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a b s t r a c t

Since data is furious growth and rapid alteration, it is completely imperative to monitor and update
real-time data promptly. There is no denying that calculating approximations by means of classical
approach is pretty time-consuming for an information system with attribute sets varying constantly.
Whereas, dynamic updating approximations method takes full advantage of previous knowledge
instead of calculating from scratch, which saves a large amount of time. Enlightened by this idea, our
work focuses on researching mechanisms of dynamic updating approximations caused by the variation
of attributes in multi-granulation interval-valued hesitant fuzzy information system (MG-IVHFIS). To
begin with, the average dominance relation which reduces the restriction of universal dominance
relation in reality is recommended, then an average dominance rough set based on this relation is
established in MG-IVHFIS. Additionally, we study four mechanisms for updating approximations from
the perspective of optimism and pessimism in dynamic MG-IVHFIS when some attributes are removed
or inserted, and improve corresponding dynamic algorithms. Furthermore, we test ten datasets from
UCI and design contrastive experiments to assess dynamic and classical algorithms. In terms of
computational efficiency, experimental results show that the dynamic method clearly precedes the
classical method for handling with dynamic attribute sets in MG-IVHFIS.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

As science and technology advance, a variety of data are more
eadily available. Even though large amounts of data are boosting
t an unprecedented speed, there are still quite a few miss-
ng, ambiguous and imprecise data. Rough set (RS) theory is of
reat essence in reference to powerful tools for disposing of the
ncertainty. The RS theory brought up by Pawlak [1,2] is an
xtension of classical set. The RS centers on the lower and upper
pproximations and depicts uncertain knowledge through known
nowledge. For purpose of fitting into the development of our
ra, plentiful improved models based on RS come into being, such
s neighborhood rough set [3], double-quantitative rough set [4],
uzzy rough set [5], dominance-based rough set [6], rough set on
wo universes [7]. It has become an emerging academic hot spot
n some fields of machine learning [8], data mining [9], pattern
ecognition [10] and so on.
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Granular computing [11–14] is featured with expanding the
dimension of thought from one angle and probing into informa-
tion from multiple angles. During the period of 1996 to 1997,
the concept of granular computing was proposed by Zadeh [15]
for the first time. From the perspective of granular computation,
an equivalence relation in the classical RS can be considered
as a granularity, meanwhile a partition of equivalence relation
over the domain can be deemed as a granularity space. Ap-
plying granular computation to the RS theory, a novel model
referred as multi-granulation rough set (MGRS) was presented
by Qian et al. [16]. MGRS digs out information from diverse
granularities, which provides a more profound comprehension
of hidden knowledge. As a consequence, many researchers [17–
21] set out to make a study of some topics regarding MGRS.
Xu et al. [22] raised a generalized multi-granulation rough set,
introduced supporting characteristic function and discussed some
important properties. Zhang et al. [23] extended two types of
multi-granulation hesitant fuzzy rough sets model and presented
related concepts of rough measure. The study [24] listed theo-
retical frameworks and important research ideas for a variety of
multi-granularity data analysis methods.

Information system (IS) is a fundamental way to express

knowledge in classical RS theory, which consists of objects and
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Fig. 1. Motivations of our work.

attributes over the universe and is exhibited in the shape of two
dimensional table. In classical IS, there exists a binary relation,
namely the equivalence relation. Nevertheless, the great mass
of problems dissatisfy with the equivalence relation in practical
application. Subsequently, according to specific forms of data
that are collected by us, scholars have expanded the classical
IS into manifold information systems, and conducted quite a
lot of researches of RS on dissimilar information systems. If the
domain of values for each attribute satisfies a partial ordered
relation, an IS with this sort of relation is known as an or-
dered information system. Xu [25] introduced different ordered
information systems in his book, such as set-valued ordered
information system and intuitionistic fuzzy ordered informa-
tion system. When interval values are substituted for definite
single values, an interval-valued information system (IVIS) is
generated, which better reflects the uncertainty of knowledge.
Some researchers chose the study with IVIS as background. Le-
ung et al. [26] formulated a knowledge discovery framework
to analyze the IVIS. In combination with dominance relation,
Qian et al. [27] extracted dominance rules in an interval or-
dered information system. Gong et al. [28] integrated classical
RS with interval-valued fuzzy set, and studied RS in the interval-
valued fuzzy information system. Huang et al. [29] made use
of extended information entropy to measure the uncertainty in
interval-valued intuitionistic fuzzy information system. A fuzzy
dominance relation in the light of fuzzy dominance degree was
proposed by Yan and Dai [30] in interval ordered information
system. The literature [31] extended the RS to the MGRS in
IVIS. When the number of interval values in the domain of
values for all attributes is greater than one, the interval-valued
hesitant fuzzy information system (IVHFIS) creates. Three new
partial ordered relations were discussed and the definition of
hesitant fuzzy information entropy was given by Lu and Yu [32] in
IVHFIS. For one side, aiming to delve multi-faceted, deep-seated
knowledge, for another, taking into account people’s vacillation
and hesitation adequately in the face of choice, the research
background of our work is MG-IVHFIS.

The arrival of information age allows people to have access

to the latest data from moment to moment. As new data enters,

2

outdated and redundant data should be removed from earlier
IS. Consequently, updating approximations in time guarantees
the timeliness of knowledge in a time-evolving IS. In recent
years, incremental knowledge discovery [33–35] has become an
important tool for processing dynamic data sets. It updates new
IS on the basis of original knowledge without recalculating entire
contents. If an IS changes over time, one of the following three
situations may occur: First, the object set varies while the rest
remain the same. Second, the attribute set varies while the rest
remain the same. Third, only the attribute values vary. To analyze
these three cases, lots of scholars have come up with relevant
dynamic updating algorithms in different information systems.
In allusion to variations of object set, Luo et al. [36] studied two
incremental algorithms for updating the approximations in set-
valued information system. An incremental approach for updat-
ing approximations of dominance-based rough sets approach was
developed by Li et al. [37]. Yu and Xu [38] worked on incremen-
tal approaches updating approximations with dynamic data sets
in interval-valued decision system. In the incomplete interval-
valued decision information system, the article [39] defined a
multi-threshold tolerance relation and explored several static and
dynamic algorithms for solving approximations. In allusion to
variations of attribute set, a kind of dominance matrix was intro-
duced to update dominating and dominated sets by Li et al. [40].
Based on the similarity-based rough set, Zhang et al. [41] inves-
tigated incremental approaches in IVIS. Yu et al. [42] proposed
two dynamic computing rough approximations approaches for
interval-valued ordered information system. In allusion to varia-
tions of attribute values, an incremental approach for maintaining
approximations of dominance-based rough sets approach was
recommended by Li [43]. The essay [44] mentioned the changing
mechanisms of the attribute values and fuzzy equivalence rela-
tions, then advanced two corresponding incremental algorithms
of fuzzy rough set. Chen et al. [45,46] presented the princi-
ples of dynamically updating approximations in the incomplete
ordered decision systems and a new incremental method for
updating approximations of variable precision rough set. Apart
from that, some researchers have linked incremental knowledge
discovery with attribute reduction and accomplished involved
projects [47,48]. In recent times, several innovative topics re-
garding to updating approximations have been investigated by
scholars [49–52]. For instance, Hu and Li [50] contrived a dy-
namic framework in a neighborhood multigranulation space. The
literature [49] proffered the updating mechanisms of dynamic ob-
jects for double-quantitative decision-theoretic rough set. Matrix-
based incremental updating approximations technique in multi-
granulation rough set was devised by Xu et al. [20] when two-
dimensional variation occurred simultaneously. Consistent with
many scholars, this paper researches mechanisms of dynamic up-
dating approximations resulting from the alteration of attribute
set, so as to reduce calculation time.

With the diversification of data form, incremental algorithms
are proposed for diverse types of information systems. So far,
scholars have studied lots of topics about dynamic updating ap-
proximations, but these existing incremental algorithms are not
appropriate for MG-IVHFIS. As Fig. 1 shows, there are other lim-
itations. Inspired by above motivations, we research dynamic
updating approximations approach to multi-granulation interval-
valued hesitant fuzzy information systems with time-evolving
attributes. In this paper, our main work is summed up as fol-
lows: (1) a new relation is constructed named the average dom-
inance relation, which improves the original dominance relation.
In terms of average dominance relation, we present a new model
of rough set in MG-IVHFIS. (2) Four incremental mechanisms are
explored when multiple attributes are inserted into or removed

from a MG-IVHFIS, and the corresponding dynamic algorithms
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re contrived. (3) We perform some comparative experiments
n ten data sets. Experimental results have confirmed that these
roposed dynamic algorithms are superior to classical algorithms.
The arrangement of remanent paper is as following state-

ents. To facilitate the understanding, we begin with these in-
roductions of some requisite and foundational knowledge about
ulti-granulation interval-valued hesitant fuzzy rough set and

nformation systems in Section 2. In Section 3, a new binary rela-
ion termed the average dominance relation is defined in the light
f average dominance degree, whereafter an average dominance
ough set is constructed in MG-IVHFIS and typical examples
re illustrated to explain our model. We research four dynamic
echanisms caused by the alteration of attributes and design cor-

esponding dynamic algorithms in Section 4. The Section 5 reveals
ll experimental results of dynamic and classical algorithms and
valuates the efficiency of both. Eventually, Section 6 ends up
ith a summary of full text.

. Preliminaries

.1. Interval-valued hesitant fuzzy set

In the light of hesitant fuzzy set and evaluations in the shape
f interval value, interval-valued hesitant fuzzy set was primor-
ially made an introduction by Chen and Cai [45], which was
onstructed by replacing single values in the hesitant fuzzy set
ith interval values. As a more flexible structure that reflects the
esitant degrees of experts when evaluating objects, the interval-
alued hesitant fuzzy set deserves to be focused upon. What
e will investigate next is hesitant fuzzy set, interval-valued
esitant fuzzy set and the approach of a comparison between
nterval-valued hesitant fuzzy elements.

efinition 2.1 (See [53]). Let U be a universe with finite ele-
ments, then a hesitant fuzzy set (HFS) E over U is ruled as E =
⟨x, hE(x)⟩|x ∈ U}, where hE(x) is a set composed by several
isparate and finite numbers in [0, 1], pointing out all possible
embership degrees of x in U to set E, and the denotation of hE(x)

s hesitant fuzzy element. hE(x) consisting of n (n ≥ 1) numbers
an be marked as hE(x) = {ε1, ε2, . . . , εn}, where the number εi
s in [0, 1].

After the presentation of Definition 2.1, we are about to review
urther information about interval-valued hesitant fuzzy set.

efinition 2.2 (See [53]). Let U be a universe with finite elements,
hen an interval-valued hesitant fuzzy set (IVHFS) I over U is
uled as I = {⟨x, hI (x)⟩|x ∈ U}, where hI (x) is a set composed
y several disparate and finite interval numbers in [0, 1], pointing
ut all possible interval-valued membership degrees of element x
n U to set I , and the denotation of hI (x) is interval-valued hesitant
uzzy element. hI (x) consisting of n (n ≥ 1) interval numbers can
e marked as hI (x) = {ν1, ν2, . . . , νn}, where the interval number
s νi = [νiL, νiU ]. Here νiL, νiU are the lower and upper limits of
he interval.

