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Abstract— Dominance-based rough approximation discovers
inconsistencies from ordered criteria and satisfies the require-
ment of the dominance principle between single-valued domains
of condition attributes and decision classes. When the ordered
decision system (ODS) is no longer single-valued, how to uti-
lize the dominance principle to deal with multivalued ordered
data is a promising research direction, and it is the most
challenging step to design a feature selection algorithm in
interval-valued ODS (IV-ODS). In this article, we first present
novel thresholds of interval dominance degree (IDD) and interval
overlap degree (IOD) between interval values to make the
dominance principle applicable to an IV-ODS, and then, the
interval-valued dominance relation in the IV-ODS is constructed
by utilizing the above two developed parameters. Based on the
proposed interval-valued dominance relation, the interval-valued
dominance-based rough set approach (IV-DRSA) and their cor-
responding properties are investigated. Moreover, the interval
dominance-based feature selection rules based on IV-DRSA
are provided, and the relevant algorithms for deriving the
interval-valued dominance relation and the feature selection
methods are established in IV-ODS. To illustrate the effectiveness
of the parameters variation on feature selection rules, experimen-
tal evaluation is performed using 12 datasets coming from the
University of California-Irvine (UCI) repository.

Index Terms— Dominance-based rough set, feature selec-
tion, interval value, ordered information system (OIS), rough
approximation.

NOMENCLATURE

OIS Ordered information system.
ODS Ordered decision system.
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IV-OIS Interval-valued ordered information system.
IV-ODS Interval-valued ordered decision system.
IDD Interval dominance degree.
IOD Interval overlap degree.
DRSA Dominance-based rough set approach.
IV-DRSA Interval-valued dominance-based rough set

approach.
IV-UB Upper boundary for interval value.
IV-MV Mean value for interval value.
RSoIV Comparison method in [29].
GDI Comparison method in [5].

I. INTRODUCTION

THE rough set theory, proposed by Pawlak [1], is an
effective formal tool to handle imprecision, vagueness,

and uncertainty in data analysis. This relatively new soft
computing methodology has produced successful applications
in many areas of science and engineering, such as pattern
recognition [2], [3], data mining [4]–[6], image processing [7],
and medical diagnosis [8]–[10]. The Pawlak rough set exhibits
two characteristics in real-life applications: 1) the data type
is classic, that is, each object in the information system has
only one definite value with regard to each attribute and
2) the required binary relation is classic, that is, it is an
equivalence relation. These two aspects lead to two important
research directions of rough set theory. Existing extended
rough set models can be roughly cast into two perspectives:
1) extending the data type, including fuzzy data [11]–[15],
incomplete data [6], [16]–[18], set-valued data [19], interval-
valued data [20]–[24], and so forth and 2) extending the
binary relation, including similarity relation [19], tolerance
relation [25], dominance relation [26]–[31], and others.

As a special data type different from the classic, interval
value is a common data type in the fields of approximate rea-
soning, signal processing, and control. The traditional dataset
in machine learning and data mining is a single real-valued,
which is used to represent just one exact value, while each
value in interval-valued data is expressed as an interval, which
means a range. Interval-valued data have been applied to
characterize the imprecise and uncertain situations in real
applications. Compared with other types of data, interval-
valued data have unique advantages and practical significance.
For example, interval values can be used in cases where
measurement inaccuracies are sometimes inevitable, and then,
the result can be represented as an interval value. Besides,
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interval values are also useful when the values of a particular
attribute are continuous, which cannot be met by other data
types at the same time. Let us take the temperature as another
example. The temperature in Chongqing on a certain day in
April is 12 ◦C to 20 ◦C. Using real value cannot directly
express that, so we always use an average temperature as a
substitute. In that case, we can say that the average temperature
is 16 ◦C. On the other hand, we can also use an interval value
to precisely express the variation range, which is expressed
as [12 ◦C, 20 ◦C], and it can reflect the facts better than
the average temperature 16 ◦C. Evidently, an interval value
contains more information compared with a single value. This
is one of the reasons why it is necessary to study interval-
valued data.

Meanwhile, the binary relations used in a specific informa-
tion system are no longer equivalence relations but preference
relations, such as dominance relations. We call this kind of
information system as OIS [32]. When the decision attribute
also exhibits preference order in the OIS, it is defined as an
ODS. It is necessary to propose an extension called the DRSA
to take into account the ordering properties of the criteria.
The innovation is mainly based on the substitution of the
equivalence relation (indiscernibility relation) in an OIS by
a dominance relation. Since Greco et al. [28] initially studied
DRSA, many scholars have investigated a variety of rough
set models based on dominance relation to solve different
problems. Among these results, only a few involve research
of IV-OIS [11], [24], [33]. The main reason for less research
on IV-OIS is that the order relationship between interval
values in IV-OIS is complicated, and there is some information
loss between the interval-valued order relationship obtained
after processing and the original interval value, that is, the
interval value order relationship obtained after processing
cannot fully reflect the order characteristics between interval
values. As implied in [34], the error bound generated by the
imprecise intervals and fuzzy data may affect the effectiveness
of the classification for the IV-OIS. Therefore, it is vital to
thoroughly explore the order relationship of interval values,
and it is a promising research direction to put forward an
interval dominance relation to deal with arbitrary two interval-
valued data.

Feature selection is to select important features (or remove
redundant features) from complex datasets to achieve the
purpose of reducing dimensionality, so as to save the storage
space of data and the time of data analysis. Depending
on the operating principle, feature selection algorithms can
broadly be divided into two categories, including the wrap-
per model and the filter model [35]. The wrapper model
utilizes a learning algorithm and applies its performance to
evaluate features. On the contrary, the filter approach applies
significance criteria instead of a learning algorithm to select
features. Significance criteria include information gain [7],
consistency [36], dependence [37], [38], distance [39], and
so on. The significance measures of features and selection
criteria are important in feature selection, which influences
the effectiveness and classification of the reduction sets. In the
rough set theory, the importance of features depends on the
approximate accuracy of the rough set, and the size of lower

and upper approximations directly determines the accuracy
of rough set models; thus, scholars have proposed various
significance measures for features based on the approximate
operators, such as maximal discernibility pairs, dependency,
and inner and outer importance measures. Therefore, different
feature selection algorithms have been derived from the above
significance measure functions [40]–[46]. Feature selection
methods based on DRSA have been extensively studied in the
past decades, and they are used to deal with classical ordered
datasets [47]–[50]. Although these methods can effectively
remove redundant features from ordered data, they ignore
the characteristics of interval-valued ordered data, which are
more widely used and more reasonable existed than classical
ordered data in real-life applications. Accordingly, an effective
and efficient feature selection method is urgently requested to
process interval-valued ordered data.

Based on the above analysis, in this article, we define the
notions of IDD and IOD to conveniently describe the domi-
nance relation between any interval values and then establish
a general dominance-based rough set model to deal with
IV-ODS and further explore the method of feature selection
rules. The main contents and innovation of this article could
be summarized in the following three aspects.
1) A novel dominance relation suitable for dealing with inter-

val values is proposed based on the defined IDD and IOD.
After discussing its important properties, the IV-DRSA
models are constructed.

