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Abstract
The approximation space in rough set theory is important for dealing with uncertainties. As the information contained
in various information systems is constantly updated and changed with the development of information technology, how
to effectively obtain the approximation space in dynamic environments is essential. The local rough set as an excellent
model avoids unnecessary calculation of information granules, and can significantly improve learning efficiency. In this
paper, we mainly investigate a dynamic approximation update mechanism of multigranulation data from local viewpoint.
We first define a support and inclusion function to construct local generalized multigranulation neighborhood rough set
model. Then, the dynamic updating process of global rough set and local rough set is analyzed when object chandes.
Meanwhile, the corresponding dynamic update algorithms for dynamic objects are proposed based on local generalized
multigranulation rough set model. The complexity analysis about them theoretically proves the efficiency of local dynamic
algorithm compared with global algorithm and static algorithm. To illustrate the effectiveness of proposed algorithms, twelve
datasets from UCI are adopted to contrast experiments.

Keywords Approximation space · Changing objects · Dynamic updating · Generalized multigranulation rough set ·
Local rough set · Neighborhood information system

1 Introduction

The Rough set(RS) theory [14] proposed by Pawlak is
an important mathematical tool for handling uncertain
knowledge, in which concept approximation [5, 10, 20]
and attribute reduction [8, 20, 34, 35] are two important
research aspects. Since the rough set does not require any
prior knowledge other than information in the studied data,
it has been widely applied to data mining [3, 4, 6], individual
classification [32], uncertain reasoning [32, 34], and so on
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[1, 11, 12, 23]. In classical rough set theory, we need to
obtain all information classes of the objects coming from
universe for approximating target concept, it is complicated
and time-consuming [15, 18, 36]. Also, the classical rough
set model is based on equivalence relation and equivalence
classes, which is limited in real life and has poor fault
tolerance for real data [13, 15]. In order to solve these issues,
many scholars have further studied the properties of rough
set model and extended the equivalent relation to deal with
various complex data [7, 18, 23, 25].

With the development of technology, massive data
with various features is emerging. In RS theory, we
need to compute all equivalence classes to obtain the
lower and upper approximations, which is not convenient
in big dataset. Luckily, the proposal of local rough
set(LRS) has solved this issue well [16, 18]. In LRS

theory, we only need to obtain the information classes
determined by the objects from target concept, this avoids
unnecessary computation between the elements outside
target concept and significantly improves approximate
efficiency [15, 16, 18]. Also, scholar Qian and others
explored its application in concept approximation and
attribute reduction, it significantly reduces time complexity
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and saves memory, moreover, the local though thinking can
be further applied to semi-supervised study for processing
unlabeled data [16]. Guo et al. proposed local logical
disjunction double-quantitative rough sets model and found
it is an effective model for decision through exploring the
difference between them and other models [5]. The local
rough set model theory is a new perspective to learn the
uncertainties in big data.

With the development of information science, the
diversity of stored data increases. To flexibly handle
these complex data, many scholars have further extended
the equivalence relation to dominance relation [1, 10],
neighborhood relation [6, 13, 19], fuzzy relation [20, 31,
33, 37]. Especially, neighborhood rough set(NRS) based
on neighborhood relation has strong processing ability
for complex data through defining distance function. In
NRS theory, the neighborhood radius is an important
parameter for distinguishing individuals. Jiang et al.
proposed the intra-class radius and inter-class radius to
distinguish samples considering their labels, and then
designed accelerator attribute reduction algorithm based
on supervised neighborhood rough set. Their experimental
results show the accelerator reduction algorithm is effective
and efficient for feature selection [6]. To improve the
reduction efficiency, Chen et al. utilized the parallel of
neighborhood distance matrix to design parallel algorithm
for computing reduction in DNRS, the corresponding
reduced subset behaves well in classification accuracy
and consume time [1]. Also, based on Gaussian function,
Yang et al. proposed a comprehensive granularity research
method on horizontal granularity and vertical granularity
from the viewpoint of neighborhood rough set, and the
efficiency of multilevel neighborhood sequential three-
way decision is verified by the acceptable accuracy and
reduction of processing cost [6]. Moreover, Wang et al.
processed attribute reduction in a semi-supervised method
based on local neighborhood rough set model which
significantly reduced the complexity and improved the
utilization of information [18].

In practical application situations, objects usually need
to be depicted from multiple aspects, but the classical
single rough set model can only describe object from one
point of view. For this issue, Qian et al. first extended
the classical single rough set to multigranulation rough
set model (MGRS) to deal with multi-aspect information
[17, 24, 29]. Subsequently, many scholars explored it in
many areas, such as approximate concept [17, 19, 22],
granularity selection [6, 21], decision-making [15, 28], and
data mining [27, 33, 37]. So far, there have developed two
models: optimistic multi-granularity rough set(OMGRS)
and pessimistic multigranulation rough set(PMGRS) [33,
37]. Zhou et al. used multigranulation approximation
regions to solve uncertainty associated with the fuzzifier

parameter to realize fuzzy clustering [37]. As we all know,
the approximate operators are too loose and tight, which
can not refine the attribute information flexible. The raise
of generalized multigranulation rough set by Xu et al.
have made it possible, the generalized model can describe
samples more detail and flexible [21]. Meanwhile, it is
noted that the approximation space reflecting the certainty
and possibility can be applied to practical situations such
as decision-making. In 2019, Fujita et al. first made
resilience analysis in critical infrastructures based on three-
way decision-making and granular computing thinking [4].
Then, they further proposed a new interactive method to
analyze and evaluate hypotheses to terrorism events based
on three-way decisions and fuzzy probabilistic rough sets,
which further verifies the broadness of rough set theory
in application scenarios [3]. Therefore, how to effectively
update approximate space in dynamic environment is
important in data mining [9, 26, 30]. To improve the
efficiency of obtaining approximation space, scholars have
investigated many strategies. Chen et al. proposed parallel
algorithm based on matrix parallel computing, which
significantly improves the reduction efficiency [1]. Jiang
et al. designed accelerator for feature selection combining
the properties of feature indicator with neighborhood radius
[6]. Yang et al. proposed a unified dynamic framework
of decision-theoretic rough sets for incrementally updating
three-way probabilistic regions [26]. Liu et al. introduced
Multi-Granularity Attribute Selector to the framework of
heuristic algorithm to improve the reduction efficiency [12].
These dynamic updating algorithms save a lot of time
produced by these repeated computing based on dynamic
information system compared with traditional algorithms.
In this paper, we mainly investigate a dynamic update
mechanism for approximate space when the object is
changing.

Considering the fault tolerance and flexibility of neigh-
borhood rough set, we construct local generalized multi-
granulation neighborhood rough set model to characterise
uncertainty and imprecise knowledge in real data from
multi-aspects, and design the dynamic update mechanism
for approximate space when the object set changes. The
main contributions of this paper are as follows: (1) The
support and inclusion functions in neighborhood informa-
tion system are proposed to construct local multigranulation
neighborhood rough set model. This model could describe
objects in target concept more detail from multiple view-
points and avoid necessary computing. (2) We analyze the
dynamic updating process and design corresponding algo-
rithm for updating approximate space when object changes,
and then give an example to illustrate the dynamic update
process. (3) The local dynamic algorithm is a valid strat-
egy by complexity analysis, which is further verified by the
experimental results running on twelve public datasets.
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The rest of the paper is organized as follows: Some
related concepts are reviewed in Section 2. In Section 3,
we first define the support function and inclusion function,
and then construct local generalized multigranulation
neighborhood rough set model. Section 4 shows the
dynamic update mechanism when the object changes,
and give an example to illustrate the update process. In
Section 5, we design the dynamic update algorithms of
computing approximations and analyze their complexity
in theory. Moreover, the related experiments on UCI data
sets are carried in Section 6. Through comparing the time
consumption between static and dynamic updating, we
find the local dynamic update algorithm is an efficient
strategy for approximation update. Finally, we draw some
conclusions in this paper in Section 7.

To conveniently illustrate the fundamental idea of this
paper, we give the following chart as shown in Fig. 1.

2 Related work

In this section, we review some concepts about rough
set, local rough set, neighborhood rough set, classical
multigranulation rough set and generalized multigranulation
rough set [14, 17, 19].

2.1 Rough set

Rough set is an important tool for dealing with uncertain
information [16]. In classical rough set theory, we obtain
the approximations of a target concept based on the
all information classes determined by the objects from
universe. The rough set model is defined as follows.

Definition 1 [16] Let I = (U, N) be an information
system, where U = {x1, x2, x3, . . . , xn} denotes the set

of finite objects and N = {a1, a2, a3, . . . , am} denotes a
set of attributes. The [x]R is the equivalence classes under
equivalent relation R defined on U , then for any X ⊆ U , the
lower and upper approximations of X on R are defined by

R(X) = ∪{[x]R|[x]R ⊆ X, x ∈ U},
R(X) = ∪{[x]R|[x]R ∩ X �= ∅, x ∈ U}. (1)

If R(X) = R(X), the target concept X is a definable
set; and if R(X) �= R(X), then < R(X), R(X) > is
called rough set. For target concept X, the positive region
is POS(X) = R(X), the negative region is NEG(X) =
U −R(X) and the boundary region is BON(X) = R(X)−
R(X). The approximation space also can be written as [14]

R(X) = {x|[x]R ⊆ X, x ∈ U},
R(X) = {x|[x]R ∩ X �= ∅, x ∈ U}. (2)

2.2 Local rough set

In classical rough set theory, we need to consider all the
information classes from universe, it is time-consuming and
memory intensive, especially in big data. For this issue,
scholars have proposed local rough set model. In local
rough set, we only need to compute the information classes
determined by these objects coming from target concept, it
significantly reduces the complexity of approximating X.

Definition 2 [16] Let I = (U, N) be an information
system, and D be an inclusion degree defined on P(D) ×
P(D). For any X ⊆ U , the lower and upper approximations
of X are defined by

RL,α,β(X) = {x|D(X/[x]R) ≥ α, x ∈ X},
RL,α,β(X) = ∪{[x]R|D(X/[x]R) > β, x ∈ X}. (3)

Where P(U) is the power set ofU , 0 ≤ β < 0.5, 0.5 ≤ α ≤
1 are two parameters in approximation space. The pair <

Fig. 1 The chart of proposed
approach
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RL,α,β(X), RL,α,β(X) > is called local rough set. The local
positive region is POSL,α,β(X) = RL,α,β(X), the local

negative region is NEGL,α,β(X) = U − RL,α,β(X) and
the local boundary region is BONL,α,β(X) = RL,α,β(X) −
RL,α,β(X). Meanwhile, when α = 1, β = 0, the local rough
set model will degenerate to classical rough set model as
follows.

RL,1,0(X) ={x|D(X/[x]R) ≥ 1, x ∈ X}={x|[x]R ⊆ X, x ∈ U }=R(X),

RL,1,0(X) =∪{[x]R |D(X/[x]R)>0, x ∈ X}={x|[x]R ∩ X �=∅, x ∈ U }
=R(X).