With a view to the difference when people make an assess-
ent of an incident, the quantity of interval numbers in diverse

VHF elements is perhaps diverse as well. Consequently, Xu and
a [54] provided a solution to estimate the magnitude between
wo interval numbers.

efinition 2.3 (See [54]). Let two interval numbers be p = [pL, pU ]
nd q = [qL, qU ] respectively, and p + q = [pL + qL, pU + qU ],
3

p = pU − pL, lq = qU − qL, then the degree of possibility of p ≥ q
nd p ≤ q is denoted by

(p ≥ q) = max{1−max(
pU
− qL

lp + lq
, 0), 0},

p(p ≤ q) = max{1−max(
pU
− qL

lp + lq
, 0), 0}.

(1)

If p(p ≥ q) > 0.5, then p is superior to q, denoted by p > q. If
(p ≥ q) = 0.5, then p is equivalent to q, denoted by p = q.
If given interval numbers are disordered, we may compare and

equence them employing the aforesaid definition. Whereupon,
he following assumption is made [55]:

Let hU (x) and hV (x) be two IVHF elements. If l(hU (x)) ̸= l(hV (x)),
amely their lengths are inequable, then with the purpose of
perating between them, the lengths of hU (x) and hV (x) should
e equal as well as both of them are l = max{l(hU (x)), l(hV (x))}.
f l(hU (x)) < l(hV (x)), then hU (x) will be extended. In other words,
e are requested to sequence its interval numbers and add its
aximum interval value to hU (x) until l(hU (x)) = l(hV (x)).

.2. Multi-granulation interval-valued hesitant fuzzy rough set

In accordance with the indiscernibility relation, these objects
ver U are clustered into basic knowledge utilizing RS, and rough-
ess is characterized by upper and lower approximations. About
his subsection, we will go over the essential concepts of RS
irstly. Moreover, we mean to display the MGRS and extend the
VHFS to multi-granulation spaces.

efinition 2.4 (See [1]). Let U be a universe with finite elements,
nd R is an equivalence relation over U . For any X ⊆ U , the lower
nd upper approximations of X with respect to R can be denoted
y R(X) and R(X) respectively, which can be expressed as follows:

R(X) = {x ∈ U |[x]R ⊆ X}, R(X) = {x ∈ U |[x]R ∩ X ̸= ∅}.

(2)

They are abbreviated as the lower and upper approximations. If
R(x) = R(x), then X is a definable set, otherwise X is a rough set.

It is widely accepted that when a given universe is induced
by multiple relations, these divisions formed can be regarded
as multiple granularities, which determine the corresponding
multi-granulation rough set (MGRS).

Definition 2.5 (See [16]). Let Ri(i = 1, 2, . . . , s) be s equivalence
relations over a universe U . For any X ⊆ U , the optimistic multi-
granulation lower and upper approximations of X based on the
relation

∑s
i=1 Ri are defined as

aprO∑s
i=1 Ri

(X) = {x ∈ U |
s
∨
i=1

([x]Ri ⊆ X)},

aprO∑s
i=1 Ri

(X) = {x ∈ U |
s
∧
i=1

([x]Ri ∩ X ̸= ∅)},
(3)

where ‘‘∨’’ signifies ‘‘or ’’ and ‘‘∧’’ signifies ‘‘and’’. In addition,
if aprO∑s

i=1 Ri
(X) = aprO∑s

i=1 Ri
(X), then X is referred to be an

optimistic multi-granulation definable set. Otherwise, X is an
ptimistic multi-granulation rough set.

Analogously, for any X ⊆ U , the pessimistic multi-granulation
ower and upper approximations of X based on the relation

s
i=1 Ri are defined as

prP∑s
i=1 Ri

(X) = {x ∈ U |
s
∧
i=1

([xi]Ri ⊆ X)},

aprP∑s (X) = {x ∈ U |
s
∨ ([x]R ∩ X ̸= ∅)},

(4)
i=1 Ri i=1 i
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f aprP∑s
i=1 Ri

(X) = aprP∑s
i=1 Ri

(X), then X is referred to be a pes-
imistic multi-granulation definable set. Otherwise, X is a pes-
simistic multi-granulation rough set.

In combination with MGRS, we will further explore IVHFS
under the environment of multiple granularities.

Definition 2.6 (See [56]). Let Ri (i = 1, 2, . . . , s) be s IVHF rela-
tions over U . For any A ∈ IVHFS, the optimistic multi-granulation
interval-valued hesitant fuzzy lower and upper approximations
of A based on the relation

∑s
i=1 Ri are defined as

MO∑s
i=1 Ri

(A) = {⟨x, hMO∑s
i=1 Ri

(A)(x)⟩|x ∈ U},

M
O∑s

i=1 Ri (A) = {⟨x, hMO∑s
i=1 Ri

(A)
(x)⟩|x ∈ U},

(5)

where hMO∑s
i=1 Ri

(A)(x) = ∨
s
i=1 ∧y∈U {hRci

(x, y) ∨ hA(y)}, hMO∑s
i=1 Ri

(A)
(x)

= ∧
s
i=1 ∨y∈U {hRi (x, y) ∧ hA(y)}. ‘‘∧’’ signifies ‘‘select smaller ’’ and

‘‘∨’’ signifies ‘‘select larger ’’. Additionally, ifMO∑s
i=1 Ri

(A) = M
O∑s

i=1 Ri
(A), then A is optimistic and definable under multi-granulation
relations. Otherwise, A is optimistic and rough.

Similarly, for any A ∈ IVHFS, the pessimistic multi-granulation
interval-valued hesitant fuzzy lower and upper approximations
of A based on the relation

∑s
i=1 Ri are defined as

MP∑s
i=1 Ri

(A) = {⟨x, hMP∑s
i=1 Ri

(A)(x)⟩|x ∈ U},

M
P∑s

i=1 Ri (A) = {⟨x, hMP∑s
i=1 Ri

(A)
(x)⟩|x ∈ U},

(6)

where hMP∑s
i=1 Ri

(A)(x) = ∧
s
i=1 ∧y∈U {hRci

(x, y)∨ hA(y)}, h
MP∑s

i=1 Ri
(A)

(x)

= ∨
s
i=1 ∨y∈U {hRi (x, y) ∧ hA(y)}. Additionally, if MP∑s

i=1 Ri
(A) =

M
P∑s

i=1 Ri (A), then A is pessimistic and definable under multi-
ranulation relations. Otherwise, A is pessimistic and rough.

.3. Multi-granulation interval-valued hesitant fuzzy ordered infor-
ation system

Generally speaking, classical RS is established on an informa-
ion system, where is beneficial for researching practical issues.
ccordingly, we will recall some relevant notions concerning
nformation system initially.

efinition 2.7 (See [1,2]). Let I = (U, A, V , f ) be an information
ystem (IS). Here U is a universe with finite elements, and A is a
on-empty set with n attributes {a1, a2, . . . , an}. V is the domain
f attributes marked as V =

⋃
a∈A Va, and f is an information

unction marked as f : U × A → V where f (x, a) is the value of
object x under attribute a.

In an IS, an attribute is termed as a criterion when the domain
of this attribute is completely ordered abiding by an increasing
or a decreasing preference. Specifically, if all attributes are crite-
rions, the IS is termed as an ordered information system (OIS).
To make our statements more clear and explicit, only increasing
preference is considered.

Definition 2.8 (See [57]). Let J = (U, A, V , f ) be an IVHF infor-
ation system (IVHFIS), then f (x, a) is a IVHF value containing n

nterval numbers for any a ∈ A and x ∈ U , marked by f (x, a) =
(xa) = {[vL1, v

U
1 ], . . . , [v

L
n, v

U
n ]} (v

L
i , v

U
i ∈ R, i = 1, 2, . . . , n).

In a given IVHFOIS, f (xa) = {[vL1, v
U
1 ], . . . , [v

L
n, v

U
n ]} and f (ya) =

[wL
1, w

U
1 ], . . . , [w

L
n, w

U
n ]} (n ≥ 1). If f (ya) ≥ f (xa) for any a ∈ A,

hat shows y dominates x under a dominance relation R≥A , which
an be marked by yR≥x. Here, R≥ = {(y, x) ∈ U × U |f (x ) ≥
A A a

4

f (xa),∀a ∈ A} = {(y, x) ∈ U × U |wL
1 ≥ v

L
1,w

U
1 ≥ v

U
1 , . . . ,w

L
n ≥

vLn,w
U
n ≥ vUn ,∀a ∈ A} equipped with reflexivity, asymmetry

and transitivity. We address that dominance class induced by
dominance relation R≥A is constitutive of objects dominating x,
which is defined as [x]≥A = {y ∈ U |(x, y) ∈ R≥A }.

In particular, for a given IVHFOIS, when Ri(i = 1, 2, . . . , s) is
the ith dominance relation whose amount is s over U , the IVHFOIS
is termed as a multi-granulation IVHFOIS.

Definition 2.9 (See [58]). Let K = (U, A, V , f ) be a multi-
granulation IVHFOIS, and Ri(i = 1, 2, . . . , s) is the ith dominance
relation over U . For any X ⊆ U , the optimistic multi-granulation
IVHF lower and upper approximations of X based on the relation∑s

i=1 Ri are defined as

MO∑s
i=1 RA≥i

(X) = {x ∈ U |
s
∨
i=1

([x]A≥Ri ⊆ X)},

M
O∑s

i=1 RA≥i
(X) = {x ∈ U |

s
∧
i=1

([x]A≥Ri ∩ X ̸= ∅)},
(7)

where ‘‘∨’’ signifies ‘‘or ’’, ‘‘∧’’ signifies ‘‘and’’ and [x]A≥Ri = {y ∈
U |(x, y) ∈ RA≥

i }. Here, R
A≥
i symbolizes a dominance relation under

attribute A.

Likewise, for any X ⊆ U , the pessimistic multi-granulation
IVHF lower and upper approximations of X based on the relation∑s

i=1 Ri are defined as

MP∑s
i=1 RA≥i

(X) = {x ∈ U |
s
∧
i=1

([x]A≥Ri ⊆ X)},

M
P∑s

i=1 RA≥i
(X) = {x ∈ U |

s
∨
i=1

([x]A≥Ri ∩ X ̸= ∅)}.
(8)

In subsequent descriptions, some specific narratives in relation
to the variation trend of dominance class under circumstance of
multi-granulation when attributes change will be revealed.

Lemma 2.1 (See [25]). Let K = (U, A, V , f ) be a multi-granulation
IVHFOIS, and Ri(i = 1, 2, . . . , s) is the ith dominance relation over
U. For any x ∈ U and attributes l,m ∈ A, it is observed that
[x]l∪m≥Ri

⊆ [x]l≥Ri , [x]
l∪m≥
Ri
⊆ [x]m≥Ri and [x]l∪m≥Ri

= [x]l≥Ri ∩ [x]
m≥
Ri

.

From Lemma 2.1, we may analyze and summarize that the
more massive attributes are, the more refined the information is.
Simultaneously, in a multi-granulation space, we ought to update
timely the dominance class under each granularity as the subset
of attributes transforms, namely certain attributes increase or
decrease.

3. Average dominance rough set from IVHFIS to MG-IVHFIS

This section will center on a novel relation titled with average
dominance relation, thereby the research of multi-granulation
rough set established on this relation will be carry out.

3.1. Average dominance rough set in IVHFIS

Since the conditions of general dominance relation are ex-
tremely harse in an IVHFOIS and there are numerous restrictions
in realistic application, the average dominance relation is brought
forward. In the IVHF rough set, the average dominance degree
between two objects is calculated to contrast whether one object
is superior to the other.

Definition 3.1. In any IVHFIS J = (U, A, V , F ), for any xi, xj ∈ U
and a ∈ A, fa(x) represents the IVHF value of object x under at-
tribute a. If fa(xi) = {[vL1, v

U
1 ], . . . , [v

L
n, v

U
n ]}, fa(xj) = {[w

L
1, w

U
1 ], . . .