2) Rules of interval dominance-based feature selection for
IV-ODS are presented, and the related algorithms for
calculating interval-valued dominance relation and feature
selection are derived in IV-ODS.

3) The experimental evaluation is performed using 12 public
available datasets. The relevant experiment is designed to
explore the optimal values of the two thresholds (IDD
and IOD), and the superiority of interval dominance-based
feature selection is shown by the analysis of experimental
results.

This article is organized as follows. Some necessary and
important concepts about DRSA are introduced in Section II,
and the motivation for this article is described in detail.
In Section III, we first present the notions of IDD and IOD,
and the concept of interval-valued dominance relation is
provided. Then, the concrete definitions of upper and lower
approximations are further obtained, and the IV-DRSA is
constructed accordingly. Moreover, we derived the reduction
rules in IV-OIS by using the inner and outer significances.
In Section IV, we mainly design two related algorithms to
compute the proposed interval dominance relation and cal-
culate the feature selection. In Section V, the corresponding
experimental testing is conducted by 12 datasets from the Uni-
versity of California-Irvine (UCI) datasets to test the advantage
of interval dominance-based feature selection methods for
IV-ODS, and the preferable thresholds of IDD and IOD are
further debated. Finally, Section VI covers some conclusions.

II. RELATED WORK AND FOUNDATIONS

In this section, the basic notions of the DRSA model and
IV-ODS are reviewed, and the motivation is depicted with a
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concrete and comprehensive analysis. Let us first explain the
necessary symbolic notations listed in the Nomenclature.

Definition 1: An information system is a tuple I =
(U, AT, V , f ), where the following holds.

1) U = {x1, x2, x3, . . . , xn} is a nonempty and finite set of
objects.

2) AT = {a1, a2, . . . , am} is a nonempty and finite set of
condition attributes, and AT ∩ d = ∅, where d is called
the decision attribute set.

3) V = VAT =⋃
al∈AT Val is the domain of attribute set AT,

where Val is the domain of al .
4) f = { fal |U → Val , al ∈ AT}, where fal is the value of

al on x ∈ U .
A decision information system is an information system

(U, AT ∪ d, V , f ), where AT ∩ d = ∅, AT is the condition
attribute set, while d is called the decision attribute set. The
conditional attribute set AT contains important information
about the characteristics of all aspects of the sample, and the
decision attribute set d represents the classification label of the
samples. Vd represents the domain of the decision attribute
set d . Generally, samples with the same value of decision
attributes are considered as the same category.

In a decision information system, if the domain of an
attribute is ordered according to a decreasing or increasing
preference, then the attribute is a criterion. A decision infor-
mation system is called an ODS if all condition attributes are
criteria.

Definition 2: Let I = (U, AT ∪ d, V , f ) be an ODS with
decision attribute d , and A is a subset of AT, namely, A ∈ AT.
The dominance relation with regard to A can be defined as

DRA =
{
(x, y) ∈ U 2| f (x, a) ≥ f (y, a) ∀a ∈ A

}
.

In the ODS, 
a is defined to denote the preference-ordered
relation on condition attribute a. Therefore, ∀a ∈ A, if x 
a y,
that means x dominates y in the attribution set A. We can
denote this as x DRA y. The set of all the objects that are
dominating x on attributes ∀a ∈ A, namely, A-dominating
set, is defined as

D+RA
= {y ∈ U |y 
A x}.

Similarly, the set of all the objects that are dominated by x
on attributes ∀a ∈ A, namely, A-dominated set, is defined as

D−RA
= {y ∈ U |x 
A y}.

Based on the difference of the decision attributes’ value, the
universe of discourse U can be divided into a finite number
of classes Cl = {Clt , t ∈ T }, T = {1, 2, 3, . . . , n}. Each x ∈
U belongs to one and only one decision class Clt . To each
decision attribute value vdt , Clt = {x ∈ U | f (x, d) = vdt }.
Assume that these decision classes are ordered, that is, for
t, s ∈ T , if t ≤ s, then all the objects from Cls are preferred
to any object from Clt . Then, the upward unions Cl
t and
downward unions Cl�t of the decision classes are obtained as
follows:

Cl
t =
⋃
s≥t

Cls

Cl�t =
⋃
s≤t

Cls, t ∈ T .

The above upward unions and downward unions are the sets
to be approximated in the DRSA.

Definition 3: Let I = (U, AT ∪ d, V , f ) be an ODS and
A ⊆ AT. Then, the lower and upper approximations of Cl
t (t ∈
T ) are defined as follows:

RA
(
Cl
t

) = {
x ∈ U |D+A (x) ⊆ Cl
t

}

RA
(
Cl
t

) = {
x ∈ U |D−A (x) ∩ Cl
t �= ∅

}
.

The lower and upper approximations of Cl�t (t ∈ T ) also
can be defined as

RA
(
Cl�t

) = {
x ∈ U |D−A (x) ⊆ Cl�t

}

RA
(
Cl�t

) = {
x ∈ U |D+A (x) ∩ Cl�t �= ∅

}
.

Once the lower and upper approximations are obtained, the
positive region, the negative region, and the boundary region
of Cl
t and Cl�t could be derived, which are

PosA
(
Cl
t

) = RA
(
Cl
t

)

NegA

(
Cl
t

) = U − RA
(
Cl
t

)

Bn A
(
Cl
t

) = RA
(
Cl
t

)− RA
(
Cl
t

);
PosA

(
Cl�t

) = RA
(
Cl�t

)

NegA

(
Cl�t

) = U − RA
(
Cl�t

)

Bn A
(
Cl�t

) = RA
(
Cl�t

)− RA
(
Cl�t

)
.

In the following, we introduce IV-ODS and the method of
comparison of two interval values. An interval value is denoted
as u = [a, b], in which a, b ∈ R and a < b always holds. As a
matter of fact, the situation of a > b can also be converted to
u′ = [b, a], which satisfies the above definition. a is the lower
boundary of interval value u, and b is the upper boundary
of u. For u = [a, b] and v = [c, d], u = v holds iff a = c and
b = d . An interval value is actually a family of continuous
values and can be intuitively expressed as a region on the axis
of reals. Furthermore, we define the set of all interval values
as IV = {u|u = [a, b], a, b ∈ R}.

An IV-ODS is defined as I = (U, AT ∪ d, V , f ), in which
U = {x1, x2, . . . , xn} is nonempty finite set of objects; AT =
{a1, a2, . . . , am} is a nonempty finite sets of attributes or
features, and d = {d1, d2, . . . , dk} is the set of decision
attributes; V = VAT∪Vd = (

⋃
ai∈AT Vai )∪Vd , where Vai is the

domain of conditional attributes ai , Vd is domain of decision
attributes d , and Vai ∈ IV; and f : U × (AT ∪ d) → V is a
mapping from U×(AT∪d) to V and obviously f (x, ai) ∈ Vai .