(4)

2.3 Neighborhood rough set

In an information system I = (U, N), the attribute set
N = C ∪ D, where C is a conditional attribute set and
D is a decision attribute set. For any x ∈ U and a ∈ N ,
the a(x) denotes the property value of object x on attribute
a. If the attributes in C are all numerical, then I is named
neighborhood information system [16]. In neighborhood
information system, in order to represent the proximity
between xi and xj in attribute set N ′ ⊆ N , we choose the
distance function[19] as follows

�(xi, xj ) = (
∑

a∈N ′
|a(xi) − a(xj )|k)1/k . (5)

In this paper, we select k = 2 called Euclidean distance to
compute the distance between any two objects. Let δ is the
radius of neighborhood, the neighborhood classes of x ∈ U

in attribute set N ′ ⊆ N is defined as

δR(x) = {xs |�(x, xs) ≤ δ, xs ∈ U}. (6)

Definition 3 [16] Let I = (U, N) be a neighborhood
information system. Suppose the radius of neighborhood
is δ and the δi(x) is the neighborhood classes under
neighborhood relation RRNi

defined on Ni ⊆ N , then for
anyX ⊆ U , the lower and upper approximations ofX under
RNi

are defined by

RRNi
(X) = {x|δi(x) ⊆ X, x ∈ U},

RRNi
(X) = {x|δi(x) ∩ X �= ∅, x ∈ U}. (7)

2.4 Optimistic and pessimistic multigranulation
neighborhood rough set

Due to the complexity of things, it is limited to describe
an object from one viewpoint. To describe the objects more
detail, Qian et al. first proposed multigranulation rough set
[17]. Moreover, optimistic multigranulation and pessimistic
multigranulation rough approximations are proposed in
2012 by Xu et al. [22], they are defined as follows:

Definition 4 [22] Let I = (U, N) be a neighborhood
information system, where the radius of neighborhood is δ,
and the δi(x) is neighborhood classes under RRNi

for X ⊆

U . Then the lower and upper approximations in optimistic
multigranulation of X are defined by

OM∑m
i=1 RRNi

(X) = {
x ∈ U | ∨m

i=1(δi(x) ⊆ X)
}
,

OM∑m
i=1 RRNi

(X) = {
x ∈ U | ∧m

i=1(δi(x) ∩ X �= ∅)
}
.

(8)

Where “
∨

” denotes or , “
∧

” denotes and . If OM∑m
i=1 RRNi

�=
OM∑m

i=1 RRNi

(X), then < OM∑m
i=1 RRNi

(X),OM∑m
i=1 RRNi

(X) > is

called optimistic multigranulation rough set in neighbor-
hood information system and X is rough.

Definition 5 [22] Continue to the Definition 4, the lower
and upper approximations in pessimistic multigranulation
of X are as follows.

PM∑m
i=1 RRNi

(X) = {
x ∈ U | ∧m

i=1(δi(x) ⊆ X)
}
,

PM∑m
i=1 RRNi

(X) = {
x ∈ U | ∨m

i=1(δi(x) ∩ X �= ∅)
}
.

(9)

If PM∑m
i=1 RRNi

�= PM∑m
i=1 RRNi

, then <

PM∑m
i=1 RRNi

, PM∑m
i=1 RRNi

> is pessimistic multi-

granulation rough set in neighborhood information
system.

2.5 Generalizedmultigranulation neighborhood
rough set

For an object x ∈ U , if its neighborhood classes is the
subset of target concept in all granulation, x is considered
to be a member of the pessimistic lower approximation;
and if there exists a neighborhood relation RNi

satisfying
δi(x) ⊆ X, then x ∈ OM∑m

i=1 RRNi

(X). It is too loose

while the pessimistic ones is strict in approximating target
concept. They are all not effective in practice. Thus, Xu
et al. have come up with generalized multigranulation rough
sets on equivalence relation in 2017, it is more practical
and flexible compared with other models [21]. Inspired
by this, we further study the generalized multigranulation
neighborhood rough sets in this paper. To illustrate the
models, we will first define a support function.

Definition 6 [21] Let I = (U, N) be a neighborhood

information system. A support function P
RRNi

X (x)(i =
1, 2, . . . , m) of x describes the inclusion relation between
the neighborhood class δi(x) and X, which is defined as
follows:

P
RRNi

X (x) =
{
1, δi(x) ⊆ X

0, others
(10)
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According to the definition of support function, the

x ∈ PM∑m
i=1 RRNi

(X) only P
RRNi

X (x) = 1 holds for

i = 1, 2, · · · , m, it is too strict to acquire approximations,
especially when the number of granulations is large.
Inversely, if there exists a neighborhood relation RRNi

satisfying P
RRNi

X (x) = 1, then x is the element of
optimistic multigranulation lower approximation, it is also
not effective. Thus, we introduce a parameter β, i.e.,
the ratio of the support function value to m. The higher
β is, the stricter our requirements are. The generalized
multigranulation neighborhood rough set with β ∈ (0.5, 1]
is described in the following definition.

Definition 7 [21] Let I = (U, N) be a neighborhood

information system. For support functions P
RRNi

X (x)(i =
1, 2, . . . , m) and the parameter β ∈ (0.5, 1], the generalize
lower and upper multigranulation approximations are
defined as follows:

Pβ(X) =
{

x ∈ U

∣∣∣
∑m

i=1 P
RNi
X (x)

m
≥ β

}
,

Pβ(X) =
{

x ∈ U

∣∣∣
∑m

i=1(1−P
RNi∼X (x))

m
> 1 − β

}
.

(11)

If Pβ(X) �= Pβ(X), then X is rough and < Pβ(X), Pβ(X) >

is called a generalized multigranulation neighbor-
hood rough set with the level β. The boundary region
Bnβ(X) = Pβ(X)−Pβ(X), otherwise, the X is a definable
subset. Obviously, the optimistic multigranulation rough set
is a special case when β = 1/m.

Example 1 A neighborhood information system is
shown in Table 1, where δ = 0.1. The uni-
verse of we studied is U = {x1, x2, x3, x4, x5, x6}
and the conditional attributes a1, a2, a3, a4, a5 represent
Length, Width, Popularity, F iber and Cotton, respec-
tively. Suppose the target concept X = {x3, x5, x6} and
three granules N1, N2, N3, where N1 = {a1, a2}, N2 =
{a3} and N3 = {a4, a5}. Obviously, they show the size,

popularity and quality of clothes. Each granule denotes dif-
ferent characters, thus we should study the lower and upper
approximations from three granules.

From the viewpoint of global generalized multigranu-
lation rough set, we need to obtain all the neighborhood
classes determined by objects from U . We first compute the
distance matrices based on three granulation.

According to N1 = {a1, a2}, the distance matrix D1 is:

D1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0.0707 0.3722 0.1044 0.3501 0.4400
0.0707 0 0.3015 0.0500 0.2807 0.3701
0.3722 0.3015 0 0.2789 0.0539 0.0806
0.1044 0.0500 0.2789 0 0.2508 0.3413
0.3501 0.2807 0.0539 0.2508 0 0.0906
0.4400 0.3701 0.0806 0.3413 0.0906 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Let δ = 0.1, the neighborhood classes on N1 are:

δ1(x1) = {x1, x2}, δ1(x2) = {x1, x2, x4}, δ1(x3) = {x3, x5, x6},
δ1(x4) = {x2, x4}, δ1(x5) = {x3, x5, x6}, δ1(x6) = {x3, x5, x6}.
According to N2 = {a3}, the distance matrix D2 is:

D2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0.0200 0.0400 0.0200 0.0700 0.0100
0.0200 0 0.0600 0 0.0900 0.0300
0.0400 0.0600 0 0.0600 0.0300 0.0300
0.0200 0 0.0600 0 0.0900 0.0300
0.0700 0.0900 0.0300 0.0900 0 0.0600
0.0100 0.0300 0.0300 0.0300 0.0600 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Similarly, the neighborhood classes on N2 are:

δ2(x1) = {x1, x2, x3, x4, x5, x6}, δ2(x2) = {x1, x2, x3, x4, x5, x6},
δ2(x3) = {x1, x2, x3, x4, x5, x6},

δ2(x4) = {x1, x2, x3, x4, x5, x6}, δ2(x5) = {x1, x2, x3, x4, x5, x6},
δ2(x6) = {x1, x2, x3, x4, x5, x6}.

According to N3 = {a4, a5}, the distance matrix D3 is:

D3 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0.0608 0.3890 0.0632 0.3354 0.0300
0.0608 0 0.4205 0.1063 0.3744 0.0316
0.3890 0.4205 0 0.3257 0.0762 0.3992
0.0632 0.1063 0.3257 0 0.2729 0.0781
0.3354 0.3744 0.0762 0.2729 0 0.3499
0.0300 0.0316 0.3992 0.0781 0.3499 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Table 1 A new neighborhood information system

U a1 a2 a3 a4 a5

x1 0.58 0.28 0.65 0.56 0.35

x2 0.59 0.35 0.67 0.50 0.34

x3 0.62 0.65 0.61 0.68 0.72

x4 0.55 0.38 0.67 0.58 0.41

x5 0.57 0.63 0.58 0.71 0.65

x6 0.58 0.72 0.64 0.53 0.35

W. Xu et al.9152



We obtain the neighborhood classes on N3 are:

δ3(x1) = {x1, x2, x4, x6}, δ3(x2) = {x1, x2, x6}, δ3(x3) = {x3, x5},

δ3(x4) = {x1, x4, x6}, δ3(x5) = {x3, x5}, δ3(x6) = {x1, x2, x4, x6}.
Let β = 0.6, we obtain that

P0.6(X) = {x3, x5}, P0.6(X) = {x1, x2, x3, x4, x5, x6}.

3 Local generalizedmultigranulation
neighborhood rough set model

In order to observe the object in more detail and
improve approximation efficiency, we will introduce
local generalized multigranulation rough set models in
neighborhood information system. And the first we
need to introduce a inclusion function to describe the
inclusion relation between an object and the union set of
neighborhood classes of x ∈ X on a neighborhood relation.

Definition 8 Let I = (U, N) be a neighborhood
information system. The radius of neighborhood is δ and
RNi

⊆ N(i = 1, 2, 3, . . . , m) are neighborhood relations.

The inclusion function S
RNi

X (x) is defined as follows:

S
RNi

X (x) =
{
1, x ∈ NiL(X),

0, x /∈ NiL(X).
(12)

Where NiL(X) = ⋃{δi(x)|δi(x) ∩ X �= ∅, x ∈ X}. The
larger the number of S

RNi

X (x) = 1 on RNi
(i = 1, 2, . . . , m),

the more likely x is the member of upper approximation.
Definition 9 Let I = (U, N) be a neighborhood informa-

tion system. Given the neighborhood radius δ and a param-

eter β, for support functions P
RNi

X (x)(i = 1, 2, . . . , m) and
the parameter β ∈ (0.5, 1], the local generalized multi-
granulation lower and upper approximations of X under
neighborhood relation RNi

(i = 1, 2, . . . , m) with the level
β are respect defined by

PL,β(X) =
{

x ∈ X

∣∣∣
∑m

i=1 P
RNi
X (x)

m
≥ β

}
,

PL,β(X) =
{

x ∈ NL

∣∣∣
∑m

i=1 S
RNi
X (x)

m
> 1 − β

}
.

(13)

WhereNL = ⋃m
i=1{NiL}. If PL,β(X) �= PL,β(X), thenX is

rough and < Pβ(X), Pβ(X) > is called a local generalized
multigranulation neighborhood rough set with the level β.
The boundary region BnL,β(X) = PL,β(X) − PL,β(X).

Compared with classical rough set, the local generalized
rough set defined in Definition 9 possesses some interesting
properties.

