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a b s t r a c t

With the successful application of rough sets in many fields, research results on the theory emerge
one after another. As one of the core contents of rough set theory, feature selection aims to find
the minimum attribute set that does not affect the overall classification ability. In real life, there are
often some data whose features will change with variables such as time, which is called ordered data
with changing features. However, for ordered data with changing features, the existing methods in the
current field are not applicable, because when the features of the data change, these methods basically
need to recalculate from scratch to get a new reduction result, which is very time-consuming and does
not use the previous reduction result. The feature incremental attribute reduction algorithm can be
applied to the previous reduction results, thus greatly saving time. Drawing inspiration from this, this
paper studies incremental attribute reduction algorithms under the order data with changing features.
This paper first gives the entropy of the dominant condition of the dominant relation matrix and the
updating principle of the new dominant relation matrix and the dominant diagonal matrix when the
feature changes are explored. Later, two incremental attribute reduction algorithms HAR-A and HAR-D
are also proposed in this paper, which are respectively applied to add features and delete features in
ordered data with changing features. The subsequent experiments were also carried out on 9 data
sets of UCI, and the performance of the proposed algorithm was evaluated. It can be seen from the
experimental results that the two incremental attribute reduction algorithms we proposed are very
effective.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Attribute reduction, as the core problem of rough set theory
esearch, not only can effectively reduce the dimension of data,
ut also the reduction results have clear semantic interpretation,
o it has attracted wide attention [1–4]. The so-called attribute
eduction refers to the deletion of redundant attributes in data by
sing constraints constructed on certain metrics to improve the
erformance of subsequent learning algorithms. In real life, data
ets often change. For example, the characteristics of data sets
hange with time and other variables, which is called dynamic
ata sets. The attribute reduction algorithm for dynamic data
ets is generally incremental attribute reduction method [5–9].
ncremental attribute reduction method can effectively use the
xisting reduction results, thus saving a lot of time and space
osts, so it has attracted much attention. Based on this problem,
n feature incremental attribute reduction method for dynamic
rdered data set features is studied in this paper.

∗ Corresponding author.
E-mail addresses: chxuwh@gmail.com (W.H. Xu),

ifei.Yang.yyf2002@gmail.com (Y.F. Yang).
ttps://doi.org/10.1016/j.knosys.2023.110947
950-7051/© 2023 Elsevier B.V. All rights reserved.
With the development of the information age, the complexity
and diversity of data structures are increasing, and the feature
selection methods are constantly improved and innovated. Many
excellent feature selection models and algorithms were proposed
already. Some usually used feature representation methods based
on deep learning are convolutional neural network (CNN) [10],
Restricted Boltzmann machine (RBM) [11] and recursive neural
network (RNN) [12]. Recently, deep learning has also been used
in some problems about attribute reduction. Zhao’s team de-
scribed a feature selection algorithm based on multi-dimensional
DNN and relatively rare population ring [13]. Semwal’s team
described a very robust feature extraction method and applied
it to classification problems [14]. Chen’s team has completed a
method of target feature prediction based on electroencephalo-
gram [15]. In addition, in real life problems, this target feature
prediction method has been successfully applied in the fields of
economy [16], remote control [17], transportation [18] and so
on. Evolutionary algorithm is inspired from Darwin’s evolution
theory. As the name implies, it carries out feature selection and
optimization problems through behaviors similar to the evolu-
tion of various organisms in nature [19]. The Nag’s team used
multi-objective genetic programming to study feature extrac-

tion and selection methods of simplified classifiers [20]. Labani’s
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eam proposed and proved a multi-objective genetic algorithm
or text feature selection based on relative criteria [21]. Ma’s team
roposed a feature selection method on the basis of genetic pro-
ramming for classification [22]. Das’s team described a feature
xtraction algorithm by simultaneously studying two targets [23].
i’s team demonstrated a method to simultaneously study the
haracteristics of multiple targets and combine it with genetic
lgorithm [24].
Rough set theory is a very significant theoretical basis for

ttribute reduction problems [25–27]. Pawlak proposed that RST
s an effective mathematical tool to deal with inconsistent and
ncertain information [28]. Later, with the advantages of rough
et theory in processing imprecise and incomplete data, it is grad-
ally known by the majority of scholars. As the core content of
ough set, attribute reduction is to gradually remove unnecessary
ttributes from the attribute set to save much time from the
ata processing. At present, many scholars have proposed their
wn improved attribute reduction algorithms from the aspects
f knowledge division, closeness, mutual information, granular-
ty, etc.Because rough set theory does not meet the standard
nconsistent requirement that exist in terms of credit ratings,
rticle rankings, and profit margins with properties that have
referred ranking domains. Due to this shortcoming, Greco’s team
escribed a feature extraction method based on dominance rela-
ionship [29], and this proposed method has also achieved suc-
ess in multiple dimension prediction and decision making [30].
ough set method of monotone variable consistency [31], rough
et model on the basis of random dominance [32], rough set
odel on the basis of soft dominance [33] and a rough set model

hat we often describe [34]. The above models and methods are
ery enlightening to this paper.
In real life, the characteristics of ordered data often change

ith variables such as time and age. Such as, a person’s height,
student’s grades. Some of the data is dynamic as students

raduate and enter school. For dynamically ordered data sets,
alculating reductions using these existing methods is very time
onsuming because they require recalculating knowledge, no one
s born to know everything, the accumulation of knowledge is a
ong process, the accumulation of knowledge slowly from zero to
ull, from nothing to something. In this case, if the calculation of
ttribute reduction is carried out from the beginning every time,
t will consume a lot of time and space, which is not worthwhile,
o we need a dynamic incremental attribute reduction algorithm.
Dynamic attribute reduction algorithms can be roughly di-

ided into three types: one is to change the data set sample
lgorithm, one is to change the data set attribute characteristics
lgorithm, and one is to change the data set attribute eigenvalue
lgorithm.
For changing the data set sample. Liang’s team described a

ynamic update algorithm on the basis of information values [35].
hang and his team demonstrated a dynamic selection algorithm
or actively selecting sample features [36]. Yang’s team studied
ynamics centered on attribute characteristics method based on
he active sample selection principle [37], then feature extraction
as carried out for the isomeric data that would change [38].
hu team described a dynamic feature extraction algorithm that
rushes various kinds of data together [39]. Ye team proposed and
roved a dynamic algorithm related to matrix pseudo-values [40].
as team demonstrated a grouping dynamic algorithm combined
ith genetic algorithm [41].
For changes in attributes. Chen team introduced an incremen-

al attribute reduction method on the basis of identifiable relation
o dynamically increase attributes [42]. Wang’s team conducted
n algorithm related to information entropy for data sets subject
o dynamic changes [43]. The Lang team proposed and proved a

amily-related algorithm [44]. Zeng Team studied an incremental

2

attribute reduction method for mixed data on the basis of fuzzy
rough sets [45].

The alternations of the attributes of the dataset. Wang’s team
described an algorithm based on representative entropy val-
ues [46]. Wei’s team demonstrated a feature selection method
based on discrimination matrix [47], and then developed an ac-
celerated increment algorithm based on the compressed decision
table technique [48]. The Cai team proposed and proved a coarse-
grained dynamic attribute reduction algorithm and a fine-grained
dynamic attribute reduction algorithm [49]. On this basis, Dong
and Chen proposed a new incremental attribute reduction algo-
rithm based on RST for the decision table with both samples and
attributes increasing at the same time [50]. Jing team introduced
an incremental method for calculating the reduction of decision
tables with both objects and attributes evolving over time [51].

Through the study of the above algorithms, it is found that the
algorithms that change the attribute characteristics of the data set
are not based on the ordered data set. Therefore, it is urgent to
put forward an algorithm to change the attributes of ordered data
sets, which also inspires the author of this paper.

As a measure of uncertainty, information entropy has attracted
wide attention. After Shannon [52] proposed information entropy,
relevant researches have been extended. For data with sequential
relationship, Hu’s team introduced the basic concepts of ascend-
ing conditional entropy and descending conditional entropy [53].
In the following content of this paper, ascending and descending
conditional entropy will also be used to pave the way for our
proposed attribute reduction method.

Since information in matrix form the calculation process can
be reduced to reduce the complexity of the algorithm, and the
matrix related computing technology will be introduced into the
dynamic algorithm. In addition, the correlation between objects
in DRSA is an antisymmetric preference order relation. There-
fore, what DRSA constitutes is an irregular space. As a result,
it would be tedious and complex to use collection represents a
kind of question about how to study DRSA, and it is really worth
going into, This is especially true for non-static and sequential
data sets. Therefore, a simple and effective method is needed
to cover-matrix method based approximate spatial knowledge
acquisition method, where situations are dynamic and require
efficient knowledge acquisition. For the dominance matrix re-
lationship, this paper studies the increment mechanism of the
dominant conditional entropy by using matrix form.

After the above description, we find that dynamic attribute re-
duction by changing attribute characteristics is a worthy research
direction. Furthermore, for the sake of improving the efficiency
of the algorithm, unnecessary attributes in the alternative non-
kernel set attribute set are gradually deleted in this paper when
solving the reduction, and the original dominant relation matrix
does not need to be repeatedly calculated. Therefore, this pa-
per mainly studies the progressive method about DRSA based
dynamic attribute reduction method based on non-static and
sequential data sets. The main contribution of this paper are as
follows : (1) A matrix-based method for calculating the dominant
conditional entropy in ordered information systems is proposed
and proved. (2) Two incremental feature attribute reduction al-
gorithms HAR-A and HAR-D are proposed and demonstrated for
changing attribute features of ordered data sets. They are applied
to add and delete multiple attribute features, respectively. (3) Ex-
periments on 9 data sets of UCI show that the proposed algorithm
is effective.

The organization of this document is as follows. The sec-
ond section presents the relevant basic knowledge. In Section 3,
a computational method of conditional entropy of dominance
based on dominant relation matrix calculation method is intro-

duced and proved, and a heuristic attribute reduction algorithm
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Fig. 1. Motivations of our work.
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s proposed based on it. In Section 4, Introduce and update the
nheritance mechanism of matrix dominant conditional entropy
hen the data set changes. Two incremental feature attribute
eduction algorithms HAR-A and HAR-D are introduced to deal
ith adding and removing multiple features in ordered decision
ystems. In Section 5, experimental results on 9 data sets are pre-
ented to verify the effectiveness, efficiency and the performance
valuation of the proposed algorithm. Section 6 summarizes the
ork of this paper and looks forward to the future research
irection. Motivations of our work is shown in Fig. 1.