The difference between IV-ODS and classical ODS is that
the former has all attributes with interval values, while the lat-
ter has all attributes with a single real value. Nowadays, there
are many studies on the classical ODS in the field of rough
sets; however, there are relatively few results on IV-ODS. The
reason why less research on IV-ODS existed is that there is
no reasonable approach to deal with the interval-valued order
relationship. This also leads to the absence of appropriate
references for studying if we want to deal with IV-ODSs, and
there is no suitable rough decision model for IV-ODS.

In many real-life circumstances, data types are no longer
single-valued, but multivalued, such as interval-valued. Com-
pared with the single-valued data type, the first challenge of
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feature selection for the interval-valued data type is how to
find an appropriate approach to deal with interval-valued data.
The second challenge is that few studies can reasonably and
comprehensively compare the size of interval values, that is,
there are few reasonable studies on the ordered relationship
between interval values. The existing research on how to
deal with interval values could be roughly summarized into
two aspects [11], [20]–[22], [24], [33], [42], [51], [52]. One
of them, denoted as IV-UB, is using the upper boundary to
replace it. The other one, denoted as IV-MV, is replacing
the interval value with its mean value of two boundaries.
For example, for an interval value u = [2, 4], it was
substituted by a = 4 and b = 3 in IV-UB and IV-MV,
respectively.

Although these two methods can simply transform interval
values into real values, there are disadvantages to both meth-
ods. Let us introduce the shortcomings as follows. In some
cases, two different interval values finally turn out to be equal,
which is unreasonable. For IV-UB, when two interval values
have the same upper boundary, then they are considered to be
the same. For instance, if u = [3, 5] and v = [2, 5], they both
are replaced by the real value a = 5. As for IV-MV if two
different interval values have the same mean value, then they
are also regarded as the same. For example, if u = [2, 6] and
u = [3, 5], they are replaced with b = 4, which is apparently
improper.

Moreover, a single value cannot involve whole information
contained in interval values. Sometimes, the loss of informa-
tion makes a great difference, which means that both IV-UB
and IV-MV are imprecise and cannot be properly used to deal
with IV-ODS. We need to find a more effective method to
compare the size of two interval values.

Meanwhile, two interval values may not have intersecting
parts or partially intersecting parts. In the case of intersection,
it may even occur that one interval value completely contains
another interval value. To establish the partial ordered relation
between two interval values, let us consider the relative
position of two interval values on the number axis. Let
u = [a, b] and v = [c, d] be two interval values in which
a < b and c < d always hold. As shown in Fig. 1, A is
the part of interval value u that is less than v; the region
denoted as B represents the common part of u and v; and the
region C is the part of interval value u that is bigger than
v. For different interval values, their relative positions on the
number axis are different. First, let us consider a special case.
When the length of B is zero, that means any value of v is
preferred to all values in u. In terms of the interval values
themselves, we can say that v is completely preferred to u.
For a common situation where the length of B is greater than
zero, we can use the proportion of the length of B in two
interval values to describe the degree of one interval value
that dominates the other one. The larger the proportion of B
in the two interval values, the less obvious the dominance
relationship between them. By comparing Fig. 1(a) and (b),
we know that the smaller the region B , the clearer the partial
order relationship between u and v. From this point, we can
introduce proper parameters to define the interval dominance
relation.

Fig. 1. Different cases on two interval values. (a) Large common part between
u and v . (b) Small common part between u and v . (c) No common part
between u and v .

III. INTERVAL-VALUED DOMINANCE-BASED

ROUGH SET APPROACH

The DRSA model can be successfully used to deal with
a single real-valued information system. However, this model
cannot be applied to IV-ODS directly. In this section, we first
define the dominance relation between two interval values on
basis of the definition of IDD and IOD. Then, we expand
the DRSA model from the single real-valued situation to
the interval-valued information system and determine the
IV-DRSA model.

A. Interval Dominance Degree

The dominance relation for the single real-valued data is
defined directly by comparing the size of the value. Nev-
ertheless, the interval values cannot be compared directly.
However, for special interval values, we can compare their
sizes. For example, we have two interval values u = [2, 3]
and v = [3, 4]. It is obvious that an arbitrary value of v
is larger than any specific value of u. Here, we construct a
quantitative index to describe the dominance relation between
interval values, especially for the situation in which interval
values have intersecting parts and cannot be compared.

Consider two interval values u = [a, b] and v = [c, d],
in which a < b and c < d always hold.

Definition 4: The IDD, denoted as g(u, v), is defined as

g(u, v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, a < b ≤ c < d

or a = c < d = b

−1, c < d ≤ a < b
d − b

max{b, d} −max{a, c} , else.

In order to construct the partial order in IV-OIS, antisymme-
try is a basic property that must be satisfied. For two interval
values, we discuss the important properties of IDD as follows.

Theorem 1: Given two interval values u = [a, b] and
v = [c, d], then we have the following.
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1) −1 ≤ g(u, v) ≤ 1.
2) g(u, v) = −g(v, u) iff a �= c and b �= d .

Proof:
1) From Definition 4, if d ≤ a or a = c < d = b, then

g(u, v) = −1, and if b ≤ c, then g(u, v) = −1. In other
cases, |d − b| < |max{b, d} − max{a, c}| always holds.
Thus, −1 ≤ g(u, v) ≤ 1 holds.

2) It is obvious that, g(u, v) = 1 if a = c and b = d .
If c < d ≤ a < b, then g(u, v) = −1 and g(v, u) = 1,
that is, g(u, v) = −g(v, u). In other cases, it is easy to
figure out g(u, v) = −g(v, u).

�
From Theorem 1, the IDD of an interval value on another

interval value ranges from −1 to 1. Specifically, if the dom-
inance degree of interval value u concerning v ranges from
−1 to 0 and g(u, v) ≤ α (α < 0) holds, that means u
is dominating v with the level α. On the contrary, if the
dominance degree of u concerning v ranges from 0 to 1, and
g(u, v) ≥ α (α > 0) holds, then we say that u is dominated
by v with the level α. Generally, one interval value is not
always completely dominating another one. By utilizing IDD,
we can precisely describe the degree of one interval value that
dominates another.

B. Interval Overlap Degree

The IDD describes the dominance relation on the one
hand. From another perspective, we always expect as little
overlap as possible between two interval values because the
situation of two completely nonoverlapping interval values
means absolute dominance relation. Meanwhile, sometimes,
two different groups of interval values can have the same IDD.
For example, the IDDs of [3, 5], [4, 6] and [2, 5], [4, 6] have
the same IDD 0.5, while the overlap of latter interval values
is obviously less than the former. Then, we give the definition
of the IOD, which describes the level of overlap between two
interval values.

Definition 5: Let l1 = b−a and l2 = d−c. l1 and l2 are the
lengths of interval values u and v, respectively. For possible
cases, the IOD, denoted as h(u, v), is defined as

h(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

0, d ≤ a or b ≤ c

or a = c < b = d
2(min{b, d} −max{a, c})

l1 + l2
, else.

Similarly, in order to construct the partial order in IV-OIS,
we use the following theorem to prove the antisymmetry of
interval-valued dominance relation.

Theorem 2: For two interval values u = [a, b] and v =
[c, d], we have the following properties.