Proposition 1 Given the neighborhood information
system I = (U, N), and the corresponding approximate
space < PL,β(X), PL,β(X) >. Then, for any X, Y ⊆ U and
0.5 < β1 ≤ β2 ≤ 1, the following propertied hold:

(1) PL,β(X) ⊆ X ⊆ PL,β(X);

(2) PL,β(∅) = PL,β(∅) = ∅, PL,β(U) = PL,β(U) = U ;

(3) X ⊆ Y, PL,β(X) ⊆ PL,β(Y ), PL,β(X) ⊆ PL,β(Y );

(4) PL,β(X ∩ Y ) ⊆ PL,β(X) ∩ PL,β(Y ), PL,β(X ∩ Y ) ⊆
PL,β(X) ∩ PL,β(Y );

(5) PL,β(X ∪ Y ) ⊇ PL,β(X) ∪ PL,β(Y ), PL,β(X ∪ Y ) ⊇
PL,β(X) ∪ PL,β(Y );

(6) 0.5 < β1 ≤ β2 ≤ 1, PL,β1(X) ⊇
PL,β2(X), PL,β1(X) ⊆ PL,β2(X).

Proof:
(1) PL,β(X) ⊆ X is obviously to be obtained according

to the Definition 9. For ∀x ∈ X, its neighborhood class
δi(x) ∩ X �= ∅ for any granulation RNi

, we can get
∑m

i=1 S
RNi
X (x)

m
= 1, thus x ∈ PL,β(X) and X ⊆ PL,β(X)

holds.
(2) According to (1), we can get PL,β(∅) ⊆ ∅ ⊆ PL,β(∅),

thus the PL,β(∅) = ∅. Also, the union set NiL(X) = ∅
under granulation RNi

when X = ∅, thus the PL,β(∅) = ∅.
Analogously, we can prove that PL,β(U) = PL,β(U) = U .

(3) For x ∈ PL,β(X), we have δi(x) ⊆ X in at least
mβ neighborhood relations, since X ⊆ Y , we can obtain
δi(x) ⊆ Y satisfies in at least mβ neighborhood relations,
thus x ∈ PL,β(Y ). Furthermore, when x ∈ PL,β(X), x ∈
NiL(X) holds in at least m(1 − β) granularity. Meanwhile,
X ⊆ Y ⇒ NiL(X) ⊆ NiL(Y ), thus x ∈ NiL(X) ⇒ x ∈
NiL(Y ). So, one can get that PL,β(X) ⊆ PL,β(Y ).

(4) For any x ∈ PL,β(X ∩ Y ), we can get that

x ∈ PL,β(X∩Y ) ⇒
∑m

i=1 P
RNi
X∩Y (x)

m
≥ β ⇒ δi(x) ⊆ X∩Y

in at least mβ granularity
⇒ δi(x) ⊆ X ∧ δi(x) ⊆ Y in at least mβ granularity

⇒ x ∈ PL,β(X) ∧ PL,β(Y ) ⇒ x ∈ PL,β(X) ∩ PL,β(Y ).

Analogously, for any x ∈ PL,β(X ∩ Y ) we can get that

x ∈ PL,β(X ∩ Y ) ⇒
∑m

i=1 S
RNi
X∩Y (x)

m
> 1 − β

⇒ x ∈ NiL(X ∩ Y ) in at least m(1 − β) granularity
⇒ x ∈ NiL(X) ∩ NiL(Y ) in at least m(1 − β) granularity

⇒ x ∈ PL,β(X) ∧ x ∈ PL,β(Y )

⇒ x ∈ PL,β(X) ∩ PL,β(Y ).
(5) For any x ∈ PL,β(X) ∪ PL,β(Y ), we can get that
x ∈ PL,β(X) ∪ PL,β(Y ) ⇒ x ∈ PL,β(X) ∨ x ∈ PL,β(Y )

⇒ δi(x) ⊆ X or δi(x) ⊆ Y holds in at least mβ

granularity ⇒ δi(x) ⊆ X ∪ Y in at least mβ granularity
⇒ x ∈ PL,β(X ∪ Y ).
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Meanwhile, for x ∈ PL,β(X) ∪ PL,β(Y ), we can get that
x ∈ PL,β(X) ∪ PL,β(Y ) ⇒ x ∈ NiL(X) or x ∈ NiL(Y )

in at least m(1 − β) granularity
⇒ x ∈ NiL(X ∪ Y ) in at least m(1 − β) granularity

⇒ x ∈ PL,β(X ∪ Y ).
(6) When 0.5 < β1 ≤ β2 ≤ 1, if x ∈ PL,β2(X), we know

∑m
i=1 P

RNi
X (x)

m
≥ β2 ≥ β1, then x ∈ PL,β1(X). Analogously,

we can prove PL,β1(X) ⊆ PL,β2(X).
Example 2 For the neighborhood information system

shown in Table 1. The local generalized multigranulation
approximations only need to compute the neighborhood
classes of objects in target concept. It is effective compared
with global ones.

Based on granulation N1, the distance matrix D4 is:

D4 =
⎛

⎝
0.3722 0.3015 0 0.2789 0.0539 0.0806
0.3501 0.2807 0.0539 0.2508 0 0.0906
0.4400 0.3701 0.0806 0.3413 0.0906 0

⎞

⎠ .

Due to δ = 0.1, the neighborhood classes of x3, x5, x6 on
N1 are:

δ1(x3) = {x3, x5, x6}, δ1(x5) = {x3, x5, x6}, δ1(x6) = {x3, x5, x6}.

Based on N2, the distance matrix D5 is:

D5 =
⎛

⎝
0.0400 0.0600 0 0.0600 0.0300 0.0300
0.0700 0.0900 0.0300 0.0900 0 0.0600
0.0100 0.0300 0.0300 0.0300 0.0600 0

⎞

⎠ .

Similarly, the neighborhood classes of x3, x5, x6 on N2

are:

δ2(x3) = {x1, x2, x3, x4, x5, x6}, δ2(x5) = {x1, x2, x3, x4, x5, x6},
δ2(x6) = {x1, x2, x3, x4, x5, x6}.

Based on granulation N3, the distance matrix D6 is:

D6 =
⎛

⎝
0.3890 0.4205 0 0.3257 0.0762 0.3992
0.3354 0.3744 0.0762 0.2729 0 0.3499
0.0300 0.0316 0.3992 0.0781 0.3499 0

⎞

⎠ .

The neighborhood classes of x3, x5, x6 on N3 are:

δ3(x3) = {x3, x5}, δ3(x5) = {x3, x5}, δ3(x6) = {x1, x2, x4, x6}.

According to the above results, we know NiL =
{x1, x2, x3, x4, x5, x6} for all granularity. Give β = 0.6,
based on the definitions of local generalized multigranula-
tion lower and upper approximations, we obtain that

PL,0.6(X) = {x3, x5}, PL,0.6(X)={x1, x2, x3, x4, x5, x6}
.

4 Dynamic updating approximations
theories in neighborhood information
system

With the development of science and technology, the
information in dataset is updated constantly, which includes
the variations of objects and attributions in information
system. It will be time-consuming if we use a static method
to study the target approximation in updated information
system. In fact, the updated approximation space has
a strong relationship with the original approximation
space, thus it would be an effective strategy to update
approximate space according to the relationship between
updated information system and original one.

To more flexible study the complexity of computing
target approximation, in this section, we will focus on the
variation of objects which includes adding new objects and
deleting original objects from the perspectives of global and
local.

4.1 Dynamic updating approximations theories
on global generalizedmultigranulation
neighborhood rough set

In this section, we will study the dynamic updating
approximations of varied objects from global viewpoint.

Let I = (U, N) be the initial neighborhood approxi-
mation space, where U is the set of objects investigated
and RNi

(i = 1, 2, . . . , m) is the neighborhood relation
on U . Suppose X is target concept, ∼ X is the comple-
mentary set in the universe U , and δi(x) is the neighbor-
hood classes of object x under the neighborhood relation
RNi

, i = 1, 2, ..., m. The Pβ(X) and Pβ(X) represent
the initial global generalized multigranulation lower and
upper approximations, respectively. When the universe U

updated, the neighborhood approximation space I , sup-
port and inclusion functions will change accordingly. Thus,
define I ′ = (U ′, N) be the updated neighborhood approxi-

mation space, P
RNi

X (x)′ and S
RNi

X (x)′ are updated functions,
moreover, define δi(x)′ is the updated neighborhood classes
of object x. Furthermore, Pβ(X)′ and Pβ(X)′ represent
the updated generalized multigranulation lower and upper
approximations on global.

4.1.1 Dynamic adding objects on global generalized
multigranulation neighborhood rough set

In the initial information system, the target concept X is
given in advance, thus it will not change in the updated
information system. However, all the neighborhood classes
will be affected by the added objects, and the global
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generalized multigranulation approxiamtions will change
accordingly.

Proposition 2 Let I = (U, N) be a neighborhood infor-
mation system, RNi

(i = 1, 2, . . . , m) is a neighborhood
relation on U , and X ⊆ U is the target concept. Suppose the
added object is xa , the approximations of X will be changed
as follows.

1. ∀xs ∈ Pβ(X), if
∑m

i=1 P
RNi
X (xs)

′
m

< β, then

Pβ(X)′ = Pβ(X) − {xs}; ∀xs /∈ Pβ(X), xs /∈ Pβ(X)′.

2. If there exists some granularity satisfying
∑m

i=1 P
RNi∼X (xa)′
m

>

1 − β, then Pβ(X)′ = Pβ(X) ∪ {xa};
∀xs /∈ Pβ(X), xs /∈ Pβ(X)′ whether xa is the element
of δi(xs)

′(i = 1, 2, . . . , m).

Proof:

1. xs ∈ Pβ(X) means that there exists enough granulation

satisfying
∑m

i=1 P
RNi
X (xs)

m
≥ β. After adding xa to

U , the neighborhood classes will change, and if
∑m

i=1 P
RNi
X (xs)

′
m

< 1 − β, xs will not the number of
lower approximation according to the Definition 7.
Also, if xs /∈ Pβ(X), there will not enough granularity
satisfying δi(xs) ⊆ X. And because the number
of neighborhood classes will increase or constant,
∑m

i=1 P
RNi
X (xs)

′
m

< 1 − β, i.e. xs /∈ Pβ(X)′.

2. It is easily to obtain that if
∑m

i=1 P
RNi∼X (xa)′
m

> 1 − β, the
xa ∈ Pβ(X)′. And for xs /∈ Pβ(X). Due to xa /∈ X,
if δi(xs) � X, δi(xs)

′
� X holds, thus xs still not the

number of updated generalized multigranulation upper
approximation.

Example 3 From Table 1, it is easy to obtain the
generalized multigranulation approximations of X =
{x3, x5, x6} according to the definitions. Moreover, we study
the approximations and their challenges after adding the
new object x7. And the new neighborhood information
system is shown in Table 2.

For global generalized multigranulation neighborhood
rough set, we need to obtain all neighborhood classes
determined by the objects from U . We should calculate the
distance matrix D7, D8 and D9 of objects from U on each
granulation.

According to granulation N1, the distance matrix D7 is:

D7 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0.0707 0.3722 0.1044 0.3501 0.4400 0.4105
0.0707 0 0.3015 0.0500 0.2807 0.3701 0.3401
0.3722 0.3015 0 0.2789 0.0539 0.0806 0.0447
0.1044 0.0500 0.2789 0 0.2508 0.3413 0.3140
0.3501 0.2807 0.0539 0.2508 0 0.0906 0.0671
0.4400 0.3701 0.0806 0.3413 0.0906 0 0.0361
0.4105 0.3401 0.0447 0.3140 0.0671 0.0361 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Take δ = 0.1, the neighborhood classes on N1 are:

δ1(x1)
′ = {x1, x2}, δ1(x2)

′ = {x1, x2, x4}, δ1(x3)
′ = {x3, x5, x6, x7},

δ1(x4)
′ = {x2, x4}, δ1(x5)

′ = {x3, x5, x6, x7},
δ1(x6)

′ = {x3, x5, x6, x7}, δ1(x7)
′ = {x3, x5, x6, x7}.