. Preliminaries

In this section, we describe some of the basics of DRSA.

.1. The basics of attribute reduction

efinition 2.1 ([28]). Let an information system be denoted by
4-tuple S = (U, AT , V , f ), where U = {x1, x2, . . . , xn} is a
on-empty finite set of objects; AT is a non-empty finite set of
ttributes; V =

⋃
a∈AT Va, Va is the domain of attribute a; f :

U×AT → V is the information function with f (x, a) ∈ Va, ∀a ∈ AT
and x ∈ U .

In an information system, an attribute is a criterion if its
domain is sorted according to an ascending or descending pref-
erence. When all of its properties are criteria, it is called ordered
information system(OIS) and expressed as S≥ = (U, AT , V , f ).

In real life, the attribute eigenvalues of most ordered data are
in order. For example, the higher the better when it comes to
wages and stores’ operating profits; For bankruptcy odds, all else
being equal, the lower the better.

Definition 2.2 ([32]). Given S≥ = (U, AT , V , f ) is an OIS, ∀P ⊆
AT , P ̸= ∅, the conditional relation with ascending order DP is
like this

D = {(x, y) ∈ U × U : f (x, a) ≥ f (y, a),∀a ∈ P}. (1)
P

3

Table 1
A score table of etiquette assessment.

a1 a2 a3 a4 d

x1 98 95 96 99 A
x2 87 88 86 89 B
x3 78 75 74 78 C
x4 66 65 67 63 D
x5 54 53 43 37 E

Property 2.1 ([32]). When DP is a dominance relation in an ordered
nformation systems, it has the following properties.

(1) Reflexive: ∀x ∈ U, then xDPx;
(2) Non-symmetric: ∀x, y ∈ U, let xDPy, then yDPx cannot be

aken as true;
(3) Transitive: ∀x, y, z ∈ U, let xDPy and yDPz, then xDPz.

Definition 2.3 ([32]). Given S⪰ = (U, AT , V , f ) is an OIS, ∀P ⊆
T , P ̸= ∅, the two relational sets of x are called N-dominating
ets and N-dominated sets, respectively, and they are defined like
his
+

N (x) = {y ∈ U : yDNx} ; (2)

D−N (x) = {y ∈ U : xDNy} . (3)

Example 1. Table 1 is a score table of etiquette assessment, where
a1, a2, a3, and a4 represent etiquette 1, etiquette 2, etiquette 3,
and etiquette 4 respectively, and x1, x2, x3, x4, and x5 represent
five people, where P = {a1, a2, a3, a4} ,U = {x1, x2, x3, x4, x5} ,DP
is a dominance relation.

After observing Table 1, we take Table 1 as an example for
the following proof. (1) ∀x ∈ U , then xDPx holds; (2) x1DPx2
holds, but x2DPx1 does not hold; (3) x1DPx2 and x2DPx3 hold,
then x D x also holds. D+ x = {x } ,D+ x = {x , x },
1 P 3 P ( 1) 1 P ( 2) 1 2
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P (x3) = {x1, x2, x3}, D+P (x4) = {x1, x2, x3, x4}, and D+P (x5) =
{x1, x2, x3, x4, x5} ; D−P (x1) = {x1, x2, x3, x4, x5}, D−P (x2) = {x2, x3,
x4, x5}, D−P (x3) = {x3, x4, x5}, D−P (x4) = {x4, x5}, and D−P (x5) =
{x5}.

Property 2.2 ([32]). For any P1, P2 ⊆ AT and ∀x ∈ U, the following
properties hold.

(1) Let P1 ⊆ P2, then D+P2 (x) ⊆ D+P1 (x) and D−P2 (x) ⊆ D−P1 (x);

(2) D+P1 (x) ∩ D+P2 (x) = D+P1∪P2 (x) and D−P1 (x) ∩ D−P2 (x) = D−P1∪P2 (x).

Definition 2.4 ([32]). Given S≥ = (U, C ∪ {d}, V , f ) is an ordered
data system, for any P ⊆ C , the lower and upper approximations
of Cl⪰n are respectively defined as follows

P
(
Cl⪰n

)
=

{
x ∈ U : D+P (x) ⊆ Cl⪰n

}
; (4)

P
(
Cl⪰n

)
=

{
x ∈ U : D−P (x) ∩ Cl⪰n ̸= ∅

}
. (5)

The lower and upper approximations of Cl⪯n are respectively
efined as follows(
Cl⪯n

)
=

{
x ∈ U : D−P (x) ⊆ Cl⪯n

}
; (6)

P
(
Cl⪯n

)
=

{
x ∈ U : D+P (x) ∩ Cl⪯n ̸= ∅

}
. (7)

xample 2. d in Table 1 is ranked like C ≺ B ≺ A. The
approximate sets are Cl⪰1 = {x1, x2, x3} , Cl

⪰

2 = {x1, x2}, and Cl⪰3 =
{x1} , Cl

⪯

1 = {x3} , Cl
⪯

2 = {x2, x3}, and Cl⪯3 = {x1, x2, x3}. According
to Definition 2.4, the approximations of the upward unions are
calculated as P

(
Cl⪰1

)
= {x1, x2, x3} , P

(
Cl⪰2

)
= {x1, x2} , P

(
Cl⪰3

)
=

x1} , P
(
Cl⪰1

)
= {x1, x2, x3} , P

(
Cl⪰2

)
= {x1, x2}, and P

(
Cl⪰3

)
= {x1}.

he approximations of the downward unions are calculated as(
Cl⪯1

)
= {x3} , P

(
Cl⪯2

)
= {x2, x3} , P

(
Cl⪯3

)
= {x1, x2, x3} , P

(
Cl⪯1

)
= {x3} , P

(
Cl⪯2

)
= {x2, x3}, and P

(
Cl⪯3

)
= {x1, x2, x3}.

.2. The basics of entropy of dominance conditions

At this part, we will introduce some fundamental knowl-
dge about dominance entropy and introduce ordered decision
ystem(ODS) attribute reduction method.

efinition 2.5 ([53]). Given S≥ = (U, C ∪ {d}, V , f ) is an ordered
ata system, for whatever A ⊆ C , the dominance information
ntropy(DIE) of U about A is defined like this

H⪰A (U) = −
1
|U |

n∑
i=1

log

⏐⏐D+A (xi)
⏐⏐

|U |
. (8)

Besides, for arbitrary A, B ⊆ C , the DIE of U concerning A and B
s defined like this

H⪰A∪B(U) = −
1
|U |

n∑
i=1

log

⏐⏐D+A (xi) ∩ D+B (xi)
⏐⏐

|U |

= −
1
|U |

n∑
i=1

log

⏐⏐D+A∪B (xi)
⏐⏐

|U |
. (9)

Definition 2.6 ([53]). Given S≥ = (U, C ∪ {d}, V , f ) is an ordered
ata system, for whatever A ⊆ C , the dominance conditional
4

entropy(DCE) of A to d is defined like this

DH≻d|A(U) = −
1
|U |

n∑
i=1

log

⏐⏐D+d (xi) ∩ D+A (xi)
⏐⏐⏐⏐D+A (xi)

⏐⏐
= −

1
|U |

n∑
i=1

log

⏐⏐D+
{d}∪A (xi)

⏐⏐⏐⏐D+A (xi)
⏐⏐ . (10)

From Definition 2.6, We can get the hierarchical relation reflected
by DCE produces consistent objects, which are closely related to
the set of information condition attributes and decision attribute
provided.

For attribute reduction methods, we can evaluate the im-
portance of attribute features and the relationship between pri-
mary and secondary importance through the concept of attribute
importance.

Definition 2.7 ([6], Attribute Importance Based On In-DCE). Given
S⪰ = (U, C ∪ {d}, V , f ) is an ordered data system, ∀A ⊆ C and
∀a ∈ A hold, the attribute importance based on in-DCE of a in A
is defined like this

sig⪰Uinner (a, A, d) = DH⪰d|A−{a}(U)− DH⪰d|A(U). (11)

Through this definition of attribute importance based on in-DCE.
We can select the desired conditional attribute from the entire
set of conditional attributes. Besides, important core attribute
definitions for attribute condition set A as CoreA =

{
a ∈ A |

sig⪰Uinner (a, A, d) > 0
}
.

Definition 2.8 ([6], Attribute Importance Based On Out-DCE). Given
S⪰ = (U, C ∪ {d}, V , f ) is an ordered data system, ∀B ⊆ C and
∀a ∈ (C − B), the attribute importance on the basics of out-DCE
of a to B is defined like this

sig⪰Uouter (a, B, d) = DH⪰d|B(U)− DH⪰d|B∪{a}(U). (12)

This is similar to the conditional attribute internal importance
measure, and the external importance measure can select all nec-
essary conditional attributes except the set of selected conditional
attributes.

Definition 2.9 (Attribute Reduction). Given S⪰ = (U, C ∪ {d}, V , f )
s an ordered data system, ∀B ⊆ C , the conditional attribute
ubset B is a reduct subset of S⪰ as long as it meets follows
(1) DH⪰d|B(U) = DH⪰d|C (U);
(2) ∀a ∈ B,DH⪰d|B−{a}(U) ̸= DH⪰d|B(U).

The above condition (1) is used to ensure that the classi-
fication ability of the selected conditional attribute subset is
comparable to that of the raw attribute set. Condition (2) is to
continuously delete redundant conditional attributes from the
selected conditional attribute subset, so as to ensure that the
selected conditional attribute subset is not redundant, there is no
redundant attribute, and each attribute in the set is indispensable.
Thus, if the selected subset of attributes meets both of the above
conditions, it is called reduction, otherwise it is called relative
reduction.