1) 0 ≤ h(u, v) ≤ 1.
2) h(u, v) = h(v, u).

Proof:
1) From Definition 5, if d ≤ a or b ≤ c, h(u, v) = 0,

while, in other cases, 0 ≤ 2(min{b, d} − max{a, c}) ≤
l1 + l2 always holds; hence, 0 ≤ h(u, v) ≤ 1.

2) It can be easily derived from Definition 5.
�

From Theorem 2, the IOD of two interval values ranges
from 0 to 1. The smaller the IOD is, the more obvious the
difference between two interval values. With the IOD, we can
precisely describe the degree of one interval value that overlaps
another, which is also an important indicator to measure the
dominance relation between two interval values.

C. Interval-Valued Dominance Relation

Now, any two interval values are comparable by using two
proposed parameters, namely, IDD and IOD. In an IV-ODS,
by giving the constraint conditions of two objects on a specific
attribute set, we can define the interval-valued dominance
relation.

Definition 6: Let I = (U, AT ∪ d, V , f ) be an IV-ODS.
x , y ∈ U , and A is a subset of conditional attribute AT. The
interval-valued dominance relation on attribute set A is defined
as

Dα,β
A =

{
(x, y) ∈ U 2|g(u, v) ≥ α ∧ h(u, v) ≤ β

}

where u = f (x, a) and v = f (y, a).
For the object y, u = f (x, a), and v = f (y, a), if g(u, v) ≥

α ∧ h(u, v) ≤ β holds for any a ∈ A, then objects x and y
satisfy the dominance relation at the level α and β. We can
also denote it as y Dα,β

A x .
In the following, we discuss some properties of interval

dominance relation, which are important for the feature selec-
tion algorithm and save a lot of computational time.

Theorem 3: Let I = (U, AT∪ d, V , f ) be an IV-ODS, and
Dα,β

A is an interval-based dominance relation with thresholds
α, β (0 < α < 1); ∀x, y ∈ U , we have the following.

1) Reflexivity: (x, x) ∈ Dα,β
A .

2) Antisymmetry: (x, y) ∈ Dα,β
A ⇒ (y, x) /∈ Dα,β

A .
3) Transitivity: (x, y) ∈ Dα,β

A , (y, z) ∈ Dα,β
A ⇒ (x, z) ∈

Dα,β
A .

Proof: Let u = f (x, a), v = f (y, a), and w = f (z, a) be
different interval values and a ∈ A. From Definitions 4 and 5,
we can derive that g(u, u) = 1 > α and h(u, u) = 0 < β hold;
then, the reflexivity is proven. If (x, y) ∈ Dα,β

A , then we have
g(u, v) ≥ α and h(u, v) ≤ β. Notice that g(u, v) = −g(v, u)
and h(u, v) = h(v, u), so g(v, u) ≥ α and h(v, u) ≤ β do
not hold. Then, antisymmetry is proven. As for the proof of
transitivity, from (x, y) ∈ Dα,β

A , (y, z) ∈ Dα,β
A , we can obtain

that g(u, v) ≥ α and h(u, v) ≤ β, and g(v,w) ≥ α and
h(v,w) ≤ β. Apparently, we can derive g(u, w) ≥ α and
h(u, w) ≤ β, that is, (x, z) ∈ Dα,β

A . �
It is not difficult to observe that the complete dominance

relation, namely, α = 1 and β = 0, may be a little strict.
Thus, we can specify the thresholds of IDD and IOD as α
and β in which 0 < α < 1 and 0 < β < 1, respectively.
On the basis of this, we can define the set of objects that
dominate x on the attribute set A called the A-dominating
set.

Definition 7: Let I = (U, AT ∪ d, V , f ) be an IV-ODS.
x, y ∈ U , and A ⊆ AT. The A-dominating set is
defined as

Dα,β,+
A (x) =

{
y ∈ U |y Dα,β

A x
}
.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Southwest University. Downloaded on June 23,2022 at 23:26:18 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I

INTERVAL-VALUED INFORMATION SYSTEM

Similarly, the set of objects, which is dominated by x on
the attribute set A called the A-dominated set, is given as

Dα,β,−
A (y) =

{
y ∈ U |x Dα,β

A y
}
.

From Definitions 4 and 5, we always set 0 < α < 1 in
the A-dominating set Dα,β,+

A (x), while −1 < α < 0 in the
A-dominated set Dα,β,−

A (x).
For any two different objects x and y, it is easy to find that

the IDDs of two objects are opposite numbers on a specific
attribute. On the other hand, the IOD of two objects on a given
attribute is just the same. Therefore, we use two matrices to
denote IDD and IOD of all the objects.

Theorem 4: Given an IV-ODS I = (U, AT ∪ d, V , f ) and
two thresholds α and β, let ak ∈ AT. The matrices of IDD
and IOD are derived as

MDak = [g(u, v)]i× j

MOak = [h(u, v)]i× j

where g(u, v) and h(u, v) are the IDD and IOD in which
u = f (x, ak) and v = f (y, ak).

For the conditional attribute a ∈ AT, we specify that the
element in row i and column j represents the IDD (IOD) of
the object x j with respect to object xi in the matrix. From
Theorems 1 and 2, we obtain that the matrix of IDD is an
antisymmetric matrix, and IOD is a symmetric matrix.

Example 1: Table I shows an interval-valued information
system I = (U, A, V , f ), in which U = {x1, x2, . . . , x5} is the
set of objects and A = {a1, a2, a3} is the attributes set. In this
part, we specify two thresholds as α = 0.5 and β = 0.25.
For any at ∈ A, we can, respectively, obtain a matrix of IDD
denoted as MDat and a matrix of IOD denoted as MOat . For
example, in terms of information system in Table I, for the
attribute a1 we have

MDa1 =

⎡
⎢⎢⎢⎢⎣

1 0.77 − 0.4 1 1
−0.77 1 − 1 1 0.17

0.4 1 1 1 1
−1 − 1 − 1 1 − 1
−1 − 0.17 − 1 1 1

⎤
⎥⎥⎥⎥⎦

MOa1 =

⎡
⎢⎢⎢⎢⎣

0 0.23 0.63 0 0
0.23 0 0 0 0.53
0.63 0 0 0 0

0 0 0 0 0
0 0.53 0 0 0

⎤
⎥⎥⎥⎥⎦

.

For any at ∈ A, we can figure out MDat and MOat . As shown
in above, all elements on the main diagonal of MDat are 1,
and all elements on the main diagonal of MOat are 0.

The thresholds of IDD and IOD make a great influence
on interval dominance relation, which is associated with
classification, so it is important to explore the influence of
the parameter size on the IV-DRSA model. Thus, in Theo-
rems 5 and 6, we will discuss the difference between the two
thresholds of IDD and IOD.

Theorem 5: Given an IV-ODS I = (U, AT ∪ d, V , f ) and
two sets of thresholds α1, α2 and β1, β2, which satisfy α2 ≤ α1,
β1 ≤ β2, and A ⊆ AT, then the following properties holds.

