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Abstract
The main task of local rough set model is to avoid the interference of complicated calcula-
tion and invalid information in the formation of approximation space. In this paper, we first 
present a local rough set model based on dominance relation to make the local rough set 
theory applicable to the ordered information system, then two kinds of local multigranu-
lation rough set models in the ordered information system are constructed by extending 
the single granulation environment to a multigranulation case. Moreover, the updating 
processes of dynamic objects based on global (classical) and local multigranulation rough 
sets in the ordered information system are analyzed and compared carefully. It is addressed 
about how the rough approximation spaces of global multigranulation rough set and local 
multigranulation rough set change when the object set increase or decrease in an ordered 
information system. The relevant algorithms for updating approximations with dynamic 
objects on global and local multigranulation rough sets are provided in ordered information 
systems. To illustrate the superiority and the effectiveness of the proposed dynamic updat-
ing approaches in the ordered information system, experimental evaluation is performed 
using six datasets coming from the University of California-Irvine repository.
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1  Introduction

Pawlak rough set model (Pawlak 1982), as a mathematical tool to describe imprecise and 
incomplete information, can effectively discover hidden knowledge and reveal potential 
decision rules in an information system (Hu and Cercone 1995; Jeon et al. 2016; Sun and 
Ma 2015; Xu et al. 2013). This relatively new soft computing methodology has received 
great attention in recent years, and its usefulness has been confirmed through successful 
applications in many areas, such as pattern recognition, data mining, image processing, 
decision analysis, and medical diagnosis (Inbarani 2015; Li et al. 2016; Sang et al. 2018; 
Xu and Guo 2016; Yu et al. 2018; Zhou et al. 2020). Pawlak rough set theory is built on the 
basis of the classification mechanism, it is classified as the equivalence relation in a spe-
cific universe, and the equivalence relation constitutes a partition of the universe. However, 
in many real-life circumstances, the information system is no longer classical, the binary 
relations in the information systems are never equivalence relations (Greco et  al. 2007; 
Huang et  al. 2013; Mandal and Ranadive 2019), but preference relations, such as domi-
nance relation. This kind of information system is called an ordered information system.

For an ordered information system, it is vital to propose an extension called the domi-
nance-based rough set approach (DRSA) to take into account the ordering properties of cri-
teria (Greco et al. 2002). The innovation is mainly based on substitution of the indiscern-
ibility relation (equivalence relation) in the ordered information system by a dominance 
relation. Since Greco et al. initially studied DRSA in the year of 1998, many scholars have 
investigated a variaty of rough set models based on dominance relation to solve different 
problems (Greco et al. 2001; Li et al. 2020; Shao and Zhang 2005; Susmaga 2014; Zhang 
et al. 2013). Among these achievements, Azar et al. improved a dominance rough set-based 
classification system (Azar et al. 2017); Chen et al. developed a parallel attribute reduction 
method in dominance-based neighborhood rough set model (Chen et al. 2016); Kusunoki 
and Inuiguchi proposed a unified approach to attribute reduction in DRSA (Kusunoki and 
Inuiguchi 2010); Li and Xu first introduced the probabilistic rough set model based on 
dominance relation (Li and Xu 2015) and then further investigated the formation of multi-
granulation decision-theoretic rough sets in ordered information systems (Li and Xu 2014); 
Sun et al. presented the dominance-based rough set theory over interval-valued information 
systems (Sun et al. 2014); Xu et al. constructed a multiple granulation rough set approach 
to ordered information systems (Xu et  al. 2012); Yang et  al. provided the notation of �
-dominance relation and the corresponding rough set models in interval-valued informa-
tion systems (Yang et al. 2015), and many other relevant generalizations.

It should be noted that Pawlak and its generalized rough sets are constructed based on 
one set of classes, these classes are also regarded as information granules, which are gener-
ated by a partition or a covering of the universe. In 1985, Hobbs put forward the concept 
of granularity (Hobbs 1985), and Zadeh first explored the concept of granular computing 
between 1996 and 1997 (Zadeh 1997). They all think that information granules refer to 
pieces, classes and groups into which complex information are divided in accordance with 
the characteristics and processes of the understanding and decision-making. At present, 
granular computing is an emerging information processing computing paradigm. It con-
cerns the processing of complex information entities called information granules (Xu and 
Li 2016a). Information granules, as encountered in natural language, are implicit in their 
nature (Pedrycz 2013). To make full use of it and make it effectively used in the analysis 
and design of intelligent systems, we need to make information granules explicit. This can 
be achieved through a prudent formalization provided in the area of granular computing. 
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Pal et al. presented the relationship among granular computing, rough entropy and target 
extraction (Pal et al. 2005). Skowron et al. introduced the basic concepts related to granular 
computing, including the intersection and semantics of information granules as well as the 
inclusion and similarity relations of granules (Skowron and Stepaniuk 2004), and the basis 
of rough-neural computing (Skowron and Stepaniuk 2001). Yao first proposed the relation-
ship between information granulation and rough approximation theory (Yao 2001). Peters 
et  al. presented a method of measuring information granules based on rough set theory 
(Peters et al. 2002). Especially, Rasiowa (1991), Rasiowa and Marek (1989) investigated 
the approaches to approximation based on many indiscernibility relations for rough approx-
imations. However, the approximations in these approaches are still based on a singleton 
granulation induced from an indiscernibility relation, which can be applied to knowledge 
representation in distributive systems and groups of intelligent systems. Later on, Rauszer 
(1992) discovered the rough logic for the multi-agent systems to make rough set model 
with a group of intelligent systems more explicit. In order to make rough set theory more 
widely used, Qian et  al. extended Pawlak’s single granulation to a multiple granulation 
case (Qian and Liang 2006). This generalization has a significant impact on the expansion 
of granular computing in rough set theory. After that, many researchers extended the mul-
tigranulation rough sets to different environments, inducing aplenty and significant results 
(Chen and Zhang 2014; Qian et  al. 2010; Xu et al. 2012; Xu and Li 2016b; Zhou et al. 
2021).

With the advent of information era, the data in various fields of society are constantly 
changing, which makes the data stored in each database continuously updated. These 
updates are mainly reflected on adding new data and eliminating old data. For different 
types of information system, the approximation space in rough set models will change 
accordingly with the variation of object set or attribute set, and the decision rules derived 
from the approximation sets will have corresponding changes. There have been a lot of 
studies on dynamic information system in the literature of rough sets, including the change 
of attribute values, object set, and attribute set. Among these studies, Li et al. developed a 
rough set based characteristic relation for dynamic attribute generalization and dynamic 
maintenance of decision rules in data mining (Li et al. 2007a, b); Chen et al. investigated 
an incremental approach to rough approximation updating under dynamic maintenance 
environments (Chen et al. 2013, 2015), then further explored a rough set based dynamic 
maintenance method for approximation in classical and incomplete ordered decision infor-
mation system while attribute values coarsening or refining (Chen et al. 2010, 2012); Liu 
et al. studied incremental updating approximations in dynamic incomplete information sys-
tems with the variation of attribute sets (Liu et al. 2009, 2011, 2014, 2015); Li et al. (2013) 
and Luo et al. (2013) proposed dynamic maintenance approaches of approximations in the 
ordered information system under the variation of the object set; Zhang et al. presented dif-
ferent formation methods of rough set models for dynamic data mining (Zhang et al. 2012, 
2014), and others (Cheng 2011; Guo et al. 2020; Hu et al. 2017a, b; Huang et al. 2017; 
Lang et al. 2017; Li and Li 2015; Li et al. 2018, 2019; Liu et al. 2014; Wang et al. 2013; 
Yang et al. 2014, 2017). From the dynamic updating results reported by these traditional 
rough approximations, it is not hard to discover that all of these methods have a common 
limitation, namely a lot of time for repeated computing that should be saved has also been 
implemented, and this leads to the updating efficiency of the algorithm being not explicit in 
the processes.

As a relatively new research idea in the field of rough set theory, the local rough set 
approach is presented by Qian et al. (2018). This novel idea does not need to refer to all the 
objects in the universe to approximate the target concept. Instead, it only needs to consider the 



1824	 W. Li et al.

1 3

objects in the target concept, providing a convenient way to search the required information 
directly and effectively reducing the filtering time. Let us first give an example of local idea, 
independent of rough sets, to show that local approach is more efficient than global method in 
information retrieval. Southwest University is located in China. Now assume that we need to 
find a scientific researcher in China, who studies Granular Computing (or other fields), named 
ABC. A natural search method is to screen all scientific researchers in China one by one until 
ABC is finally found. This natural retrieval method reflects the global idea. Although ABC 
can be found in the end, it will undoubtedly take a lot of time. However, if we know some 
prior knowledge of ABC, such as the affiliation of ABC: Southwest University, then we only 
need to find it from the scientific researchers within the local area, namely Southwest Univer-
sity, rather than from the global scientific researchers in China. It is more efficient to search 
knowledge from local information than from global information. Because of this visible char-
acteristic of local rough set, several generalized local rough set models regarding to different 
information systems have been researched emphatically by scholars (Qian et al. 2017; Zhang 
et al. 2019).