3. Matrix - based dominant relation reduction method

At this part, we first define and demonstrate the OIS dom-
inance matrix. Then it introduces a calculation method MDCE
about matrix DCE. Subsequently, an attribute reduction algorithm
on the basics of MDCE is also introduced.
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.1. Matrix based fundamentals of dominance conditional entropy

efinition 3.1. Given S ≥= (U, AT , V , f ) is an OIS, for any A ⊆
T ,DA is a dominance relation below A, the dominance relation
atrix on U concerning A is described like M≥AU =

[
mA

(i,j)

]
n×n

, like
his

A
(i,j) =

{
1, xjDAxi;
0, otherwise. (13)

roperty 3.1. M⪰AU =
[
mA

(i,j)

]
n×n

is a dominance relation matrix, it
holds these properties as follow.

(1) mA
(i,i) = 1, where i ∈ [1, n] and i ∈ N+;

(2)
∑n

j=1 m
A
(i,j) =

⏐⏐D+A (xi)
⏐⏐ and

∑n
i=1 m

A
(i,j) =

⏐⏐D−A (
xj
)⏐⏐, where

i, j ∈ [1, n] and i, j ∈ N+.

Definition 3.2 (‘‘∩’’). Given S≥ = (U, AT , V , f ) is an OIS, for any
A, B ⊆ AT , two dominance relation matrices on U concerning A
and B are denoted like M≥AU =

[
mA

(i,j)

]
n×n

and M⪰BU =
[
mB

(i,j)

]
n×n

.

Thus ‘‘∩’’ operation between M⪰AU and M⪰BU is defined like this

M⪰AU ∩M⪰BU =
[
mA

(i,j) ×mB
(i,j)

]
n×n

. (14)

From formula (14), we are prone to find how to get a new
dominance relation matrixM≥AU andM≥BU . Its practical significance
lies in the fact that the dominance relation matrix of attribute set
can be obtained A and B at the same time.

Proposition 3.1. Given S≥ = (U, AT , V , f ) is an OIS, for any A, B ⊆
AT , then M⪰A∪BU = M⪰AU ∩M⪰BU establishes.

Proof. From Definition 3.1, M⪰A∪BU =
[
mA∪B

(i,j)

]
n×n

. If mA∪B
(i,j) = 1,

xj ∈ D+A∪B (xi). Then, we have xj ∈ D+A (xi) and xj ∈ D+B (xi),
mA

(i,j) = 1 and mB
(i,j) = 1. Then mA∪B

(i,j) = mA
(i,j) × mB

(i,j) = 1, and
vice versa. If mA∪B

(i,j) = 0, i.e., xj /∈ D+A∪B (xi), that is, xj /∈ D+A (xi)
or xj /∈ D+B (xi), i.e., mA

(i,j) = 0 or mB
(i,j) = 0. Thus, as we look like

mA∪B
(i,j) = mA

(i,j) × mB
(i,j) = 0, it is the same if it is the other way

around. Generally speaking, We easily find that from the above
that mA∪B

(i,j) = mA
(i,j) ×mB

(i,j), i.e., M
⪰A∪B
U = M⪰AU ∩M⪰BU holds.

Definition 3.3. Given S≥ = (U, AT , V , f ) is an OIS, for any A ⊆ AT ,
the dominant diagonal relationship matrix M≥AU =

[
mA

(i,j)

]
n×n

is
described like D≥AU =

[
dA(i,j)

]
n×n

, like

dA(i,j) =
{∑n

l=1 m
A
(i,l), i, j ∈ [1, n], i = j;

0, i, j ∈ [1, n], i ̸= j.
(15)

Besides, the dominant diagonal relationship matrix of deter-
minant is expressed as

⏐⏐⏐D≥AU

⏐⏐⏐ = Πn
i=j=1d

A
ij , the inverse matrix

of the dominant diagonal relationship matrix is represented like(
D≥AU

)−1
=

[
1

dA(i,j)

]
n×n

, where

1
dA(i,j)
=

{
1∑n

l=1 mA
(i,l)

, i, j ∈ [1, n], i = j;

0, i, j ∈ [1, n], i ̸= j.
(16)

orollary 3.1 (Matrix Dominance Conditional Entropy). Given S≥ =
U, C ∪ {d}, V , f ) is an ODS, for any A ⊆ C, on the basics of the
ominant diagonal relationship matrices D≥AU and D≥A∪{d}U , matrix
ominance conditional entropy of A to d is like this

DH⪰d|A(U) = −
1

log
⏐⏐⏐⏐D≥A∪{d}U ∗

(
D≥AU

)−1⏐⏐⏐⏐ . (17)

|U |

5

Table 2
An example of ordered decision system.
U a1 a2 a3 a4 d

x1 M H F E D
x2 H L F G B
x3 L M G E B
x4 M H P E C
x5 H L F G A
x6 L M G E B
x7 H L F G B

Proof. From Definition 2.6, we easily find that DH≻d|A(U) = − 1
|U |∑n

i=1 log

⏐⏐⏐D+
{d}∪A(xi)

⏐⏐⏐⏐⏐⏐D+A (xi)
⏐⏐⏐ = −

1
|U | log

Πn
i=1

⏐⏐⏐D+dd|∪A(xi)
⏐⏐⏐

Πn
i=1

⏐⏐⏐D+A (xi)
⏐⏐⏐ . According to

Definitions 3.1 and 3.3, the dominance diagonal matrices D≥AU =[
dA(i,j)

]
n×n

and D≥A∪{d}U =

[
dA∪{d}(i,j)

]
n×n

, where dA(i,j) =
⏐⏐D+A (xi)

⏐⏐ and

dA∪{d}(i,j) =
⏐⏐D+A∪{d} (xi)⏐⏐. Because ⏐⏐⏐⏐D⪰A∪{d}U ·

(
D≥AU

)−1⏐⏐⏐⏐ = Πn
i=1

dA∪{d}(i,j)

dA(i,j)
=

Πn
i=1d

A∪|{d}
(i,j)

Πn
i=1d

A
(i,j)
=

Πn
i=1

⏐⏐⏐D+
{d}∪A(xi)

⏐⏐⏐
Πn

i=1

⏐⏐⏐D+A (xi)
⏐⏐⏐ . Thus, we can get DH⪰d|A(U) = MDH≥d|A

(U). In short, the results obtained by calculating the dominant
onditional entropy by matrix and non-matrix methods are the
ame.

From formula (17), we find that the core part of MDCE is

D≥A∪{d}U ·

(
D≥AU

)−1⏐⏐⏐⏐, where the dimensions of the diagonal matrix

are clearly and directly shown D≥A∪{d}U to D≥AU . Its meaning likes
the formula (10). Finally, an example is given to illustrate the
calculation method of matrix dominance conditional entropy.

Example 3. Table 2 is a table concerning car evaluation, which
meets the various conditions of ODS. As for Table 2, the four
conditional attributes are: load-bearing capacity, maximum peak
speed, driving experience, and test driver’s evaluation of the
vehicle. In Table 2, U = {x1, x2, x3, x4, x5, x6, x7} on behalf of
seven cars, C = {a1, a2, a3, a4}, where a1 on behalf of load-bearing
capacity, a2 on behalf of maximum peak speed, a3 on behalf of
driving experience, and a4 on behalf of test driver’s evaluation of
the vehicle. The different feature rankings are like this Va1 : L ≺
M ≺ H, Va2 : L ≺ M ≺ H, Va3 : P ≺ F ≺ G, Va4 : F ≺ G ≺ E, and
Vd : D ≺ C ≺ B ≺ A.

Through Definition 3.1, the dominance relation matrices M≥CU
and M⪰dU are as follows

M⪰CU =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
0 1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

M⪰dU =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
0 1 1 0 1 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 0 0 0 1 0 0
0 1 1 0 1 1 1
0 1 1 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

Taking M⪰CU as an example, Property 3.1 is verified as follows
(1) For any i ∈ [1, 7] and i ∈ N+,mC

(i,i) = 1;
(2) For any i, j ∈ [1, 7] and i, j ∈ N+,

∑7
j=1 m

C
(i,j) =

⏐⏐D+C (xi)
⏐⏐∑7 C

⏐⏐ − ( )⏐⏐ +
{ }
and i=1 m(i,j) = DC xj , . . . , while as i = 1,DC (x1) = x1 ,
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∑7

j=1 m
C
(1,j) =

⏐⏐D+C (x1)
⏐⏐ = 1, while as j = 1,D−C (x1) =

{x1, x4}, we have
∑7

i=1 m
C
(i,1) =

⏐⏐D−C (x1)
⏐⏐ = 2.

From Definition 3.2, the dominance relation matrix M⪰C∪{d}U is
calculated as

M⪰C∪{d}U = M⪰C
Ū
∩M⪰dU

=

⎡⎢⎢⎢⎢⎢⎢⎣

1× 1 0× 1 0× 1 0× 1 0× 1 0× 1 0× 1
0× 0 1× 1 0× 1 0× 0 1× 1 0× 1 1× 1
0× 0 0× 1 1× 1 0× 0 0× 1 1× 1 0× 1
1× 0 0× 1 0× 1 1× 1 0× 1 0× 1 0× 1
0× 0 1× 0 0× 0 0× 0 1× 1 0× 0 1× 0
0× 0 0× 1 1× 1 0× 0 0× 1 1× 1 0× 1
0× 0 1× 1 0× 1 0× 0 1× 1 0× 1 1× 1

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 1 0
0 1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

.

Subsequently, from Definition 3.3, the dominance relation di-

gonal matrices D⪰CU , D≥C∪{d}U , its inverse matrix
(
D≥CU

)−1
is cal-

culated as

D⪰CU =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

,

D⪰C∪{d}U =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

,

(
D≻CU

)−1
=

⎡⎢⎢⎢⎢⎢⎢⎣

1/1 0 0 0 0 0 0
0 1/3 0 0 0 0 0
0 0 1/2 0 0 0 0
0 0 0 1/2 0 0 0
0 0 0 0 1/3 0 0
0 0 0 0 0 1/2 0
0 0 0 0 0 0 1/3

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

.

Finally, according to Corollary 3.1, MDCE of C to d could

easily get via matrices D≥C∪{d}U and
(
D≥CU

)−1
as MDH⪰d|C (U) =

−
1
7 log

⏐⏐⏐⏐D⪰C∪{d}U ·

(
D⪰CU

)−1⏐⏐⏐⏐ = 0.3693.