1) 0 < α2 ≤ α1 < 1 : Dα1,β1,+
A (x) ⊆ Dα2,β2,+

A (x).

2) −1 < α2 ≤ α1 < 0 : Dα1,β1,−
A (x) ⊆ Dα2β2,−

A (x).

Proof:

1) For any y ∈ Dα1,β1,+
A (x), g(u, v) ≥ α1 ≥ α2 and

h(u, v) ≤ β1 ≤ β2 hold on any a ∈ A in which
u = f (x, a), v = f (x, a). From Definition 6, we can
easily know that y ∈ Dα2,β2,+

A (x); thus, Dα1,β1,+
A (x) ⊆

Dα2,β2,+
A (x).

2) For any y ∈ Dα1,β1,−
A (x), g(u, v) ≤ α1 ≤ α2 and

h(u, v) ≤ β1 ≤ β2 hold on ∀a ∈ A in which u = f (x, a),
v = f (t, a). From Definition 6, we can derive that
y ∈ Dα2,β2,−

A (x); thus, Dα1,β1,−
A (x) ⊆ Dα2β2,−

A (x).

�
With different ranges of threshold, the relationships between

A-dominating sets and A-dominated sets are revealed. When
−1 < α < 0 is satisfied, a bigger threshold divides the
set of the object into smaller A-dominated sets. When 0 <
α < 1, smaller A-dominating sets are obtained by a bigger
threshold. The value of the threshold directly decides the
size of A-dominating sets and A-dominated sets if the other
conditions are totally the same, which means that we can
judge the belonging relationship between two A-dominating
sets (or A-dominated sets) simply by comparing the size of
thresholds. Thus, from Theorem 5, we can derive that the sizes
of IDD and IOD actually limit the size of A-dominating sets
and A-dominated sets. In the case of the A-dominating set,
larger values of thresholds α and β mean stricter limitations.
Different values of two thresholds cause different partitions on
the same set of objects and then influence classification. The
appropriate values of α and β will be debated later.

If, ∀a ∈ A, the IDD of y on x is no less than threshold
α (0 < α < 1), and IOD of y on x is no more than
threshold β, then we say that object y dominates x at the levels
α and β.

In the process of feature selection, the condition attribute
set may change over time. Theorem 6 is about the influence
of attribute set variation on the IV-DRSA model when α and
β are the same.

Theorem 6: Given an IV-ODS I = (U, AT ∪ d, V , f ),
A1 ⊆ A2 ⊆ AT. Cl
t and Cl�t are the upward union and
the downward union of the decision classes, respectively. The
following properties hold:

Dα,β,+
A1
⊇ Dα,β,+

A2
, Dα,β,−

A1
⊇ Dα,β,−

A2
.
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Proof: From Definition 6 and Theorem 5, for any (x, y) ∈
Dα,β

A2
, we can know that g(u, v) ≥ α∧h(u, v) ≤ β holds with

regard to ∀a ∈ A2, where u = f (x, a) and v = f (y, a).
From A1 ∈ A2, then, ∀a ∈ A1, there is a ∈ A2. Therefore,
g(u, v) ≥ α ∧ h(u, v) ≤ β holds with regard to ∀a ∈ A1, that
is, (x, y) ∈ Dα,β,+

A1
. In other words, for any (x, y) ∈ Dα,β,+

A2
,

(x, y) ∈ Dα,β,+
A1

holds, and then, Dα,β,+
A1

⊇ Dα,β,+
A2

is proven.
The proof of Dα,β,−

A1
⊇ Dα,β,−

A2
is similar to the proof process

above. �
Definition 8: The interval-valued dominance-based rough

approximation of the upward union Cl
t and the downward
union Cl�t is defined as

Rα,β
A

(
Cl
t

) =
{

x ∈ U |Dα,β,+
A (x) ⊆ Cl
t

}

Rα,β
A

(
Cl
t

) =
{

x ∈ U |Dα,β,−
A (x) ∩ Cl
t �= ∅

}
.

The interval-valued dominance-based rough approximations
of downward union Cl�t are defined as

Rα,β
A

(
Cl�t

) =
{

x ∈ U |Dα,β,−
A (x) ⊆ Cl�t

}

Rα,β
A

(
Cl�t

) =
{

x ∈ U |Dα,β,+
A (x) ∩ Cl�t �= ∅

}
.

One of the most important properties of utilizing a heuris-
tic algorithm in feature selection is monotonicity. In Theo-
rems 7 and 8, we provide the important monotonicity of the
IV-DRSA model.

Theorem 7: Let I = (U, AT∪ d, V , f ) be an IV-ODS; Cl
t
and Cl�t are the upward union and the downward union of the
decision classes, respectively, and A is a subset of AT. α and
β are IDD and IOD; then, we have the following.

1) Rα,β
A (Cl
t ) ⊆ Cl
t ⊆ Rα,β

A (Cl
t ).

2) Rα,β
A (Cl�t ) ⊆ Cl�t ⊆ Rα,β

A (Cl�t ).

Proof:

1) From Definition 8, for any x ∈ Rα,β
A (Cl
t ), we have x ∈

Cl
t . Hence, Rα,β
A (Cl
t ) ⊆ Cl
t . ∀x ∈ Cl
t , it is obvious

that x ∈ Dα,β,−
A (x); hence, Cl
t ∈ Rα,β

A (Cl
t ).
2) The proof of (2) is similar to the proof of (1).

�
The positive region, the negative region, and the boundary

region of Cl
t are shown as

Posα,β
A

(
Cl
t

) = Rα,β
A

(
Cl
t

)

=
{

x ∈ U |Dα,β,+
A (x) ⊆ Cl
t

}

Negα,β
A

(
Cl
t

) = U − Rα,β
A

(
Cl
t

)

=
{

x ∈ U |Dα,β,−
A (x) ∩ Cl
t = ∅

}

Bndα,β
A

(
Cl
t

) = Rα,β
A

(
Cl
t

)− Rα,β
A

(
Cl
t

)
.

The three-way decision rules of the upward union Cl
t are
given as follows.

P: If x ∈ Cl
t and Dα,β
A (x) ⊆ Cl
t , decide Posα,β

A (Cl
t ).
N: If x ∈ Cl
t and Dα,β

A (x) ∩ Cl
t �= ∅, then decide
Negα,β

A (Cl
t ).
B: Else, decide Bndα,β

A (Cl
t ).

The positive region, the negative region, and the boundary
region of Cl�t are

Posα,β
A

(
Cl�t

) = Rα,β
A

(
Cl�t

)

=
{

x ∈ U |Dα,β,−
A (x) ⊆ Cl�t

}

Negα,β
A

(
Cl�t

) = U − Rα,β
A

(
Cl�t

)

=
{

x ∈ U |Dα,β,+
A (x) ∩ Cl�t = ∅

}

Bndα,β
A

(
Cl�t

) = Rα,β
A

(
Cl�t

)− Rα,β
A

(
Cl�t

)
.

Theorem 8: Given an IV-ODS I = (U, AT ∪ d, V , f ),
A1 ⊆ A2 ⊆ AT. Cl
t and Cl�t are the upward union and
the downward union of the decision class, respectively. The
following properties hold.