[wL
m, w

U
m]} (n, m ≥ 1), then the average dominance degree

between x and x under attribute a is ruled as given in Eq. (9)
i j
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a
u

3

t

D≥a (xi, xj) =
1
N

N∑
k=1

min{1,max{
1
2 [min(vUk , w

U
k )−max(vLk, w

L
k)] +max(vUk − w

U
k , 0)+max(vLk − w

L
k, 0)

max(vUk , w
U
k )−min(vLk, w

L
k)

, 0}}, (9)

Box I.
Table 1
An average dominance relation RA⌢≥

1 in MG-IVHFIS.

RA⌢≥
1 a1 a2 a3 a4 a5

x1 [80, 83], [81, 84] [85, 88], [87, 89] [83, 86], [85, 87] [87, 88], [89, 90] [71, 75], [74, 77]
x2 [76, 84], [78, 85] [83, 84], [82, 87] [85, 87], [86, 89] [87, 90], [88, 91] [78, 82], [77, 83]
x3 [89, 92], [90, 94] [82, 85], [84, 86] [92, 95], [93, 96] [93, 95], [92, 97] [85, 88], [87, 92]
x4 [85, 87], [86, 89] [90, 93], [91, 96] [87, 90], [88, 91] [91, 92], [93, 95] [87, 89], [88, 93]
x5 [72, 74], [73, 76] [89, 94], [92, 95] [88, 89], [89, 90] [86, 89], [87, 91] [77, 83], [78, 84]
r

a
r

M

given in Box I, where n and m are the quantity of interval
numbers in fa(xi) and fa(xj) namely n = l(fa(xi)), m = l(fa(xj)),
and N = max[l(fa(xi)), l(fa(xj))]. It should be noted that when
l(fa(xi)) ̸= l(fa(xj)), we are demanded to extend the IVHF value
until l(fa(xi)) = l(fa(xj)) according to Definition 2.3.

Proposition 3.1. For the average dominance degree D≥a (xi, xj), the
following properties are satisfied:

(1) 0 ≤ D≥a (xi, xj) ≤ 1.
(2) D≥a (xi, xj)+ D≥a (xi, xj) = 1.
(3) D≥a (xi, xj) = 0.5⇔ fa(xi) = fa(xj).

Distinctly, if object xi is superior to xj, D≥a (xi, xj) ≥ 0.5. If object
xi is inferior to xj, D≥a (xi, xj) < 0.5. Further, the definition of
average dominance degree between xi and xj with respect to the
attribute set A is D≥A (xi, xj) = mina∈A{D≥a (xi, xj)}.

Definition 3.2. Given an IVHFIS = (U, A, V , f ) with U = {x1, x2,
. . . , xn}, for any B ⊆ A, the average dominance relation R

⌢
≥

B is ruled
as

R
⌢
≥

B = {(xi, xj) ∈ U × U |D≥B (xi, xj) ≥ 0.5}, (10)

and the average dominance class of xi on the basis of this relation
is ruled as

[xi]
⌢
≥

B = {xj ∈ U |(xi, xj) ∈ R
⌢
≥

B }, (11)

which comprises all objects dominating xi according to average
dominance relation. It apparently comes to a conclusion that
the average dominance relation is reflexive, asymmetrical and
transitive, and also a cover over U is constituted by all of the
average dominance classes.

Definition 3.3. Given an IVHFIS = (U, A, V , f ) with U = {x1, x2,
. . . , xn}, for any B ⊆ A and X ⊆ U , the IVHF lower and upper
approximations of X based on the relation R

⌢
≥

B are defined as

R
⌢
≥

B (X) = {x ∈ U |[x]
⌢
≥

B ⊆ X}, R
⌢
≥

B (X) = {x ∈ U |[x]
⌢
≥

B ∩ X ̸= ∅}.

(12)

In line with classical RS, if R
⌢
≥

B (X) ̸= R
⌢
≥

B (X), X is termed as an
verage dominance rough set in IVHFIS. Otherwise, X is definable
nder average dominance relation.

.2. Average dominance rough set in MG-IVHFIS

We introduce the average dominance rough set into IVHFIS in
he previous section. What we aim to study next is the average
5

dominance under multi-granulation environment. As an exten-
sion of IVHFIS, the multi-granulation IVHFIS (MG-IVHFIS) involves
more requirements of people in diverse granularity spaces.

Definition 3.4. Given a MG-IVHFIS = (U, A, V , f ) with U =

{x1, x2, . . . , xn}, Ri(i = 1, 2, . . . , s) is the ith average dominance
relation over U . For any X ⊆ U , the optimistic MG-IVHF lower
and upper approximations of X based on the average dominance
relation

∑s
i=1 Ri are defined as

MO∑s
i=1 RA

⌢
≥

i

(X) = {x ∈ U |
s
∨
i=1

([x]A
⌢
≥

Ri
⊆ X)},

M
O∑s

i=1 RA
⌢
≥

i
(X) = {x ∈ U |

s
∧
i=1

([x]A
⌢
≥

Ri
∩ X ̸= ∅)},

(13)

where ‘‘∨’’ signifies ‘‘or ’’, ‘‘∧’’ signifies ‘‘and’’ and [x]A
⌢
≥

Ri
= {y ∈

U |(x, y) ∈ RA
⌢
≥

i }. Here, RA
⌢
≥

i symbolizes an average dominance
elation under attribute A.

Analogously, for any X ⊆ U , the pessimistic MG-IVHF lower
nd upper approximations of X based on the average dominance
elation

∑s
i=1 Ri are defined as

P∑s
i=1 RA

⌢
≥

i

(X) = {x ∈ U |
s
∧
i=1

([x]A
⌢
≥

Ri
⊆ X)},

M
P∑s

i=1 RA
⌢
≥

i
(X) = {x ∈ U |

s
∨
i=1

([x]A
⌢
≥

Ri
∩ X ̸= ∅)}.

(14)

Equally, we address X an optimistic average dominance rough
set in MG-IVHFIS when MO∑s

i=1 RA
⌢
≥

i

(X) ̸= M
O∑s

i=1 RA
⌢
≥

i
(X) and X

a pessimistic average dominance rough set in MG-IVHFIS when
MP∑s

i=1 RA
⌢
≥

i

(X) ̸= M
P∑s

i=1 RA
⌢
≥

i
(X).

In what follows, we demonstrate an instance to explore the
average dominance rough set in MG-IVHFIS.

Example 3.1. As illustrated in Table 1, Table 2 and Table 3, it
is a complete MG-IVHFIS comprising three average dominance
relation. Connected with automotive evaluation, this case reveals
logical scores provided by professionals on a centesimal system.
Here, U = {x1, x2, x3, x4, x5} representative of five hot-selling
automobiles in disparate models from the same motor corpo-
ration. A = {a1, a2, a3, a4, a5} representative of five evaluation
indicators, where ai (i = 1, 2, 3, 4, 5) represent appearance,
comfort level, power performance, brake performance and fuel
economy. RA

⌢
≥

j (j = 1, 2, 3) stand for respective scores from three
professionals.

In the beginning, we are able to acquire all the average dom-
inance classes by computation:
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Table 2
An average dominance relation RA⌢≥

2 in MG-IVHFIS.

RA⌢≥
2 a1 a2 a3 a4 a5

x1 [78, 81], [80, 83] [81, 83], [85, 86] [83, 84], [86, 87] [85, 88], [86, 90] [67, 70], [68, 72]
x2 [76, 82], [77, 83] [78, 80], [81, 82] [91, 94], [92, 95] [87, 90], [89, 91] [73, 76], [76, 78]
x3 [80, 85], [85, 87] [90, 92], [94, 96] [93, 96], [94, 97] [94, 96], [95, 96] [81, 82], [82, 84]
x4 [81, 84], [83, 87] [92, 93], [91, 94] [82, 85], [84, 89] [86, 87], [87, 91] [66, 70], [70, 71]
x5 [75, 76], [74, 77] [86, 89], [88, 90] [84, 88], [86, 89] [83, 85], [84, 87] [77, 78], [78, 80]
Table 3
An average dominance relation RA⌢≥

3 in MG-IVHFIS.

RA⌢≥
3 a1 a2 a3 a4 a5

x1 [81, 83], [82, 84] [86, 89], [90, 91] [81, 83], [85, 87] [92, 94], [93, 94] [79, 80], [80, 83]
x2 [77, 82], [79, 81] [84, 85], [86, 87] [84, 85], [86, 87] [89, 90], [90, 92] [72, 74], [73, 76]
x3 [90, 92], [91, 94] [89, 91], [93, 95] [89, 91], [90, 93] [92, 95], [94, 97] [87, 89], [88, 92]
x4 [86, 87], [87, 88] [90, 93], [91, 92] [86, 88], [88, 92] [88, 91], [90, 93] [73, 75], [74, 76]
x5 [73, 75], [74, 76] [87, 88], [89, 91] [82, 83], [84, 86] [88, 91], [89, 92] [78, 81], [81, 82]
R

i

w

i

[x1]
A
⌢
≥

R1
= {x1, x4}, [x2]

A
⌢
≥

R1
= {x2, x3, x4}, [x3]

A
⌢
≥

R1
= {x3}, [x4]

A
⌢
≥

R1
=

{x4}, [x5]
A
⌢
≥

R1
= {x4, x5}.

[x1]
A
⌢
≥

R2
= {x1, x3, x4}, [x2]

A
⌢
≥

R2
= {x2, x3}, [x3]

A
⌢
≥

R2
= {x3}, [x4]

A
⌢
≥

R2
=

{x3, x4}, [x5]
A
⌢
≥

R2
= {x3, x5}.

[x1]
A
⌢
≥

R3
= {x1, x3}, [x2]

A
⌢
≥

R3
= {x2, x3, x4}, [x3]

A
⌢
≥

R3
= {x3}, [x4]

A
⌢
≥

R3
=

{x3, x4}, [x5]
A
⌢
≥

R3
= {x1, x3, x5}.

Provided that a set X = {x1, x3, x5}, we may figure the lower
and upper approximations of X based on the average dominance
relation in MG-IVHFIS sequentially.

Conforming to aforementioned definitions, we calculate read-
ily the optimistic lower and upper approximations:

MO∑s
i=1 RA

⌢
≥

i

(X) = {x1, x3, x5}, M
O∑s

i=1 RA
⌢
≥

i
(X) = {x1, x2, x3, x5}.

In a similar means, the calculations in the pessimistic situation
are as follows:

MP∑s
i=1 RA

⌢
≥

i

(X) = {x3}, M
P∑s

i=1 RA
⌢
≥

i
(X) = {x1, x2, x3, x4, x5}.

4. The mechanism for updating approximations in dynamic
MG-IVHFIS

Intricate information is ever-changing in this era of big data.
Confronted with evolving data over time, it should be noted that
adding the latest information and deleting the redundant infor-
mation timely. As a crucial strategy in the field of data mining,
incremental technique is exerted to dispose of data updating with
effect. In MG-IVHFIS, the attribute set possibly vary over time,
which includes increase or decrease. Relying on the incremental
technique, it is not necessary for us to recalculate the upper and
lower approximations, which is an excellent time-saving mea-
sure. This chapter considers dynamic updating approximations
method by inserting or removing some attributes while these
objects maintain invariable in MG-IVHFIS.

4.1. The variation trend of approximations as attributes vary

What matters is that a variation in the attribute set results in a
variation in average dominance classes, which leads to a variation
in approximations. In consideration of this, we will raise several
propositions to reveal the variation trend of approximations with
attributes changing and further reflect the variation intuitively
with examples.