Inspired by the above discussed studies, in this paper, we want to construct an expression of 
local rough sets in ordered information systems from the multigranulation viewpoint to over-
come the mentioned limitation about the time consumption of repeated computing, and inves-
tigate the corresponding variation rules for updating approximations with dynamic objects. 
This is the motivation behind the research presented here. The main contents and innovation 
of this paper are shown as: (1) The local rough set theory is extended to the multiple granula-
tion ordered information system, and then two kinds of local multigranulation rough set mod-
els in ordered information systems are presented. (2) The theories of updating approximations 
with dynamic objects based on multigranulation rough set are presented in ordered informa-
tion systems, including classical (global) and local multigranulation rough set in ordered infor-
mation systems. (3) The related algorithms for updating approximations with dynamic objects 
on classical and local multigranulation rough sets are carefully discussed in ordered informa-
tion systems, and the experimental evaluation is performed using six public avaible datasets. 
Moreover, The superiority of dynamic object updating in the local multigranulation rough set 
models in ordered information systems is verified by the analysis of experimental results.

The paper is organized as follows. Related concepts are reivewed briefly in Sect.  2. In 
Sect. 3, we present the notion of local rough set model in ordered information system, and 
investigate the two kinds of local multigranulation rough approximations in ordered informa-
tion systems, which are optimistic and pessimistic local multigranulation rough set models 
in ordered information systems. In Sect.  4, we mainly discuss and make a comparison on 
the update methods of local and classical multigranulation rough set models in an ordered 
information system with both dynamic and static background. In Sect. 5, we first provide the 
corresponding updating algorithms for deriving classical and local multigranulation rough 
approximations in ordered information systems, and then we do the experimantal testing by 
six datasets from the UCI datasets in Sect. 6, to make the comparisons on computing time 
of static updating and dynamic updating with object variation for the novel models. Finally, 
Sect. 7 covers some conclusions.

2 � Basic notions

In this section, some basic concepts on rough set theory in an ordered information system 
are reviewed briefly, detailed descriptions could be referred to the relevant references.



1825Updating approximations with dynamic objects based on local…

1 3

Definition 2.1  An information system is a triple I = (U,AT ,F) , where 
U = {x1, x2,… , xn} is a non-empty and finite set of objects; AT = {a1, a2,… , am} is a non-
empty and finite set of attributes; F = {fj|U → Vj, j ≤ m} , where fj is the value of aj on 
x ∈ U , and Vj is the domain of aj ∈ AT .

In an information system, if the domain of an attribute is ordered according to a decreas-
ing or increasing preference, then the attribute is a criterion (Greco et al. 2002, 2007). An 
information system is called an ordered information system if all condition attributes are 
criteria. As the decreasing preference can be converted to increasing preference, in this 
paper we only consider the increasing preference without any loss of generality. In an 
ordered information system, ≥aj

 is defined to denote the preference-ordered relation based 
on the condition attribute a, then x ≥aj

y means that x is at least as good as y with respect to 
criterion a. ∀aj ∈ AT  , if x ≥aj

y , then x dominates y in AT. We use I≥ = (U,AT ,F) to 
denote the ordered information system.

Let I≥ = (U,AT ,F) be an ordered information system, A ⊆ AT  . We call 
R≥

A
= {(x, y) ∈ U × U|fa(y) ≥ fa(x),∀a ∈ A} as a dominance relation. The set of domi-

nance classes induced by a dominance relation R≥

A
 is called U∕R≥

A
= {[x]R≥

A
|x ∈ U} , where 

[x]R≥

A
= {y ∈ U|(x, y) ∈ R≥

A
} is the dominance class containing x.

Definition 2.2  (Xu et al. 2006) Let I≥ = (U,AT ,F) be an ordered information system. 
R≥ is a dominance relation. For any X ⊆ U , the lower and upper approximations of X with 
respect to A in the ordered information system are defined as

If R≥

A
(X) = R≥

A
(X) , X is called definable set in the ordered information system; and if 

R≥

A
(X) ≠ R≥

A
(X) , then X is called a rough set in the ordered information system. Moreover, 

the lower and upper approximations satisfy R≥(X) ⊆ X ⊆ R≥(X) . Three disjoint decision 
regions of X are shown as

where pos(X), neg(X) and bnd(X) are called the positive region, negative region and bound-
ary region, respectively.

The multigranulation rough set model was determined by Qian and Liang (2006), Qian 
et al. (2010) in the year of 2006, and it was extended to the ordered information system by 
Xu et al. (2012). Let us introduce two kinds of rough approximations regard to multigranu-
lation rough sets in ordered information systems as follows.

Definition 2.3  (Xu et  al. 2012) Let I≥ = (U,AT ,F) be an ordered information system 
and Ri(i = 1, 2,… ,m ) be dominance relations. ∀X ⊆ U , [x]≥

Ri
= {y|(x, y) ∈ R≥

i
} is called 

the i-th dominance class contains x with respect to the i-th dominance relation Ri . The opti-
mistic multigranulation lower and upper approximations of the target set X are defined as

R≥

A
(X) = {x ∈ U|[x]≥

RA
⊆ X},

R≥

A
(X) = {x ∈ U|[x]≥

RA
∩ X ≠ �}.

pos(X) = R≥

A
(X),

neg(X) =∼ R≥

A
(X),

bnd(X) = R≥

A
(X) − R≥

A
(X),
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where the logical operations }}
⋁�� and }}

⋀�� represent for “or” and “and”, respectively. 
If OM∑m

i=1
R≥

i
(X) ≠ OM∑m

i=1
R≥

i
(X) , then we call X as the optimistic multigranulation rough 

set in the ordered information system. In a similar way, we could obtain the pessimistic 
multigranulation lower and upper approximations in the ordered information system.

Definition 2.4  (Xu et  al. 2012) Let I≥ = (U,AT ,F) be an ordered information system 
and Ri ( i = 1, 2,… ,m ) be dominance relations. ∀X ⊆ U , [x]≥

Ri
= {y|(x, y) ∈ R≥

i
} is called 

the i-th dominance class contains x with respect to the i-th dominance relation Ri . The pes-
simistic multigranulation lower and upper approximations of the target set X are defined as

where }}
⋁�� and }}

⋀�� represent for “or” and “and”, respectively. If 
PM∑m

i=1
R≥

i
(X) ≠ PM∑m

i=1
R≥

i
(X) , then X is called the pessimistic multigranulation rough set in 

the ordered information system.
To meet the requirements of the following sections, we need to review some basic prop-

erties of the lower and upper approximations of multigranulation rough sets in ordered 
information systems.

Proposition 2.1  (Xu et  al. 2012) Let I≥ = (U,AT ,F) be an ordered information sys-
tem, and Ri ( i = 1, 2,… ,m ) be dominance relations, X, Y ∈ F(U) . The lower and upper 
approximations with respect to dominance relations Ri ( i = 1, 2,… ,m ) meet the following 
properties. 

	 (1)	 OM∑m

i=1
R≥

i
(X) ⊆ X ⊆ OM∑m

i=1
R≥

i
(X) , PM∑m

i=1
R≥

i
(X) ⊆ X ⊆ PM∑m

i=1
R≥

i
(X);

	 (2)	 OM∑m

i=1
R≥

i
(∼ X) =∼ OM∑m

i=1
R≥

i
(X) , PM∑m

i=1
R≥

i
(∼ X) =∼ PM∑m

i=1
R≥

i
(X);

	 (3)	 OM∑m

i=1
R≥

i
(∼ X) =∼ OM∑m

i=1
R≥

i
(X) , PM∑m

i=1
R≥

i
(∼ X) =∼ PM∑m

i=1
R≥

i
(X);

	 (4)	 OM∑m

i=1
R≥

i
(U) = PM∑m

i=1
R≥

i
(U) = U,OM∑m

i=1
R≥

i
(�) = PM∑m

i=1
R≥

i
(�) = �;

	 (5)	 X ⊆ Y ⟹ OM∑m

i=1
R≥

i
(X) ⊆ OM∑m

i=1
R≥

i
(Y),PM∑m

i=1
R≥

i
(X) ⊆ PM∑m

i=1
R≥

i
(Y);

	 (6)	 X ⊆ Y ⟹ OM∑m

i=1
R≥

i
(X) ⊆ OM∑m

i=1
R≥

i
(Y),PM∑m

i=1
R≥

i
(X) ⊆ PM∑m

i=1
R≥

i
(Y);

	 (7)	 OM∑m

i=1
R≥

i
(X

⋂
Y) ⊆ OM∑m

i=1
R≥

i
(X)

⋂
OM∑m

i=1
R≥

i
(Y),

		    PM∑m

i=1
R≥

i
(X

⋂
Y) = PM∑m

i=1
R≥

i
(X)

⋂
PM∑m

i=1
R≥

i
(Y);

OM∑m

i=1
R≥

i
(X) =

�
x ∈ U ∣

m�

i=1

([x]≥
Ri
⊆ X)

�
,

OM∑m

i=1
R≥

i
(X) =

�
x ∈ U ∣

m�

i=1

([x]≥
Ri
∩ X ≠ �)

�
,

PM∑m

i=1
R≥

i
(X) =

�
x ∈ U ∣

m�

i=1

([x]≥
Ri
⊆ X)

�
,

PM∑m

i=1
R≥

i
(X) =

�
x ∈ U ∣

m�

i=1

([x]≥
Ri
∩ X ≠ �)

�
,
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	 (8)	 OM∑m

i=1
R≥

i
(X

⋃
Y) ⊇ OM∑m

i=1
R≥

i
(X)

⋃
OM∑m

i=1
R≥

i
(Y),

		    PM∑m

i=1
R≥

i
(X

⋃
Y) = PM∑m

i=1
R≥

i
(X)

⋃
PM∑m

i=1
R≥

i
(Y);

	 (9)	 OM∑m

i=1
R≥

i
(X

⋃
Y) ⊇ OM∑m

i=1
R≥

i
(X)

⋃
OM∑m

i=1
R≥

i
(Y),

		    PM∑m

i=1
R≥

i
(X

⋃
Y) ⊇ PM∑m

i=1
R≥

i
(X)

⋃
PM∑m

i=1
R≥

i
(Y);

	(10)	 OM∑m

i=1
R≥

i
(X

⋂
Y) ⊆ OM∑m

i=1
R≥

i
(X)

⋂
OM∑m

i=1
R≥

i
(Y),

		    PM∑m

i=1
R≥

i
(X

⋂
Y) ⊆ PM∑m

i=1
R≥

i
(X)

⋂
PM∑m

i=1
R≥

i
(Y).