1) Rα,β
A1

(Cl
t ) ⊇ Rα,β
A2

(Cl
t ), Rα,β
A1

(Cl
t ) ⊇ Rα,β
A2

(Cl
t ),

Rα,β
A1

(Cl�t ) ⊇ Rα,β
A2

(Cl�t ), and Rα,β
A1

(Cl�t ) ⊇ Rα,β
A2

(Cl�t ).

2) Posα,β
A1

(Cl
t ) ⊆ Posα,β
A2

(Cl
t ) and Posα,β
A1

(Cl�t ) ⊆
Posα,β

A2
(Cl�t ).

Proof:
1) Based on Theorem 6 and A1 ⊆ A2, we can directly get

Dα,β,+
A1

⊇ Dα,β,+
A2

. If x ∈ Rα,β
A2

(Cl
t ), then Dα,β,+
A2

(x) ∩
Cl
t �= ∅. Thus, Dα,β,+

A1
(x) ∩ Cl
t �= ∅ also holds, and

Rα,β
A1

(Cl
t ) ⊇ Rα,β
A2

(Cl
t ) is proven.

Similarly, Rα,β
A1

(Cl
t ) ⊇ Rα,β
A2

(Cl
t ), Rα,β
A1

(Cl�t ) ⊇
Rα,β

A2
(Cl�t ), and Rα,β

A1
(Cl�t ) ⊇ Rα,β

A2
(Cl�t ) can also be

proved.
2) According to item 1), we have Rα,β

A1
(Cl
t ) ⊇ Rα,β

A2
(Cl
t ).

It is obvious that Posα,β
A1

(Cl
t ) ⊆ Posα,β
A2

(Cl
t ) and
Posα,β

A1
(Cl�t ) ⊆ Posα,β

A2
(Cl�t ). Then, the proof process of

the above property is completed.
�

The three-way decision rules of the upward union Cl
t are
given as follows.

P: If x ∈ Cl�t and Dα,β,+
A (x) ⊆ Cl
t , decide Posα,β

A (Cl�t ).
N: If x ∈ Cl�t and Dα,β,−

A (x) ∩ Cl�t �= ∅, then decide
Negα,β

A (Cl�t ).
B: Else, decide Bnα,β

A (Cl�t ).
Example 2: Table II is about an IV-ODS, in which U =
{x1, x2, . . . , x10} and AT = {a1, a2, . . . , a5}.

The decision attribute has three possible values: 1, 2, and
3. Considering the preference order, we can divide the subject
set divided into three parts as

Cl1 = {x1, x8, x10}
Cl2 = {x2, x5, x7, x9}
Cl3 = {x3, x4, x6}.

Then, the upward union and the downward union can be
obtained as

Cl
2 = Cl2 ∪ Cl3 = {x2, x3, x4, x5, x6, x7, x9}
Cl
3 = Cl3 = {x3, x4, x6}
Cl�1 = Cl1 = {x1, x8, x9}
Cl�2 = Cl1 ∪ Cl2 = {x1, x2, x5, x7, x8, x9, x10}.
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TABLE II

INTERVAL-VALUED DECISION TABLE

TABLE III

A-DOMINATING SETS IN EXAMPLE 2

We set the level as α = 0.5 and β = 0.25. The
A-dominating sets of each x ∈ U are shown in Table III. Then,
we calculate the lower and upper approximations of Cl
2 as

Rα,β
A

(
Cl
2

) = {x2, x3, x4, x5, x6, x7, x9}
Rα,β

A

(
Cl
2

) = {x2, x3, x4, x5, x6, x7, x9}.
The lower and upper approximations of Cl
3 are

Rα,β
A

(
Cl
3

) = {x3, x4, x6}
Rα,β

A

(
Cl
3

) = {x3, x4, x6}.
The lower and upper approximations of Cl�1 are

Rα,β
A

(
Cl�1

) = {x1, x8, x9}
Rα,β

A

(
Cl�1

) = {x1, x8, x9}.
The lower and upper approximations of Cl�2 are

Rα,β
A

(
Cl�2

) = {x1, x2, x7, x8, x9, x10},
Rα,β

A

(
Cl�2

) = {x1, x2, x5, x7, x8, x9, x10}.

D. Significance Based on IV-ODS and Reduction Rules

In what follows, the dependency degree in IV-ODS is
defined, and then, the inner and outer significances are
obtained. By using inner and outer significances, the reduction
rules are further constructed.

Definition 9: For an IV-ODS I = (U, AT ∪ d, V , f ),
Posα,β

A (Cl
t ) is the positive region of Cl
t . Let A be a subset

of AT and a ∈ AT. The dependency degrees of Cl
t and Cl�t
are defined as

σ
α,β
A

(
Cl
t

) = |Posα,β
A

(
Cl
t

)|
|U |

σ
α,β
A

(
Cl�t

) = |Posα,β
A

(
Cl�t

)|
|U | .

The inner and outer significances of the attribute set A with
regard to decision attribution d are defined as follows:

Sig
in
(
a, A, Cl
t

) = σ
α,β
A

(
Cl
t

)− σ
α,β
A−{a}

(
Cl
t

)

Sig�in
(
a, A, Cl
t

) = σ
α,β
A

(
Cl�t

)− σ
α,β
A−{a}

(
Cl�t

)

Sig
out

(
a, A, Cl
t

) = σ
α,β
A∪{a}

(
Cl
t

)− σ
α,β
A

(
Cl
t

)

Sig�out

(
a, A, Cl
t

) = σ
α,β
A∪{a}

(
Cl�t

)− σ
α,β
A

(
Cl�t

)
.

It is obvious that both the inner and outer significances of
an attribute set range from 0 to 1.

Definition 10: Given an IV-ODS I = (U, AT∪d, V , f ), let
A be a subset of AT and a ∈ A. If σ

α,β
A−a(Cl
t ) = σ

α,β
A (Cl
t ),

then we call a the redundant attribute of A with regard to
Cl
t ; on the contrary, a is called the necessary attribute of
A with respect to Cl
t . In terms of the upward union Cl
t ,
we can obtain a reduct A of AT if the following conditions
are satisfied.

1) σ
α,β
A−{a}(Cl
t ) = σ

α,β
A (Cl
t ).

2) ∀a ∈ A, σ
α,β
A−{a}(Cl
t ) < σ

α,β
A (Cl
t ).

Definition 10 actually provides a rule to gain one reduct by
constantly deleting attributes from the conditional attribute set
AT when item 1) is satisfied. Once an attribute is deleted from
A, then recalculate the dependency degree, and compare it
with the original dependency degree. When item 2) is satisfied,
it means that A has been a reduct.

IV. ALGORITHM FOR INTERVAL DOMINANCE-BASED

FEATURE SELECTION

In this section, two algorithms are designed to calcu-
late interval-valued dominance relation and feature selection,
as shown in Algorithms 1 and 2, respectively. Meanwhile, the
detailed descriptions of Algorithms 1 and 2, and complexity
analysis are addressed as follows.

