly lower than that
of the static mechanism. Moreover, it can also be seen from
Fig.8, the time gap between the two mechanisms becomes
more significant with the increase of objects when facing
dynamic updates, especially in large-scale data. These results
show and answer the question of the effectiveness of the
update mechanism in dynamic classification.

4) Parameters Analysis: It is clear that µ and v are two
essential parameters used to learn F3WG-concept. Thus, the
changes in their values impact the construction of concept
space and cause the variation of classification performance
of F3WG-CCL as well. Considering the differences between
different features, for each feature a, the parameter µ(a) and
v(a) is set to µ(a) = σ(a) + α and v(a) = σ(a−) + β,
where the σ(a) and σ(a−) represent the standard deviation of
feature a under fuzzy decision formal context. To observe the
sensitivity of F3WG-CCL, the α and β are gradually adjusted
from -0.5 to 0 with a step of 0.05, and the optimal parameters
are determined according to the highest classification accuracy.
In addition, the parameters of other compared methods are set
consistent with their references.

To comprehensively investigate the effect of these param-
eters on classification performance, we display the classifi-
cation accuracy of F3WG-CCL under different parameters
on datasets 1 and 2 in Fig.9. It can be obtained from these
subfigures that the average classification accuracy of F3WG-
CCL fluctuates significantly with the change of α and β on
all experimental datasets. The experimental results verify that
the classification performance of F3WG-CCL has a specific

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2023.3325952

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Southwest University. Downloaded on October 20,2023 at 01:12:13 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL.*, NO.*, * 11

Fig. 8. Time consumption of F3WG-CCL(D) and F3WG-CCL(S).

(a) Dataset1 (b) Dataset2

Fig. 9. Average accuracy comparison under different parameters.

sensitivity of the values of α and β. Meanwhile, the F3WG-
CCL achieves optimal classification accuracy in each dataset
with different parameters combination. Therefore, the selection
process of parameters to obtain the highest classification
performance is necessary for the actual application.

VI. CONCLUSION

This study presents F3WG-CCL for dynamic knowledge
discovery in a fuzzy formal context. It adopts threefold ideas:
1) fuzzy-granular three-way concept to describe fuzzy ontol-
ogy, 2) update mechanism to improve the efficiency of concept
learning, and 3) big concepts are used for concept recognition.
Theoretical and empirical studies show that F3WG-CCL ob-
tains superior concept learning and classification performance.

The current article studies the fuzzy-based cognitive-
cognitive learning model by defining F3WG-concept and big
concepts for dynamic knowledge discovery. Consequently,
some limitations still need to be considered, such as adaptive
learning of F3WG-concept and accurate recognition of big

concepts. Although our method can significantly enhance the
efficiency of concept learning and classification performance
for dynamic fuzzy data, it still cannot be learned for billions
of data. Hence, how to combine machine learning and deep
learning theory into CCL theory also deserves to be explored.
We plan to address these challenging problems in future work.
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