Corollary 3.2 (MDCE-BISM). Given S ≥= (U, C ∪ {d}, V , f ) is an
DS, for any B ⊆ C and ∀a ∈ B, MDCE-BISM of a in B is described
ike

sig⪰Uinner (a, B, d) = MDH⪰d|(B−{a})(U)−MDH≻d|B(U). (18)

Internal significance measurement on dominance conditional
ntropy and matrix dominance conditional entropy is consistent,
o the same result will be obtained by calculating formula (11)
nd (18).

orollary 3.3 (MDCE-BOSM). Given S≥ = (U, C ∪ {d}, V , f ) is an
DS, for any B ⊆ C and ∀a ∈ (C − B), MDCE-BOSM of a to B is
6

Algorithm 1: HAR algorithm
Input: An ODS S⪰ = (U, C ∪ {d}, V , f ).
Output: A reduct RedU .

1 Initialize RedU ← ∅;
2 Calculate MDCE MDH⪰Cd|C (U) in U via using (17);
3 for h=0 to |C-1| do
4 Calculate Msig⪰Uinner (ak, C, d) via using (18);
5 if Msig⪰Uinner (ak, C, d) > 0, then
6 RedU ← RedU ∪ {ak};
7 end
8 end
9 Let B← RedU ;

10 while MDHdR(U) ̸= MDH⪰dr (U) do
11 for t=0 to |C-B-1| do
12 Calculate Msig⪰Uouter (al, B, d) via using (19);
13 end

14 Select a0 = max
{
Msig⪰Uouter (al, B, d) , al ∈ (C − B)

}
;

15 B← B ∪ {a0}
16 end
17 for each a ∈ B do
18 if MDH⪰d|[B−{a})(U) = MDH≥d|B(U), then
19 B← B− {a};
20 end
21 end
22 RedU ← B ;
23 return RedU ;

described like

Msig⪰Uouter (a, B, d) = MDH≻d|B(U)−MDH≻d|B∪{a}(U). (19)

External significance measures based on dominance condi-
tional entropy and matrix dominance conditional entropy also
have the same meaning and are consistent in their calculations
by Eqs. (12) and (19).

3.2. An attribute reduction algorithm HAR related to MDCE

This section will introduce the attribute reduction algorithm
associated with MDCE in an ordered data system. As to this algo-
rithm, which will calculate the reduction from scratch when the
reduction data object changes and retrain the dynamic ODS to a
new reduction. Therefore, compared with the feature incremental
algorithm, this algorithm is not a dynamic attribute reduction
algorithm, but it lays a foundation for the feature incremental
attribute reduction algorithm in the following paper. Here are the
steps of Algorithm 1.

The steps in Algorithm 1 are explained in detail as follows.
Step 2 Calculate the MDCE of the original ordered information
system. The main purpose of steps 3 − 8 is to obtain important
core attributes and preliminarily get reduced subsets. Steps 10−
16 is mainly to find out whether there are important core at-
tributes from the attributes that have been preliminarily screened
out until it is determined that the remaining attributes are all
redundant attributes. Steps 17 − 21 delete redundant attributes
from the existing attribute set to ensure that each attribute in the
attribute set is indispensable. Generally speaking, the time com-
plexity of Algorithm 1 is O

(
|C ||U |2 + |C |2|U |2 + |C |2|U |2

+|B|2|U |2
)
. Besides, the space complexity is O

(
|U |2+ |C ||U |2

)
.
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. Incremental attribute reduction mechanism under multi-
eature change

In an OIS, the characteristics of a data set can be divided
nto adding features and deleting features. It will take a lot of
ime and space to calculate the reduction again from scratch
fter the feature changes. Therefore, in this section, we propose
nd describe in detail two kinds of feature incremental attribute
eduction algorithms, which can make use of the previously ob-
ained reduction results, save a lot of time and space, and greatly
educe the time and space complexity of the algorithm.

.1. An incremental multi-objective feature attribute reduction
ethod when adding features

At this part, we first introduce how MDCE is updated when
ultiple features are added. Then, we introduce and illustrate the
pdating algorithm of attribute reduction in ordered information
ystem.

.1.1. MDCE update principle when adding attribute features
This section describes the incremental update method based

n the dominance relationship matrix for computing a new MDCE
hen many features are added to the ordered information sys-
em. The key of this updating principle is how to use the predom-
nance relation matrix and the predominance diagonal matrix,
hich are introduced as follows.

roposition 4.1 (Dominance Relation Matrix). There is an OIS S⪰ =
U, AT , V , f ), where A = {x1, x2, . . . , xn} .∀U ⊆ U, assume as the
dominance relation matrix on U concerning A is M⪰AU =

[
mA

(i,j)

]
n×n

,
the feature set A+ = {xn+1, xn+2, . . . , xn+n′} is added to S≥. The
updated dominance relation matrix on U concerning A ∪ A+ is like
the M≥A∪A

+

U =

[
m′A∪A

+

(i,j)

]
n×n

, as follows

m′A∪A
+

(i,j) =

{
1, Uj(A ∪ A+) ≧ Ui(A ∪ A+);
0, otherwise.

(20)

Proposition 4.1 offers this rationale to update the dominance
relation matrix while as multiple features are added. The basic
idea is to judge whether the newly added conditional attributes
of the original dominant object are still dominant on the basis
of a new dominant relation matrix is obtained by updating the
original matrix. Examples are as follows.

Example 4. A new feature attribute set is added based on Table 1.
C+ = {a5}, a5 = {l,m,m, l, h,m,m}, after this process, the
original dominance relation matrix M≥CU and the new conditional
attribute dominance relation matrix M≥C∪C

+

U can be expressed as

M⪰CU =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
0 1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
7×7⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦→
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

0 1 0 0 1 0 1 0 1 0 0 1 0 1

7

M⪰C∪C
+

U =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 1 0
0 1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

.

Proposition 4.2 (Dominant Realtionship Diagonal Matrix). There is
an OIS S⪰ = (U, AT , V , f ), where A = {x1, x2, . . . , xn}, For any A ⊆
AT , then the dominant realtionship diagonal matrix on U concerning
A is D⪰AU =

[
dA(i,j)

]
n×n

, the feature set A+ = {xn+1, xn+2, . . . , xn+n′}

is added to S⪰. The updated dominant realtionship diagonal matrix
on U concerning A ∪ A+ is like the D⪰A∪A

+

U =

[
d′A∪A

+

(i,j)

]
n×n

, where

d′A∪A
+

(i,j) =

{
dA(i,j) −m′A∪A

+

(i,j) , Uj(A ∪ A+) ≥ Ui(A ∪ A+);
dA(i,j), Uj(A ∪ A+) < Ui(A ∪ A+).

(21)

Example 5. Continuing from Example 4, known matrices M≥C∪C
+

U

and D≥CU , we can update matrix D≥C∪C
+

U by using Proposition 4.2
as

D≥C∪C
+

U

=

⎡⎢⎢⎢⎢⎢⎢⎣

1− 0 0 0 0 0 0 0
0 3− 0 0 0 0 0 0
0 0 2− 0 0 0 0 0
0 0 0 2− 0 0 0 0
0 0 0 0 3− 2 0 0
0 0 0 0 0 2− 0 0
0 0 0 0 0 0 3− 0

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

.

Next, we will walk through the detailed steps of how to
calculate a new MDCE after adding multiple attribute character-
istics. As for any X ⊆ U , we have known the raw matrices are
M≥AU ,M≥AU∪X+ ,D

≥A
U , and D≥AU∪X+ . When A+ is added to S≥, through

the Propositions 4.1 and 4.2, we could easily gain the updated
dominant realtionship diagonal matrices D≥A∪A

+

U and D≥AU∪X+ . So,
we can effortlessly calculate the MDCEMDH⪰d|U

(
A ∪ A+

)
by

Corollary 3.1.

4.1.2. A dynamic incremental attribute feature reduction algorithm
when adding features

In Algorithm 2, inspired by the updating principle of MDCE, a
multi-feature incremental attribute reduction algorithm (HAR-A)
is presented. The detailed steps of Algorithm 2 are as follows.

The steps of Algorithm 2 are described in detail. Steps 2–
4 incrementally calculate the new dominance relation matrix
and its dominance relation diagonal matrix using this method
in Propositions 4.1 and 4.2. Step 5 calculate the updated MDCE
via the Corollary 3.1. Steps 6–10 is mainly to determine whether
the new MDCE is equal to the MDCE of the original attribute
subset (that is, the raw reduction) as same as the new MDCE
below this whole attribute set. If in case, leave the raw subset
of attributes will not change. Steps 11–16 Arrange the elimi-
nated attributes in descending order to form a new set, and
update the selected attribute subset until the end of Step 12.
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Algorithm 2: HAR-A algorithm
Input:
(1) A raw ODS S⪰ = (U, C ∪ {d}, V , f ), whereC =
{a1, a2, . . . , an} , C+ = {an+1, an+2, . . . , an+n};
(2) The original reduct RedU on U;
(3) The original dominance relation matrices M⪰CU =[
mC

(i,j)

]
n×n

,M⪰RedUU =

[
mRedU

(i,j)

]
n×n

, andM⪰dU =
[
md

(i,j)

]
n×n

;

(4) The original dominance diagonal matrices
D⪰CU =

[
dC(i,j)

]
n×n

,D⪰C∪{d}U =

[
dC∪{d}(i,j)

]
n×n

,D⪰RedUU =[
dRedU(i,j)

]
n×n

andD⪰RedU ∪{d}U =

[
dRedU ∪{d}(i,j)

]
n×n

.

