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big data, we may gather information from multiple information sources. To effectively
acquire knowledge from multiple information sources, information fusion is commonly
used to get a unified representation. However, sometimes data gathered from multiple
sources may be lost; it is meaningful and necessary to study the fusion of multi-source
Dynamic fusion inc9mplete .interval—valued data.. We propose a nove.l information fusion method pased
Information entropy on information entropy for multi-source incomplete interval-valued data and four incre-
Incomplete interval-valued mental fusion mechanisms characterized by the change in information sources and attri-
Multi-source information system butes. The corresponding static and dynamic fusion algorithms are designed, and their
time complexities are analyzed. Experimental results show that the proposed method out-
performs the mean, max, and min fusion methods. Furthermore, the four incremental
fusion mechanisms reduced the runtime compared with the static fusion mechanism.

© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

Nowadays, the amount, rate of growth, and frequency of alteration of data are increasing unprecedentedly. Interval-
valued data can be effectively used to characterize random variation and imprecise information compared to the single-
valued data, such as blood pressure [1], temperature [2], and unemployment [3]. Many studies have been conducted con-
cerning classification [4], clustering [5], and mining of interval-valued data, aiming to extract knowledge from complete
information tables. However, in the real world, owing to breakdown of sensors or errors on the part of data collectors,
the collected data tables may have some missing value. In recent years, numerous studies on incomplete information sys-
tems, such as uncertainty measuring, feature selection, and knowledge acquisition have been conducted. In 2013, Dai
et al. [6] established a novel uncertainty measuring approach for incomplete data, in 2017 [7] proposed a knowledge gran-
ularity measuring method for incomplete interval-valued data, and, Luo et al. [8] proposed an incremental feature selection
mechanism for incomplete data. Zhao et al. [9] selected features from an incomplete decision table using a novel extended
rough set model. Sun et al. [10] proposed a feature selection method for incomplete systems using Lebesgue and entropy
measures. Regarding knowledge acquisition, Li et al. [11] proposed a novel interval set model to induce classification rules
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from incomplete data. Hong et al. [12] established a new rules-deriving algorithm for incomplete data by estimating the
missing value in the process of rule deriving. Leung et al. [13] efficiently acquired knowledge for incomplete information
systems by defining a set of simpler discernibility functions. The above studies focus on single-source information systems;
however, data may be available from multiple sensors or sources. For example, we can acquire patient data from different
hospitals to predict diseases more accurately. Thus, it is essential to study the fusion of multi-source incomplete interval-
valued information systems (MS-IIVIS).

Information fusion is a valid method to process MS-IIVIS to transform and fuse information from multiple and different
data sources to integrate information representation. The rough set theory (RST) and information entropy are two effective
tools for information fusion. RST [14] has been confirmed as an effective method to fuse information. Several studies have
been conducted in the past few decades. Xu et al. [15] defined the importance of information sources for information fusion
using internal and external confidence. Sang et al. [16] established three kinds of multi-granulation models for decision-
making processes. On the other hand, information entropy proposed by Shannon [17] is a kind of measure of uncertainty,
which can be widely used in information fusion. In recent years, many studies combining RST and information entropy have
been reported. Xu et al. [18] utilized conditional entropy to define the degree of importance of the source for an attribute for
fuzzy data. Xu et al. [19] proposed a novel fuzzy neighborhood conditional entropy to select gene features. Clearly, these
methods cannot be directly employed to process MS-IIVIS. Therefore, we propose a fusion approach to effectively fuse
MS-IIVIS based on conditional entropy. First, the distance between two interval-valued samples is determined. Then, the tol-
erance relation can be derived based on the defined distance. The uncertainty measure of the information system for an attri-
bute, called conditional entropy, can be calculated. Finally, a new unified table can be obtained by searching the minimum
conditional entropy.