Based on granulation N2, the distance matrix D8 is:

D8 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0.0200 0.0400 0.0200 0.0700 0.0100 0.0200
0.0200 0 0.0600 0 0.0900 0.0300 0
0.0400 0.0600 0 0.0600 0.0300 0.0300 0.0600
0.0200 0 0.0600 0 0.0900 0.0300 0
0.0700 0.0900 0.0300 0.0900 0 0.0600 0.0900
0.0100 0.0300 0.0300 0.0300 0.0600 0 0.0300
0.0200 0 0.0600 0 0.0900 0.0300 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Similarly, the neighborhood classes on N2 are:

δ2(x1)
′ = {x1, x2, x3, x4, x5, x6, x7}, δ2(x2)

′ = {x1, x2, x3, x4, x5, x6, x7},

δ2(x3)
′ = {x1, x2, x3, x4, x5, x6, x7}, δ2(x4)

′ = {x1, x2, x3, x4, x5, x6, x7},

δ2(x5)
′ = {x1, x2, x3, x4, x5, x6, x7}, δ2(x6)

′ = {x1, x2, x3, x4, x5, x6, x7},

δ2(x7)
′ = {x1, x2, x3, x4, x5, x6, x7}.

Based on granulation N3, the distance matrix D9 is:

D9 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0.0608 0.3890 0.0632 0.3354 0.0300 0.1208
0.0608 0 0.4205 0.1063 0.3744 0.0316 0.0640
0.3890 0.4205 0 0.3257 0.0762 0.3992 0.4789
0.0632 0.1063 0.3257 0 0.2729 0.0781 0.1703
0.3354 0.3744 0.0762 0.2729 0 0.3499 0.4360
0.0300 0.0316 0.3992 0.0781 0.3499 0 0.0943
0.1208 0.0640 0.4789 0.1703 0.4360 0.0943 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Table 2 The new neighborhood information system

U a1 a2 a3 a4 a5

x1 0.58 0.28 0.65 0.56 0.35

x2 0.59 0.35 0.67 0.50 0.34

x3 0.62 0.65 0.61 0.68 0.72

x4 0.55 0.38 0.67 0.58 0.41

x5 0.57 0.63 0.58 0.71 0.65

x6 0.58 0.22 0.64 0.53 0.35

x7 0.60 0.69 0.67 0.45 0.30
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The neighborhood classes on granulation N3 are:

δ3(x1)
′ = {x1, x2, x4, x6}, δ3(x2)

′ = {x1, x2, x6, x7},
δ3(x3)

′ = {x3, x5}, δ3(x4)
′ = {x1, x4, x6},

δ3(x5)
′ = {x3, x5}, δ3(x6)

′ = {x1, x2, x4, x6, x7}, δ3(x7)
′ = {x2, x6, x7}.

Let β = 0.6, we obtain that

P0.6(X)′ = ∅, P0.6(X)′ = {x1, x2, x3, x4, x5, x6, x7}.
Combining the results in the Example 1, due to x7 ∈

δ1(x3)
′, x7 ∈ δ2(x3)

′,
∑m

i=1 P
RNi
X (x3)

′
m

= 1
3 < β, thus x3

is not the number of lower approximation. Similarly, x5 /∈
P0.6(X)′, i.e. P ′

0.6(X) = P0.6(X) − {x3, x5} = ∅. And

because δi(x7)
′ ∩ X �= ∅(i = 3, 5, 6),

∑m
i=1 P

R′
Ni∼X (x7)

m
= 1 >

1 − β, thus x7 is the number of P0.6(X)′.
The above results further verify the corrections of

Proposition 2.

4.1.2 Dynamic deleting objects on global generalized
multigranulation neighborhood rough set

The dynamic updating of objects not only include adding
new objects but also deleting old objects in the universe
U . Due to the removed objects are randomly, the removed
objects may be the number of X. Thus, we will discuss
the dynamic updating in the deleted objects whether they
belong to X.
Proposition 3 Let I = (U, N) be a neighborhood infor-
mation system, RNi

(i = 1, 2, . . . , m) is a neighborhood
relation on U , and X ⊆ U is the target concept. Suppose
the object removed is xd(xd ∈ X), the approximations of X

will change as follows.

1. If xd ∈ Pβ(X), then Pβ(X)′ = Pβ(X) − {xd};
∀xs /∈ Pβ(X), after deleting xd ∈ X, xs /∈ Pβ(X).

2. If xd ∈ Pβ(X), then Pβ(X)′ = Pβ(X) − {xd};
∀xs ∈ Pβ(X)(xs �= xd), if there exists some gran-

ulation satisfying
∑m

i=1 P
RNi∼X (xs)

′
m

≤ 1 − β, then
Pβ(X)′ = Pβ(X) − {xs}.

Proof:

1. Obviously, if the deleted object xd ∈ Pβ(X), after
removing it, the updated lower approximation will not
include xd . An object xs is not in the initial lower
approximation, which shows that there are not enough
granulation such that δi(xs) ⊆ X, also xd ∈ X, thus
when it is deleted, there still not enough granulation

satisfying
∑m

i=1 P
RNi
X (xs)

m

′
≥ β, and then xs /∈ Pβ(X)′.

2. After removing xd , the updated upper approximation
will delete xd from the initial approximation corre-
spondingly. For xs ∈ Pβ(X)(xs �= xd), since the
deleted object xd ∈ X, the updated neighborhood

classes δi(xs)
′ ∩ X may be ∅, if

∑m
i=1 P

RNi∼X (xs)

m

′
≤

1 − β, then the xs will be not the number of updated
generalized multigranulation upper approximation.

Example 4 Continue to Example 1. Removing object
xd ∈ X, the generalized multigranulation approximations
will change consistently. And the changes will be different
whether xd is the element of X. In this example, we discuss
the updated approximations of generalized multigranulation
on global when the removed object is x3 ∈ X.

According to the neighborhood information system
Table 1 and distance matrices in Example 1, we obtain
the updated neighborhood classes on three granulation as
follows:
δ1(x1)

′ = {x1, x2}, δ1(x2)′ = {x1, x2, x4}, δ1(x4)′ = {x2, x4},
δ1(x5)

′ = {x5, x6}, δ1(x6)′ = {x5, x6}.
δ2(x1)

′ = {x1, x2, x4, x5, x6}, δ2(x2)′ = {x1, x2, x4, x5, x6},
δ2(x4)

′ = {x1, x2, x4, x5, x6},
δ2(x5)

′ = {x1, x2, x4, x5, x6}, δ2(x6)′ = {x1, x2, x4, x5, x6}.
δ3(x1)

′ = {x1, x2, x4, x6}, δ3(x2)′ = {x1, x2, x6}, δ3(x4)′ = {x1, x4, x6},
δ3(x5)

′ = {x5}, δ3(x6)′ = {x1, x2, x4, x6}.
Based on the definitions of generalized multigraulation

approximations on global, we obtain that

Pβ(X)′ = {x5}, Pβ(X)′ = {x1, x2, x4, x5, x6}.
Since the removed object x3 ∈ Pβ(X), updated lower

approximation Pβ(X)′ = Pβ(X)−{x3} = {x5}; and because
∑m

i=1 P
RNi∼X (xi )

′
m

> 1−β(xi ∈ U ′), Pβ(X)′ = Pβ(X)−{x3} =
{x1, x2, x4, x5, x6} after deleting x3.

The above results verify the Proposition 3.
Proposition 4 Let I = (U, N) be a neighborhood

approximation space, where X ⊆ U is the target
concept. Suppose the object removed is xd /∈ X, and the
approximations of X will change as follows:

1. If xd ∈ Pβ(X), then Pβ(X)′ = Pβ(X) − {xd};
∀xs /∈ Pβ(X)(xs �= xd), if there exists some granulation

such that
∑m

i=1 P
RNi
X (xs )

′
m

≥ β, then Pβ(X)′ = Pβ(X)∪{xs}.

2. If xd ∈ Pβ(X), P ′
β(X) = Pβ(X)−{xd }; ∀xs /∈ Pβ(X)(xs �= xd),

then xs /∈ Pβ(X)′.

Proof:

1. Deleting xd , then the updated approximations will
remove it from the initial ones. And xs /∈ Pβ shows
∑m

i=1 P
RNi
X

(
xs)m < β, after removing xd ∈∼ X, the
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updated neighborhood classes δi(xs)
′ may be the subset

of X, if there exists enough multigranulation satisfying
∑m

i=1 P
RNi
X (xs)

m

′
≥ β, then xs ∈ Pβ(X)′.

2. It is easily to obtain that the updated upper approxima-
tion will remove the deleted object xd from the initial
one. Due to xs ∈∼ X, the updated neighborhood classes
δi(xs)

′ ∩ X = ∅ if δi(xs) ∩ X = ∅. Therefore, if
xs /∈ Pβ(X), then xs /∈ Pβ(X)′ .

Example 5 Continue to Example 1. In this example, we
discuss the updated approximations of global generalized
multigranulation when the removed object is x1 /∈ X. We
obtain the updated neighborhood classes as follows.

δ1(x2)
′ = {x2, x4}, δ1(x3)

′ = {x3, x5, x6}, δ1(x4)
′ = {x2, x4},

δ1(x5)
′ = {x3, x5, x6}, δ1(x6)

′ = {x3, x5, x6}.
δ2(x2)

′ = {x2, x3, x4, x5, x6}, δ2(x3)
′ = {x2, x3, x4, x5, x6},

δ2(x4)
′ = {x2, x3, x4, x5, x6},

δ2(x5)
′ = {x2, x3, x4, x5, x6}, δ2(x6)

′ = {x2, x3, x4, x5, x6}.
δ3(x2)

′ = {x2, x6}, δ3(x3)
′ = {x3, x5}, δ3(x4)

′ = {x4, x6},

δ3(x5)
′ = {x3, x5}, δ3(x6)′ = {x2, x4, x6}.

Based on the definitions of lower and upper generalized
multigranulation approximations, we obtain that

Pβ(X)′ = {x3, x5}, Pβ(X)′ = {x2, x3, x4, x5, x6}.

After removing x1 /∈ X, we find
∑m

i=1 P
RNi
X (xj )

m
≥ β(j = 3, 5),

thus the updated lower approximation is the same as the

initial one. Since
∑m

i=1 P
RNi∼X (xj )

m
> 1 − β(j = 2, 3, 4, 5, 6), the

updated generalized multigranulation upper approximation
Pβ(X)′ = Pβ(X) − {x1} = {x2, x3, x4, x5, x6}.

The above results verify the authenticity of Proposition 4.

4.2 Dynamic updating approximations theories
on local generalizedmultigranulation
neighborhood rough set

On local generalized multigranulation rough set, we only
need to consider the neighborhood classes in target concept
X, it is an efficient strategy compared with global ones.
Moreover, the dynamic updating strategy would be a more
efficient method for approximating target concept when the
object set changes. In this section, we will continue to study
the dynamic updating approximations of varied objects from
local viewpoint.

The prerequisites are the same as those set out in
Section 4.1, also, PL,β(X)′ and PL,β(X)′ denote the
updated local generalized multigranulation approximations
on local respectively.

4.2.1 Dynamic adding objects on local generalized
multigranulation neighborhood rough set

In the initial neighborhood information system, the target
concept X is given in advance and it will not change in
the updated neighborhood information system. However,
the neighborhood classes in X will be affected by
the added objects, the local generalized multigranulation
approximations will change accordingly.