Proof  Detailed proof process could be referred to reference (Xu et al. 2012). 	�  ◻

In the next section, we will investigate the formation of local multigranulation rough 
sets in ordered information systems to further generalize the theory of local rough set 
model.

3 � Local multigranulation rough set models in ordered information 
systems

Decision-makers have got great convenience in the era of big data because of the develop-
ment of information technology. However, this convenience brings a lot of useless infor-
mation. In an information system, if we take all the global information into account, it 
will have a large number of negative effects, such as: low efficiency, memory consumption, 
time wasting, and many others, the same to ordered information systems. In most cases, the 
useful information that decision-makers need to consider accounts for a very small propor-
tion of the global information. Therefore, it is an innovation worth trying if decision-mak-
ers could retrieve the useful information from the target local information. The purpose of 
constructing local rough set model in ordered information systems is to attempt to solve the 
mentioned issue. Let us focus on the following definition of local rough approximations in 
ordered information systems.

Definition 3.1  Let I≥ = (U,AT ,F) be an ordered information system. R≥ is a dominance 
relation, and X ⊆ U . The local lower and upper approximations of the set X with respect to 
R are defined as follows.

If R≥

L
(X) = R≥

L
(X) , X is called local definable set in the ordered information system; and if 

R≥

L
(X) ≠ R≥

L
(X) , then X is called a local rough set in an ordered information system, 

denoted as the pair ⟨R≥

L
(X),R≥

L
(X)⟩ . It could be seen from the definition that R≥

L
(X) belongs 

to X, and X belongs to R≥

L
(X) , namely R≥

L
(X) ⊆ X ⊆ R≥

L
(X) . We define the positive region, 

negative region and boundary region of X for the local rough set in an ordered information 
system.

R≥

L
(X) = {x |[x]≥

R
⊆ X, x ∈ X},

R≥

L
(X) = ∪ {[x]≥

R
| [x]≥

R
∩ X ≠ �, x ∈ X}.
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Compared with the global rough set defined in Definition 2.2, it is not difficult to derive the 
following relationship among global and local approximations and the approximated set,

Then the following properties hold.

Proposition 3.1  Let I≥ = (U,AT ,F) be an ordered information system, R≥ is a domi-
nance relation induced by AT, X, Y ⊆ U . The following items hold. 

(1)	 R≥

L
(X) ⊆ X ⊆ R≥

L
(X);

(2)	 R≥

L
(U) = R≥

L
(U) = U;

(3)	 R≥

L
(�) = R≥

L
(�) = �;

(4)	 X ⊆ Y ⟹ R≥

L
(X) ⊆ R≥

L
(Y);

(5)	 X ⊆ Y ⟹ R≥

L
(X) ⊆ R≥

L
(Y);

(6)	 R≥

L
(X

⋂
Y) = R≥

L
(X)

⋂
R≥

L
(Y);

(7)	 R≥

L
(X

⋃
Y) = R≥

L
(X)

⋃
R≥

L
(Y);

(8)	 R≥

L
(X

⋃
Y) ⊇ R≥

L
(X)

⋃
R≥

L
(Y);

(9)	 R≥

L
(X

⋂
Y) ⊆ R≥

L
(X)

⋂
R≥

L
(Y).

Proof  The above items could be derived directly by Definition 3.1. 	�  ◻

In an ordered information system, the construction of local multigranulation rough sets is 
different from local rough set because the former is constructed based on a family of approxi-
mation spaces.

Definition 3.2  Let I≥ = (U,AT ,F) be an ordered information system and R≥

i

(i = 1, 2,… ,m ) be dominance relations, ∀X ⊆ U . The optimistic local multigranulation 
lower and upper approximations of the set X with respect to R≥

i
 are defined as

where 
∑m

i=1
R≥

i

O

L
(X) represents the intersection of the upper approximation under each 

granularity. And R≥

i L
= ∪ { [x]≥

Ri
| [x]≥

Ri
∩ X ≠ �, x ∈ X}.

We can define the positive region, negative region and boundary region of X for the 
optimistic local multigranulation in an ordered information system.

pos(X) = R≥

L
(X) = {x |[x]≥

R
⊆ X, x ∈ X},

neg(X) =∼ R≥

L
(X) = U − ∪ {[x]≥

R
| [x]≥

R
∩ X ≠ �, x ∈ X},

bnd(X) = R≥

L
(X) − R≥

L
(X),

R≥

L
(X) ⊆ R≥(X) ⊆ X ⊆ R≥

L
(X) ⊆ R≥(X).

m∑

i=1

R≥

i

O

L

(X) = {x|
m⋁

i=1

([x]≥
Ri
⊆ X), x ∈ X},

m∑

i=1

R≥

i

O

L

(X) =

m⋂

i=1

R≥

i L
,
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Definition 3.3  Let I≥ = (U,AT ,F) be an ordered information system and R≥

i

(i = 1, 2,… ,m ) be dominance relations, ∀X ⊆ U . The pessimistic local multigranulation 
lower and upper approximations of the set X with respect to Ri are defined as

where R≥

i L
= ∪ { [x]≥

Ri
| [x]≥

Ri
∩ X ≠ �, x ∈ X} , which represents local upper approxi-

mation under each granule. And pessimistic local multigranulation upper approximation 
is the integration of local upper approximation of each granules.

We can define the positive region, nagative region and boundary region of X for the 
pessimistic local multigranulation in an ordered information system.

Remark  According to the definition of upper approximation, local optimistic and pessimis-
tic approximation should be defined as 

∑m

i=1
R≥

i

O

L
(X) =

⋃
{[x]≥

Ri
�⋀m

i=1
([x]≥

Ri
∩ X) ≠ �, x ∈ X} 

and 
∑m

i=1
R≥

i

P

L
(X) =

⋃
{[x]≥

Ri
�⋁m

i=1
([x]≥

Ri
∩ X) ≠ �, x ∈ X} . Due to x ∈ X , the above opti-

mistic and pessimistic approximation are the same result, that is, ∑m

i=1
R≥

i

O

L
(X) =

∑m

i=1
R≥

i

P

L
(X) . The optimistic upper approximation should be the minimum 

lower bound containing the target set, and the pessimistic upper approximation should 
include all the objects related to the target set as much as possible, so it is the maximum 
upper bound containing the target set. Therefore, the optimistic and pessimistic upper 

pos(X) =

m∑

i=1

R≥

i

O

L

(X) = {x|
m⋁

i=1

([x]≥
Ri
⊆ X), x ∈ X},

neg(X) =∼

m∑

i=1

R≥

i

O

L

(X) = U −

m⋂

i=1

R≥

i L
,

bnd(X) =

m∑

i=1

R≥

i

O

L

(X) −

m∑

i=1

R≥

i

O

L

(X),

m∑

i=1

R≥

i

P

L

(X) = {x|
m⋀

i=1

([x]≥
Ri
⊆ X), x ∈ X},

m∑

i=1

R≥

i

P

L

(X) =

m⋃

i=1

R≥

i L
,

pos(X) =

m∑

i=1

R≥

i

P

L

(X) = {x|
m⋀

i=1

([x]≥
Ri
⊆ X), x ∈ X},

neg(X) =∼

m∑

i=1

R≥

i

P

L

(X) = U −

m⋃

i=1

R≥

i L
,

bnd(X) =

m∑

i=1

R≥

i

P

L

(X) −

m∑

i=1

R≥

i

P

L

(X),
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approximations are respectively defined as 
∑m

i=1
R≥

i

O

L
(X) =

m�

i=1

R≥

i L
 and 

∑m

i=1
R≥

i

P

L
(X) =

m�

i=1

R≥

i L
 . At this time, it satisfies the above requirements.

Example 3.1  Supposing Table 1 is an ordered information system about a case study of 
the risk investment. There are ten choices and six risk factors, which are purchasing power 
risk ( a1 ), financial risk ( a2 ), interest rate risk ( a3 ), market risk ( a4 ), liquidity risk ( a5 ), event 
risk ( a6 ). The higher the value of the attributes, the lower the risk rate. Assume that target 
is X = {x2, x4, x5, x7, x8, x9} and consider two granulations R1 and R2 , where R1 is induced 
by the attribute set {a2, a4, a5, a6} and R2 is induced by the attribute set {a1, a3, a4, a6} . It 
means that there are two ways to choose. The one is to consider financial risk, market risk, 
liquidity risk and event risk. The other is to focus on power risk, interest rate risk, market 
risk, event risk. Therefore, we should combine two kinds of granularity to choose safer 
investment scope by lower and upper approximations.