Proposition 4.1. Given a MG-IVHFIS = (U, A, V , f ), Ri(i = 1, 2, . . . ,
s) is the ith average dominance relation over U. For any X ⊆ U,
C ⊆ B and B, C ⊆ A, the following properties are satisfied:
6

(OL) MO∑s
i=1 RB−C

⌢
≥

i

(X) ⊆ MO∑s
i=1 RB

⌢
≥

i

(X),

(OU) M
O∑s

i=1 RB−C
⌢
≥

i
(X) ⊇ M

O∑s
i=1 RB

⌢
≥

i
(X).

(PL) MP∑s
i=1 RB−C

⌢
≥

i

(X) ⊆ MP∑s
i=1 RB

⌢
≥

i

(X),

(PU) M
P∑s

i=1 RB−C
⌢
≥

i
(X) ⊇ M

P∑s
i=1 RB

⌢
≥

i
(X).

Proof. Aimed at facilitating the description, the proof is only pre-
sented under circumstance of two granulations. Assume two av-
erage dominance relations are R

⌢
≥

i , R
⌢
≥

j respectively in MG-IVHFIS.
When the attribute subset C is deleted from B:

(OL) Knowing from Definition 3.3, for every x ∈ RB−C
⌢
≥

i (X), it
is distinct that [x]B−C

⌢
≥

Ri
⊆ X . Similarly, we still have [x]B

⌢
≥

Ri
⊆

[x]B−C
⌢
≥

Ri
. Thereupon, [x]B

⌢
≥

Ri
⊆ X , which implies x ∈ RB

⌢
≥

i (X),

then RB−C
⌢
≥

i (X) ⊆ RB
⌢
≥

i (X). Consequently, RB−C
⌢
≥

i (X) ∨ RB−C
⌢
≥

j (X) ⊆
B
⌢
≥

i (X) ∨ RB
⌢
≥

j (X). Namely, MO∑s
i=1 RB−C

⌢
≥

i

(X) ⊆ MO∑s
i=1 RB

⌢
≥

i

(X).

(OU) As is derived from Definition 3.3, for every x ∈ R
B
⌢
≥

i (X),
we can infer that [x]B

⌢
≥

Ri
∩ X ̸= ∅. Coupled with Lemma 2.1, it

s easily obtainable that [x]B
⌢
≥

Ri
⊆ [x]B−C

⌢
≥

Ri
. So [x]B−C

⌢
≥

Ri
∩ X ̸= ∅,

hich implies x ∈ R
B−C

⌢
≥

i (X), then R
B−C

⌢
≥

i (X) ⊇ R
B
⌢
≥

i (X). Accord-

ngly, R
B−C

⌢
≥

i (X) ∧ R
B−C

⌢
≥

j (X) ⊇ R
B
⌢
≥

i (X) ∧ R
B
⌢
≥

j (X). That is to say,
M

O∑s
i=1 RB−C

⌢
≥

i
(X) ⊇ M

O∑s
i=1 RB

⌢
≥

i
(X).

Without loss of generality, we merely demonstrate properties
under optimistic situation, then it is uncomplicated to obtain (PL)
and (PU).

Proposition 4.2. Given a MG-IVHFIS (U, A, V , f ), Ri(i = 1, 2, . . . , s)
is the ith average dominance relation over U. For any X ⊆ U and
B, C ⊆ A, the following properties are satisfied:

(OL) MO∑s
i=1 RB∪C

⌢
≥

i

(X) ⊇ MO∑s
i=1 RB

⌢
≥

i

(X) ∪MO∑s
i=1 RC

⌢
≥

i

(X),

(OU) M
O∑s

i=1 RB∪C
⌢
≥

i
(X) ⊆ M

O∑s
i=1 RB

⌢
≥

i
(X) ∩M

O∑s
i=1 RC

⌢
≥

i
(X).

(PL) MP∑s
i=1 RB∪C

⌢
≥

i

(X) ⊇ MP∑s
i=1 RB

⌢
≥

i

(X) ∪MP∑s
i=1 RC

⌢
≥

i

(X),

(PU) M
P∑s B∪C

⌢
≥
(X) ⊆ M

P∑s B
⌢
≥
(X) ∩M

P∑s C
⌢
≥
(X).
i=1 Ri i=1 Ri i=1 Ri
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roof. When the attribute subset C is added to B:
(OL) According to Definition 3.3, for every x ∈ RB

⌢
≥

i (X)∨RC
⌢
≥

i (X),
t is equivalent to x ∈ RB

⌢
≥

i (X) and x ∈ RC
⌢
≥

i (X). Hence, [x]B
⌢
≥

Ri
⊆ X

and [x]C
⌢
≥

Ri
⊆ X . We may get that [x]B∪C

⌢
≥

Ri
⊆ [x]B

⌢
≥

Ri
and [x]B∪C

⌢
≥

Ri
⊆

x]C
⌢
≥

Ri
associated with Lemma 2.1. So [x]B∪C

⌢
≥

Ri
⊆ X , that is x ∈

RB∪C
⌢
≥

i (X). Thus, RB
⌢
≥

i (X) ∨ RC
⌢
≥

i ⊆ RB∪C
⌢
≥

i can be proved. Conse-
quently, [RB

⌢
≥

i (X)∨RB
⌢
≥

j ]∨[R
C
⌢
≥

i (X)∨RC
⌢
≥

j ] ⊆ RB∪C
⌢
≥

i ∨RB∪C
⌢
≥

j . Finally,
O∑s

i=1 RB∪C
⌢
≥

i

(X) ⊇ MO∑s
i=1 RB

⌢
≥

i

(X) ∪MO∑s
i=1 RC

⌢
≥

i

(X) is achieved.

(OU) As is known from Definition 3.3, for every x ∈ R
B∪C

⌢
≥

i (X),
e have [x]B∪C

⌢
≥

Ri
∩ X ̸= ∅. Coupled with Lemma2.1, [x]B∪C

⌢
≥

Ri
⊆

x]B
⌢
≥

Ri
and [x]B∪C

⌢
≥

Ri
⊆ [x]C

⌢
≥

Ri
. It is apparent that [x]B

⌢
≥

Ri
∩ X ̸= ∅ and

x]C
⌢
≥

Ri
∩ X ̸= ∅. That indicates x ∈ R

B
⌢
≥

i (X) and x ∈ R
C
⌢
≥

i (X), namely

∈ R
B
⌢
≥

i (X)∧R
C
⌢
≥

i (X). So R
B∪C

⌢
≥

i (X) ⊆ R
B
⌢
≥

i (X)∧R
C
⌢
≥

i (X). Accordingly,

R
B∪C

⌢
≥

i (X) ∧ R
B∪C

⌢
≥

j (X) ⊆ [R
B
⌢
≥

i (X) ∧ R
B
⌢
≥

j (X)] ∧ [R
C
⌢
≥

i (X) ∧ R
C
⌢
≥

j (X)].
hereby,M

O∑s
i=1 RB∪C

⌢
≥

i
(X) ⊆ M

O∑s
i=1 RB

⌢
≥

i
(X)∩M

O∑s
i=1 RC

⌢
≥

i
(X) is proved.

The rest of propositions, (PL) and (PU), can be demonstrated
n a similar pattern.

From above-mentioned propositions, we summarize that if
ome attributes are deleted from the attribute set, the upper ap-
roximation tends to become larger while the lower approxima-
ion tends to become smaller. On the contrary, if some attributes
re added to the attribute set, the upper approximation tends to
ecome smaller while the lower approximation tends to become
arger. With the purpose of making this conclusion more legible,
e continue to expound it by an example.

xample 4.1 (Continued from Example 3.1). Firstly, we select two
ttribute subsets B and C , where B = {a2, a4, a5} and C =
a1, a3}. Next, the average dominance classes are computed. The
alculation results under attribute subset B are shown:
[x1]

B
⌢
≥

R1
= {x1, x4}, [x2]

B
⌢
≥

R1
= {x2, x3, x4}, [x3]

B
⌢
≥

R1
= {x3}, [x4]

B
⌢
≥

R1
=

x4}, [x5]
B
⌢
≥

R1
= {x4, x5}.

[x1]
B
⌢
≥

R2
= {x1, x3, x4}, [x2]

B
⌢
≥

R2
= {x2, x3}, [x3]

B
⌢
≥

R2
= {x3}, [x4]

B
⌢
≥

R2
=

x3, x4}, [x5]
B
⌢
≥

R2
= {x3, x5}.

[x1]
B
⌢
≥

R3
= {x1, x3}, [x2]

B
⌢
≥

R3
= {x1, x2, x3, x4}, [x3]

B
⌢
≥

R3
= {x3},

x4]
B
⌢
≥

R3
= {x3, x4}, [x5]

B
⌢
≥

R3
= {x1, x3, x5}.

Then, it is toilless to get the lower and upper approximations
oncerning X under B:
MO∑s

i=1 RB
⌢
≥

i

(X) = {x1, x3, x5}, M
O∑s

i=1 RB
⌢
≥

i
(X) = {x1, x2, x3, x5},

P∑s
i=1 RB

⌢
≥

i

(X) = {x3}, M
P∑s

i=1 RB
⌢
≥

i
(X) = {x1, x2, x3, x4, x5}.

Furthermore, we can acquire the calculation results under
ttribute subset C equally:
[x1]

C
⌢
≥

R1
= {x1, x3, x4}, [x2]

C
⌢
≥

R1
= {x2, x3, x4}, [x3]

C
⌢
≥

R1
= {x3},

x4]
C
⌢
≥

R1
= {x3, x4}, [x5]

C
⌢
≥

R1
= {x3, x4, x5}.

[x1]
C
⌢
≥

R2
= {x1, x3, x4}, [x2]

C
⌢
≥

R2
= {x2, x3}, [x3]

C
⌢
≥

R2
= {x3}, [x4]

C
⌢
≥

R2
=

{x3, x4}, [x5]
C
⌢
≥

R2
= {x2, x3, x5}.

[x1]
C
⌢
≥

R3
= {x1, x3, x4}, [x2]

C
⌢
≥

R3
= {x2, x3, x4}, [x3]

C
⌢
≥

R3
= {x3},

x4]
C
⌢
≥

R3
= {x3, x4}, [x5]

C
⌢
≥

R3
= {x1, x2, x3, x4, x5}.

By computation, the lower and upper approximations con-

erning X under C is following:
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MO∑s
i=1 RC

⌢
≥

i

(X) = {x3}, M
O∑s

i=1 RC
⌢
≥

i
(X) = {x1, x2, x3, x4, x5},

MP∑s
i=1 RC

⌢
≥

i

(X) = {x3}, M
P∑s

i=1 RC
⌢
≥

i
(X) = {x1, x2, x3, x4, x5}.

Thus, we can observe from these results that MO∑s
i=1 RA−B

⌢
≥

i

(X) ⊆

O∑s
i=1 RA

⌢
≥

i

(X), M
O∑s

i=1 RA−B
⌢
≥

i
(X) ⊇ M

O∑s
i=1 RA

⌢
≥

i
(X), MO∑s

i=1 RA
⌢
≥

i

(X) ⊇

O∑s
i=1 RB

⌢
≥

i

(X) ∪ MO∑s
i=1 RC

⌢
≥

i

(X), M
O∑s

i=1 RA
⌢
≥

i
(X) ⊆ M

O∑s
i=1 RB

⌢
≥

i
(X) ∩

M
O∑s

i=1 RC
⌢
≥

i
(X) and so on, which are consistent with Proposi-

tions 4.1 and 4.2.
Updating approximations by employing a static method is

complex and inefficient. In order to save valuable time, we will
study two mechanisms of dynamic updating approximations re-
sult from the change of attributes. During the process of updating,
what we request to consider is two aspects, namely the original
MG-IVHFIS and the changed MG-IVHFIS. Here, an original MG-
IVHFIS is marked by I

⌢
≥
= (U, A, V , f ), and a changed MG-IVHFIS

is marked by I ′
⌢
≥
= (U, A′, V , f ).