Proposition 5 Let I = (U, N) be a neighborhood
information system, RNi

(i = 1, 2, . . . , m) is the
neighborhood relation on U , and X is the target concept.
Suppose the added object is xa , and the approximations of
X will change as follows.

1. ∀xs ∈ Pβ(X), if
∑m

i=1 P
RNi
X (xs)

m

′
< β, then P ′

β(X) =
Pβ(X) − {xs}; ∀xs /∈ PL,β(xs ∈ X), after adding xa to

U , xs /∈ PL,β
′.

2. If
∑m

i=1 S
RNi
X (xa)′
m

> 1−β, then Pβ(X)′ = Pβ(X)∪{xa}.

Proof:

1. Since the object xa /∈ X, if some neighborhood classes
include it, then the inclusion relationship will not hold.
Therefore, for xs ∈ Pβ(X), it would be removed from
local generalized multigranulation lower approximation

if
∑m

i=1 P
RNi
X (xs)

′
m

< β.
2. According to the Definition 9, it is easily to obtain (2).

Example 6 Continue to the Example 3, the Table 2 is the
new neighborhood information system after adding x7 to U .
As the same, we suppose the target conceptX = {x3, x5, x6}
and δ = 0.1. For local generalized multigranulation rough
set, we need to calculate the neighborhood classes for
the object x ∈ X. According to the distance matrices in
Example 3, we obtain that

δ1(x3)
′ = {x3, x5, x6, x7}, δ1(x5)

′ = {x3, x5, x6, x7},
δ1(x6)

′ = {x3, x5, x6, x7}.

δ2(x3)
′ = {x1, x2, x3, x4, x5, x6, x7}, δ2(x5)

′ = {x1, x2, x3, x4, x5, x6, x7},
δ2(x6)

′ = {x1, x2, x3, x4, x5, x6, x7}.

δ3(x3)
′ = {x3, x5}, δ3(x5)

′ = {x3, x5},
δ3(x6)

′ = {x1, x2, x4, x6, x7}.
Based on the above results, we obtain NiL =
{x1, x2, x3, x4, x5, x6, x7}(i = 1, 2, 3). And according
to the definitions of local generalized multigranulation
approximations, let β = 0.6, we know that

PL,β(X)′ = ∅, PL,β(X)′ = {x1, x2, x3, x4, x5, x6, x7}.
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Due to x7 ∈ δ1(xi)
′ and δ2(xi)

′ for i = 3, 5, thus
∑m

i=1 P
RNi
X (x3)

′
m

=
∑m

i=1 P
RNi
X (x5)

′
m

= 1
3 < 0.6, PL,β(X)′ =

PL,β(X) − {x3, x5} = ∅. Also,
∑m

i=1 S
RNi
X (x7)

′
m

= 1 > 0.4, so

PL,β(X)′ = PL,β(X) ∪ {x7}.
The results further verify the authenticity of Proposition 5.

4.2.2 Dynamic deleting objects on local generalized
multigranulation neighborhood rough set

Continue to the Example 4 and Proposition 4, we approxi-
mate the target concept X on local perspective. Because the
deleted process is randomly, we will discuss the dynamic
updating whether the removed object xd is the element ofX.

Proposition 6 Let I = (U, N) be a neighborhood
information system, where RNi

(i = 1, 2, . . . , m) is a
neighborhood relation on U . Suppose X ⊆ U is the target
concept and the object removed is xd ∈ X, the local
approximations of X will change as follows:

1. PL,β(X)′ = PL,β(X) − {xd};
2. If xd ∈ PL,β(X), PL,β(X)′ = PL,β(X) − {xd }; ∀xs ∈ PL,β(X),

if
∑m

i=1 S
RNi
X (xs)

m

′
≤ 1 − β, then PL,β(X)′ = PL,β(X) − {xs}.

Proof:

1. It is easy to obtain that the updated lower approximation
of generalized multigranulation rough set will remove
the object xs correspondingly after deleting xd ∈ X.

2. After removing xd ∈ X, it may be the intersections
between some neighborhood classes and the target

concept. Therefore, if
∑m

i=1 S
RNi
X (xs )

m

′
≤ 1 − β(xs �= xd),

the xs should be deleted from the updated upper
approximation.

Example 7According to distance matrices in Example 4,
When the removed object is x3 ∈ X, the new neighborhood
classes are:

δ1(x5)
′ = {x5, x6}, δ1(x6)

′ = {x5, x6}.
δ2(x5)

′ = {x1, x2, x4, x5, x6}, δ2(x6)
′ = {x1, x2, x4, x5, x6}.

δ3(x5)
′ = {x5}, δ3(x6)′ = {x1, x2, x4, x6}.

Let β = 0.6, we obtain that

PL,β(X)′ = {x5}, PL,β(X)′ = {x1, x2, x4, x5, x6}.
Combining the above results with that in 4.2, we have

PL,β(X)′ = PL,β(X) − {x3} = {x5}. Also,
∑m

i=1 S
RNi
X (xj )′
m

=
1 > β(j = 1, 2, 4, 5, 6) still holds, thus PL,β(X)′ = PL,β(X).

The results verify the Proposition 6.
Proposition 7 Let I = (U, N) be a neighborhood infor-

mation system, RNi
(i = 1, 2, . . . , m) is a neighborhood

relation onU . SupposeX is the target concept and the object

removed is xd /∈ X, the approximations of X will change as
follows.

1. ∀xs /∈ PL,β(X)(xs ∈ X), if there exists enough granulation

satisfying
∑m

i=1 P
RNi
X (xs )

′
m

≥ β, then PL,β(X)′ = PL,β(X) ∪
{xs}.

2. PL,β(X)′ = PL,β(X) − {xd}.
Proof:

1. After removing xd /∈ X, the inclusion between the
updated neighborhood classes and target concept may

be hold. Therefore, for xs /∈ PL,β(X), if
∑m

i=1 P
RNi
X (xs )

′
m

≥
β, xs will be the number of the updated upper
approximation.

2. It is easy to obtain the results.

Example 8 Continue to the Examples 2 and 5, we discuss
the updated approximations of generalized multigranulation
on local when the removed object is x1 /∈ X.

According to the neighborhood information system and
distance matrices in Example 2, we obtain the neighborhood
classes as follows:

δ1(x3)
′ = {x3, x5, x6}, δ1(x5)

′ = {x3, x5, x6}, δ1(x6)
′ = {x3, x5, x6}.

δ2(x3)
′ = {x2, x3, x4, x5, x6}, δ2(x5)

′ = {x2, x3, x4, x5, x6},
δ2(x6)

′ = {x2, x3, x4, x5, x6}.

δ3(x3)
′ = {x3, x5}, δ3(x5)

′ = {x3, x5}, δ3(x6)
′ = {x2, x4, x6}.

Based on the definitions of local generalized multigranu-
lation approximations, we have

PL,β(X)′ = {x3, x5}, PL,β(X)′ = {x2, x3, x4, x5, x6}.

After removing x1 /∈ X, we find
∑m

i=1 P
RNi
X (x6)

m
= 1

3 < β,
thus the updated lower approximation is the same as the
initial one. Also, PL,β(X)′ = PL,β(X)−{x1} = {x2, x3, x4, x5, x6}.

The above results further verify the authenticity of
Proposition 7.

5 The algorithms of obtaining updated
generalizedmultigranulation
approximations with varied objects

In this section, we will design algorithms about comput-
ing the updated approximations on global and local back-
grounds. The challenges in objects which include adding
and deleting elements will cause different results corre-
spondingly. Moreover, the difference between static and
dynamic updating algorithms will be compared.
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5.1 Computing the updated approximations after
adding objects

In this part, dynamic algorithms about computing updated
approximations of target concept X after adding new objects
to U are designed. From the definitions of lower/upper
generalized multigranulation approximations, we need to
recompute the all neighborhood classes on static viewpoint
when the objets change while the dynamic one only need
to depict the relations between the xa and other existing
objects. Here, we give the corresponding dynamic algo-
rithms in below. Also, di(xd, xs)(xd ∈ Uadd) denotes the
distance between xd and xs on neighborhood relation RNi

.

In the global dynamic algorithm Algorithm 1. When the
new object xa added, we only compute the distance between
xa and xs ∈ U for all granulation while the static algorithm
needs to compute the distance between any two objects in
U ∪{xa}, thus the complexity of step 3 of dynamic and static
algorithms are O(m×|U |) and O(m×|U +1|2). According
to the theories of dynamic updating, in order to obtain the
updated lower approximation, we only need to obtain the
inclusion relation between xs ∈ GMLG on m granulation,
so the complexity of step 4 is O(m × |GMLG|). Also, it
only need to compare

∑m
i=1 P

RNi∼X (xa)′
m

with 1−β for the added
object, thus the complexity is O(m × 1) in step 5. However,
for global static algorithm, the complexity of computing
updated approximations are all O(m × |U |). According to
the complexity, we find the dynamic updating method can
significantly reduce time consumption.

In the local dynamic algorithm Algorithm 2. Step 3 needs
to calculate whether xd is the element of δi(xs)(xs ∈ X)

for all granulation, thus complexity is O(m × |X|). But for
local static algorithm, we need to recompute the distance
between xs ∈ X and all objects in U ∪ {xa}, thus its
complexity is O(m × |X|(|U | + 1)). Also, in the step 4, we

need to delete xs ∈ GMLL satisfying
∑m

i=1 P
RNi
X (xs)

′
m

< β

from the original lower approximation, so the complexity
is O(m × |GMLL|), while the local one is O(m × |X|).
Similarly to the Algorithm 1, the complexity of step 5 is
O(m × 1) and the local static one is O(m × |N ′

L|). Due
|GMLL| ≤ |X| and 1 ≤ |N ′

L|, thus the time consumption
of local dynamic is less than the local static one. Moreover,
the time complexity of updated algorithms on global and
local after adding new object are shown in Table 3.

For dynamic algorithm, they only need to compare xa

with the original neighborhood classes, the complexity of
global and local dynamic algorithms are O(m × |U | + m ×
|GMLG| + m × 1) and O(m × |X| + m × |GMLL| +
m×1) respectively. Since |GMLL| = |GMLG| and |X| <

|U |, the time consumption of local dynamic algorithm is
less than global one. In conclusion, compared with static
algorithms, the dynamic algorithms can significantly reduce
the time complexity of approximating X.

5.2 Computing the updated approximations after
deleting objects

In this part, we design the dynamic algorithms about
computing updated approximations of target concept
X when deleting existing objects. Since the removed
xd ∈ U and the number of neighborhood classes
only can decrease not rather increase, we only deleted
the xs from original information classes in dynamic
computing process, which significantly reduce the time
consumption.
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Table 3 The time complexity of algorithms on global and local after adding new objects

Algorithms Global Local

Static O(m × |U + 1|2 + 2 × m × |U |) O(m × |X||U + 1| + m × |X| + m × |N ′
L|)

Dynamic O(m × |U | + m × |GMLG| + m × 1) O(m × |X| + m × |GMLL| + m × 1)
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The Algorithm 3 shows the process of computing
updated approximations after deleting objects. In step 3,
we delete xd from the all original neighborhood classes
and don’t need to recompute the distance matric, thus
the time complexity on global dynamic algorithm is
O(m(|U | − 1)), while the global static one is O(|U | −
1)2. For obtaining the updated lower approximation, the
global static algorithms only needs to compare |U | − 1
objects with target concept while the global dynamic only
needs to observe the relationship between object in U −
UGGMLA and target concept, thus the complexity of
global static and dynamic method is O(m(|U | − 1)) and
O(m|U − UGGMLA|). Similarly, the time complexity of
obtaining global upper approximation of static and dynamic
algorithm is O(m(|U | − 1)) and O(m|UGGMUA|). Since
O(m(|U |−1)) � O(m(|U |−1)2), O(m|UGGMUA|) �
O(m(|U |−1)), and O(m|U −UGGMLA|) � O(m(|U |−
1)), thus the global dynamic algorithm could significantly
reduce the time when deleting objects.