We calculate the dominance classes of elements in a target set.
According to the granulation R1 , we obtain the following dominance classes:
[x2]

≥

R1

= {x1, x2, x10} , [x4]
≥

R1

= {x4, x6, x10} , [x5]
≥

R1

= {x3, x5},
[x7]

≥

R1

= {x7, x8, x9} , [x8]
≥

R1

= {x8} , [x9]
≥

R1

= {x8, x9}.
According to the granulation R2 , we obtain the following dominance classes:
[x2]

≥

R2

= {x2, x3, x4, x6} , [x4]
≥

R2

= {x4, x6} , [x5]
≥

R2

= {x3, x5},
[x7]

≥

R2

= {x7} , [x8]
≥

R2

= {x7, x8} , [x9]
≥

R2

= {x3, x5, x7, x8, x9}.
Thus, based on the definition of optimistic and pessimistic local multigranulation lower 

and upper approximations, we obtain that∑m

i=1
R≥

i

O

L
(X) = {x7, x8, x9},∑m

i=1
R≥

i

O

L
(X) = {x2, x3, x4, x5, x6, x7, x8, x9};∑m

i=1
R≥

i

P

L
(X) = {x7, x8},∑m

i=1
R≥

i

P

L
(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}.

From the definition of local multigranulation rough sets proposed in this paper and 
global multigranulation rough sets presented in reference (Xu et al. 2012), there is no doubt 
that the time for calculating the upper and lower approximation of local multigranulation 

Table 1   An ordered information 
system

U a1 a2 a3 a4 a5 a6

x1 1 2 1 2 2 3
x2 2 2 3 2 2 3
x3 2 2 3 3 1 4
x4 4 1 4 2 4 3
x5 1 2 1 3 1 4
x6 4 1 4 2 4 3
x7 4 1 4 3 3 2
x8 3 4 2 3 3 2
x9 1 2 1 3 3 2
x10 3 4 2 2 4 3
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rough sets in ordered information system is smaller than that of global multigranulation 
rough sets in ordered information system. To be sure, the closer the approximated concept 
is to the whole universe, the less significant the difference in the time they take.

4 � Multigranulation‑based updating approximations with dynamic 
objects in ordered information systems

With the rapid development of science and technology, information contained in each 
information system needs to be constantly updated, including deleting old information 
and adding new information. With the information updating in information systems, the 
information granularity in the information system will change accordingly, which will 
lead to the variation of knowledge structure. As to rough set theory in ordered information 
systems, there are three possible variations for the dynamic updates, namely variation of 
object set, variation of attribute set, and variation of attribute values. The main objective 
of this paper is to study the variation of object set, including the increase and decrease of 
objects. Whenever an information system is updated (adding new objects or deleting old 
ones), it generates a new information table.

After generating a new information table, if every update is batch processed from 
scratch, it will lead to huge time consumption and increase the complexity of calculation. 
In fact, there is a great relationship between the updated ordered information system and 
the original one. The dynamic update method is proposed to avoid unnecessary time wast-
ing. Updating with dynamic objects includes two cases, the one is to delete old objects and 
the other is to add new objects. Since the target set is a subset of the universe, the elements 
in the target set may be deleted when the objects of the universe is deleted. Therefore, 
it is divided into two parts when removing objects from the information system: (1) the 
deleted objects are not elements in the target set; (2) the deleted objects are elements in 
the target set. For the above two issues, the situation of dominance classes of the target set 
after dynamic updating is different. In particular, there is only one case when adding new 
objects, because the target set does not change. It just increases the cardinal number of the 
universe. In the following, we will study the dynamic processing of information variation 
and compare the global dynamic updating with the local dynamic updating.

4.1 � Dynamic updating approximations on global multigranulation rough set 
in ordered information systems

We discuss the global updating with dynamic objects from two aspects: deleting objects 
and adding objects. Let I≥ = (U,AT ,F) be the initial order information system, and [x]≥

Ri
 is 

the original dominance classes of the object under the relation R≥

i
 . The target set is repre-

sented by X, and the lower and upper approximations of the optimistic multigranulation 
rough set are defined as OM∑m

i=1
R≥

i
(X) , OM∑m

i=1
R≥

i
(X) . Moreover, the lower and upper 

approximations of the pessimistic multigranulation rough set are PM∑m

i=1
R≥

i
(X) and 

PM∑m

i=1
R≥

i
(X) . After dynamically deleting objects, dominance classes will change, and then 

the lower and upper approximations of multigranulation rough sets will make the corre-
sponding changes. Denote the changed new ordered information system as 
I≥

�
= (U�,AT ,F) , and the new dominance classes are denoted as [x]≥

Ri

� . Moreover, 
OM∑m

i=1
R≥

i
(X)� , OM∑m

i=1
R≥

i
(X)� , PM∑m

i=1
R≥

i
(X)� and PM∑m

i=1
R≥

i
(X)� are respectively optimistic 
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and pessimistic approximations after deleting objects. Because the target concept is a sub-
set of the universe and selected objects are deleted randomly, the objects in the target con-
cept may also be deleted. Therefore, this paper mainly discusses from two parts: the 
removed object belongs to the target concept and the removed object does not belong to the 
target concept.

Proposition 4.1  Let I≥ = (U,AT ,F) be an ordered information system, R≥

i
 

( i = 1, 2,… ,m ) is a dominance relation, and X ⊆ U . If the object xt not in the target con-
cept X is deleted, which means xt ∉ X , we obtain that

(1)	 If xs ∉ OM∑m

i=1
R≥

i
(X)(xs ≠ xt) and exists a granule Ri such that ([xs]

≥

Ri
− {xt}) ⊆ X , then 

xs ∈ OM∑m

i=1
R≥

i
(X)�.

	   I f  xs ∉ PM∑m

i=1
R≥

i
(X)(xs ≠ xt) and  ([xs]

≥

Ri
− {xt}) ⊆ X  for  ever y granule 

Ri(i = 1, 2,… ,m) , then xs ∈ PM∑m

i=1
R≥

i
(X)�.

(2)	 OM∑m

i=1
R≥

i
(X)� = OM∑m

i=1
R≥

i
(X) − {xt} , PM∑m

i=1
R≥

i
(X)� = PM∑m

i=1
R≥

i
(X) − {xt}.

Proof 

(1)	 According to xs ∉ OM∑m

i=1
R≥

i
(X)(xs ≠ xt) and the definition of OM∑m

i=1
R≥

i
(X) , we have 

[xs]
≥

Ri
⊈ X for every Ri (i = 1, 2… ,m) . From known condition that it exists a Ri such 

that ([xs]
≥

Ri
− {xt}) ⊆ X , it means after removing the object xt we have [xs]

≥

Ri

�
⊆ X for 

one granule Ri . Finally, we get xs ∈ OM∑m

i=1
R≥

i
(X)�.

	   Similarly, due to xs ∉ PM∑m

i=1
R≥

i
(X)(xs ≠ xt) and the definition of pessimistic lower 

approximation PM∑m

i=1
R≥

i
(X) , we know [xs]

≥

Ri
⊆ X that does not suitable for every gran-

ule. When this condition ([xs]
≥

Ri
− {xt}) ⊆ X holds at all granularity Ri(i = 1, 2,… ,m) , 

we have [xs]
≥

Ri

�
⊆ X  for every granule after removing the object xt . Namely, ⋀m

i=1
([xs]

≥

Ri

�
⊆ X) holds. Thus xs ∈ PM∑m

i=1
R≥

i
(X)�.

(2)	 If xs ∈ OM∑m

i=1
R≥

i
(X) (xs ≠ xt) , then [xs]

≥

Ri
∩ X ≠ � for any granule Ri(i = 1, 2,… ,m) . 

That is to say, its dominance class of each granule has the elements in X, but xt ∉ X . 
So after deleting xt , the part of the dominance classes that intersect with the X does not 
change, namely, [xs]

≥

Ri

�
∩ X ≠ � .Thus, xs ∈ OM∑m

i=1
R≥

i
(X)�.

	   If xs ∉ OM∑m

i=1
R≥

i
(X) (xs ≠ xt) , then ∃Ri such that [xs]

≥

Ri
∩ X = � . As a result of xt ∉ X , 

there is still no same element with X after deleting the object xt . That means 
[xs]

≥

Ri

�
∩ X = � . Therefore, xs ∉ OM∑m

i=1
R≥

i
(X)�.

	   Moreover, the optimistic upper approximation does not change except xt . Since xt is 
deleted, there will be no more the object xt in the new lower and upper approximations, 
namely, OM∑m

i=1
R≥

i
(X)� = OM∑m

i=1
R≥

i
(X) − {xt}.

	   The proof process of pessimistic upper approximation is similar to optimistic upper 
approximation.

	�  ◻

Example 4.1  (Continuation of Example 3.1) Consider the target concept 
X = {x2, x4, x5, x7, x8, x9} , the optimistic and pessimistic approximations of the target set 
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can be obtained. In this example, we discuss the updated lower and upper approximations 
after deleting elements that do not belong to the target set X, such as x3 , x6 . 

(1)	 If x3 is deleted, then the changed dominance classes are listed in the following
	   [x1]

≥

R1

�
= [x2]

≥

R1

�
= {x1, x2, x10} , [x5]

≥

R1

�
= {x5} , [x4]

≥

R1

�
= [x6]

≥

R1

�
= {x4, x6, x10},

	   [x7]
≥

R1

�
= {x7, x8, x9} , [x8]

≥

R1

�
= {x8} , [x9]

≥

R1

�
= {x8, x9} , [x10]

≥

R1

�
= {x10}.

	   [x1]
≥

R2

�
= {x1, x2, x4, x5, x6, x10} , [x2]

≥

R2

�
= {x2, x4, x6} , [x4]

≥

R2

�
= [x6]

≥

R2

= {x4, x6},
	   [x5]

≥

R2

�
= {x5} ,  [x7]

≥

R2

�
= {x7} ,  [x8]

≥

R2

�
= {x7, x8} ,  [x9]

≥

R2

�
= {x5, x7, x8, x9} , 

[x10]
≥

R2

�
= {x4, x6, x10}.