For Algorithm 1, the IV-ODS and two thresholds need
to be given in advance. The calculation result D is a set
that stores the interval dominance sets of each object in
universe U . Step 3 initializes a temporary list ls_1 to store
calculation results. Step 5 initializes two temporary lists to
record calculations in the second loop. In step 7, we use
Definitions 4 and 5 to compute the IDD and IOD. Step 14 adds
the results to Dα,β,+

AT . We can obtain the time complexity of
Algorithm 1 to be O(|U |2 × |AT|).

As for Algorithm 2, the parameter red is initialized as an
empty set to store the reduct. Steps 2 and 3 compute the
interval-valued dominance relation Dα,β

a on each a ∈ AT.
The process of calculating reduction can be divided into
two parts. First, we choose the attributes in which the inner
significance degree Sig
in(a, red, Cl
t ) is greater than 0 and add
these attributes into red. Then, ∀a ∈ red, compute the outer
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Algorithm 1 Calculate Interval-Valued Dominance Relation
Require: IV-ODS I = (U, AT ∪ d, V , f ); thresholds α, β.
Ensure: The interval dominance relation Dα,β,+

AT .
1: Set Dα,β,+

AT ← ∅; //Initialize Dα,β,+
AT to an empty set;

2: for each x ∈ U do
3: Set ls_1← ∅; //Initialize the temporary list ls_1;
4: for each y ∈ U do
5: Set ls_2← ∅, ls_3← ∅; /*Initialize two temporary

lists to record calculation results.*/
6: for each a ∈ AT do
7: Compute g(v, u) and h(v, u) which u = f (x, a)

and v = f (y, a) respectively by Definition 4 and Defini-
tion 5;

8: Add g(v, u) to ls_2; Add h(v, u) to ls_3; //Record
calculation results.

9: end for
10: if all elements in ls_2[i ] and ls_3[i ] satisfy that

ls_2[i ] ≥ α and ls_3[i ] ≤ β then
11: Add y to ls_1;
12: end if
13: end for
14: Add ls_1 to Dα,β,+

AT ; //Store calculation results.
15: end for
16: return Dα,β,+

AT ;

Algorithm 2 Feature Selection Based on IV-DRSA
Require: IV-ODS I = (U, AT ∪ d, V , f ); thresholds α, β.
Ensure: One reduct red .
1: Set red ← ∅; //Initialize red to an empty set;
2: Compute the interval dominance relation Dα,β,+

AT ;
3: Compute upward union Cl
t ;
4: while AT − red �= ∅ do
5: for each a ∈ AT − red do
6: Compute Sig
out(a, red, Cl
t );
7: end for
8: Find ak with maximum value of Sig
out(ak, red, Cl
t );
9: if Sig
out(ak, red, Cl
t ) = 0 then

10: Break;
11: else
12: red ← red ∪ {ak};
13: end if
14: end while
15: for each a ∈ red do
16: Compute Sig
in(a, red, Cl
t );
17: if Sig
in(a, red, Cl
t ) = 0 then
18: red ← red − {ak};
19: end if
20: end for
21: return red;

significance degree Sig
out(a, red, Cl
t ), and check whether a

can be added into red. When σ
α,β
red (Cl
t ) = σ

α,β
AT (Cl
t ), the

attribute set red is iterated into a reduct, and then, stop the
algorithm and output results.

The complexity of Algorithm 2 is analyzed as follows.
In steps 2 and 3, we compute the approximation to fur-
ther obtain the positive region, and the time complexity is
O(|U |2×|AT|). Steps 4 and 5 are used to compute the upward
union, and the time complexity of this part is O(|U |). The
time complexity of steps 6–11, 12–14, 15–20, and 21–25 are,
respectively, O(|U |2× |AT|2), O(|U |2× |AT|2+ |AT|), O(1),
and O(1). In summary, the time complexity of Algorithm 2 is

O
(|U |2 × |AT|2 + |AT|) = O

(|U |2 × |AT|2).
On the other hand, in Algorithm 2, the space required to

store the information table is O(|U | × (|AT| + |d|)). In order
to store the upward union, upper and lower approximation,
boundary region, inner and outer significance degrees, and the
feature selection, the spatial complexities are O(|d| × |U |),
O(|d| × |U |2), O(|d| × |U |2), O(2 × |AT|2), and O(|AT|),
respectively.

V. EXPERIMENTAL ANALYSIS

In this section, the corresponding experiment evaluation is
designed to verify the advantages of the proposed algorithms.
Detailed information about the tested datasets is given in
Table IV. All the 12 datasets are originally from UCI, and
we further preprocess these datasets to obtain interval-valued
data inspired by the statistical method provided in [21]
and [53]. First, we compute one of the reductions on each
dataset. We adopt tenfold cross-validation to train the datasets
and attempt to find out the optimal value of thresholds
α and β. There are several studies on classifiers directly
for interval-valued datasets in the literature of clustering
[21], [53]. From the clustering results reported, it is not hard to
discover that all of these methods have a common limitation,
namely, the clustering effect of the direct classification for
interval-valued data is not very prominent. Thus, two classical
classifiers, K-nearest neighbor (KNN, in this article K = 3)
and support vector machine (SVM), are used to evaluate
classification accuracy with the selected dataset, which is
computed by the feature selection algorithm. The classification
accuracies of KNN and SVM and the average classification
accuracies are computed for the reduced testing data. The
interval value plays an important part mainly in the process of
feature selection because it decides the IV-DRSA model, but,
when we apply two classifiers, the dataset is restored to the real
value. By comparing the results of raw data, IV-UB, IV-MV,
and two methods from the literature [11], [33], we analyze
the effectiveness and superiority of the proposed IV-DRSA
model. All algorithms are executed in Python 3.8 and run in
a hardware environment with Inter1 Core2 i5-7200 CPU @
2.50 and 2.70 GHz with 4-GB RAM.

A. Robustness of Preprocessed Data

The main idea of data preprocessing is presented as follows:
taking the initial real value of the datasets as the center
point and then randomly generating two proper biases as

1Registered trademark.
2Trademarked.
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Fig. 2. Robustness of the processed data on each dataset.

δ+ and δ−. Denoting the original value in datasets as x∗,
we take δ+ and δ− in the range of 0 < δ+(δ−) < 0.1·x∗. Then,
an interval value can be obtained as [x∗− δ−, x∗ + δ+]. In this
way, we successfully simulate the situation that, in reality,
the attribute value cannot be given accurately. By adding a
deviation to the original data, the change range of the data
is expressed as an interval value, which has little impact on
the distribution of the original data. Besides, the robustness
of the preprocessed data is further evaluated by the defin-
ition of roughness. The roughness measure ρ(Dα,β

A , X) =
1 − (|Rα,β

A (X)|/|Rα,β
A (X)|) is utilized to verify the difference

between original data and preprocessed data. We randomly
obtained the interval-valued data by the previous method and
further compute the roughness of the processed data. Then,
we repeat the process ten times and compute the average
roughness of processed data, which are used to compare with
the original. Besides, the standard deviation of roughness
represented by a histogram is used to reflect the change of
roughness. From Fig. 2, we can intuitively observe that the
preprocessed data exhibit better robustness than the original
data, and the interval-valued preprocessing does not change
the distribution of the original data.