The Algorithm 4 shows the dynamic updating process
when deleting objects from local perspective. In step 3,
it only needs to delete xd from the original neighborhood
classes determined by X′, thus the time complexity is
O(m × |X|) while the local static one is O(m ×
|X′|(|U | − 1)). According to the propositions of dynamic
mechanism, we know the individual could be the member
of lower approximation due to the reduction of non-
target collection objects while the upper approximation
may be decrease due to the reduction of target concept.
Therefore, the local dynamic algorithm only needs to
compute the function value of individual in X−ULGMLA

for obtaining the local lower approximation, its complexity
is O(m|X′ − ULGMLA|) while that of local static
algorithm is O(m|X′|). In addition, for obtain the lower
upper approximation, the number of objects observed in
adynamic algorithm is LGMUA and that of local static
is ∪δi(xj )

′(xj ∈ X′, i = 1, 2, · · · , m) according to
the definition of local generalized multigranulation rough
set, thus the time complexity of obtaining local upper
approximation is O × (m) and O × (m| ∪ δi(xj )

′|). Since
|X′| � |X′|(|U | − 1) and 1 � | ∪ δi(xj )

′|, the time
complexity of dynamic algorithm is less than static one on
local. The more detail of complexity of updated algorithms
on global and local after deleting object are shown in
Table 4.

According to the above results, we know the time
complexity of dynamic algorithms is less than that of static
ones on global and local viewpoints. From the Table 4,
because |X′| � |U |−1 and 1 � |UGGMUA|, the local dynamic
algorithm can significantly reduce the time complexity of
approximating target concept compared with the global
dynamic algorithm, especially in big data.

6 Experiments and analysis

In Section 5, we have designed dynamic updating algo-
rithms and illustrated its effectiveness by analysing their
time complexity. Now, we will further verify the advantages
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Table 4 The time complexity of algorithms on global and local after deleting object

Algorithms Global Local

Static O(m × ((|U | + 1)2 + 2(|U | − 1))) O(m(×|X′|(|U | − 1) + |X′| + | ∪ δi(xj )
′|))

Dynamic O(m × ((|U | − 1) + |U − UGGMLA| + |UGGMUA|)) O(m × (|X′| + |X′ − ULGMLA| + 1))

of local dynamic algorithm through the time consumption
in experiments. The experiments are carried on two aspects:
adding new objects and deleting existing ones.

6.1 Experiment design

All the algorithms are implemented in Matlab 2016b and
carry out on a personal computer with Intel(R) Core(TM)
i5-1135G7 CPU@2.40GH 2.42GH, and 16 GB memory.
For verify the effective of dynamic algorithms while
approximating concept on various objects, we choose
twelve data sets from UCI [2] to carry experiments. And the
detailed information for the six data sets is shown in Table 5.

In all experiments, for each data set, they are first
preprocessed by normalizing each variable into the unit
interval. First, we fix δ = 0.1 and the target concept where
its objects are the front 10% of these data sets, and then
suppose three granulation and each of them is composed
by third of all features in order. For these algorithms of
adding new objects, we select 50% of the data sets as their
basic sets and then add 10% of the remaining objects to
them for ten times. Meanwhile, for the dynamic algorithms
of deleting objects, we delete 5% of the objects in U for
ten times. Also, the unit of time consumption is seconds. In

order to detail observe the trend of time consumption, we
take β = 0.6, 0.8, 1.

6.2 Experiments results when adding new objects

In this section, we verify the effectiveness of local dynamic
algorithm when adding objects. The Tables 6, 7 and 8
record the consume time of adding new individuals with
different parameters. In 12 datasets, we could obtain that
the consume time increases with the number of objects
increases on three algorithms. For local dynamic algorithm,
it ignores the other redundant information about individuals
out of target concept and further reduces the time due
to dynamic computing, thus the consume time of local
dynamic algorithm is always the lowest. Also, the more
vivid comparison is shown in the Figs. 2, 3 and 4,
where the blue, rose red and bright red lines represent
the computational time on global dynamic, local static and
dynamic algorithms, whose abbreviations are GDA, LSA

and LDA respectively. The height of bar chart shows that
the time consumption of approximating X on local dynamic
algorithm is less than that on local static and global dynamic
ones, which can further verify the effectiveness of dynamic
updating algorithm and the advantages of local rough set.

Table 5 Datasets description

Nos Datasets Individuals Features

set1 Airfoil Self-Noise 1503 5

set2 Combined Cycle Power Plant 9568 4

set3 Electrical Grid Stability Simulated Data 1000 13

set4 First-order theorem proving 6118 50

set5 FrogsMFCCs 7195 22

set6 Human Activity Recognition Using Smartphones 11934 17

set7 MAGIC Gamma Telescope MGT 19020 10

set8 page-blocks 5472 10

set9 SkillCraft1 Master Table 3395 19

set10 spambase 4601 57

set11 wilt 4839 5

set12 wine quality white 4898 11

W. Xu et al.9162



Table 6 The consume time of adding objects by different approximate algorithms when β = 0.6

Dataset Algorithm t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Local static 0.026 0.028 0.028 0.029 0.029 0.030 0.030 0.030 0.032 0.033

set1 Local dynamic 0.014 0.015 0.015 0.016 0.016 0.018 0.018 0.019 0.018 0.021

Global dynamic 0.021 0.030 0.044 0.049 0.056 0.064 0.072 0.082 0.092 0.102

Local static 0.905 0.973 1.054 1.123 1.190 1.263 1.336 1.403 1.471 1.575

set2 Local dynamic 0.125 0.188 0.246 0.319 0.400 0.471 0.551 0.629 0.676 0.741

Global dynamic 0.325 0.638 1.109 1.446 1.867 2.298 2.788 3.249 3.687 4.091

Local static 0.498 0.534 0.565 0.605 0.638 0.680 0.720 0.761 0.799 0.840

set3 Local dynamic 0.110 0.138 0.172 0.210 0.253 0.293 0.346 0.371 0.414 0.449

Global dynamic 0.224 0.423 0.625 0.851 1.129 1.389 1.689 1.890 2.139 2.361

Local static 0.182 0.194 0.205 0.218 0.229 0.241 0.252 0.264 0.275 0.286

set4 Local dynamic 0.056 0.066 0.074 0.088 0.098 0.111 0.124 0.137 0.149 0.159

Global dynamic 0.122 0.237 0.334 0.448 0.566 0.683 0.824 0.954 1.185 1.465

Local static 0.258 0.273 0.290 0.306 0.322 0.334 0.355 0.376 0.434 0.460

sest5 Local dynamic 0.072 0.076 0.083 0.102 0.105 0.116 0.129 0.144 0.170 0.177

Global dynamic 0.123 0.240 0.344 0.456 0.587 0.722 0.886 1.013 1.171 1.285

Local static 1.209 1.247 1.393 1.528 1.591 1.642 1.754 1.848 2.008 2.028

set6 Local dynamic 0.164 0.219 0.273 0.371 0.495 0.584 0.655 0.745 0.828 0.895

Global dynamic 0.387 0.732 1.156 1.634 2.041 2.549 2.975 3.458 3.854 4.357

Local static 3.601 3.711 4.008 4.166 4.386 4.638 4.907 5.184 5.363 5.607

set7 Local dynamic 0.409 0.661 1.015 1.328 1.545 1.801 2.019 2.262 2.580 2.743

Global dynamic 0.989 2.022 3.343 4.567 5.693 6.836 8.174 9.405 10.781 12.347

Local static 0.366 0.400 0.422 0.444 0.469 0.494 0.521 0.543 0.570 0.596

set8 Local dynamic 0.068 0.083 0.099 0.118 0.143 0.161 0.181 0.220 0.256 0.278

Global dynamic 0.130 0.255 0.370 0.539 0.695 0.831 0.964 1.130 1.381 1.422

Local static 0.097 0.101 0.108 0.112 0.120 0.125 0.128 0.138 0.148 0.153

set9 Local dynamic 0.041 0.040 0.047 0.058 0.063 0.062 0.073 0.076 0.081 0.085

Global dynamic 0.053 0.111 0.131 0.169 0.200 0.242 0.276 0.317 0.354 0.394

Local static 0.146 0.155 0.167 0.179 0.188 0.198 0.212 0.219 0.224 0.230

set10 Local dynamic 0.050 0.049 0.055 0.058 0.064 0.069 0.126 0.140 0.151 0.171

Global dynamic 0.078 0.127 0.189 0.276 0.352 0.495 0.576 0.649 0.748 1.007

Local static 0.301 0.321 0.346 0.368 0.390 0.412 0.435 0.455 0.478 0.498

set11 Local dynamic 0.058 0.073 0.090 0.111 0.126 0.146 0.177 0.192 0.218 0.235

Global dynamic 0.101 0.189 0.297 0.369 0.453 0.699 0.809 0.925 1.040 1.161

Local static 0.217 0.241 0.264 0.282 0.292 0.306 0.320 0.333 0.350 0.364

set12 Local dynamic 0.052 0.060 0.072 0.082 0.095 0.106 0.115 0.128 0.142 0.159

Global dynamic 0.104 0.181 0.275 0.358 0.451 0.545 0.640 0.734 0.836 0.928

With the increasing of the number of objects, the
computational time also increases, and the gap between
local and global process becomes more obvious. That’s
because the global dynamic algorithm need to compare the
added objects with original universe U , thus the computing
time increases rapidly with the number of updates increases.