Output: A new reduct RedU ′ .
1 Initialize B← RedU , C ′ ← C ∪ C+,M⪰C

′

U ← M⪰CU ,D⪰C
′

U ←

D⪰CU ,D⪰C
′
∪{d}

U ← D⪰C∪{d}U ;
2 Compute new dominance relation matrices M⪰C

′

U ←[
m′C(i,j)

]
n×n

,M⪰BU ←
[
m′B(i,j)

]
n×n

,M⪰dU ←
[
m′d(i,j)

]
n×n

via
using Proposition 4.1;

3 Compute dominance relation matrices

M
⪰C ′∪{d}
U and M

⪰B∪{d}
U ;

4 Compute new dominance diagonal matrices

D⪰CU =
[
dC(i,j)

]
n×n

, D⪰C∪{d}U =

[
dC∪{d}(i,j)

]
n×n

,D⪰RedUU =[
dRedU(i,j)

]
n×n

and D⪰B∪{d}U ←

[
d′B∪{d}(i,j)

]
n×n

via using

Proposition 4.2;
5 Compute new MDCE MDCE MDH⪰dC ′ (U) and MDH⪰d|B(U);
6 if MDH⪰dC ′ (U) = MDH

⪰

d|B(U), then
7 go to step17;
8 else
9 go to step11;

10 end
11 For each a ∈(

C ′ − B
)
, compute Msig

⪰U
outer (a, B, d), then save the result

as
{
a′0, a

′

1, . . . , a|c′−B|
}
;

12 while MDH⪰d|C ′ (U) ̸= MDH⪰d|B(U) do
13 for z = 0 to |C − B− 1| do
14 Select B← B ∪

{
a′z

}
, then calculate MDH⪰d|B(U);

15 end
16 end
17 for each a ∈ B do
18 calculate MDH⪰d(B−{a})(U);
19 if MDH⪰d|[B−{a})(U) = MDH⪰d|B(U), then
20 B← B− {a};
21 end
22 end
23 RedU ′ ← B ;
24 return RedU ′ ;

Steps 17–22 delete redundant attributes from the existing at-
tribute set to ensure that each attribute in the attribute set
is indispensable. Steps 23–24 The final reduction result is dis-
played. Generally speaking, the spatial complexity of Algorithm 2
is O

(
|U |2 +

(⏐⏐C ′⏐⏐− |B|)U⏐⏐2). The time complexity of Algorithm

2 is O
(
UU

⏐⏐C+⏐⏐ CC ′ ⏐⏐+ (⏐⏐C ′⏐⏐− |B|)U⏐⏐2 + |B|2|U |2). We also com-
pare the complexity of HAR algorithm and HAR-A algorithm, and
the results are shown in Table 3.
 a

8

As can be seen from Table 3, both the time and space com-
plexity of HAR-A algorithm is smaller than that of HAR algorithm.
This is because HAR algorithm recalculates the reduction from
the beginning when the features change, while HAR-A algorithm
inherits the previous reduction results, thus greatly reducing the
time and space complexity of the algorithm. Therefore, HAR-A
algorithm can save much time in the reduction calculation of
large-scale data.

4.2. An incremental multi-objective feature attribute reduction
method when deleting features

At this part, we first introduce how MDCE is updated when
multiple features are deleted. Then, we introduce and illustrate
the updating algorithm of attribute reduction in ordered infor-
mation system.

4.2.1. MDCE update principle when deleting attribute features
This section describes the incremental update method based

on the dominance relationship matrix for computing a new MDCE
when many features are deleted from the ordered information
system. The key of this updating principle is how to use the
predominance relation matrix and the predominance diagonal
matrix, which are introduced as follows.

Proposition 4.3 (Dominance Relation Matrix). There is an OIS S⪰ =
(U, AT , V , f ), where A = {x1, x2, . . . , xn} .∀U ⊆ U, suppose that the
dominance relation matrix on U concerning A is M⪰AU =

[
mA

(i,j)

]
n×n

,
he feature set A− =

{
xq1, xq2, . . . , xqn′

}
is deleted from S≥. The

pdated dominance relation matrix on U concerning A ∪ A− is like
he M≥A−A

−

U =

[
m′A−A

−

(i,j)

]
n×n

, where

′A−A−
(i,j) =

{
1, Uj(A− A−) ≧ Ui(A− A−);
0, otherwise.

(22)

xample 6. A new feature attribute set is deleted from Table 1.
−
= {a3, a4}, a3 = {f , f , g, p, f , g, f }, a4 = {e, g, e, e, g, e, g}

nd the raw dominance relation matrix M≥CU and the new con-
itional attribute dominance relation matrix M≥C−C

−

U can be ex-
ressed as

⪰C
U =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
0 1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
7×7⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
0 1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ →
⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0
0 1 0 0 1 0 1
1 0 1 1 0 1 0
1 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 1 1 0 1 0
0 1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⪰C−C−
U =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0
0 1 0 0 1 0 1
1 0 1 1 0 1 0
1 0 0 1 0 0 0
0 0 0 0 1 0 0
1 0 1 1 0 1 0
0 1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

.

roposition 4.4 (Dominant Realtionship Diagonal Matrix). There is
n OIS S⪰ = (U, AT , V , f ), where A = {x , x , . . . , x }, For any A
1 2 n
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Table 3
Complexity comparison of HAR algorithm and HAR-A algorithm.
Algorithm HAR HAR− A

Time complexity O
(
|C ′| |U |2 + |C ′|2 |U |2 + |C ′|2 |U |2 + |B|2 |U |2

)
O

(
|U |

⏐⏐C+⏐⏐ ⏐⏐C ′⏐⏐+ (|C ′| − |B|) |U |2 + |B|2 |U |2
)

Space complexity O
(
|U |2 + |C ′| |U |2

)
O

(
|U |2 + (|C ′| − |B|) |U |2

)

⊆ AT , let the dominant realtionship diagonal matrix on U concerning
A is D≥AU =

[
dA(i,j)

]
n×n

, then feature set A− =
{
xq1, xq2, . . . , xqn′

}
is

deleted from S≥. The updated dominant realtionship diagonal matrix
on U concerning A− A− is like the D≥A−A

−

U =

[
d′A−A

−

(i,j)

]
n×n

, while as

d′A−A
−

(i,j) =

{
dA(i,j) +m′A−A

−

(i,j) , Uj(A− A−) ≧ Ui(A− A−);
dA(i,j), Uj(A− A−) < Ui(A− A−).

(23)

Example 7. Continuing from Example 6, known matrices M≥C−C
−

U

and D≥CU , we can update matrix D≥C−C
−

U by using Proposition 4.4
as

D≥C−C
−

U

=

⎡⎢⎢⎢⎢⎢⎢⎣

1+ 1 0 0 0 0 0 0
0 3+ 0 0 0 0 0 0
0 0 2+ 2 0 0 0 0
0 0 0 2+ 0 0 0 0
0 0 0 0 3+ 0 0 0
0 0 0 0 0 2+ 2 0
0 0 0 0 0 0 3+ 0

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 4 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 4 0
0 0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

.

4.2.2. A dynamic incremental attribute feature reduction algorithm
when deleting features

In Algorithm 3, inspired by the updating principle of MDCE, a
multi-feature incremental attribute reduction algorithm (HAR-D)
is presented. The detailed steps of Algorithm 3 are as follows.

The steps of Algorithm 3 are described in detail. Steps 2–
3 incrementally calculate the new dominance relation matrix
and its dominant realtionship diagonal matrix using this method
in Propositions 4.3 and 4.4. Step 4 calculates new MDCE via
the Corollary 3.1. Steps 5–9 is mainly to determine whether
the new MDCE is equal to the MDCE of the original attribute
subset (that is, the raw reduction) as same as the new MDCE
below this whole attribute set. If in case, leave the raw subset
of attributes will not change. Steps 10–15 Arrange the elimi-
nated attributes in descending order to form a new set, and
update the selected attribute subset until the end of Step 11.
Steps 16–21 delete redundant attributes from the existing at-
tribute set to ensure that each attribute in the attribute set
is indispensable. Steps 22–23 The final reduction result is dis-
played. Generally speaking, the time complexity of Algorithm 3 is
O (|U |+ (|C ′| − |B|) |U |2 + |B|2 |U |2

)
. Besides, the space complex-

ity of Algorithm 3 is O
(
|U |2 + (|C ′| − |B|) |U |2

)
. We also compare

the complexity of HAR algorithm and HAR-D algorithm, and the
results are shown in Table 4.

As can be seen from Table 4, both the time and space com-
plexity of HAR-D algorithm is smaller than that of HAR algorithm.
This is because HAR algorithm recalculates the reduction from
the beginning when the features change, while HAR-D algorithm
9

Algorithm 3: HAR-D algorithm
Input:
(1) A raw ODS
S⪰ = (U, C ∪ {d}, V , f ), whereC = {a1, a2, . . . , an} , C− ={
aq1, aq2, . . . , aqn′

}
is an deleted feature set ;

(2) The original reduct RedUonU;
(3) The original dominance relation matrices
D⪰CU =

[
dC(i,j)

]
n×n

, D⪰C∪{d}U =

[
dC∪{d}(i,j)

]
n×n

,D⪰RedUU =[
dRedU(i,j)

]
n×n

andMRedU∪{d}
U =

[
mRedU∪{d}

(i,j)

]
n×n

;

(4) The original dominance diagonal matrices
D⪰CU =

[
dC(i,j)

]
n×n

, D≥C∪{d}U =

[
dC∪{d}(i,j)

]
n×n

,D⪰RedUU =[
dRedU(i,j)

]
n×n

andD⪰RedU ∪{d}U =

[
dRedU ∪{d}(i,j)

]
n×n

.