	   Thus, due to the definition of optimistic and pessimistic approximations, we have

	 
 Finally, we find [x5]

≥

R1

− {x3} ∈ X and [x5]
≥

R2

− {x3} ∈ X , so x5 ∈ OM∑m

i=1
R≥

i
(X)� and 

x5 ∈ PM∑m

i=1
R≥

i
(X)�.

	   Meanwhile, [x9]
≥

R1

− {x3} ∈ X and [x9]
≥

R2

− {x3} ∈ X , so x9 ∈ PM∑m

i=1
R≥

i
(X)�.

	   And OM∑m

i=1
R≥

i
(X)� = OM∑m

i=1
R≥

i
(X) − {x3} , PM∑m

i=1
R≥

i
(X)� = PM∑m

i=1
R≥

i
(X) − {x3}.

(2)	 If x6 is deleted, then the changed dominance classes are listed in the following 

 Thus, due to the definition of optimistic and pessimistic approximations, we have 

 Finally, we find [x4]
≥

R2

− {x6} ∈ X , so x4 ∈ OM∑m

i=1
R≥

i
(X)�.

	   M e a n w h i l e  OM∑m

i=1
R≥

i
(X)� = OM∑m

i=1
R≥

i
(X) − {x6}   , 

PM∑m

i=1
R≥

i
(X)� = PM∑m

i=1
R≥

i
(X) − {x6}.

Proposition 4.2  Let I≥ = (U,AT ,F) be an ordered information system, R≥

i
 

( i = 1, 2,… ,m ) is a dominance relation in U, and X ⊆ U . If the object xt in the target con-
cept X is deleted, which means (xt ∈ X) , we obtain that

OM∑m

i=1
R≥

i
(X)� = {x5, x7, x8, x9}

OM∑m

i=1
R≥

i
(X)� = {x1, x2, x4, x5, x6, x7, x8, x9}

PM∑m

i=1
R≥

i
(X)� = {x5, x7, x8, x9}

PM∑m

i=1
R≥

i
(X)� = {x1, x2, x4, x5, x6, x7, x8, x9, x10}

[x1]
≥

R1

�
=[x2]

≥

R1

�
= {x1, x2, x10}, [x3]

≥

R1

�
= [x5]

≥

R1

�
= {x3, x5}, [x4]

≥

R1

�
= {x4, x10},

[x7]
≥

R1

�
={x7, x8, x9}, [x8]

≥

R1

�
= {x8}, [x9]

≥

R1

�
= {x8, x9}, [x10]

≥

R1

�
= {x10}.

[x1]
≥

R2

�
={x1, x2, x3, x4, x5, x10}, [x2]

≥

R2

�
= {x2, x3, x4}, [x3]

≥

R2

�
= {x3}, [x4]

≥

R2

�
= {x4},

[x5]
≥

R2

�
={x3, x5}, [x7]

≥

R2

�
= {x7}, [x8]

≥

R2

�
= {x7, x8}, [x9]

≥

R2

�
= {x3, x5, x7, x8, x9}, [x10]

≥

R2

�
= {x4, x10}.

OM∑m

i=1
R≥

i
(X)� ={x4, x7, x8, x9},

OM∑m

i=1
R≥

i
(X)� ={x1, x2, x4, x5, x7, x8, x9};

PM∑m

i=1
R≥

i
(X)� ={x7, x8},

PM∑m

i=1
R≥

i
(X)� ={x1, x2, x3, x4, x5, x7, x8, x9, x10}.
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(1)	 OM∑m

i=1
R≥

i
(X)� = OM∑m

i=1
R≥

i
(X) − {xt} , PM∑m

i=1
R≥

i
(X)� = PM∑m

i=1
R≥

i
(X) − {xt}.

(2)	 If  exists a granule  Ri  such that  ([xs]
≥

Ri
− {xt}) ∩ X = � (xs ≠ xt) ,  then 

OM∑m

i=1
R≥

i
(X)� = OM∑m

i=1
R≥

i
(X) − {xt, xs}.

	   If it satisfies that ([xs]
≥

Ri
− {xt}) ∩ X = � (xs ≠ xt) for all Ri(i = 1, 2,… ,m) , then 

PM∑m

i=1
R≥

i
(X)� = PM∑m

i=1
R≥

i
(X) − {xt, xs}.

Proof 

(1)	 We know that OM∑m

i=1
R≥

i
(X) =

�
x ∈ U ∣

⋁m

i=1
([x]≥

Ri
⊆ X)

�
 . If ∀xs ∈ U, xs ≠ xt , we just 

consider that xs ∈ OM∑m

i=1
R≥

i
(X) because another situation is easy to get to the conclu-

sion. Due to xs ∈ OM∑m

i=1
R≥

i
(X) , so it exists Ri such that [xs]

≥

Ri
⊆ X . After removing xt , 

the elements of [xs]
≥

Ri
 based on the Ri still belong to X except xt , namely, [xs]

≥

Ri

�
⊆ X . 

Therefore, xs ∈ OM∑m

i=1
R≥

i
(X)� . In addition to xt , it has not changed on OM∑m

i=1
R≥

i
(X) . 

Finally, we have OM∑m

i=1
R≥

i
(X)� = OM∑m

i=1
R≥

i
(X) − {xt} . In a similar manner, we have 

PM∑m

i=1
R≥

i
(X)� = PM∑m

i=1
R≥

i
(X) − {xt}.

(2)	 It’s easy to prove that xs ∉ OM∑m

i=1
R≥

i
(X) and xs ∉ PM∑m

i=1
R≥

i
(X) , so we only consider 

in this case when xs ∈ OM∑m

i=1
R≥

i
(X), xs ∈ PM∑m

i=1
R≥

i
(X) . If exists Ri such that 

([xs]R≥

i
− {xt}) ∩ X = � for any xs ∈ U, xs ≠ xt . According to the definition of the opti-

mistic upper approximation, that is, OM∑m

i=1
R≥

i
(X) =

�
x ∈ U ∣

⋀m

i=1
([x]≥

Ri
∩ X ≠ �)

�
 , 

we have xs ∉ OM∑m

i=1
R≥

i
(X)� after removing the object xt . The same method is also used 

to prove the pessimistic upper approximation. If ([xs]R≥

i
− {xt}) ∩ X = � for any Ri , 

combing the def ini t ion of  the  pessimist ic  upper  approximat ion 
(PM∑m

i=1
R≥

i
(X) =

�
x ∈ U ∣

⋁m

i=1
([x]≥

Ri
∩ X ≠ �)

�
) , it is obtained that xs ∉ PM∑m

i=1
R≥

i
(X)� . 

Due to removing xt , so xt ∉ OM∑m

i=1
R≥

i
(X)�, xt ∉ PM∑m

i=1
R≥

i
(X)� . Therefore, we have 

OM∑m

i=1
R≥

i
(X)� = OM∑m

i=1
R≥

i
(X) − {xt, xs} , PM∑m

i=1
R≥

i
(X)� = PM∑m

i=1
R≥

i
(X) − {xt, xs} . 	

� ◻

Example 4.2  (Continuation of Example 3.1) Consider the target set 
X = {x2, x4, x5, x7, x8, x9} , the optimistic and pessimistic approximations of the target set 
can be obtained. Furthermore, we discuss the lower and upper approximations after delet-
ing objects that belong to the target set X.

If x4 is deleted, then the changed dominance classes are listed in the following

Thus, due to the definition of optimistic and pessimistic approximations, we have

[x1]
≥

R1

�
=[x2]

≥

R1

�
= {x1, x2, x10}, [x3]

≥

R1

�
= [x5]

≥

R1

�
= {x3, x5}, [x6]

≥

R1

�
= {x6, x10},

[x7]
≥

R1

�
={x7, x8, x9}, [x8]

≥

R1

�
= {x8}, [x9]

≥

R1

�
= {x8, x9}, [x10]

≥

R1

�
= {x10}.

[x1]
≥

R2

�
={x1, x2, x3, x5, x6, x10}, [x2]

≥

R2

�
= {x2, x3, x6}, [x3]

≥

R2

�
= {x3}, [x5]

≥

R2

�
= {x3, x5},

[x6]
≥

R2

�
={x6}, [x7]

≥

R2

�
= {x7}, [x8]

≥

R2

�
= {x7, x8}, [x9]

≥

R2

�
= {x3, x5, x7, x8, x9}, [x10]

≥

R2

�
= {x6, x10}.
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Finally, we find OM∑m

i=1
R≥

i
(X)� = OM∑m

i=1
R≥

i
(X) − {x4} , PM∑m

i=1
R≥

i
(X)� = PM∑m

i=1
R≥

i
(X) − {x4}

.
According to R1 and R2 , it is easy to see that ([x6]

≥

Ri
− {x4}) ∩ X = � and 

([x10]
≥

Ri
− {x4}) ∩ X = � . Therefore, OM∑m

i=1
R≥

i
(X)� = OM∑m

i=1
R≥

i
(X) − {x4, x6, x10} and 

PM∑m

i=1
R≥

i
(X)� = PM∑m

i=1
R≥

i
(X) − {x4, x6, x10}.

For an ordered information system, the dynamic updating should include adding new 
information, not only deleting invalid information. Because the target concept is given in 
advance, the added objects will only increase the cardinality of the universe, and will not 
change the target concept. However, the new objects will affect the overall classification, so 
the lower and upper approximations will be changed. OM∑m

i=1
R≥

i
(X)� , OM∑m

i=1
R≥

i
(X)� , 

PM∑m

i=1
R≥

i
(X)� , PM∑m

i=1
R≥

i
(X)� are respectively represent for the new optimistic and pessimis-

tic approximations. The changed dominance classes are represented by [xs]
≥

Ri

�.