4.2. The updating mechanism about deleting some attributes

The subsequent research has to do with the incremental mech-
anism when some attributes are removed from original MG-
IVHFIS. The attribute set composed of deleted attributes is de-
noted by B. Moreover, ‘‘⊤’’ and ‘‘⊥’’ express the variation of upper
and lower approximations.

Proposition 4.3. Let I
⌢
≥
= (U, A, V , f ) be a MG-IVHFIS. For any X ⊆

U and B ⊆ A, we can update the lower and upper approximations
of X as follows:

(1) MO∑s
i=1 RA−B

⌢
≥

i

(X) = MO∑s
i=1 RA

⌢
≥

i

(X) − ⊥, where ⊥ = {x ∈

MO∑s
i=1 RA

⌢
≥

i

(X)| ∧s
i=1([x]

A−B
⌢
≥

Ri
̸⊆ X)}.

(2) M
O∑s

i=1 RA−B
⌢
≥

i
(X) = M

O∑s
i=1 RA

⌢
≥

i
(X) ∪ ⊤, where ⊤ = {x ∈

(U −M
O∑s

i=1 RA
⌢
≥

i
(X))| ∧s

i=1([x]
A−B

⌢
≥

Ri
∩ X ̸= ∅)}.

(3) MP∑s
i=1 RA−B

⌢
≥

i

(X) = MP∑s
i=1 RA

⌢
≥

i

(X) − ⊥, where ⊥ = {x ∈

MP∑s
i=1 RA

⌢
≥

i

(X)| ∨s
i=1([x]

A−B
⌢
≥

Ri
̸⊆ X)}.

(4) M
P∑s

i=1 RA−B
⌢
≥

i
(X) = M

P∑s
i=1 RA

⌢
≥

i
(X) ∪ ⊤, where ⊤ = {x ∈

(U −M
P∑s

i=1 RA
⌢
≥

i
(X))| ∨s

i=1([x]
A−B

⌢
≥

Ri
∩ X ̸= ∅)}.

Proof. Without loss of generality, we merely demonstrate prop-
erties under optimistic situation.

(1) Since it is evident that MO∑s
i=1 RA−B

⌢
≥

i

(X) ⊆ MO∑s
i=1 RA

⌢
≥

i

(X)

depending on Proposition 4.1, there is a set ⊥ making that
MO∑s

i=1 RA−B
⌢
≥

i

(X) = MO∑s
i=1 RA

⌢
≥

i

(X) − ⊥. That indicates we are

going to examine objects, which are in MO∑s
i=1 RA

⌢
≥

i

(X) before

removing attribute set B. Besides, for s granularity spaces,
object x from MO∑s

i=1 RA
⌢
≥

i

(X) is deleted only if [x]A−B
⌢
≥

Ri
̸⊆

X in each granularity space. That is to say, ⊥ = {x ∈
MO∑s

i=1 RA
⌢
≥

i

(X)| ∧s
i=1([x]

A−B
⌢
≥

Ri
̸⊆ X)}.

(2) What we know is that M
O∑s

i=1 RA−B
⌢
≥

i
(X) ⊇ M

O∑s
i=1 RA

⌢
≥

i
(X) on

the basis of Proposition 4.1. So it is similar that a set ⊤ plays
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Fig. 2. The process of updating the lower approximation when some attributes are deleted in MG-IVHFIS.
Fig. 3. The process of updating the upper approximation when some attributes are deleted in MG-IVHFIS.
a crucial role so that M
O∑s

i=1 RA−B
⌢
≥

i
(X) = M

O∑s
i=1 RA

⌢
≥

i
(X) ∪ ⊤.

This suggests objects which do not belong to M
O∑s

i=1 RA
⌢
≥

i
(X)

before deleting attribute set B are considered, namely ob-
jects belonging to U − M

O∑s
i=1 RA

⌢
≥

i
(X) should be examined.

Then, for every granularity space, if there is an object x
fulfilling that [x]A−B

⌢
≥

Ri
∩ X ̸= ∅ after the deletion, we will

insert object x into the upper approximation. That is to say,
⊤ = {x ∈ (U −M

O∑s
i=1 RA

⌢
≥

i
(X))| ∧s

i=1([x]
A−B

⌢
≥

Ri
∩ X ̸= ∅)}.

In order to present the updating mechanism more clearly and
intuitively, we make use of Figs. 2 and 3 to depict concrete
processes. What should be paid attention to is that we exert a
partition instead of a covering over U designed to facilitate the
escription. As illustrated in these figures, Figs. 2 and 3 show
he process of updating approximations when some attributes
re deleted in MG-IVHFIS. In Fig. 2, we can observe the variation
f lower approximation, among which (a) stands for the multi-
ranulation space, (b) and (c) reveal the original and updated
ower approximations. The orange part of (d) represents these
bjects removed from the original lower approximation, namely
he set ⊥. It is noticeable that the updated lower approximation
becomes smaller after a deletion. Consistent with Fig. 2, Fig. 3
displays the variation of upper approximation. Here, (a) repre-
sents the multi-granulation space, (b) and (c) reveal the upper
approximation before and after deleting attribute set B concern-
ing the ith average dominance relation in MG-IVHFIS. About (d),
we draw these objects added to the original lower approximation
in orange, namely the set ⊤. That means the updated upper
approximation becomes larger after a deletion.

By summarizing above-mentioned discussions, a relevant al-
gorithm is provided to update approximations when deleting
some attributes. In Algorithm 1, we introduce the mechanism for
dynamic updating under situation of optimistic multi-granulation.
8

Table 4
The time complexity of Algorithm 1 and Algorithm 2.
Steps Time complexity

2–5 O(|s||U |2)
6–18 O(|s||MO(P)∑s

i=1 RA
⌢
≥

i

(X)|)

19 O(1)
20–32 O(|s||U −M

O(P)∑s
i=1 RA

⌢
≥

i
(X)|)

33 O(1)
Total O(|s||U |2)

Step 2 is the initialization of ⊥ and ⊤. In steps 3–5, we cal-
culate new average dominance classes for all objects over U
in s granularity spaces. Steps 6–19 update the optimistic lower
approximation of X , among which steps 8–13 make a judgment
whether [x]A−B

⌢
≥

Ri
̸⊆ X for each granularity, and ‘‘mark’’ is assigned

to two values (0 or 1) in disparate situations. If there is a granular-
ity satisfying that [x]A−B

⌢
≥

Ri
⊆ X , This indicates that object x cannot

be removed. Therefore, ‘‘mark’’ is assigned to 0 and the loop is
broken out. In steps 20–33, the optimistic upper approximation
of X is updated, among which steps 22–27 judge whether there
is an arbitrary granularity satisfying that [x]A−B

⌢
≥

Ri
∩ X = ∅. If

so, object x will not be added to new upper approximation.
Accordingly, ‘‘mark’’ is assigned to 0 and the loop is broken out.
Finally, new optimistic MG-IVHF lower and upper approximations
are output. By imitating Algorithm 1, it is not hard to discover
that the incremental algorithm of pessimistic multi-granulation
is similar, so Algorithm 2 may be viewed for more details. The
time complexity of Algorithm 1 and Algorithm 2 are shown in
Table 4.
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Fig. 4. The process of updating the lower approximation when some attributes are added in MG-IVHFIS.
Fig. 5. The process of updating the upper approximation when some attributes are added in MG-IVHFIS.
.3. The updating mechanism about adding some attributes

When some attributes are added to original MG-IVHFIS, the
orresponding incremental mechanism is narrated in detail
hrough this part. The attribute set which will be added is de-
oted by C . Equally, the variation of upper and lower approxima-

tions are marked by ‘‘⊤’’ and ‘‘⊥’’.

Proposition 4.4. Let I
⌢
≥
= (U, A, V , f ) be a MG-IVHFIS. For any

X ⊆ U, we can update the lower and upper approximations of X
as follows:

(1) MO∑s
i=1 RA∪C

⌢
≥

i

(X) = MO∑s
i=1 RA

⌢
≥

i

(X) ∪ MO∑s
i=1 RC

⌢
≥

i

(X) ∪ ⊥, where

⊥ = {x ∈ ((X − MO∑s
i=1 RA

⌢
≥

i

(X)) ∩ (X − MO∑s
i=1 RC

⌢
≥

i

(X)))| ∨s
i=1

([x]A∪C
⌢
≥

Ri
⊆ X)}.

(2) M
O∑s

i=1 RA∪C
⌢
≥

i
(X) = (M

O∑s
i=1 RA

⌢
≥

i
(X)∩M

O∑s
i=1 RC

⌢
≥

i
(X))−⊤, where

⊤ = {x ∈ ((M
O∑s

i=1 RA
⌢
≥

i
(X)∩M

O∑s
i=1 RC

⌢
≥

i
(X))−X)| ∨s

i=1([x]
A∪C

⌢
≥

Ri
∩

X = ∅)}.
(3) MP∑s

i=1 RA∪C
⌢
≥

i

(X) = MP∑s
i=1 RA

⌢
≥

i

(X) ∪ MP∑s
i=1 RC

⌢
≥

i

(X) ∪ ⊥, where

⊥ = {x ∈ ((X − MP∑s
i=1 RA

⌢
≥

i

(X)) ∩ (X − MP∑s
i=1 RC

⌢
≥

i

(X)))| ∧s
i=1

([x]A∪C
⌢
≥

Ri
⊆ X)}.

(4) M
P∑s

i=1 RA∪C
⌢
≥

i
(X) = (M

P∑s
i=1 RA

⌢
≥

i
(X)∩M

P∑s
i=1 RC

⌢
≥

i
(X))−⊤, where

⊤ = {x ∈ ((M
P∑s

i=1 RA
⌢
≥

i
(X)∩M

P∑s
i=1 RC

⌢
≥

i
(X))−X)| ∧s

i=1([x]
A∪C

⌢
≥

Ri
∩

X = ∅)}.

roof. Without loss of generality, we merely demonstrate prop-
rties under optimistic situation.
9

(1) Since it is evident that MO∑s
i=1 RA∪C

⌢
≥

i

(X) ⊇ MO∑s
i=1 RA

⌢
≥

i

(X) ∪

MO∑s
i=1 RC

⌢
≥

i

(X) according to Proposition 4.2, there is a set ⊥

making thatMO∑s
i=1 RA∪C

⌢
≥

i

(X) = MO∑s
i=1 RA

⌢
≥

i

(X)∪MO∑s
i=1 RC

⌢
≥

i

(X)∪

⊥. That indicates we are going to examine objects, which
belong to the lower approximation after inserting attribute
set C . To reduce the time complexity, these retrieved objects
come from (X −MO∑s

i=1 RA
⌢
≥

i

(X)) ∩ (X −MO∑s
i=1 RC

⌢
≥

i

(X)). More-

over, in certain granularity space, if there is an object x ful-
filling that [x]A∪C

⌢
≥

Ri
⊆ X after the addition, we will insert ob-

ject x into the lower approximation. That is to say, ⊥ = {x ∈
((X − MO∑s

i=1 RA
⌢
≥

i

(X)) ∩ (X − MO∑s
i=1 RC

⌢
≥

i

(X)))| ∨s
i=1([x]