Output: A new reduct RedU ′ .
1 Initialize

B← RedU , C ′ ← C − C−,M⪰C
′

U ← M⪰CU ,M⪰C
′
∪{d}

U ←

M⪰C∪{d}U ,D⪰C
′

U ← D⪰CU ,D⪰C
′
∪{d}

U ← D⪰C∪{d}U ;
2 Compute new dominance relation matrices

M⪰C
′

U ←
[
m′C(i,j)

]
n×n

,M⪰BU ←
[
m′B(i,j)

]
n×n

,M
⪰C ′∪{d}
U ←[

m
⪰C ′∪{d}
(i,j)

]
n×n

and M
⪰B′∪{d}
U ←[

m
⪰B′∪{d}
(i,j)

]
n×n

via using Proposition 4.3 ;

3 Compute new dominance diagonal matrices

D⪰C
′

U ←
[
d′C(i,j)

]
n×n

,D
⪰C ′∪{d}
U ←

[
d′C∪{d}(i,j)

]
n×n

,D
⪰B
U ←[

d′B(i,j)
]
n×n

,D⪰B∪{d}U ←[
d′B∪{d}(i,j)

]
n×n

via using Proposition 4.4;

4 Calculate new MDCE MDCE MDH⪰dC ′ (U) and MDH⪰d|B(U);
5 if MDH⪰dC ′ (U) = MDH

⪰

d|B(U), then
6 go to step16;
7 else
8 go to step10;
9 end

10 For each a ∈(
C ′ − B

)
, calculate Msig

⪰U
outer (a, B, d), then save the result

as
{
a′0, a

′

1, . . . , a|c′−B|
}
;

11 while MDH⪰d|C ′ (U) ⪰ MDH⪰d|B(U) do
12 for z = 1 to |C − B| do
13 Select B← B ∪

{
a′z

}
then calculate MDH⪰d|B(U);

14 end
15 end
16 for each a ∈ B do
17 calculate MDH⪰d(B−{a})(U);
18 if MDH⪰d|[B−{a})(U) = MDH⪰d|B(U), then
19 B← B− {a};
20 end
21 end
22 RedU ′ ← B ;
23 return RedU ′ ;
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Table 4
Complexity comparison of HAR algorithm and HAR-D algorithm.
Algorithm HAR HAR− D

Time complexity O
(
|C ′| |U |2 + |C ′|2 |U |2 + |C ′|2 |U |2 + |B|2 |U |2

)
O (|U |+ (|C ′| − |B|) |U |2 + |B|2 |U |2

)
Space complexity O

(
|U |2 + |C ′| |U |2

)
O

(
|U |2 + (|C ′| − |B|) |U |2

)

Table 5
The description of datasets.
No. Datasets Abbreviation Objects Attributes Classes

1 Zoo Zoo 101 17 7
2 Breast Cancer Coimbra Bcc 116 9 2
3 Wine Wine 178 13 3
4 Hill_valley Hill 606 100 2
5 Abalone Abalone 4177 8 3
6 Codon_usage Codon 13028 68 10
7 Dry Bean Bean 13611 16 8
8 EEG Eye State Eye 14980 14 2
9 Letter-recognition Letter 20000 16 26

inherits the previous reduction results, thus greatly reducing the
time and space complexity of the algorithm. Therefore, HAR-D
algorithm can save much time in the reduction calculation of
large-scale data.

5. Experimental analysis

In this section, we conduct a series of experiments to prove
he effectiveness, efficiency and the performance evaluation of
he proposed incremental algorithm for attribute features. A sum-
ary of the nine data sets from the UCI used in these experiments

s shown in Table 5. In this article, all algorithms are coded by
ython using an environment of Anaconda Navigator, and run
n a computer with a 2.90 GHz CPU AMD Ryzen 7 4800H with
adeon Graphics, 8.0 GB of memory, and a 64-bit Windows 10
perating system.
At this part, we will evaluate the performance of our pro-

osed algorithm, so we conducted a comparison experiment, and
ompared the proposed HAR-A algorithm and HAR-D algorithm
ith the existing four attribute reduction algorithms HAR, DRSQR,
EAR and NRSAR. HAR algorithm is an attribute reduction algo-
ithm based on dominant conditional entropy mentioned above.
RSQR is a fast reduction algorithm on the basis of dominant
ough set. FEAR algorithm is an attribute reduction algorithm on
he basis of fuzzy entropy. NRSAR algorithm is a neighborhood
ntropy attribute reduction algorithm on the basis of neighbor-
ood rough sets. In addition, we also use four classifiers BayesNet,
andomTree, Knn and Adaboost to test the effect of classification
ccuracy of the reduction. We also used 10-classification cross
alidation.

.1. Performance evaluation of HAR-A algorithm

At this part, we analyze algorithm HAR-A from classification
ccuracy, algorithm efficiency and index performance evaluation.
he specific design is as follows.

.1.1. Algorithm classification accuracy comparison
At this part, the classification accuracy of the HAR-A algo-

ithm proposed in this paper is compared with the other four
lgorithms. From every data set in Table 5, 50% features are
andomly selected as the raw feature set, and the left 50% will
e the added features. Algorithms HAR-A, HAR, DRSQR, FEAR, and
RSAR are used to compute fresh reductions while as the left 50%
eatures are added to the raw 50% feature set. The experimental
esults are shown in Tables 6 and 7, where ‘‘raw’’ represents
10
the classification accuracy of the raw attribute set. Note that
in Table 6, the numbers in parentheses after each classification
precision result represent the size of the reduced set under this
condition. Tables 7, 10, and 11 have a frame similar to Table 6.

As shown in the above chart, the classification accuracy of
algorithm HAR-A is almost higher than that of other algorithms
in all cases, and its average score is far ahead, so the classification
accuracy of HRA-A algorithm is very high.

5.1.2. Algorithm efficiency comparison
At this part, we test the efficiency of the algorithm HAR-A and

compare it with the other four algorithms in terms of calculation
time and acceleration ratio. For each data set in Table 5, five test
sets were built. First, 50% of the features are randomly selected
as the raw feature set. We then randomly add features from the
remaining 50% to the raw feature set to get a dynamic data set
to test (that is, randomly select 10%, 20%, 30%, 40%, and 50% of
the remaining 50% features and add them to the original feature
set). In particular, since the number of attribute features of BCC
and Abalone data sets is less than 10 (9 and 8 respectively), the
raw data sets of BCC and Abalone data sets are selected to be 4
and 3 respectively, and then one attribute feature is added each
time. The time spent using different algorithms on these data sets
is then compared. Fig. 2 shows the detailed variation trend of
these five algorithms when the characteristics of different data
sets change. The abscissa stands for the size of the feature set
added, and the ordinate stands for the computation time.

We can see from Fig. 2 that the computation time of these five
algorithms will increase with the constant increase of attribute
feature set. It can be seen from each subgraph that the com-
putation time of algorithm HAR-A is significantly less than that
of other algorithms. Especially for large data sets, the algorithm
HAR-A has a very obvious time-saving effect. Therefore, we can
conclude that the efficiency of algorithm HAR-A is very high.

Then, we prove the validity of the algorithm HAR-A again from
the perspective of acceleration ratio. Based on the results shown
in Fig. 2, we calculated the acceleration ratio of the algorithm
HAR-A compared with the other four algorithms. The experimen-
tal results are shown in Fig. 3. The x-coordinate represents the
size of the feature set added, and the y-coordinate stands for the
value of the acceleration ratio. These algorithms have high speed
ratios for different data sets. Again, in that case, the curve might
be so dense that it is hard to see what the trend is. In order to
solve the problem, we present the result in three dimensions. For
example, Fig. 3(a) the X-axis represents the size of the feature
set added. The Y -axis represents data sets, Zoo, Bcc, Wine, Hill,
the experimental results value range of Abalone fitting together
as the result of the experiment shows the data set, value range
of [0, 3]. The Z-axis represents the experimental results fitted
together by data sets Codon,Bean,Eye, and Letter. The value range
is as follows: the subgraph in Fig. 3(a) shows the experimental
results of data sets Zoo, Bcc, Wine, and Hill, with the value range
of [0,200]. Figs. 3(b), (c), (d), 5(a) and (b), (c), (d) of the structure
is similar to Fig. 3(a).

As can be seen from Fig. 3, the acceleration ratio of algorithm
HAR-A against other algorithms in all data sets is more than 0.
This indicates that algorithm HAR-A is faster than the other four
algorithms on all experimental data sets. Besides, for relatively
large data sets, algorithm HAR-A is tens or even hundreds of times
faster than the other four algorithms. The above proves again that
the efficiency of algorithm HAR-A is very high.
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Fig. 2. The computational time of different algorithms versus different ratios of adding features.

Fig. 3. The speed-up ratios that algorithm HAR-A relates to different algorithms.

11
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Table 6
The comparison of classification accuracies of different algorithms on Bayes Net and Random Tree (%).
Datasets BayesNet RandomTree

Raw NRSAR FEAR DRAQR HAR HAR-A Raw NRSAR FEAR DRAQR HAR HAR-A

Zoo 73.56 74.56(12) 77.23(13) 67.32(7) 76.33(12) 81.47(15) 89.91 82.88(12) 87.69(13) 81.47(7) 86.45(12) 92.13(15)
Bcc 64.21 61.37(4) 64.98(5) 57.42(9) 63.25(5) 65.71(6) 80.03 81.17(4) 69.98(5) 85.17(9) 66.74(5) 82.22(6)
Wine 98.15 81.30(2) 85.44(11) 92.34(10) 98.15(12) 98.15(12) 84.90 86.89(2) 66.81(11) 87.19(10) 79.28(12) 93.47(12)
Hill 70.58 54.82(36) 60.21(44) 72.35(39) 63.21(44) 62.13(45) 79.43 71.15(36) 80.49(44) 83.37(39) 79.57(44) 84.27(45)
Abalone 51.27 57.02(3) 54.11(2) 53.32(3) 51.82(1) 57.32(2) 80.07 82.15(3) 74.13(2) 79.81(3) 86.25(1) 88.76(2)
Codon 76.34 64.92(11) 72.18(13) 61.40(23) 75.72(14) 75.81(8) 77.4 72.89(11) 71.54(13) 80.84(23) 71.08(14) 84.66(8)
Bean 70.13 68.45(5) 64.28(4) 73.82(5) 73.13(6) 78.05(6) 80.13 79.13(5) 73.20(4) 78.56(5) 79.57(6) 83.92(6)
Eye 81.74 77.63(10) 73.19(8) 67.25(8) 88.75(5) 92.36(6) 60.11 55.39(10) 54.18(8) 57.62(8) 59.38(5) 61.25(6)
Letter 73.28 69.97(8) 71.11(9) 69.77(8) 71.92(5) 74.71(6) 79.77 71.89(8) 74.13(9) 77.93(8) 78.19(5) 82.46(6)
Average 73.25 67.78 69.19 68.33 73.59 76.19 79.10 76.61 72.21 79.11 76.28 83.68
Table 7
The comparison of classification accuracies of different algorithms on Knn and Adaboost (%).
Datasets Knn Adaboost