B. Effectiveness Evaluations of Proposed Algorithm

In this section, the effectiveness of the feature selection
algorithm based on IV-DRSA is validated. First, we find a
relatively optimal threshold of α and β. Second, we apply
the feature selection algorithm with optimal thresholds on
interval-valued data to obtain a reduct. Finally, we use the
selected feature to carry out the classification and calculate the
classification on two classifiers and draw a certain conclusion
about the experiment.

In fact, thresholds α and β decide the IV-DRSA model.
In particular, the classification accuracies are expected to be
currently lower when α is too small or too large. We use
three interval values to illustrate how the different values of
α and β affect the classification. As shown in Fig. 3, three
interval values are represented as lines with different colors,
and dotted lines indicate different classifications with different
thresholds. For example, in Fig. 3(a)–(c), u1, u2, and u3 are
discernible with α = 0.3 and β = 0.4. u1 is dominated by
u2 and u3 when α = 0.5 and β = 0.2; however, between
u2 and u3, there is no dominance relationship, which means
that u2 and u3 are indiscernible, that is, because smaller value

Fig. 3. Comparison between classifications derived by different thresholds.
(a) Classification with thresholds α = 0.3 and β = 0.4. (b) Classification
with thresholds α = 0.4 and β = 0.3. (c) Classification with thresholds
α = 0.5 and β = 0.2.

of α means more stricter limitation, while too large value
of α may cause the difference between classes being not
obvious. In terms of β, it also has an optimal value with the
maximum classification accuracy. To find the optimal values,
we iterate the values of α and β from 0.1 to 0.6 with a
step 0.05 and then calculate one reduct of datasets and the
classification accuracies of reduced data. The classification
accuracies are shown in Fig. 4. By analyzing the change
of classification accuracy with α and β, we can obtain the
following conclusions.

1) Different datasets may have different optimal parameter
values, and each dataset may also have multiple optimal
values, which can be obtained by training on particular
datasets. For example, the Wine dataset achieves the
maximum classification accuracy with the thresholds of
α = 0.5 and β = 0.2, while, in the HV dataset,
the optimal values of two thresholds are α = 0.4 and
β = 0.55. Meanwhile, α = 0.5, β = 0.25 and α =
0.5, β = 0.2 all are the optimal values of dataset GC.
Overall, the optimal parameter values of 12 datasets in
this article are close to α = 0.5, β = 0.25.

2) In general, with the increase in threshold, the classi-
fication accuracy increases at the beginning and then
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TABLE IV

DATA DESCRIPTION

Fig. 4. Classification accuracies with threshold β on 12 datasets. (a) Abalone. (b) IF. (c) Wine. (d) SAD. (e) DCCC. (f) CB. (g) MEU. (h) HV. (i) ULC.
(j) GC. (k) Madelon. (l) MM.

decreases. When two thresholds achieve a specific value,
the classification then begins to decrease. This is in
good agreement with the previous theoretical analysis.
For example, in the dataset CB, when the value of α is

kept unchanged, the classification accuracy first increases
and then decreases when β changes from 0.1 to 0.6,
and the maximum value is obtained near β = 0.3.
For α, the change of classification accuracy conforms to
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TABLE V

CLASSIFICATION ACCURACY OF RAW DATA AND REDUCED DATA WITH KNN (%)

TABLE VI

CLASSIFICATION ACCURACY OF RAW DATA AND REDUCED DATA WITH SVM (%)

Fig. 5. Classification accuracy with KNN.

the same pattern. That is because too loose restrictions
might increase the misclassification rate, while too strict
restrictions may cause overfitting.

In order to demonstrate the advantage of Algorithm 2,
we first obtain a reduct of datasets with the optimal thresholds
α = 0.5 and β = 0.25, which are trained in former experi-
ments. Then, we apply KNN and SVM to classify the raw data,
reduced data by IV-UB, IV-MV, the rough set model on the
interval-valued information system (RSoIV) [33], the graded

Fig. 6. Classification accuracy with SVM.

dominance interval (GDI)-based rough set approach [11], and
IV-DRSA, respectively. Then, we compare the classification
accuracies of the above methods. The results are shown in
Tables V and VI and Figs. 5 and 6. In Tables V and VI, the
highest classification accuracies between different methods are
underlined and bold.

From a comparison of the results in Tables V and VI,
we can obtain that, in most cases, the IV-DRSA model has the
maximum classification accuracies compared with the other
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methods. Meanwhile, the average classification accuracy of
IV-DRSA is also the highest. On the other hand, the IV-DRSA
model has a better performance with the SVM classifier than
KNN on datasets that we discussed. In the case of 12 datasets
in this article, the average classification accuracy with KNN
improves 5.68%, 4.77%, 3.84%, 3.54%, and 2.17% compared
with raw data, IV-UB, IV-MV, RSoIV, and GDI, respectively.
On the other hand, the average classification accuracy with
SVM is improved by 7.04%, 6.30%, 4.37%, 3.49%, and
8.91% compared with results when using raw data, IV-UB,
IV-MV, RSoIV, and GDI, respectively. In Figs. 5 and 6, the
histogram is used to compare the classification accuracy of
several methods more intuitively.

VI. CONCLUSION

As a more widely existed continuous data type, the interval
value exhibits more extensive description and characterization
ability compared with general data types, such as discrete
dataset-valued data and fuzzy data. It is of great significance
in real life. However, how to deal with interval-valued data
reasonably has become a well-known challenge. To solve
certain limitations of the classical rough set model with
regard to ordered properties, DRSA was first presented by
Greco et al. [28]. It is stated that DRSA could eliminate the
inconsistencies between the decision attribute set and the
condition attribute set in an OIS, which ensures that there is no
inconsistency in the three-way decision regions obtained from
the upper and lower approximations. This significant nature
makes DRSA more widely applicable than indiscernibility
relation-based rough set models. The main objective of this
article is to build a general and novel IV-DRSA for an
interval-valued environment by considering IDD and IOD
between arbitrary interval values in IV-ODSs. The relative
properties of the proposed interval-valued dominance relation
are considered and verified through important theorems. Based
on IV-DRSA, we discuss the feature selection methods for the
IV-ODS and develop an effective algorithm to compute the
reduction. In the experimental evaluation, we further discover
the optimal values of two thresholds ensuring the relative
higher classification accuracies. The generalization ability of
the feature selection algorithm proposed in this article is
mainly reflected by testing different datasets and studying the
variance in the test results. This article mainly focuses on the
basic construction of the IV-DRSA model and considers that
thresholds of the IDD and IOD are the same values on all the
attributes. However, the tolerance for different attributes could
be different, which is more general and reasonable. In the
future work, we will take into account the difference between
attributes, focus on the fuzzy interval-valued classifier, inves-
tigate the classification suitable for the interval-valued data,
and study the feature selection methods for heterogeneous
interval-valued data with the ordered relationship.
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