However, the local dynamic only needs to compare the
added objects with target concept X on the base of original
approximations, so the time consumption increases relative
slow. Also, since the dynamic algorithm only needs to
compare the added objects with initial objects while the
static one needs to recompute the neighborhood classes
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Table 7 The consume time of adding objects by different approximate algorithms when β = 0.8

Dataset Algorithm t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Local static 0.052 0.055 0.055 0.055 0.058 0.058 0.062 0.062 0.063 0.065

set1 Local dynamic 0.026 0.029 0.030 0.032 0.032 0.033 0.037 0.037 0.039 0.040

Global dynamic 0.019 0.029 0.039 0.049 0.057 0.065 0.076 0.088 0.102 0.110

Local static 0.908 0.978 1.054 1.127 1.195 1.270 1.337 1.411 1.476 1.542

set2 Local dynamic 0.128 0.184 0.244 0.300 0.391 0.471 0.549 0.623 0.673 0.742

Global dynamic 0.321 0.621 1.067 1.438 1.846 2.264 2.738 3.172 3.586 3.979

Local static 0.489 0.533 0.566 0.604 0.642 0.681 0.726 0.759 0.796 0.896

set3 Local dynamic 0.110 0.136 0.177 0.227 0.288 0.325 0.388 0.417 0.469 0.508

Global dynamic 0.225 0.452 0.645 0.860 1.140 1.385 1.695 1.894 2.146 2.366

Local static 0.185 0.193 0.204 0.217 0.229 0.240 0.253 0.262 0.272 0.283

set4 Local dynamic 0.056 0.067 0.075 0.085 0.098 0.108 0.131 0.155 0.163 0.184

Global dynamic 0.123 0.234 0.355 0.515 0.638 0.800 0.939 1.101 1.120 1.222

Local static 0.272 0.282 0.298 0.319 0.339 0.345 0.358 0.377 0.387 0.404

sest5 Local dynamic 0.063 0.067 0.075 0.097 0.102 0.111 0.126 0.137 0.164 0.167

Global dynamic 0.127 0.254 0.354 0.461 0.581 0.740 0.879 1.013 1.194 1.341

Local static 1.231 1.286 1.373 1.497 1.584 1.749 1.793 1.886 2.002 2.089

set6 Local dynamic 0.159 0.217 0.266 0.357 0.481 0.585 0.638 0.735 0.813 0.895

Global dynamic 0.380 0.760 1.134 1.635 2.101 2.588 3.046 3.516 5.262 10.429

Local static 3.628 3.838 4.043 4.233 4.460 4.720 4.941 5.254 5.520 5.668

set7 Local dynamic 0.416 0.686 1.059 1.323 1.562 1.821 2.018 2.279 2.521 2.776

Global dynamic 1.045 2.034 3.332 4.588 5.783 6.966 8.213 9.545 10.943 12.379

Local static 0.376 0.404 0.422 0.450 0.471 0.497 0.528 0.548 0.573 0.604

set8 Local dynamic 0.065 0.084 0.096 0.116 0.137 0.162 0.179 0.216 0.251 0.276

Global dynamic 0.131 0.261 0.372 0.539 0.678 0.819 0.952 1.121 1.271 1.424

Local static 0.092 0.100 0.106 0.112 0.114 0.120 0.127 0.134 0.141 0.149

set9 Local dynamic 0.041 0.048 0.050 0.053 0.062 0.064 0.072 0.078 0.081 0.085

Global dynamic 0.056 0.090 0.115 0.160 0.197 0.241 0.276 0.322 0.358 0.401

Local static 0.145 0.152 0.162 0.174 0.183 0.197 0.204 0.216 0.224 0.233

set10 Local dynamic 0.045 0.049 0.051 0.058 0.061 0.068 0.125 0.134 0.147 0.160

Global dynamic 0.077 0.130 0.195 0.290 0.363 0.499 0.584 0.663 0.765 0.968

Local static 0.309 0.330 0.347 0.370 0.389 0.410 0.431 0.454 0.493 0.507

set11 Local dynamic 0.061 0.074 0.094 0.108 0.127 0.148 0.170 0.191 0.211 0.232

Global dynamic 0.103 0.193 0.289 0.367 0.452 0.689 0.805 0.927 1.054 1.163

Local static 0.233 0.259 0.331 0.344 0.370 0.398 0.400 0.417 0.435 0.439

set12 Local dynamic 0.054 0.064 0.077 0.087 0.099 0.112 0.124 0.134 0.150 0.168

Global dynamic 0.095 0.187 0.276 0.363 0.459 0.547 0.644 0.742 0.840 0.944

determined by the objects in U ′, thus the gap between static
and dynamic is becomes larger with the increasing of U .
The experimental results fully demonstrate the effectiveness
of local dynamics algorithm. Thus, we can conclude that the
local dynamic updating algorithm is a better method than
the local static and global algorithms.

6.3 Experiments results when deleting objects

In this section, we further verify the effectiveness of local
dynamic algorithm when deleting objects. The consume

time results are recorded and described in Tables 9, 10
and 11 and Figs. 5, 6 and 7. From Tables 9, 10 and 11,
we obtain that the consume time decreases as the number
of reduced objects increases, and the global algorithm is
slower than the local algorithm. The rank of running time
by different algorithms is Global dynamic > Local static >

Local dynamic. Theses time results reflect the effectiveness
of local rough set and dynamic mechanism.

The Figs. 5, 6 and 7 show the time consumption
in approximating target concept X on global dynamic,
local static and dynamic algorithms under generalized
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Table 8 The consume time of adding objects by different approximate algorithms when β = 1

Dataset Algorithm t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Local static 0.027 0.027 0.028 0.029 0.029 0.030 0.031 0.031 0.032 0.032

set1 Local dynamic 0.013 0.015 0.015 0.016 0.016 0.016 0.017 0.018 0.019 0.019

Global dynamic 0.020 0.030 0.042 0.048 0.059 0.065 0.075 0.088 0.100 0.110

Local static 0.940 1.002 1.077 1.154 1.255 1.295 1.375 1.447 1.517 1.591

set2 Local dynamic 0.128 0.188 0.269 0.356 0.467 0.582 0.677 0.747 0.810 0.889

Global dynamic 0.324 0.625 1.080 1.461 2.036 2.900 3.244 3.749 4.190 4.688

Local static 0.488 0.525 0.559 0.596 0.636 0.674 0.718 0.752 0.791 0.832

set3 Local dynamic 0.111 0.142 0.175 0.219 0.257 0.303 0.351 0.377 0.411 0.462

Global dynamic 0.226 0.451 0.644 0.851 1.134 1.397 1.692 1.915 2.145 2.389

Local static 0.186 0.195 0.210 0.219 0.232 0.283 0.303 0.314 0.319 0.333

set4 Local dynamic 0.071 0.080 0.094 0.105 0.115 0.117 0.121 0.135 0.145 0.157

Global dynamic 0.131 0.247 0.342 0.456 0.584 0.718 0.845 0.967 1.087 1.217

Local static 0.252 0.268 0.285 0.305 0.315 0.332 0.349 0.363 0.378 0.395

sest5 Local dynamic 0.066 0.078 0.079 0.107 0.111 0.120 0.126 0.130 0.147 0.158

Global dynamic 0.130 0.241 0.346 0.455 0.562 0.705 0.841 0.974 1.137 1.257

Local static 1.193 1.235 1.324 1.460 1.541 1.627 1.724 1.947 2.054 2.208

set6 Local dynamic 0.172 0.209 0.282 0.358 0.481 0.585 0.623 0.692 0.786 0.862

Global dynamic 0.393 0.771 1.159 1.639 2.007 3.722 6.798 7.867 8.523 9.833

Local static 3.565 3.772 4.024 4.272 4.520 4.677 4.964 5.224 5.569 5.751

set7 Local dynamic 0.392 0.669 1.033 1.277 1.515 1.739 2.017 2.263 2.492 2.798

Global dynamic 1.103 2.016 3.318 4.551 5.782 6.913 8.292 9.546 10.856 12.370

Local static 0.366 0.397 0.413 0.444 0.469 0.481 0.504 0.530 0.561 0.587

set8 Local dynamic 0.066 0.085 0.102 0.119 0.142 0.164 0.197 0.237 0.289 0.318

Global dynamic 0.134 0.246 0.350 0.518 0.656 0.816 1.110 1.281 1.452 1.487

Local static 0.098 0.103 0.106 0.111 0.131 0.140 0.139 0.146 0.173 0.188

set9 Local dynamic 0.041 0.042 0.045 0.052 0.063 0.065 0.074 0.076 0.080 0.084

Global dynamic 0.053 0.083 0.115 0.155 0.191 0.242 0.284 0.316 0.349 0.395

Local static 0.143 0.151 0.156 0.172 0.182 0.193 0.202 0.214 0.221 0.230

set10 Local dynamic 0.049 0.048 0.053 0.058 0.063 0.070 0.128 0.136 0.152 0.165

Global dynamic 0.076 0.129 0.196 0.281 0.365 0.506 0.581 0.659 0.762 0.949

Local static 0.298 0.320 0.345 0.366 0.387 0.410 0.432 0.450 0.476 0.496

set11 Local dynamic 0.058 0.074 0.091 0.109 0.126 0.148 0.174 0.191 0.214 0.232

Global dynamic 0.102 0.192 0.290 0.370 0.453 0.695 0.805 0.927 1.054 1.166

Local static 0.247 0.308 0.323 0.334 0.350 0.364 0.393 0.395 0.410 0.431

set12 Local dynamic 0.055 0.061 0.073 0.087 0.102 0.108 0.119 0.133 0.157 0.178

Global dynamic 0.099 0.190 0.284 0.377 0.478 0.630 0.762 0.884 0.988 1.012

multigranulation backgrounds. Meanwhile, the meanings of
lines are the same with that in Figs. 2, 3 and 4. From these
figures, we find the time consumption LDA < LSA and
LDA < GDA on the same dataset, and they are all reduced
as the data decreases. Since the local dynamic algorithm’s
complexity is less than local static and global dynamic ones,
the gaps in complexity in them get smaller, thus the time
gap between them becomes smaller with the size of data set
narrows. The above experimental results further illustrate
the effectiveness of the local dynamic update algorithm.

In actual life, the proposed dynamic algorithm would be a
powerful tool for describing uncertainties.

7 Conclusions and further work

With the development of science and technology, the
amount of data is increasingly growing and updating faster.
How to effectively deal with the updated information is a
challenge for classical rough set. Since the local rough set
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Fig. 2 The computational time of different algorithms with β = 0.6 when adding objects

Fig. 3 The computational time of different algorithms with β = 0.8 when adding objects
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Fig. 4 The computational time of different algorithms with β = 1 when adding objects

Fig. 5 The computational time of different algorithms with β = 0.6 when deleting objects
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Fig. 6 The computational time of different algorithms with β = 0.8 when deleting objects

Fig. 7 The computational time of different algorithms with β = 1 when deleting objects
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Table 9 The consume time of deleting objects by different approximate algorithms when β = 0.6

Dataset Algorithm t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Local static 0.033 0.030 0.030 0.025 0.021 0.019 0.017 0.016 0.014 0.011

set1 Local dynamic 0.027 0.012 0.012 0.011 0.010 0.010 0.009 0.009 0.008 0.008

Global dynamic 0.303 0.294 0.289 0.277 0.269 0.261 0.249 0.238 0.232 0.226

Local static 1.476 1.313 1.170 1.157 1.042 0.916 0.680 0.584 0.498 0.414

set2 Local dynamic 0.094 0.084 0.074 0.071 0.071 0.063 0.056 0.054 0.049 0.043

Global dynamic 9.202 8.853 8.435 8.114 7.791 7.506 7.207 6.954 6.666 6.383

Local static 0.769 0.690 0.612 0.543 0.470 0.401 0.348 0.298 0.256 0.244

set3 Local dynamic 0.101 0.089 0.077 0.072 0.067 0.064 0.059 0.052 0.048 0.043

Global dynamic 2.476 2.403 2.332 2.244 2.175 2.113 2.057 1.997 1.949 1.897

Local static 0.258 0.240 0.208 0.188 0.165 0.143 0.124 0.104 0.091 0.075

set4 Local dynamic 0.062 0.056 0.053 0.046 0.041 0.039 0.035 0.034 0.031 0.027

Global dynamic 0.978 0.955 0.934 0.910 0.893 0.874 0.843 0.825 0.810 0.772

Local static 0.248 0.227 0.190 0.168 0.151 0.132 0.119 0.104 0.087 0.073

sest5 Local dynamic 0.049 0.042 0.039 0.038 0.036 0.032 0.030 0.029 0.025 0.023

Global dynamic 0.825 0.777 0.723 0.667 0.623 0.570 0.529 0.479 0.426 0.380

Local static 1.952 1.805 1.597 1.486 1.274 1.170 0.988 0.817 0.693 0.605

set6 Local dynamic 0.132 0.102 0.101 0.095 0.082 0.076 0.075 0.066 0.066 0.058

Global dynamic 10.998 10.401 10.171 9.747 9.424 8.955 8.630 8.260 7.918 7.756

Local static 6.517 4.485 4.011 3.503 3.074 2.839 2.522 2.128 1.814 1.622

set7 Local dynamic 0.178 0.164 0.153 0.141 0.134 0.119 0.108 0.099 0.090 0.081

Global dynamic 25.545 24.657 23.594 23.286 22.428 21.606 20.801 20.182 19.472 18.941