A∪C
⌢
≥

Ri
⊆

X)}.
(2) What we know is that M

O∑s
i=1 RB∪C

⌢
≥

i
(X) ⊆ M

O∑s
i=1 RB

⌢
≥

i
(X) ∩

M
O∑s

i=1 RC
⌢
≥

i
(X) based on Proposition 4.2. So it is similar that

a set ⊤ plays a crucial role so that M
O∑s

i=1 RA∪C
⌢
≥

i
(X) =

(M
O∑s

i=1 RA
⌢
≥

i
(X) ∩ M

O∑s
i=1 RC

⌢
≥

i
(X)) − ⊤. This suggests objects

which do not belong to M
O∑s

i=1 RA∪C
⌢
≥

i
(X) after adding at-

tribute set C are considered, namely objects belonging to
M

O∑s
i=1 RA

⌢
≥

i
(X)∩M

O∑s
i=1 RC

⌢
≥

i
(X) should be examined. Here, ob-

ject x comes from (M
O∑s

i=1 RA
⌢
≥

i
(X) ∩

M
O∑s

i=1 RC
⌢
≥

i
(X)) − X to speed up the retrieval. Then, for s

granularity spaces, object x is removed only if [x]A∪C
⌢
≥

Ri
∩X =

∅ in certain granularity space. That is to say, ⊤ = {x ∈
((M

O∑s A
⌢
≥
(X)∩M

O∑s C
⌢
≥
(X))−X)| ∨s

i=1([x]
A∪C

⌢
≥

R ∩X = ∅)}.

i=1 Ri i=1 Ri

i
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t
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Algorithm 1: An algorithm for updating approxima-
ions of optimistic multi-granulation about deleting some
ttributes in dynamic MG-IVHFIS
Input:

(1) The original MG-IVHFIS
I
⌢
≥
= (U, A, V , f )= {IVHFIS1, IVHFIS2, · ··, IVHFISs} and a

target set X ⊆ U .
(2) The original optimistic MG-IVHF lower and upper

approximations of X: MO
s∑

i=1
RA
⌢
≥

i

(X), M
O
s∑

i=1
RA
⌢
≥

i
(X).

(3) The attribute subset deleted from A: B.

Output: The new optimistic MG-IVHF lower and upper
approximations of X after deleting attribute
subset B: MO

s∑
i=1

RA−B
⌢
≥

i

(X), M
O
s∑

i=1
RA−B

⌢
≥

i
(X).

1 begin
2 Initialize: ⊥← ∅, ⊤← ∅;
3 for i = 1 : s do
4 Calculate {[x1]

A−B
⌢
≥

Ri
, [x2]

A−B
⌢
≥

Ri
, · · ·, [x|U |]

A−B
⌢
≥

Ri
}; //

Compute average dominance classes based on
RA−B

⌢
≥

i .
5 end
6 for x ∈ MO

s∑
i=1

RA
⌢
≥

i

(X) do

7 for i = 1 : s do
8 if [x]A−B

⌢
≥

Ri
⊆ X then

9 mark← 0;
10 break;
11 else
12 mark← 1;
13 end
14 end
15 if mark = 1 then
16 ⊥← ⊥∪ {x};
17 end
18 end
19 MO

s∑
i=1

RA−B
⌢
≥

i

(X)← MO
s∑

i=1
RA
⌢
≥

i

(X)−⊥;

// Update the optimistic lower approximation of X .
20 for x ∈ (U −M

O
s∑

i=1
RA
⌢
≥

i
(X)) do

21 for i = 1 : s do
22 if [x]A−B

⌢
≥

Ri
∩ X=∅ then

23 mark← 0;
24 break;
25 else
26 mark← 1;
27 end
28 end
29 if mark = 1 then
30 ⊤← ⊤∪ {x};
31 end
32 end
33 M

O
s∑

i=1
RA−B

⌢
≥

i
(X)← M

O
s∑

i=1
RA
⌢
≥

i
(X) ∪ ⊤;

// Update the optimistic upper approximation of X .
34 return MO

s∑
i=1

RA−B
⌢
≥

i

(X), M
O
s∑

i=1
RA−B

⌢
≥

i
(X);

35 end
10
Algorithm 2: An algorithm for updating approxima-
tions of pessimistic multi-granulation about deleting some
attributes in dynamic MG-IVHFIS

Input:
(1) The original MG-IVHFIS

I
⌢
≥
= (U, A, V , f )= {IVHFIS1, IVHFIS2, · ··, IVHFISs} and a

target set X ⊆ U .
(2) The original pessimistic MG-IVHF lower and upper

approximations of X: MP
s∑

i=1
RA
⌢
≥

i

(X), M
P
s∑

i=1
RA
⌢
≥

i
(X).

(3) The attribute subset deleted from A: B.

Output: The new pessimistic MG-IVHF lower and upper
approximations of X after deleting attribute
subset B: MP

s∑
i=1

RA−B
⌢
≥

i

(X), M
P
s∑

i=1
RA−B

⌢
≥

i
(X).

1 begin
2 Initialize: ⊥← ∅, ⊤← ∅;
3 for i = 1 : s do
4 Calculate {[x1]

A−B
⌢
≥

Ri
, [x2]

A−B
⌢
≥

Ri
, · · ·, [x|U |]

A−B
⌢
≥

Ri
}; //

Compute average dominance classes based on
RA−B

⌢
≥

i .
5 end
6 for x ∈ MP

s∑
i=1

RA
⌢
≥

i

(X) do

7 for i = 1 : s do
8 if [x]A−B

⌢
≥

Ri
̸⊆ X then

9 mark← 1;
10 break;
11 else
12 mark← 0;
13 end
14 end
15 if mark = 1 then
16 ⊥← ⊥∪ {x};
17 end
18 end
19 MP

s∑
i=1

RA−B
⌢
≥

i

(X)← MP
s∑

i=1
RA
⌢
≥

i

(X)−⊥;

// Update the pessimistic lower approximation of X .
20 for x ∈ (U −M

P
s∑

i=1
RA
⌢
≥

i
(X)) do

21 for i = 1 : s do
22 if [x]A−B

⌢
≥

Ri
∩ X ̸=∅ then

23 mark← 1;
24 break;
25 else
26 mark← 0;
27 end
28 end
29 if mark = 1 then
30 ⊤← ⊤∪ {x};
31 end
32 end
33 M

P
s∑

i=1
RA−B

⌢
≥

i
(X)← M

P
s∑

i=1
RA
⌢
≥

i
(X) ∪ ⊤;

// Update the pessimistic upper approximation of X .
34 return MP

s∑
i=1

RA−B
⌢
≥

i

(X), M
P
s∑

i=1
RA−B

⌢
≥

i
(X);

35 end



X. Zhang, J. Li and J. Mi Knowledge-Based Systems 238 (2022) 107809

a
T
a
(
a
l
u
I
v
r
(
a
u

t
y
t
d
t
1
s
p
j
e
a
m
o

5

t
a
L
n
t
d
n

d
w
1
a
c
t

a
i
s
g
f
a
s
m
c
s
s
u
a

Table 5
The time complexity of Algorithm 3 and Algorithm 4.
Steps Time complexity

2–6 O(|s|(|U |2 + |U |))
7–19 O(|s||(X −MO(P)∑s

i=1 RA
⌢
≥

i

(X)) ∩ (X −MO(P)∑s
i=1 RC

⌢
≥

i

(X))|)

20 O(1)
21–33 O(|s||(M

O(P)∑s
i=1 RA

⌢
≥

i
(X) ∩M

O(P)∑s
i=1 RC

⌢
≥

i
(X))− X |)

34 O(1)
Total O(|s|(|U |2 + |U |))

Table 6
The detailed description of data sets.
No. Data sets Abbreviation Objects Attributes

1 Wine W 178 14
2 Leaf L 340 16
3 Indian liver patient ILP 583 10
4 HCV data HCV 615 13
5 Energy efficiency EE 768 10
6 Concrete compressive strength CCS 1030 9
7 Contraceptive Method Choice CMC 1473 10
8 Wireless indoor localization WIL 2000 8
9 Wine quality white WQW 4898 12
10 Page blocks PB 5473 10

The process of updating approximations when some attributes
re added in MG-IVHFIS is presented by means of Figs. 4 and 5.
he variation of lower approximation can be watched in Fig. 4,
mong which (a) stands for the multi-granulation space, (b) and
c) reveal the original and updated lower approximations. The or-
nge part of (d) represents these objects inserted into the original
ower approximation, namely the set ⊥. It is noticeable that the
pdated lower approximation becomes larger after an addition.
n Fig. 5, the variation of lower approximation is displayed. Ob-
iously, (a) represents the multi-granulation space, (b) and (c)
eveal the upper approximation concerning RA

⌢
≥

i and RA∪C
⌢
≥

i . For
d), these objects removed from the original lower approximation
re drawn in orange, namely the set ⊤. That means the updated
pper approximation becomes smaller after an addition.
Algorithm 3 which is used for updating approximations with

he addition of some attributes is designed based on above anal-
sis. Similar to Algorithm 1, Algorithm 3 is also divided into
hree parts. In steps 2–6, we initialize ⊥, ⊤ and calculate average
ominance classes with regard to C and A ∪ C . Steps 7–20 update
he optimistic lower approximation of X , among which steps 9–
4 make a judgment whether there is an arbitrary granularity
atisfying that [x]A∪C

⌢
≥

Ri
⊆ X . In steps 21–34, the optimistic up-

er approximation of X is updated, among which steps 23–28
udge whether [x]A∪C

⌢
≥

Ri
∩ X ̸= ∅ for each granularity. In the

nd, new optimistic MG-IVHF lower and upper approximations
re output. Likewise, the incremental algorithm of pessimistic
ulti-granulation is given as Algorithm 4. The time complexity
f Algorithm 3 and Algorithm 4 are shown in Table 5.

. Experimental analysis

In this section, a series of experiments are designed by us
o verify the feasibility and effectiveness of our four dynamic
lgorithms. Ten data sets are downloaded by us from UCI Machine
earning Repository and details are available in Table 6. For some
on-numerical data in several data sets such as time data and
extual data, they are processed with the way of erasing time
ata and partial textual data that are difficult to be converted into
umerical data, and converting other textual data into numerical
11
ata. All the experimental programs are executed on a computer
ith an Intel Core i7-9750H at 2.60 GHz, 8 GB RAM and Windows
0 (64-bit). These algorithms are accomplished by Python using
n environment of Anaconda Navigator. In the experiment, the
omputation time is regarded as main evaluation index aiming
o compare the dynamic method with the classical method.

What cannot be ignored is that the majority of data sets
re made up of real numbers. To keep the experiment going, it
s indispensable for us to construct MG-IVHFIS through a few
teps. For simplicity, there are two granularities in the multi-
ranulation space and the value of object x under attribute a
a(x) contains two interval numbers at most for every x ∈ U and
∈ A in MG-IVHFIS. Firstly, we normalize the selected data sets
o that all the values between 0 and 1. Secondly, we adopt the
easure of adding random noise into the original data sets to
onstruct an information system with two granularities. For the
econd granularity, 60% of the data from original data set will be
elected to add random noise while 40% of the data will remain
nchanged. We mark 60% of the data that is selected randomly
s set G. The random noise is added as follows:

fa′(x) =
{
fa(x)+ r, 0 ≤ r ≤ 1 and x ∈ G,
fa(x), x /∈ G,

(15)

where fa′(x) signifies the value of object x under attribute a for
the second granularity, r signifies the random noise in the range
from 0 to 1. Thirdly, we may generate two interval numbers from
a real number by calculating the formula {[(1 − ψ) × fa(x), (1 −
ω)× fa(x)], [(1+ ω)× fa(x), (1+ ψ)× fa(x)]}. In this experiment,
two error precisions ψ and ω are set as: ψ ∈ [0.1, 0.15] and
ω ∈ [0, 0.05]. Finally, 35% of objects will be chosen randomly as
the target set X for each data set, so as to accurately describe the
target set through lower and upper approximations. Particularly,
if 35% × |U | is not an integer, we will apply the floor function,
namely |X | = ⌊35%× |U |⌋. Given that the single test result of
data set divided by attributes is not stable enough and possibly
inflicts errors, we have taken proactive steps. Aimed at assuring
the balance property of data set which has been divided, the same
process is adopted to reconstruct each data set. At the same time,
during the course of division, random partition was conducted for
multiple times, and the average value was taken after repeated
experiments. In order to minimize the experimental error, we
will carry out the program five times to obtain the average
computation time as the final result.