Proposition 4.3  Let I≥ = (U,AT ,F) be an ordered information system, R≥

i
 

( i = 1, 2,… ,m ) is a dominance relation, and X ⊆ U . If a new object xt(xt ∉ U, xt ∈ U�) is 
added, then the lower and upper approximations of optimistic and pessimistic multigranu-
lation are shown as follows. 

(1)	 ∀xs ∈ OM∑m

i=1
R≥

i
(X)  i f  xt ∈ [xs]

≥

Ri

�  f o r  a n y  Ri(i = 1, 2,… ,m)  ,  t h e n 
OM∑m

i=1
R≥

i
(X)� = OM∑m

i=1
R≥

i
(X) − {xs} (xs ≠ xt).

	   ∀xs ∈ PM∑m

i=1
R≥

i
(X) if exists a granule  Ri such that  xt ∈ [xs]

≥

Ri

� ,  then 
PM∑m

i=1
R≥

i
(X)� = PM∑m

i=1
R≥

i
(X) − {xs} (xs ≠ xt).

(2)	 If  i t  is satisf ied that  [xt]
≥

Ri

�
∩ X ≠ � for every  Ri(i = 1, 2,… ,m) ,  then 

OM∑m

i=1
R≥

i
(X)� = OM∑m

i=1
R≥

i
(X) ∪ {xt}.

	   If exists a granule Ri such that [xt]
≥

Ri

�
∩ X = � , then PM∑m

i=1
R≥

i
(X)� = PM∑m

i=1
R≥

i
(X) ∪ {xt}

.

Proof 

(1)	 Due to xs ∈ OM∑m

i=1
R≥

i
(X) , so it is obtained that [xs]

≥

Ri
⊆ X at least a granule Ri . Because 

of xt ∉ X and xt ∈ [xs]
≥

Ri

� for every Ri , then we have [xs]
≥

Ri

�
⊈ X for all granules. More-

over, xs ∉ OM∑m

i=1
R≥

i
(X)� . Thus, OM∑m

i=1
R≥

i
(X)� = OM∑m

i=1
R≥

i
(X) − {xs} (xs ≠ xt) . Simi-

larly, the pessimistic lower approximation can be proved, namely, 
PM∑m

i=1
R≥

i
(X)� = PM∑m

i=1
R≥

i
(X) − {xs}.

(2)	 It is easy to obtain the related results.

	�  ◻

OM∑m

i=1
R≥

i
(X)� ={x7, x8, x9},

OM∑m

i=1
R≥

i
(X)� ={x1, x2, x5, x7, x8, x9};

PM∑m

i=1
R≥

i
(X)� ={x7, x8},

PM∑m

i=1
R≥

i
(X)� ={x1, x2, x3, x5, x7, x8, x9}.
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Example 4.3  (Continuation of Example 3.1) Consider the target set 
X = {x2, x4, x5, x7, x8, x9} , then the optimistic and pessimistic approximations of the target 
set can be obtained. Furthermore, we discuss the lower and upper approximations after 
adding objects x11 and x12 . As shown in the following Table 2, it is a new information table 
after objects are added.

After adding new objects x11, x12 , the dominance classes are listed as follows.

Before adding the objects x11, x12 , {x7, x8, x9} = OM∑m

i=1
R≥

i
(X) , {x7, x8} = PM∑m

i=1
R≥

i
(X) , and 

x11 ∈ [x7]
≥

R1

� , so we have x7 ∉ PM∑m

i=1
R≥

i
(X)� . Meanwhile, x11 ∈ [x9]

≥

R1

� and x11 ∈ [x9]
≥

R2

� , 
then x9 ∉ OM∑m

i=1
R≥

i
(X)� . Thus, OM∑m

i=1
R≥

i
(X)� = OM∑m

i=1
R≥

i
(X) − {x9} = {x7, x8} and 

PM∑m

i=1
R≥

i
(X)� = PM∑m

i=1
R≥

i
(X) − {x7} = {x8}.

At the same time, [x11]
≥

R1

�
∩ X ≠ � , [x11]

≥

R2

�
∩ X ≠ � , so x11 ∈ OM∑m

i=1
R≥

i
(X)� . Due to 

[x12]
≥

R2

�
∩ X ≠ � , we have x12 ∈ PM∑m

i=1
R≥

i
(X)�.

According to the lower and upper approximations definitions of optimistic and pes-
simistic, we have

[x1]
≥

R1

�
=[x2]

≥

R1

�
= {x1, x2, x10, x12}, [x3]

≥

R1

�
= [x5]

≥

R1

�
= {x3, x5}, [x4]

≥

R1

�
= [x6]

≥

R1

�
= {x4, x6, x10, x12},

[x7]
≥

R1

�
={x7, x8, x9, x11}, [x8]

≥

R1

�
= {x8}, [x9]

≥

R1

�
= {x8, x9, x11}, [x10]

≥

R1

�
= {x10, x12},

[x11]
≥

R1

�
={x8, x11}, [x12]

≥

R1

�
= {x10, x12}.[x1]

≥

R2

�
= {x1, x2, x3, x4, x5, x6, x10, x12},

[x2]
≥

R2

�
={x2, x3, x4, x6}, [x3]

≥

R2

�
= {x3}, [x4]

≥

R2

�
= [x6]

≥

R2

�
= {x4, x6},

[x5]
≥

R2

�
={x3, x5}, [x7]

≥

R2

�
= {x7}, [x8]

≥

R2

�
= {x7, x8}, [x9]

≥

R2

�
= {x3, x5, x7, x8, x9, x11},

[x10]
≥

R2

�
=[x12]

≥

R2

�
= {x4, x6, x10, x12}, [x11]

≥

R2

�
= {x3, x7, x8, x11}.

Table 2   New ordered 
information system

U a1 a2 a3 a4 a5 a6

x1 1 2 1 2 2 3
x2 2 2 3 2 2 3
x3 2 2 3 3 1 4
x4 4 1 4 2 4 3
x5 1 2 1 3 1 4
x6 4 1 4 2 4 3
x7 4 1 4 3 3 2
x8 3 4 2 3 3 2
x9 1 2 1 3 3 2
x10 3 4 2 2 4 3
x11 2 3 1 3 3 2
x12 3 4 2 2 4 3
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From the above discuss, it is easy to verify the correctness of the Proposition 4.3.

4.2 � Dynamic updating approximations on local multigranulation rough set 
in ordered information systems

Since the local update with dynamic objects is mainly aimed at the object in the target 
set, it is necessary to classify and discuss whether the deleted object is in the target set. 
Meanwhile, because the added object will not appear in the target set, only one case 
should be considered when adding objects. Next, based on the global updating represen-
tation method, we only change the local multigranulation lower and upper approxima-
tions of optimistic and pessimistic, which are denoted as 

∑m

i=1
R≥

i

O

L
(X)� , 

∑m

i=1
R≥

i

O

L
(X)� , 

∑m

i=1
R≥

i

P

L
(X)� , 

∑m

i=1
R≥

i

P

L
(X)�.

Proposition 4.4  Let I≥ = (U,AT ,F) be an ordered information system, R≥

i
 

( i = 1, 2,… ,m ) is a dominance relation, and X ⊆ U . After deleting xt , we obtain the fol-
lowing properties of local multigranulation optimistic and pessimistic approximations. 

(1)	 If xt ∉ X , then 
∑m

i=1
R≥

i

O

L
(X)� =

∑m

i=1
R≥

i

O

L
(X) − {xt} , 

∑m

i=1
R≥

i

P

L
(X)� =

∑m

i=1
R≥

i

P

L
(X) − {xt}

.
(2)	 If xt ∈ X , ∀xs ∈ X and xs ∉

∑m

i=1
R≥

i

O

L
(X) , if there exists Ri such that ([xs]

≥

Ri
− {xt}) ⊆ X , 

then xs ∈
∑m

i=1
R≥

i

O

L
(X)�.

	   If  xt ∈ X  ,  ∀xs ∈ X  and  xs ∉
∑m

i=1
R≥

i

P

L
(X) ,  if  ([xs]

≥

Ri
− {xt}) ⊆ X  for any 

Ri(i = 1, 2,… ,m) , then xs ∈
∑m

i=1
R≥

i

P

L
(X)�.

Proof 

(1)	 It is easy to obtain the related results.
(2)	 ∀xs ∈ X and xs ∉

∑m

i=1
R≥

i

O

L
(X) , we have [xs]

≥

Ri
⊈ X for every Ri(i = 1, 2,… ,m) . If there 

exists Ri such that ([xs]
≥

Ri
− {xt}) ⊆ X , from Definition 3.2, we can get that [xs]

≥

Ri

�
⊆ X . 

That means xs ∈
∑m

i=1
R≥

i

O

L
(X)�.

The proof of pessimistic lower approximation is similar to the above optimistic lower 
approximation. 	�  ◻

Example 4.4  (Continuation of Example 3.1) Consider the target set 
X = {x2, x4, x5, x7, x8, x9} , the optimistic and pessimistic approximations of the target set 
can be obtained. Furthermore, we discuss the lower and upper approximations after delet-
ing objects x3 and x4.