Raw NRSAR FEAR DRAQR HAR HAR-A Raw NRSAR FEAR DRAQR HAR HAR-A

Zoo 59.73 55.47(12) 57.13(13) 54.12(7) 60.18(12) 63.37(15) 74.28 72.23(12) 71.19(13) 73.31(7) 69.92(12) 80.01(15)
Bcc 77.67 74.69(4) 67.77(5) 69.96(9) 73.90(5) 80.74(6) 79.57 74.19(4) 81.76(5) 74.87(9) 69.77(5) 81.31(6)
Wine 90.21 65.36(2) 96.08(11) 91.78(10) 98.15(12) 99.35(12) 70.56 67.72(2) 71.83(11) 72.44(10) 75.28(12) 79.54(12)
Hill 66.53 59.75(36) 58.83(44) 72.10(39) 69.57(44) 71.15(45) 81.73 62.76(36) 80.45(44) 82.57(39) 73.58(44) 83.99(45)
Abalone 92.16 77.35(3) 74.18(2) 88.45(3) 81.47(1) 95.29(2) 75.29 74.98(3) 73.78(2) 77.97(3) 84.25(1) 87.73(2)
Codon 71.07 69.50(11) 69.97(13) 72.09(23) 75.81(14) 79.69(8) 77.63 72.89(11) 71.01(13) 70.18(23) 68.80(14) 81.57(8)
Bean 74.18 66.32(5) 73.28(4) 78.95(5) 79.24(6) 84.32(6) 74.87 69.31(5) 74.11(4) 76.88(5) 75.64(6) 79.63(6)
Eye 76.29 73.46(10) 77.28(8) 81.11(8) 79.99(5) 82.33(6) 69.92 59.37(10) 58.82(8) 63.35(8) 65.81(5) 70.01(6)
Letter 73.99 67.89(8) 72.39(9) 77.71(8) 76.58(5) 82.11(6) 73.19 66.81(8) 73.79(9) 75.21(8) 74.86(5) 80.09(6)
Average 73.08 67.68 71.88 76.25 77.21 82.04 75.23 68.54 72.97 74.09 73.10 80.43
5.1.3. Algorithm performance evaluation
In multi-label classification, we often use two indicators Eval-

ation of classification learning algorithm, namely Average Preci-
ion(AP), Ranking Loss(RL).
Let the test set be Z = {(xi, Yi)}

n
i=1 ⊂ Rd

×{+1,−1}q, according
o prediction function ft (x) sorting functions can be defined as
rank(x, l) ∈ {1, 2, . . . , q}.

Average Precision(AP): The average precision (AP) is used to
investigate the probability that the marker ranked in front of the
sample marker in the ranking of all samples still belongs to the
sample marker. The larger the value, the better the performance
of the algorithm is defined as

avgPre(f ) =
1
n

n∑
i=1

1
|Ri|

∑
l∈Ri

{
k | ran kf (xi, k) ⩽ ran kf (xi, l) , k ∈ Ri

}
ran kf (xi, l)

(24)

Ranking Loss(RL): The average probability that irrelevant tags
f all samples are ranked before relevant tags. The smaller the
alue is, the better the algorithm performance is

rLoss(f ) =
1
n

n∑
i=1

1
|Ri|

⏐⏐Ri
⏐⏐

.
⏐⏐{(l, k) | ran kf (xi, l) ⩾ ran kf (xi, k) , (l, k) ∈ Ri × Ri

}⏐⏐ (25)

This part uses four different classifiers BayesNet, Random for-
st, Knn and Adaboost to conduct experiments. Tables 8 and 9 list
he experimental results of HAR-A algorithm and the other four
lgorithms on two evaluation indexes on nine data sets (take the
ean value of the effect of the four classifiers). For AP evaluation

ndex, the larger the value, the better the algorithm performance.
or RL evaluation index, the smaller the value, the better the
lgorithm performance.
It can be seen from the above results that the performance of

AR-A algorithm is superior to others.
12
5.1.4. Summary
Through the comparative experiment on the algorithm from

the effectiveness, efficiency and performance evaluation, it can be
concluded that the HAR-A algorithm proposed by us is superior to
others. The computation time required by HAR-A algorithm to ob-
tain feasible reduction is much shorter than the other algorithms,
and the results obtained are more accurate.

5.2. Performance evaluation of HAR-D algorithm

At this part, we analyze algorithm HAR-D from classification
accuracy, algorithm efficiency and index performance evaluation.
The specific details are as follows.

5.2.1. Algorithm classification accuracy comparison
At this part, the classification accuracy of the HAR-D algo-

rithm proposed in this paper is compared with the other four
algorithms. From every data set in Table 5, 50% features are
randomly selected as the raw feature set, and the left 50% will
be the deleted features. Algorithms HAR-D, HAR, DRSQR, FEAR,
and NRSAR are used to compute fresh reductions while as the
left 50% features are deleted from the raw 50% feature set. The
experimental results are shown in Tables 10 and 11, where ‘‘raw’’
stands for the classification accuracy of the raw attribute set.

As shown in the above chart, the classification accuracy of
algorithm HAR-D is almost higher than that of other algorithms
in all cases, and its average score is far ahead, so the classification
accuracy of HRA-D algorithm is very high.

5.2.2. Algorithm efficiency comparison
At this part, we test the efficiency of the algorithm HAR-D and

compare it with the other four algorithms in terms of calculation
time and acceleration ratio. For each data set in Table 5, five test
sets were built. First, 50% of the features are randomly selected as
the raw feature set. We then randomly delete features from the
remaining 50% to the raw feature set to get a dynamic data set to
test (that is, randomly select 10%, 20%, 30%, 40%, and 50% of the
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Table 8
Performance comparison of algorithms under AP evaluation index.
Datasets NRSAR FEAR DRAQR HAR HAR-A

Zoo 0.4215 ± 0.0124 0.4175 ± 0.0172 0.4342 ± 0.0287 0.4177 ± 0.0219 0.5709 ± 0.0351
Bcc 0.5928 ± 0.0213 0.5130 ± 0.0197 0.5213 ± 0.0211 0.3267 ± 0.0325 0.6001 ± 0.0112
Wine 0.5327 ± 0.0184 0.5243 ± 0.0145 0.4769 ± 0.0231 0.5627 ± 0.0190 0.5797 ± 0.0107
Hill 0.4355 ± 0.0148 0.5155 ± 0.0324 0.6294 ± 0.0342 0.3522 ± 0.0134 0.6318 ± 0.0214
Abalone 0.3927 ± 0.0356 0.3468 ± 0.0557 0.2213 ± 0.0562 0.7388 ± 0.0192 0.7422 ± 0.0031
Codon 0.4147 ± 0.0426 0.3927 ± 0.0233 0.3527 ± 0.0477 0.2419 ± 0.0334 0.5122 ± 0.0123
Bean 0.5318 ± 0.0156 0.4133 ± 0.0143 0.4462 ± 0.0354 0.1785 ± 0.0270 0.5466 ± 0.0115
Eye 0.3436 ± 0.0142 0.4435 ± 0.0119 0.4178 ± 0.0385 0.4656 ± 0.0287 0.4772 ± 0.0174
Letter 0.4005 ± 0.0133 0.5112 ± 0.0344 0.5231 ± 0.0441 0.7211 ± 0.0291 0.7388 ± 0.0196
Average 0.4518 0.4531 0.4470 0.4450 0.5999
Table 9
Performance comparison of algorithms under RL evaluation index.
Datasets NRSAR FEAR DRAQR HAR HAR-A

Zoo 0.6232 ± 0.2406 0.5937 ± 0.2130 0.5931 ± 0.2981 0.6208 ± 0.2736 0.5542 ± 0.3173
Bcc 0.2628 ± 0.4424 0.2617 ± 0.4151 0.2638 ± 0.4500 0.2583 ± 0.4075 0.2369 ± 0.3709
Wine 0.4909 ± 0.3428 0.4676 ± 0.2873 0.4734 ± 0.4204 0.4892 ± 0.3466 0.4341 ± 0.2797
Hill 0.4516 ± 0.3539 0.4151 ± 0.3673 0.4106 ± 0.3763 0.4472 ± 0.3210 0.3894 ± 0.4090
Abalone 0.4033 ± 0.2694 0.3834 ± 0.2305 0.3953 ± 0.2451 0.3993 ± 0.2656 0.3488 ± 0.2280
Codon 0.5738 ± 0.2754 0.5398 ± 0.2473 0.5571 ± 0.2826 0.5656 ± 0.3558 0.5132 ± 0.2700
Bean 0.4015 ± 0.3606 0.3779 ± 0.3347 0.3835 ± 0.3462 0.3973 ± 0.3395 0.3423 ± 0.3446
Eye 0.7626 ± 0.4820 0.7503 ± 0.4508 0.7494 ± 0.3829 0.7528 ± 0.4514 0.7159 ± 0.4871
Letter 0.4917 ± 0.3243 0.4665 ± 0.3927 0.4854 ± 0.2452 0.4958 ± 0.2351 0.4355 ± 0.1752
Average 0.4957 0.4729 0.4791 0.4918 0.4411
Table 10
The comparison of classification accuracies of different algorithms on Bayes Net and Random Tree (%).
Datasets BayesNet RandomTree