5.1. The experiment with the deletion of some attributes

The first experiment has to do with removing attributes in
MG-IVHFIS. For each data set, a certain percentage of attributes
will be deleted each time, starting at 5% and ending at 50% of
all attributes, increasing by 5% at a time up to 10 deletions. Two
points that need attention are as described: at first, these deleted
attributes are the same every time under two granularities and
are the same for dynamic and static algorithms. Besides, when
the magnitude of deleted attributes is not an integer, the floor
function is still adopted.

The final experimental results are presented in Tables 7 and 8,
where the unit of computation time is seconds. Dyn. and Cla. are
short for dynamic and classical algorithms respectively. Aimed
at making the comparison about the effect of deleting attributes
between the dynamic and classical methods more legible and
intuitive, we draw some associative three-dimensional surfaces
in accordance with Tables 7 and 8, and detailed information is
displayed in Fig. 6. With regard to each subgraph in Fig. 6, the
x-coordinate represents the quantity ratio of deleted attributes
to original attributes, the y-coordinate indicates four methods,
namely classical and dynamic approaches in the optimistic and
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M

Algorithm 3: An algorithm for updating approximations of optimistic multi-granulation about adding some attributes in dynamic
G-IVHFIS
Input:

(1) The original MG-IVHFIS I
⌢
≥
= (U, A, V , f )= {IVHFIS1, IVHFIS2, · ··, IVHFISs}, a target set X ⊆ U , and

{[x1]
A−C

⌢
≥

Ri
, [x2]

A−C
⌢
≥

Ri
, · · ·, [x|U |]

A−C
⌢
≥

Ri
} (i = 1, 2, · · ·, s).

(2) The original optimistic MG-IVHF lower and upper approximations of X: MO
s∑

i=1
RA
⌢
≥

i

(X), M
O
s∑

i=1
RA
⌢
≥

i
(X).

(3) The attribute set added to A: C .

Output: The new optimistic MG-IVHF lower and upper approximations of X after adding attribute set C: MO
s∑

i=1
RA∪C

⌢
≥

i

(X),

M
O
s∑

i=1
RA∪C

⌢
≥

i
(X).

1 begin
2 Initialize: ⊥← ∅, ⊤← ∅;
3 for i = 1 : s do
4 Calculate {[x1]

C
⌢
≥

Ri
, [x2]

C
⌢
≥

Ri
, · · ·, [x|U |]

C
⌢
≥

Ri
} and MO

s∑
i=1

RC
⌢
≥

i

(X), M
O
s∑

i=1
RC
⌢
≥

i
(X);

5 Calculate [x]A∪C
⌢
≥

Ri
← [x]A

⌢
≥

Ri
∩ [x]C

⌢
≥

Ri
; // Compute average dominance classes based on RA∪C

⌢
≥

i .
6 end
7 for x ∈ ((X −MO

s∑
i=1

RA
⌢
≥

i

(X)) ∩ (X −MO
s∑

i=1
RC
⌢
≥

i

(X))) do

8 for i = 1 : s do
9 if [x]A∪C

⌢
≥

Ri
⊆ X then

10 mark← 1;
11 break;
12 else
13 mark← 0;
14 end
15 end
16 if mark = 1 then
17 ⊥← ⊥∪ {x};
18 end
19 end
20 MO

s∑
i=1

RA∪C
⌢
≥

i

(X) = MO
s∑

i=1
RA
⌢
≥

i

(X) ∪MO
s∑

i=1
RC
⌢
≥

i

(X) ∪ ⊥; // Update the optimistic lower approximation of X .

21 for x ∈ ((M
O
s∑

i=1
RA
⌢
≥

i
(X) ∩M

O
s∑

i=1
RC
⌢
≥

i
(X))− X) do

22 for i = 1 : s do
23 if [x]A∪C

⌢
≥

Ri
∩ X = ∅ then

24 mark← 1;
25 break;
26 else
27 mark← 0;
28 end
29 end
30 if mark = 1 then
31 ⊤← ⊤∪ {x};
32 end
33 end
34 M

O
s∑

i=1
RA∪C

⌢
≥

i
(X) = (M

O
s∑

i=1
RA
⌢
≥

i
(X) ∩M

O
s∑

i=1
RC
⌢
≥

i
(X))−⊤; // Update the optimistic upper approximation of X .

35 return MO
s∑

i=1
RA∪C

⌢
≥

i

(X), M
O
s∑

i=1
RA∪C

⌢
≥

i
(X);

36 end
pessimistic environment. Meanwhile the z-coordinate shows the

computation time of four methods. As can be observed in these
12
subgraphs, it is distinct to discover that with the quantity of

deleted attributes growing, the computation time of classical
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Algorithm 4: An algorithm for updating approximations of pessimistic multi-granulation about adding some attributes in
ynamic MG-IVHFIS
Input:

(1) The original MG-IVHFIS I
⌢
≥
= (U, A, V , f )= {IVHFIS1, IVHFIS2, · ··, IVHFISs}, a target set X ⊆ U , and

{[x1]
A−C

⌢
≥

Ri
, [x2]

A−C
⌢
≥

Ri
, · · ·, [x|U |]

A−C
⌢
≥

Ri
} (i = 1, 2, · · ·, s).

(2) The original pessimistic MG-IVHF lower and upper approximations of X: MP
s∑

i=1
RA
⌢
≥

i

(X), M
P
s∑

i=1
RA
⌢
≥

i
(X).

(3) The attribute set added to A: C .

Output: The new pessimistic MG-IVHF lower and upper approximations of X after adding attribute set C: MP
s∑

i=1
RA∪C

⌢
≥

i

(X),

M
P
s∑

i=1
RA∪C

⌢
≥

i
(X).

1 begin
2 Initialize: ⊥← ∅, ⊤← ∅;
3 for i = 1 : s do
4 Calculate {[x1]

C
⌢
≥

Ri
, [x2]

C
⌢
≥

Ri
, · · ·, [x|U |]

C
⌢
≥

Ri
} and MP

s∑
i=1

RC
⌢
≥

i

(X), M
P
s∑

i=1
RC
⌢
≥

i
(X);

5 Calculate [x]A∪C
⌢
≥

Ri
← [x]A

⌢
≥

Ri
∩ [x]C

⌢
≥

Ri
; // Compute average dominance classes based on RA∪C

⌢
≥

i .
6 end
7 for x ∈ ((X −MP

s∑
i=1

RA
⌢
≥

i

(X)) ∩ (X −MP
s∑

i=1
RC
⌢
≥

i

(X))) do

8 for i = 1 : s do
9 if [x]A∪C

⌢
≥

Ri
̸⊆ X then

10 mark← 0;
11 break;
12 else
13 mark← 1;
14 end
15 end
16 if mark = 1 then
17 ⊥← ⊥∪ {x};
18 end
19 end
20 MP

s∑
i=1

RA∪C
⌢
≥

i

(X) = MP
s∑

i=1
RA
⌢
≥

i

(X) ∪MP
s∑

i=1
RC
⌢
≥

i

(X) ∪ ⊥; // Update the pessimistic lower approximation of X .

21 for x ∈ ((M
P
s∑

i=1
RA
⌢
≥

i
(X) ∩M

P
s∑

i=1
RC
⌢
≥

i
(X))− X) do

22 for i = 1 : s do
23 if [x]A∪C

⌢
≥

Ri
∩ X ̸= ∅ then

24 mark← 0;
25 break;
26 else
27 mark← 1;
28 end
29 end
30 if mark = 1 then
31 ⊤← ⊤∪ {x};
32 end
33 end
34 M

P
s∑

i=1
RA∪C

⌢
≥

i
(X) = (M

P
s∑

i=1
RA
⌢
≥

i
(X) ∩M

P
s∑

i=1
RC
⌢
≥

i
(X))−⊤; // Update the pessimistic upper approximation of X .

35 return MP
s∑

i=1
RA∪C

⌢
≥

i

(X), M
P
s∑

i=1
RA∪C

⌢
≥

i
(X);

36 end
method presents a gradual decreasing tendency, while the com-

putation time of dynamic method fluctuates relatively little. What
13
we may suppose is that if the amount of deleted attributes is

massive enough, the efficiency of classical and dynamic algo-
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T
T
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able 7
he comparison of computation time between classical algorithm and dynamic algorithm with a certain ratio of deleting attributes about optimistic multi-granulation
OM)
Ratio Method 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

W Cla. 0.415 0.399 0.370 0.362 0.334 0.328 0.316 0.252 0.227 0.216

Dyn. 0.072 0.069 0.070 0.071 0.071 0.073 0.073 0.071 0.070 0.070

L Cla. 1.927 1.808 1.737 1.587 1.511 1.363 1.280 1.249 1.119 1.030

Dyn. 0.282 0.265 0.266 0.264 0.261 0.265 0.281 0.272 0.283 0.266

ILP Cla. 4.076 3.818 3.666 3.518 3.218 3.306 2.898 2.446 2.233 2.175

Dyn. 0.764 0.807 0.802 0.789 0.795 0.808 0.814 0.830 0.725 0.782

HCV Cla. 5.308 4.846 4.712 4.414 4.031 3.613 3.606 3.390 3.065 2.717

Dyn. 0.925 0.924 0.968 0.926 0.955 0.905 0.946 0.975 0.988 0.964

EE Cla. 5.965 5.759 5.450 4.893 5.020 4.587 4.454 4.360 3.855 3.346

Dyn. 1.246 1.196 1.182 1.280 1.224 1.306 1.278 1.306 1.255 1.249

CCS Cla. 9.992 9.944 9.310 9.046 8.490 7.809 7.165 7.198 6.189 5.521

Dyn. 2.199 2.241 2.360 2.298 2.355 2.383 2.358 2.385 2.205 2.311

CMC Cla. 22.137 20.719 20.322 18.969 17.968 17.379 17.738 16.245 15.367 14.009

Dyn. 5.389 5.485 5.564 5.417 5.705 5.505 5.540 5.614 5.391 5.241

WIL Cla. 35.415 34.353 34.231 30.865 29.203 29.339 28.664 25.965 23.150 21.156

Dyn. 8.275 8.997 8.967 8.777 9.101 8.882 7.812 8.522 8.365 7.899

WQW Cla. 324.154 292.676 289.206 282.934 237.820 244.327 216.831 198.157 173.286 171.665

Dyn. 51.844 52.429 52.196 52.685 50.982 50.665 49.891 51.945 48.265 50.220

PB Cla. 343.340 313.708 313.171 290.875 293.123 273.379 267.116 231.282 204.694 174.508

Dyn. 75.063 77.711 76.286 73.557 75.329 76.099 72.866 78.135 76.132 70.011
Table 8
The comparison of computation time between classical algorithm and dynamic algorithm with a certain ratio of deleting attributes about pessimistic multi-granulation
(PM)
Ratio Method 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