Local static 0.323 0.281 0.244 0.219 0.186 0.165 0.138 0.113 0.095 0.079

set8 Local dynamic 0.047 0.041 0.039 0.036 0.034 0.033 0.030 0.028 0.026 0.025

Global dynamic 1.047 1.038 1.020 1.016 0.996 0.965 0.944 0.900 0.844 0.786

Local static 0.170 0.136 0.131 0.112 0.104 0.087 0.082 0.068 0.065 0.052

set9 Local dynamic 0.033 0.031 0.028 0.027 0.025 0.023 0.022 0.021 0.019 0.018

Global dynamic 1.368 1.172 1.130 1.089 1.044 0.986 0.957 0.909 0.880 0.835

Local static 0.221 0.203 0.184 0.158 0.145 0.132 0.111 0.096 0.087 0.073

set10 Local dynamic 0.054 0.042 0.040 0.038 0.038 0.032 0.027 0.026 0.023 0.022

Global dynamic 1.741 1.685 1.592 1.535 1.479 1.420 1.312 1.275 1.237 1.198

Local static 0.452 0.400 0.357 0.314 0.276 0.246 0.209 0.183 0.154 0.132

set11 Local dynamic 0.050 0.041 0.041 0.037 0.035 0.034 0.031 0.026 0.025 0.022

Global dynamic 3.368 3.234 3.098 2.950 2.836 2.719 2.621 2.484 2.390 2.296

Local static 0.184 0.165 0.147 0.130 0.113 0.099 0.088 0.079 0.069 0.062

set12 Local dynamic 0.042 0.038 0.034 0.033 0.030 0.028 0.025 0.023 0.021 0.019

Global dynamic 0.992 0.978 0.952 0.921 0.916 0.873 0.828 0.724 0.690 0.642

reduces some unnecessary computation about information
classes, it could improve the efficiency for approximating
target. To settle the approximate issue about multi-aspects
numerical data in dynamic environment, we define the
local generalized multigranulation neighborhood rough set
model, and then design dynamic algorithms to obtain the

updated approximations in this paper. Moreover, we have
verified the effectiveness of dynamic algorithm through
employing twelve data sets. The experimental results show
that the proposed dynamic algorithm can significantly
reduce the time consumption compared with the static algo-
rithm, especially the local algorithm. It should be noted that
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Table 10 The consume time of deleting objects by different approximate algorithms when β = 0.8

Dataset Algorithm t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Local static 0.037 0.029 0.028 0.025 0.023 0.020 0.020 0.017 0.016 0.013

set1 Local dynamic 0.014 0.013 0.011 0.010 0.009 0.008 0.008 0.008 0.006 0.005

Global dynamic 0.307 0.298 0.283 0.274 0.263 0.255 0.246 0.238 0.230 0.222

Local static 1.615 1.443 1.337 1.305 1.075 0.959 0.812 0.727 0.635 0.509

set2 Local dynamic 0.104 0.089 0.082 0.078 0.076 0.069 0.062 0.059 0.059 0.051

Global dynamic 12.109 11.341 10.344 9.942 9.621 9.557 9.210 8.818 8.556 8.167

Local static 0.790 0.702 0.612 0.537 0.450 0.394 0.349 0.294 0.252 0.211

set3 Local dynamic 0.092 0.083 0.076 0.075 0.072 0.067 0.059 0.054 0.049 0.045

Global dynamic 4.096 3.915 3.739 3.518 3.323 3.150 3.040 2.934 2.786 2.647

Local static 0.262 0.233 0.211 0.191 0.170 0.151 0.136 0.111 0.099 0.080

set4 Local dynamic 0.061 0.055 0.053 0.047 0.041 0.040 0.036 0.035 0.032 0.027

Global dynamic 1.349 1.285 1.221 1.182 1.140 1.111 1.047 1.010 0.978 0.899

Local static 0.383 0.339 0.295 0.260 0.226 0.199 0.174 0.149 0.127 0.101

sest5 Local dynamic 0.066 0.052 0.050 0.046 0.043 0.039 0.036 0.033 0.033 0.028

Global dynamic 1.665 1.637 1.594 1.560 1.526 1.491 1.461 1.432 1.391 1.376

Local static 4.705 4.275 3.889 3.488 3.109 2.800 2.347 1.950 0.736 0.578

set6 Local dynamic 0.130 0.102 0.100 0.084 0.075 0.071 0.067 0.061 0.055 0.050

Global dynamic 11.202 10.640 10.213 9.984 9.485 9.120 8.735 8.483 8.093 7.756

Local static 5.183 4.592 4.050 3.458 3.184 2.765 2.524 2.113 1.847 1.662

set7 Local dynamic 0.215 0.203 0.155 0.141 0.132 0.122 0.113 0.104 0.097 0.097

Global dynamic 25.941 24.932 23.991 23.100 22.728 22.009 21.126 20.346 19.689 19.158

Local static 0.312 0.287 0.262 0.239 0.207 0.179 0.161 0.125 0.105 0.090

set8 Local dynamic 0.047 0.040 0.037 0.037 0.033 0.030 0.029 0.027 0.024 0.021

Global dynamic 1.510 1.456 1.415 1.376 1.329 1.275 1.213 1.154 1.049 0.991

Local static 0.157 0.137 0.126 0.108 0.105 0.095 0.075 0.072 0.057 0.048

set9 Local dynamic 0.045 0.034 0.030 0.029 0.027 0.026 0.024 0.021 0.022 0.018

Global dynamic 1.351 1.141 1.053 1.020 0.978 0.950 0.948 0.892 0.850 0.816

Local static 0.218 0.204 0.181 0.153 0.135 0.123 0.107 0.096 0.088 0.073

set10 Local dynamic 0.045 0.041 0.037 0.036 0.035 0.031 0.026 0.025 0.025 0.022

Global dynamic 2.066 1.983 1.877 1.796 1.718 1.640 1.483 1.425 1.370 1.323

Local static 0.451 0.398 0.353 0.315 0.277 0.241 0.208 0.183 0.154 0.134

set11 Local dynamic 0.044 0.043 0.041 0.035 0.033 0.031 0.027 0.025 0.023 0.021

Global dynamic 3.381 3.247 3.118 2.971 2.860 2.743 2.639 2.500 2.409 2.309

Local static 0.189 0.177 0.172 0.151 0.131 0.116 0.102 0.090 0.079 0.065

set12 Local dynamic 0.041 0.036 0.034 0.031 0.031 0.030 0.028 0.026 0.023 0.022

Global dynamic 0.969 0.949 0.928 0.888 0.877 0.850 0.815 0.711 0.679 0.636

the attributes in the information system will also change (the
number of attributes or the specific attribute value), thus
how effective updated approximate space when attribute set
changes is worth exploring. In addition, the neighbor radius
is an important parameter related to approximate accuracy,

so how to efficiently choose the optimal radius in the dynamic
mechanism is also a problem that we need further research.
Moreover, the approximate space is a basic tool for classifica-
tion, thus the proposed dynamic mechanism provides a new
idea for dynamic classification in dynamic environment.
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Table 11 The consume time of deleting objects by different approximate algorithms when β = 1

Dataset Algorithm t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Local static 0.036 0.029 0.026 0.023 0.020 0.018 0.015 0.013 0.011 0.011

set1 Local dynamic 0.015 0.013 0.012 0.011 0.010 0.011 0.009 0.009 0.008 0.007

Global dynamic 0.297 0.289 0.279 0.272 0.261 0.252 0.242 0.233 0.224 0.216

Local static 1.715 1.608 1.457 1.297 1.105 0.988 0.848 0.729 0.618 0.530

set2 Local dynamic 0.100 0.088 0.085 0.075 0.070 0.067 0.063 0.060 0.053 0.046

Global dynamic 10.833 10.419 9.952 9.563 9.195 8.837 8.534 8.252 7.916 7.613

Local static 0.769 0.676 0.599 0.527 0.444 0.398 0.339 0.293 0.248 0.208

set3 Local dynamic 0.097 0.083 0.079 0.071 0.065 0.059 0.057 0.049 0.044 0.043

Global dynamic 3.411 3.200 3.085 2.878 2.758 2.622 2.499 2.390 2.289 2.177

Local static 0.261 0.234 0.210 0.184 0.166 0.154 0.127 0.109 0.097 0.084

set4 Local dynamic 0.060 0.054 0.052 0.047 0.043 0.039 0.036 0.035 0.032 0.027

Global dynamic 1.500 1.318 1.260 1.218 1.180 1.141 1.086 1.038 1.004 0.922

Local static 0.384 0.329 0.292 0.271 0.241 0.212 0.189 0.158 0.134 0.109

sest5 Local dynamic 0.062 0.057 0.054 0.049 0.048 0.042 0.039 0.036 0.033 0.029

Global dynamic 1.663 1.630 1.594 1.554 1.522 1.492 1.452 1.421 1.382 1.356

Local static 1.944 1.786 1.590 1.448 1.242 1.113 0.978 0.847 0.703 0.613

set6 Local dynamic 0.136 0.120 0.104 0.094 0.085 0.078 0.069 0.069 0.057 0.052

Global dynamic 24.324 23.224 22.111 21.655 20.816 19.710 14.007 13.729 13.289 12.973

Local static 5.126 4.607 3.994 3.488 3.071 2.814 2.494 2.191 1.847 1.629

set7 Local dynamic 0.222 0.180 0.152 0.143 0.131 0.123 0.113 0.107 0.097 0.097

Global dynamic 26.167 25.234 24.157 23.223 22.952 22.225 21.306 20.478 19.775 19.332

Local static 0.359 0.334 0.287 0.274 0.244 0.224 0.186 0.169 0.134 0.123

set8 Local dynamic 0.043 0.042 0.042 0.036 0.034 0.031 0.030 0.027 0.025 0.022

Global dynamic 1.915 1.829 1.812 1.772 1.714 1.638 1.585 1.481 1.312 1.301

Local static 0.136 0.116 0.102 0.097 0.077 0.073 0.059 0.050 0.050 0.045

set9 Local dynamic 0.050 0.034 0.029 0.029 0.029 0.026 0.024 0.021 0.022 0.017

Global dynamic 1.390 1.165 1.120 1.070 1.011 0.984 0.955 0.905 0.859 0.822

Local static 0.220 0.201 0.186 0.168 0.149 0.135 0.117 0.103 0.090 0.073

set10 Local dynamic 0.058 0.041 0.040 0.037 0.036 0.033 0.029 0.026 0.022 0.020

Global dynamic 2.064 1.974 1.869 1.790 1.710 1.635 1.478 1.420 1.368 1.317

Local static 0.454 0.403 0.368 0.324 0.282 0.243 0.218 0.180 0.152 0.128

set11 Local dynamic 0.059 0.043 0.042 0.037 0.036 0.033 0.030 0.028 0.024 0.023

Global dynamic 3.383 3.247 3.123 2.976 2.860 2.746 2.641 2.496 2.422 2.318

Local static 0.189 0.175 0.159 0.139 0.121 0.111 0.101 0.088 0.077 0.066

set12 Local dynamic 0.043 0.039 0.035 0.032 0.032 0.030 0.027 0.024 0.021 0.020

Global dynamic 1.267 1.225 1.224 1.173 1.157 1.093 1.038 0.894 0.839 0.777
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