Raw NRSAR FEAR DRAQR HAR HAR-D Raw NRSAR FEAR DRAQR HAR HAR-D

Zoo 80.63 59.74(10) 69.87(12) 79.27(5) 80.18(11) 82.33(13) 70.56 71.18(10) 73.38(12) 62.94(5) 63.77(11) 74.17(13)
Bcc 88.97 79.88(4) 76.54(4) 85.67(8) 86.62(5) 89.47(6) 84.48 79.77(4) 82.21(4) 85.79(8) 75.92(5) 73.39(6)
Wine 82.97 77.39(2) 79.55(9) 84.22(8) 85.88(10) 86.94(10) 85.59 74.98(2) 63.97(9) 87.53(8) 81.17(10) 88.04(10)
Hill 79.28 76.27(26) 81.44(28) 84.42(35) 77.22(38) 78.95(37) 65.72 62.19(26) 66.28(28) 65.91(35) 71.19(38) 78.88(37)
Abalone 91.13 87.65(3) 86.78(2) 88.19(2) 83.37(1) 92.01(2) 70.56 72.20(3) 74.75(2) 66.98(2) 64.78(1) 75.99(2)
Codon 84.76 75.62(21) 73.64(17) 82.57(13) 81.90(15) 84.82(9) 74.72 70.79(21) 68.97(17) 70.45(13) 71.47(15) 79.28(9)
Bean 84.81 76.23(4) 81.92(5) 81.93(5) 82.29(8) 85.22(8) 70.99 70.54(4) 70.18(5) 68.32(5) 65.44(8) 72.13(8)
Eye 84.16 78.54(7) 75.53(8) 81.56(6) 82.05(3) 85.38(4) 58.24 57.73(7) 57.64(8) 50.59(6) 52.94(3) 60.11(4)
Letter 83.99 77.89(6) 79.31(7) 87.17(3) 83.46(5) 87.51(9) 71.88 67.71(6) 69.98(7) 71.11(3) 67.78(5) 73.89(9)
Average 84.52 76.58 78.29 83.89 82.55 85.85 72.53 69.68 69.71 69.96 68.23 75.10
Table 11
The comparison of classification accuracies of different algorithms on Knn and Adaboost (%).
Datasets Knn Adaboost

Raw NRSAR FEAR DRAQR HAR HAR-D Raw NRSAR FEAR DRAQR HAR HAR-D

Zoo 64.57 63.28(10) 65.51(12) 70.93(5) 69.91(11) 72.37(13) 77.19 72.67(10) 74.93(12) 69.96(5) 71.15(11) 77.85(13)
Bcc 82.23 81.11(4) 79.56(4) 78.87(8) 81.87(5) 83.54(6) 80.01 84.41(4) 82.64(4) 83.38(8) 82.74(5) 83.99(6)
Wine 64.80 65.24(2) 63.68(9) 59.97(8) 65.51(10) 66.86(10) 77.69 62.65(2) 71.44(9) 73.98(8) 80.06(10) 83.55(10)
Hill 84.61 87.23(26) 82.58(28) 83.37(35) 85.59(38) 86.01(37) 82.13 77.98(26) 79.81(28) 80.67(35) 82.54(38) 84.76(37)
Abalone 65.36 67.88(3) 64.89(2) 70.13(2) 64.97(1) 72.11(2) 75.62 77.64(3) 69.94(2) 72.79(2) 74.98(1) 76.85(2)
Codon 72.65 70.79(21) 71.29(17) 73.85(13) 71.78(15) 75.43(9) 77.27 75.83(21) 72.55(17) 73.02(13) 73.42(15) 80.01(9)
Bean 72.99 76.81(4) 73.35(5) 71.14(5) 76.01(8) 78.98(8) 75.65 73.41(4) 76.88(5) 77.23(5) 79.23(8) 79.75(8)
Eye 73.34 76.46(7) 74.95(8) 68.38(6) 80.08(3) 81.39(4) 71.65 62.76(7) 70.54(8) 70.78(6) 68.79(3) 72.77(4)
Letter 71.83 72.99(6) 70.94(7) 70.83(3) 75.77(5) 76.74(9) 79.22 69.82(6) 75.21(7) 75.53(3) 77.48(5) 80.12(9)
Average 72.49 73.53 71.86 71.94 74.52 77.05 77.38 73.02 74.88 75.26 76.71 79.96
remaining 50% features and delete them from the original feature
set). The time spent using different algorithms on these data sets
is then compared. Fig. 4 shows the detailed variation trend of
these five algorithms when the characteristics of different data
sets change. The abscissa stands for the size of the feature set
deleted, and the ordinate stands for the computation time.

We can see from Fig. 4 that the computation time of these five
lgorithms will decrease with the constant decrease of attribute
eature set. It can be seen from each subgraph that the com-
utation time of algorithm HAR-D is significantly less than that
f other algorithms. Especially for large data sets, the algorithm
13
HAR-D has a very obvious time-saving effect. Therefore, we can
conclude that the efficiency of algorithm HAR-D is very high.

Then, we prove the validity of the algorithm HAR-D again
from the perspective of acceleration ratio. Based on the results
shown in Fig. 4, we calculated the acceleration ratio of the al-
gorithm HAR-D compared with the other four algorithms. The
experimental results are shown in Fig. 5.

As can be seen from Fig. 5, the acceleration ratio of algorithm
HAR-D against other algorithms in all data sets is more than 0.
This indicates that algorithm HAR-D is faster than the other four
algorithms on all experimental data sets. Besides, for relatively
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Fig. 4. The computational time of different algorithms versus different ratios of deleting features.

Fig. 5. The speed-up ratios that algorithm HAR-D relates to different algorithms.

14
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Table 12
Performance comparison of algorithms under AP evaluation index.
Datasets NRSAR FEAR DRAQR HAR HAR-D

Zoo 0.7617 ± 0.2890 0.6920 ± 0.0322 0.7027 ± 0.0298 0.7403 ± 0.0270 0.7715 ± 0.0329
Bcc 0.1363 ± 0.0264 0.1367 ± 0.0260 0.1363 ± 0.0264 0.1353 ± 0.0253 0.1411 ± 0.0218
Wine 0.4797 ± 0.0220 0.4633 ± 0.0275 0.4607 ± 0.0321 0.4740 ± 0.0271 0.4845 ± 0.0252
Hill 0.6810 ± 0.0381 0.6433 ± 0.0382 0.6217 ± 0.0391 0.6733 ± 0.0313 0.6911 ± 0.0309
Abalone 0.4960 ± 0.0241 0.4637 ± 0.0209 0.4723 ± 0.0437 0.4883 ± 0.0192 0.4997 ± 0.0204
Codon 0.8103 ± 0.0219 0.7713 ± 0.0314 0.7783 ± 0.0259 0.7970 ± 0.0321 0.8276 ± 0.0294
Bean 0.5307 ± 0.0487 0.5143 ± 0.0495 0.5150 ± 0.0456 0.5303 ± 0.0469 0.5331 ± 0.0397
Eye 0.7557 ± 0.0220 0.7367 ± 0.0198 0.7490 ± 0.0286 0.7610 ± 0.0241 0.7755 ± 0.0431
Letter 0.4726 ± 0.1216 0.4511 ± 0.0237 0.4168 ± 0.0356 0.4223 ± 0.0145 0.4889 ± 0.0227
Average 0.5693 0.5414 0.5392 0.5580 0.5792
Table 13
Performance comparison of algorithms under RL evaluation index.
Datasets NRSAR FEAR DRAQR HAR HAR-D

Zoo 0.0627 ± 0.0008 0.0612 ± 0.0010 0.0620 ± 0.0010 0.0621 ± 0.0008 0.0601 ± 0.0014
Bcc 0.0287 ± 0.0030 0.0287 ± 0.0029 0.0287 ± 0.0029 0.0285 ± 0.0030 0.0281 ± 0.0028
Wine 0.0442 ± 0.0024 0.0418 ± 0.0021 0.0426 ± 0.0029 0.0441 ± 0.0025 0.0396 ± 0.0024
Hill 0.0442 ± 0.0012 0.0436 ± 0.0014 0.0426 ± 0.0011 0.0442 ± 0.0012 0.0418 ± 0.0016
Abalone 0.0508 ± 0.0011 0.0478 ± 0.0015 0.0488 ± 0.0019 0.0504 ± 0.0012 0.0443 ± 0.0016
Codon 0.0653 ± 0.0025 0.0647 ± 0.0024 0.0641 ± 0.0025 0.0649 ± 0.0026 0.0638 ± 0.0023
Bean 0.0363 ± 0.0013 0.0334 ± 0.0015 0.0356 ± 0.0018 0.0357 ± 0.0010 0.0306 ± 0.0014
Eye 0.0357 ± 0.0009 0.0356 ± 0.0009 0.0357 ± 0.0009 0.0356 ± 0.0009 0.0350 ± 0.0008
Letter 0.0264 ± 0.0001 0.0287 ± 0.0013 0.0267 ± 0.0003 0.0457 ± 0.0015 0.0190 ± 0.0011
Average 0.0438 0.0428 0.0430 0.0457 0.0403
large data sets, algorithm HAR-D is tens or even hundreds of
times faster than the other four algorithms. The above proves
again that the efficiency of algorithm HAR-D is very high.

5.2.3. Algorithm performance evaluation
The experimental principle in the previous section. Tables 12

nd 13 list the experimental results of HAR-D algorithm and other
our algorithms on two evaluation indexes in nine data sets (take
he average effect of the four classifiers). For AP evaluation index,
he larger the value, the better the algorithm performance. For RL
valuation index, the smaller the value, the better the algorithm
erformance.
It can be seen from the above results that the performance of

lgorithm HAR-D is superior to others.

.2.4. Summary
Through the comparative experiment on the algorithm from

he effectiveness, efficiency and performance evaluation, it can be
oncluded that the HAR-D algorithm proposed by us is superior to
thers. The computation time required by HAR-D algorithm to ob-
ain feasible reduction is much shorter than the other algorithms,
nd the results obtained are more accurate.

. Summary and future research direction

In this paper, dynamic attribute feature reduction algorithm
s proposed. First of all, it introduces some basic knowledge of
ttribute reduction. Then the related concepts of dominance re-
ation matrix and dominance conditional entropy are introduced.
ubsequently, two feature incremental attribute reduction algo-
ithms HAR-A and HAR-D are proposed. Finally, experiments are
arried out to demonstrate the accuracy, efficiency and excellent
erformance of the proposed algorithm.
Changes in ozone-depleting substances are likely to be multi-

aceted. Applying dynamic attribute reduction algorithm to more
omplex dynamic data environment is a very meaningful research
irection, worthy of further study. To be specific, our future
esearch work mainly has three aspects. (1) For the change of the
umber of objects in the data set, we will develop an incremental
15
attribute reduction algorithm. (2) The dynamic attribute reduc-
tion algorithm is applied to the dominant fuzzy rough set model.
(3) We will further study the incremental attribute reduction
method of set-valued decision information system.
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