W Cla. 0.434 0.387 0.371 0.344 0.312 0.326 0.304 0.248 0.237 0.169

Dyn. 0.074 0.066 0.071 0.068 0.073 0.073 0.069 0.072 0.071 0.070

L Cla. 1.987 1.838 1.790 1.655 1.552 1.399 1.291 1.250 1.141 0.921

Dyn. 0.271 0.275 0.269 0.264 0.265 0.267 0.273 0.280 0.275 0.269

ILP Cla. 4.021 3.738 3.660 3.393 3.415 3.318 2.896 2.564 2.502 2.324

Dyn. 0.810 0.854 0.833 0.849 0.815 0.836 0.823 0.829 0.799 0.765

HCV Cla. 5.333 4.813 4.775 4.600 4.402 3.943 3.394 3.109 3.157 2.567

Dyn. 0.906 0.944 0.928 0.921 1.017 0.955 0.976 0.902 0.912 0.965

EE Cla. 5.758 5.507 5.266 5.214 5.003 4.698 4.472 4.173 3.963 3.353

Dyn. 1.210 1.203 1.261 1.277 1.334 1.239 1.305 1.267 1.368 1.254

CCS Cla. 10.123 9.566 9.312 8.770 8.587 7.683 7.356 7.024 6.193 5.821

Dyn. 2.131 2.309 2.253 2.478 2.435 2.351 2.369 2.384 2.456 2.356

CMC Cla. 22.361 21.307 21.055 19.506 18.958 17.646 18.106 15.717 14.814 12.972

Dyn. 5.315 5.597 5.617 5.640 5.573 5.373 5.594 5.312 5.334 5.296

WIL Cla. 35.198 33.476 33.080 31.487 30.234 30.464 29.239 25.881 25.572 22.409

Dyn. 8.384 8.728 8.867 9.299 8.999 9.348 8.650 8.817 8.589 8.682

WQW Cla. 322.761 306.909 270.790 265.658 243.572 233.938 210.701 210.021 182.587 169.323

Dyn. 49.412 56.811 52.904 51.123 48.293 49.059 49.828 49.878 51.836 48.598

PB Cla. 344.093 321.347 308.259 279.666 268.763 263.075 251.110 226.094 195.435 171.898

Dyn. 73.540 75.331 72.998 70.219 72.875 71.296 70.745 72.684 67.867 61.677
rithms will be closer and closer. Moreover, when the amount of
deleted attributes is no more than half of the original attributes,
the computation time of dynamic method is significantly lower
than that of classical method. The cardinality of object set and
the cardinality of attribute set in a data set are pivotal factors
that impact on the performance of four methods. To sum up,
the dynamic updating approximations approach about removing
attributes is much swifter than classical approach in the first
experiment.
14
5.2. The experiment with the addition of some attributes

The second experiment has to do with inserting attributes in
MG-IVHFIS. Under different granularities, attribute set for each
data set is split, in which 60% of attribute set is picked out as
initial attribute set, and remanent 40% of attribute set is deemed
as the attribute set to be added. To make our illustration more
concise, 40% of original attributes which is to be inserted are
recorded as W . A certain percentage of attributes which are in
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Fig. 6. Line charts of computation time about classical and dynamic methods with a certain ratio of deleting attributes.
will be added to the initial attribute set each time, starting at
0% and ending at 100% of W , increasing by 10% at a time up to
0 additions. Considerations resemble the first experiment: under
wo granularities and for two approaches, these added attributes
re identical every time. Equally, the floor function will play a role
f the magnitude of added attributes is not an integer.

Having access to dynamic and classical methods, the time that
as been consumed to add attributes is shown in Tables 9 and
15
10. Then, we plot the time in the form of three-dimensional
surfaces as exhibited in Fig. 7. Determined by the computation
time in Tables 9 and 10, Fig. 7 consists of 10 subgraphs as
well, where the x-coordinate stands for the quantity ratio of
added attributes to W , the y-coordinate stands for classical and
dynamic approaches from the viewpoint of optimistic and pes-
simistic multi-granulation, and the z-coordinate stands for the
computation time. From general directions of these subgraphs,
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Fig. 6. (continued).
Table 9
The comparison of computation time between classical algorithm and dynamic algorithm with a certain ratio of adding attributes about optimistic multi-granulation
(OM)
Ratio Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

W Cla. 0.194 0.217 0.246 0.286 0.318 0.322 0.352 0.378 0.410 0.439

Dyn. 0.010 0.038 0.071 0.098 0.133 0.135 0.161 0.193 0.231 0.265

L Cla. 0.826 0.961 1.097 1.234 1.326 1.452 1.589 1.726 1.869 2.026

Dyn. 0.037 0.146 0.270 0.396 0.539 0.611 0.749 0.875 1.053 1.171

ILP Cla. 1.849 2.247 2.289 2.697 3.066 3.106 3.448 3.536 3.857 4.191

Dyn. 0.114 0.450 0.478 0.812 1.240 1.251 1.617 1.652 1.973 2.359

HCV Cla. 2.461 2.896 3.391 3.379 3.772 4.224 4.305 4.856 5.149 5.597

Dyn. 0.125 0.498 0.894 0.941 1.350 1.752 1.786 2.206 2.653 3.062

EE Cla. 2.611 3.347 3.372 3.930 4.638 4.655 5.235 5.242 6.147 6.859

Dyn. 0.200 0.808 0.785 1.424 2.027 2.078 2.762 2.730 3.348 4.119

CCS Cla. 4.892 5.899 6.015 7.210 7.196 8.551 8.787 10.001 10.038 11.101

Dyn. 0.361 1.392 1.414 2.578 2.605 3.775 3.792 5.159 5.197 6.322

CMC Cla. 9.571 12.359 12.304 14.743 16.823 17.060 19.558 19.559 21.989 24.401

Dyn. 0.863 2.948 2.893 5.148 7.360 7.427 9.761 9.655 12.509 14.541

WIL Cla. 17.516 18.063 22.712 23.290 27.355 27.825 27.360 31.650 31.167 34.941

Dyn. 1.487 1.547 5.655 5.407 9.663 9.982 9.658 13.921 14.127 18.024

WQW Cla. 147.857 176.573 203.151 199.544 231.924 248.289 250.165 271.948 294.121 316.064

Dyn. 13.237 59.105 81.658 86.162 100.581 121.571 123.794 151.875 166.890 191.870

PB Cla. 153.102 182.454 185.040 211.328 238.351 253.385 275.100 280.170 302.006 326.801

Dyn. 19.579 63.045 70.133 103.368 132.031 137.741 164.501 165.585 194.546 219.328
16
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able 10
he comparison of computation time between classical algorithm and dynamic algorithm with a certain ratio of adding attributes about pessimistic multi-granulation
PM)
Ratio Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

W Cla. 0.199 0.224 0.256 0.289 0.314 0.321 0.352 0.391 0.422 0.460

Dyn. 0.012 0.038 0.072 0.099 0.127 0.130 0.165 0.192 0.223 0.263

L Cla. 0.850 0.989 1.095 1.236 1.403 1.523 1.649 1.772 1.919 2.114

Dyn. 0.038 0.150 0.273 0.406 0.509 0.650 0.801 0.900 1.045 1.161

ILP Cla. 1.791 2.176 2.257 2.657 3.085 3.118 3.477 3.502 3.874 4.359

Dyn. 0.112 0.449 0.501 0.815 1.209 1.213 1.583 1.644 1.985 2.382

HCV Cla. 2.509 2.908 3.346 3.430 3.960 4.421 4.472 4.890 5.182 5.623

Dyn. 0.125 0.499 0.929 0.964 1.400 1.851 1.873 2.233 2.706 3.076

EE Cla. 2.514 3.221 3.257 3.841 4.548 4.611 5.163 5.196 5.859 6.498

Dyn. 0.209 0.799 0.774 1.376 2.028 2.083 2.645 2.680 3.321 3.889

CCS Cla. 4.716 5.851 5.993 7.325 7.205 8.458 8.531 9.923 9.952 10.929

Dyn. 0.363 1.368 1.423 2.583 2.516 3.734 3.760 5.188 5.215 6.469

CMC Cla. 9.684 12.099 12.179 14.785 17.305 17.264 19.558 19.353 22.408 24.769

Dyn. 0.842 2.981 2.883 5.138 7.645 7.702 10.113 10.021 12.644 15.008

WIL Cla. 18.771 19.104 23.783 23.716 28.383 28.548 28.832 33.087 32.431 37.068

Dyn. 1.435 1.466 5.599 5.779 10.118 10.303 10.186 14.569 14.449 18.899

WQW Cla. 152.517 175.124 200.607 198.990 225.105 248.533 250.436 269.672 286.348 325.128

Dyn. 16.720 50.997 75.586 91.007 104.307 130.052 127.254 153.859 175.548 198.744

PB Cla. 156.636 181.989 183.468 210.383 247.372 260.638 284.067 289.131 302.421 330.412

Dyn. 27.187 67.430 79.195 103.457 135.086 143.324 158.217 158.008 195.546 212.968
we may reach an agreement: as the quantity of added attributes
augments, the computation time of both classical and dynamic
methods tends to increase gradually. Given that two curves about
classical and dynamic methods under the condition of optimism
or pessimism have no tendency to intersect, we infer that if
the amount of attributes inserted into a data set is massive
enough, the dynamic method will maintain significant superior-
ity. After contrasting the z-coordinate among various subgraphs,
a conclusion similar to the first experiment is that the larger
the cardinality of object set and attribute set is, the longer the
time of updating approximations is. Generally speaking, dynamic
approach is always better than classical approach when it comes
to inserting attributes.

6. Conclusions

Dynamic updating approximations method is an ingenious
trategy in data mining and knowledge discovery. It is the mech-
nism of acquiring the latest knowledge on basis of previous
nowledge in a time-evolving information system that makes
ynamic updating approximations extremely high-efficiency. In
his paper, we go over essential notions of multi-granulation
nterval-valued hesitant fuzzy rough set, as well as some concepts
f information systems and dominance relation. In reality, the
onventional dominance relation is rigorous for practical issue.
herefore, we propose the average dominance relation based
n dominance degree, then construct a RS model which relies
n the average dominance relation in MG-IVHFIS. In addition,
our dynamic mechanisms associated with attributes changing
hile objects hold constant have been investigated in MG-IVHFIS,

ncluding two situations of deleting attributes and adding at-
ributes. Finally, in order to compare the efficiency of dynamic
nd classical methods, a series of experiments concerning ten
CI data sets are implemented to certify the effectiveness of
ynamic algorithm. The experimental results indicate that dy-
amic approaches lessen the time consumption and accelerate
he computational efficiency when attributes vary in MG-IVHFIS.
17
In this paper, only updating approximations of MG-IVHFIS
are explored. It is proved that these incremental algorithms sig-
nificantly shorten the computation time. Nonetheless, since the
variation is normally multidimensional in an information sys-
tem, the reality is more intricate. Confronted with plentiful data
and multifarious problems, our future work will extend dynamic
algorithms and apply them to MG-IVHFIS in which multidimen-
sional variation arises. Furthermore, we are committed to further
improving the efficiency of dynamic approaches and continuing
to use these mechanisms in more information systems. Addi-
tionally, we intend to link the incremental mechanism to at-
tribute reduction in an effort to accelerate the speed of attribute
reduction.
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Fig. 7. Line charts of computation time about classical and dynamic methods with a certain ratio of adding attributes.
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Fig. 7. (continued).
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