OM∑m

i=1
R≥

i
(X)� ={x7, x8},

OM∑m

i=1
R≥

i
(X)� ={x1, x2, x4, x5, x6, x7, x8, x9, x11};

PM∑m

i=1
R≥

i
(X)� ={x8},

PM∑m

i=1
R≥

i
(X)� ={x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12}.
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After removing x3 ∉ X , the dominance classes are as follows

We find ([x5]
≥

R1

− {x3}) ⊆ X , ([x5]
≥

R2

− {x3}) ⊆ X , so it is that x5 ∈
∑m

i=1
R≥

i

O

L
(X)� and 

x5 ∈
∑m

i=1
R≥

i

P

L
(X)� . Meanwhile, x9 ∉

∑m

i=1
R≥

i

P

L
(X) , but ([x9]

≥

R2

− {x3}) ⊆ X , therefore 
x9 ∈

∑m

i=1
R≥

i

P

L
(X)�.

When removing x4 ∈ X , we have

We can easily get that 
∑m

i=1
R≥

i

O

L
(X)� =

∑m

i=1
R≥

i

O

L
(X) − {x4} , ∑m

i=1
R≥

i

P

L
(X)� =

∑m

i=1
R≥

i

P

L
(X) − {x4}.

Proposition 4.5  Let I≥ = (U,AT ,F) be an ordered information system, R≥

i
 

( i = 1, 2,… ,m ) is a dominance relation, and X ⊆ U . If a new object xt(xt ∉ U, xt ∈ U�) is 
added, then we obtain

(1)	 ∀xs ∈
∑m

i=1
R≥

i

O

L
(X) , if xt ∈ [xs]

≥

Ri

� for every Ri(i = 1, 2,… ,m) , then xs ∉
∑m

i=1
R≥

i

O

L
(X)�

.
(2)	 ∀xs ∈

∑m

i=1
R≥

i

P

L
(X) , if exists a granule Ri such that xt ∈ [xs]

≥

Ri

� , then xs ∉
∑m

i=1
R≥

i

P

L
(X)�

.

Proof 

(1)	 Because xs ∈
∑m

i=1
R≥

i

O

L
(X) , then we have xs ∈ X . However, xt ∉ X , so xs ≠ xt . Due to 

xt ∈ [xs]
≥

Ri

� , [xs]
≥

Ri

�
⊈ X for each Ri(i = 1, 2,… ,m) . Then xs ∉

∑m

i=1
R≥

i

O

L
(X)�.

(2)	 It is easy to obtain the related results.

	�  ◻

Example 4.5  (Continuation of Example 4.3) Consider the target set 
X = {x2, x4, x5, x7, x8, x9} , adding objects x11 and x12 , we discuss local multigranulation 
optimistic and pessimistic approximations as follows.

After adding new objects x11, x12 , the local dominance classes are
[x2]

≥

R1

�
= {x1, x2, x10, x12} , [x4]

≥

R1

�
= {x4, x6, x10, x12} , [x5]

≥

R1

�
= {x3, x5},

[x7]
≥

R1

�
= {x7, x8, x9, x11} , [x8]

≥

R1

�
= {x8} , [x9]

≥

R1

�
= {x8, x9, x11}.

[x2]
≥

R2

�
= {x2, x3, x4, x6} , [x4]

≥

R2

�
= [x6]

≥

R2

�
= {x4, x6} , [x5]

≥

R2

�
= {x3, x5},

[x7]
≥

R2

�
= {x7} , [x8]

≥

R2

�
= {x7, x8} , [x9]

≥

R2

�
= {x3, x5, x7, x8, x9, x11}.

Due to {x7, x8, x9} =
∑m

i=1
R≥

i

O

L
(X) , x11 ∈ [x9]

≥

R1

� and x11 ∈ [x9]
≥

R2

� , then 
x9 ∉

∑m

i=1
R≥

i

O

L
(X)� . Meanwhile, {x7, x8} =

∑m

i=1
R≥

i

P

L
(X) and x11 ∈ [x7]

≥

R1

� , so we have 
x7 ∉

∑m

i=1
R≥

i

P

L
(X)�.

[x2]
≥

R1

�
={x1, x2, x10}, [x4]

≥

R1

�
= {x4, x6, x10}, [x5]

≥

R1

�
= {x5}, [x7]

≥

R1

�
= {x7, x8, x9}, [x8]

≥

R1

�
= {x8}, [x9]

≥

R1

�
= {x8, x9}.

[x2]
≥

R2

�
={x2, x4, x6}, [x4]

≥

R2

�
= {x4, x6}, [x5]

≥

R2

�
= {x5}, [x7]

≥

R2

�
= {x7}, [x8]

≥

R2

�
= {x7, x8}, [x9]

≥

R2

�
= {x5, x7, x8, x9}.

[x2]
≥

R1

�
={x1, x2, x10}, [x5]

≥

R1

�
= {x3, x5}, [x7]

≥

R1

�
= {x7, x8, x9}, [x8]

≥

R1

�
= {x8}, [x9]

≥

R1

�
= {x8, x9}.

[x2]
≥

R2

�
={x2, x3, x6}, [x5]

≥

R2

�
= {x3, x5}, [x7]

≥

R2

�
= {x7}, [x8]

≥

R2

�
= {x7, x8}, [x9]

≥

R2

�
= {x3, x5, x7, x8, x9}.
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Proposition 4.1 is about the decision rules for updating approximations on global mul-
tigranulation rough set in ordered information systems when the object xt not belonged 
to the target concept X is deleted, Proposition 4.2 is about the decision rules for updating 
approximations on global multigranulation rough set in ordered information systems when 
the object xt belonged to the target concept X is deleted, and Proposition 4.3 is about the 
decision rules for the global method when a new object is added. Propositions 4.4 and 4.5 
are about the decision rules for updating approximations on local multigranulation rough 
set in ordered information systems when an object xt is deleted and added, respectively.

5 � The algorithm of updating approximations with dynamic objects

Before discussing the updating algorithms of dynamic objects in global and local back-
ground, we need to point out that the pessimistic multigranulation rough approximation 
dynamic updating algorithm in ordered information system is similar to the optimistic 
multigranulation rough approximation dynamic updating algorithm. In this section, we 
only investigate the optimistic multigranulation rough approximation dynamic updating 
algorithm in ordered information systems, the algorithms in pessimistic situation could 
be deduced similarly. In the following, we provide different algorithms based on adding 
objects and deleting objects, and compare static updating and dynamic updating about 
global and local multigranulation rough approximations in ordered information systems. 
Since the pessimistic multigranulation algorithm is similar to optimistic multigranulation 
algorithm, it could be obtained similarly, so we just discuss the related algorithms for opti-
mistic multigranulation rough set approximations here. Table  3 is about necessary nota-
tions and symbols used in the algorithm.

Let us focus on the following algorithms for dynamic updating. Algorithm 1 is about 
the dynamic updating algorithm for computing the global optimistic lower and upper 
approximations in ordered information systems when deleting objects from the whole 
universe. Firstly, we give the initial value, that is, optimistic lower and upper approxima-
tions are empty sets. Then the second step computes the dominance classes of all objects. 
After the third step about deleting the object xt , the fourth step is to adopt the dynamic 
updating method, which is based on the dominance classes in the second step, and 
only needs to delete the corresponding elements from the existing dominance classes. 
Finally, the global optimistic lower and upper approximations are calculated based on the 
changed dominance classes. Algorithm 2 is the dynamic updating algorithm for comput-
ing the local optimistic lower and upper approximations in ordered information systems 
when removing objects from the whole universe. Firstly, we give the initial value, that is, 
optimistic lower and upper approximations are empty sets. Then, the second step com-
putes the dominance classes in the target set. After deleting the object xt in the third step, 
the fourth step is to adopt the dynamic updating method, which is based on the domi-
nance classes in the second step, and only needs to delete the corresponding elements 
from the existing dominance classes in the target set. Finally, the local optimistic lower 
and upper approximations are calculated based on the changed dominance classes. The 
time complexity for each step in Algorithms 1 and 2 is shown in Table 4.
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Before deleting objects dynamically, the global and local algorithms in the second 
step are calculating the corresponding dominance classes. The dominance classes of all 
objects based on each granularity need to be computed in the global algorithm and its 
complexity is O(m × |U|2) . The local algorithm only need to compute the dominance 
classes of objects that are included in target concepts. Therefore, its complexity is 

Table 3   Symbolic notation Name Symbolic

An ordered information system I
≥

Dominance relations R
i

A target concept X
Domiance classes based on R

i [x
j
]≥
R
i

Original lower approximation LA
Original upper approximation UA
Global optimistic multigranulation lower approximation GML
Global optimistic multigranulation upper approximation GMU
Local optimistic multigranulation lower approximation LML
Local optimistic multigranulation upper approximation LMU
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O(m × |X||U|) . Due to |X| ≪ |U| , we have O(m × |X||U|) ≪ O(m × |U|2) . In the follow-
ing steps, the complexity of the local algorithm is less than that of the global algorithm. 
Thus, when the capacity of dataset becomes larger and larger, the complexity of the 
local algorithm is much less than that of the global algorithm, and the advantages are 
more obvious. 

Algorithms 3 and 4 are respectively dynamic updating algorithms for computing the 
global and local optimistic lower and upper approximations with adding the object xt in 
ordered information systems. The method of adding new objects is same to the former two 
algorithms. For the incremental algorithm, take adding a single object as an example, the 

Table 4   The time complexity of 
Algorithms 1 and 2

Step Global Local

2 O(m × |U|2) O(m × |X||U|)
4 O(m × |U − 1|) O(m × |X|)
5 O(m × |U − 1|) O(m × |X|)
Others 0 0
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new objects are inserted in a dynamic way according to the steps, and the approximation 
values after updating are calculated. The explanation for each step is based on the steps 
previously deleted. Finally, based on the definition of optimistic approximation, global 
updating and local updating algorithms are presented. 
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To facilitate comparison, we also need to analyze the time complexity of static 
methods after adding objects into the universe. After adding the object xt , the time 
complexity of static global method is O(m × |U + 1|2) , while that of static local 
method is O(m × |X||U + 1|) . Due to |X| ≪ |U| , the complexity of local method 
is much less than that of global method for static updating. Compared with static 
method, dynamic updating reduces many ineffective and onerous computational pro-
cesses. After adding new object xt , there is no need to compute dominance classes. 
The target information is dynamically depicted by the approximation before updat-
ing. Therefore, the time complexity of dynamically increasing objects is the sum of 
the lower approximation complexity and upper approximation complexity, which is 
O(m × |LA|) + O(m × |UA|) = O(m × |UA|) . As for the dynamically increasing local 
algorithm, it only updates the dominance classes of the target object, so its local time 
complexity is O(m × |X|) . The above results have been shown in Table  5. Usually, 
the upper approximation contains the concept of the target |UA| > |X| . Therefore, the 
cardinality of the upper approximation is larger than that of the target set. Therefore, 
when adding objects dynamically, the local time complexity is less than the global 
time complexity.



1844	 W. Li et al.

1 3

6 � Experimental studies

In order to further illustrate the advantages of local multigranulation algorithms under the 
background of dynamic updating to deal with changing information in an ordered information 
system, some experiments are carried out using six datasets from UCI (http://​archi​ve.​ics.​uci.​
edu/​ml/​datas​ets.​html). The time consumption of global algorithm and local algorithm using 
dynamic updating method is compared. At the same time, the local algorithm under dynamic 
updating and local algorithm under static updating are also compared. Detailed information 
for the tested datasets is shown in Table 6. These experiments are implemented by using Mat-
lab R2014b and performed on a personal computer with an Intel Core i7-6500, 2.50 GHz 
CPU, 4.0 GB of memory, and 64-bit Windows 10.

The experimental part includes two parts: the deletion of existing objects and the addition 
of new objects. Each dataset is added and deleted according to the proportion of its own data. 
The possible differences between global method and local method depend on the size of the 
target concept. No matter how large the target concept is, the target concept will be a subset of 
the whole universe. To be sure, the closer the approximated concept is to the whole universe, 
the less significant the difference in the time they take. We just select and show one of the 
target concept to verify and illustrate our approach, so we use the computer program to ran-
domly generate a target set to make sure it is randomly selected. The multigranulation means 
two or more than two granulations. In the study of rough set theory, a subset of attribute set 
can generate a granulation for the multigranulation, which also forms a binary relation (in this 
case, dominance relation). Without loss of generality, we considered two granulations in the 
experiments for each dataset.

In terms of deleting objects, we randomly delete objects in the original dataset according 
to percentages. Since the deleted objects are randomly selected, it is possible to delete the ele-
ments in the target set, thus affecting the time results of the local multigranulation dynamic 
updating algorithm. That is to say, it takes less time to compute approximation after deleting 
fewer objects than after deleting more objects. However, the comparison between the global 
algorithm and the local algorithm will not be affected. Because the time difference is small, 
this does not affect the final overall trend when comparing the time results of global and local 
algorithms. According to Algorithms 1 and 2, the global and local dynamic updating algo-
rithms are given to obtain the approximation time for the constantly changing information. 
Similarly, after deleting objects, the time consumption of local multigranulation rough sets 
with static updating and dynamic updating is compared. On the other hand, 50% of the origi-
nal dataset elements are used as the initial data before adding objects, and then the remain-
ing datasets are proportionally added to the initial data. Therefore, according to Algorithms 
3 and 4, the computational time of global dynamic increment algorithm and local dynamic 
increment algorithm is compared. Furthermore, the approximation time of local multigranula-
tion rough sets is calculated by dynamic and static updating methods respectively after adding 
objects, and then further compared.

In order to ensure that the experiment could be carried out effectively, data are pre-pro-
cessed in the experiment. The global and local comparisons of the optimistic approximation 
are given below. The pessimistic approximation is similar to the optimistic approximation and 
is not given repeatedly. Similarly, only static and dynamic comparison results of optimistic 
approximation are given, and the comparison results of pessimistic approximation are omitted. 
Before we analyze the data shown from Tables 7, 8, 9, and 10, we need to point out that the 
unit of the time consumption is seconds.

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
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Table  7 concludes the time results of six datasets about optimistic approximations, 
which represent the time consumption required lower and upper approximations for global 
and local multigranulation rough sets under dynamic deletion algorithms. From Table 7, 
the computation time of local dynamic algorithm is much less than that of the global 
dynamic algorithm after objects are deleted. The ratio of deleted objects as abscissa and 
time consumption is used as ordinate. With the increase of the ratio of deleted objects, 
the time changing trend chart of dynamic updating consumption can be obtained in Fig. 1. 
As the number of deleted objects increases, computing the approximation time becomes 
shorter. However, the advantage of local dynamic algorithm time still can be seen intui-
tively. The local dynamic algorithm is much better than the global dynamic algorithm in 
ordered information systems.

Table 8 shows the time consumed by dynamic deletion and static deletion of local mul-
tigranulation rough sets to obtain approximations respectively. Although the time differ-
ence between the dynamic deletion algorithm and the static deletion algorithm is not as big 
as that between the global and local algorithms, we can see that the static algorithm and the 
dynamic algorithm change with the increase of the number of objects in the dataset. When 
the dataset is bigger, the advantage of the dynamic algorithm of the local multigranulation 
rough set is more obvious based on dominance relation. The specific change trend chart is 
shown in Fig. 2.

Table 9 shows the time consumption of lower and upper approximations required for 
global and local multigranulation rough sets based on dynamic increase algorithms. As 
it can be seen from Table 9, with the increase of the number of objects in the dataset, the 
difference between the computation time of the local dynamic algorithm and that of the 
global dynamic algorithm becomes much more obvious. Similarly, a rectangular coordi-
nate system is established based on the increased proportion and the time consumed. The 
time change trend chart of the dynamic updating of the six datasets is shown in Fig. 3. As 
the number of objects increases, the approximation time of computation becomes longer. 
After adding new objects, the local dynamic algorithm is superior to the global dynamic 
algorithm in ordered information systems.

Table  10 shows the time consumed to obtain the lower and upper approximations of 
local multigranulation rough sets by dynamic increment and static increment algorithms, 
respectively. Since they are all based on the local multigranulation rough set, only the 
objects related to the target set need to be concerned. Therefore, dynamic local algorithm 
and static local algorithm can only show the gap on large data, reflecting the advantages 
of dynamic local algorithm. In Fig.  4, the time difference between static algorithm and 
dynamic algorithm is getting larger and larger with the increase of objects. In ordered 
information systems, it shows that the algorithm of local dynamic increase is better.

Table 5   The time complexity of 
Algorithms 3 and 4

Update Global Local

Add statically O(m × |U + 1|2) O(m × |X||U + 1|)
Add dynamically O(m × |UA|) O(m × |X|)
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7 � Conclusions

The information contained in various information systems is constantly updated and 
changed with the development of information technology. How to efficiently extract useful 
information from the dynamic information system is a very challenging work in the multi-
granulation structure of complex and different information sources. To solve certain limita-
tions of classical rough set models regard to large datasets, the local rough set was first pre-
sented by Qian et al. (2017, 2018). It is stated that local rough sets do not need to deal with 
the information granules of all the objects in the whole dataset, but only need to calculate 
the information granules of objects in the target concepts, which can significantly improve 
the computing performance. The main objective of this paper is to build novel local rough 
set models for a wider application environment by considering local rough approximations 
from the multigranulation viewpoint in ordered information systems. The dynamic updat-
ing algorithms of the constructed local rough approximations are provided with the object 
variation in ordered information systems. Moreover, we also tested the time consumption 
of the proposed dynamic algorithm from six different datasets and compared it with the 
global dynamic algorithm and the static algorithm. From the results reported by the experi-
ment studies about adding and deleting objects from the ordered information systems, we 
could summarize the following two points about the superiority of dynamic object updat-
ing based on the local multigranulation rough set models in ordered information systems: 
(1) the computation time of the local dynamic updating algorithm is much less than that 
of the global dynamic updating algorithm; (2) the computation time of the local dynamic 
updating algorithm is much less than that of the local static updating algorithm. Among 
this article, we use examples to interpret and analyze the concepts we studied. The poten-
tial applications of this study could mainly embodied in deriving decision rules based on 
the proposed local multigranulation rough sets in ordered information system. These deci-
sion rules could be obtained from the disjoint decision regions. In other words, we can 
apply our results to classifiers. In terms of classifier, we could treat decision class as target 
set, and determine the label of objects by observing whether they fall in the positive region 
of the target set. Also, this dynamic update mechanism in this paper can also be applied to 
judge whether the object falls within the updated upper and lower approximation, so as to 
further dynamic classify the objects. In the future work, we will focus on our model as a 
classifier, and compare it with other existing classical classifiers to obtain its classification 
effect.

Table 6   The basic information of datasets

No. Dataset Abbreviation Objects Attributes

1 Absenteeism at work A-aw 740 21
2 Statlog (image segmentation) S(IS) 2310 19
3 Page blocks classification PBC 5473 11
4 Combined cycle power plant CCPP 9568 5
5 Crowdsourced mapping CM 10,545 28
6 MAGIC gamma telescope MGT 19,020 11
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Fig. 1   The computation time comparison of dynamic updating between local algorithm and global algo-
rithm when deleting objects

Fig. 2   The computation time comparison of local algorithm between static updating and dynamic updating 
when deleting objects
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