There are two motivations for proposing the dynamic information fusion method in this study. On the one hand, many
researchers focus on the static fusion mechanism such as[15,16,18,20-23]. These static fusion methods aim to fuse multi-
source information systems without the variation of information systems. However, information systems change due to var-
ious reasons. With changes in multi-source information systems, there is no denying that the above methods cannot be
directly applied. On the other hand, existing studies propose incremental updating methods only for single information
sources [24-26]. For example, they establish incremental updating mechanisms with the change of objects or object set
[27-29] and the addition or deletion of attributes [24,30]. These updating methods are intended to update approximations
or knowledge of single information sources. However, in the era of big data, it is necessary to study dynamic updating meth-
ods in multi-source information systems (MS-ISs). Undoubtedly, for MS-IS dynamic updating, the above methods cannot be
directly applied. Huang et al. [31] proposed an incremental fusion method for interval-valued data for dynamic information
sources, and then in 2020, they established a dynamic maintenance mechanism [32] in multi-source hybrid information sys-
tems. However, when the number of sources change, the number of attributes may also change. For instance, to predict the
weather conditions, several weather sensors acquire weather information such as temperature, humidity, and wind speed.
However, some prediction models may not need wind speed for the prediction, so these weather sensors are set not to collect
the wind speed, while other models may need more variables to predict the weather condition more accurately resulting in
the addition of more sensors. Thus, it is necessary to study dynamic fusion with the variation of sources and conditional attri-
butes. Nonetheless, the above approaches are not appropriate for fusing MS-IIVIS with the variation of information sources
and attributes. We therefore propose four incremental fusion mechanisms for four scenarios: the addition of sources and
deletion of attributes, the addition of sources and attributes, the deletion of sources and attributes, and the deletion of
sources and the addition of attributes. The contributions of the study are summarized as follows:

(1) We define a tolerance relation in an incomplete interval-valued system. Based on the relation, we propose a novel con-
ditional entropy to measure the importance of sources to attributes.

(2) A novel fusion framework for multi-source incomplete interval-valued data is presented, shown in Fig. 1. The
approach selects the value of the attribute of the source corresponding to the minimum conditional entropy as the
fusion result. Experimental results show that our fusion approach outperforms three common fusion methods in
terms of approximation precision (AP), approximation quality (AQ), and classification accuracy.

(3) Four dynamic updating mechanisms are established with the variation of sources and attributes. The efficiency anal-
ysis manifests that the four dynamic fusion approaches can effectively reduce the computation time when the sources
and attributes change simultaneously.

Although much effort has been dedicated to obtaining a unified representation of multi-source incomplete interval-
valued data and promptly updating the fusion results, the noted algorithms suffer from the following limitations and
challenges.

(1) The entropy-based fusion algorithm needs to compute the conditional entropy of each attributes under each informa-
tion system, whose time complexity is O(N x |AT| x (JU| x (JU| + |U/DY)))). It takes a lot of time for the proposed fusion
algorithm to obtain the fusion results when the number of sources and attributes is large.

(2) The dynamic updating approaches can update the fusion results quickly when sources and attributes change simul-
taneously. A more general situation is that the sources, attributes, and samples change simultaneously. Nevertheless,
our method cannot cope with multi-source data that simultaneously change sources, attributes, and samples.
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Fig. 1. The fusion framework of this paper.

The remainder of this paper is structured as follows. Section 2 gives some basic concepts, such as RST, incomplete informa-
tion system (IIS), conditional entropy(CE), and multi-source incomplete interval-valued decision system (MS-IIVDS). In Sec-
tion 3, a static fusion method for MS-IIVIS is proposed utilizing conditional entropy; the corresponding static algorithm is
established and the time complexity is analyzed. In Section 4, four incremental fusion cases are discussed with the variation
of sources and attributes. The corresponding dynamic fusion algorithms are established, and their time complexities are ana-
lyzed. Later, in Section 5, experimental analysis is conducted to evaluate the effectiveness of fusion and the efficiency of
incremental fusion methods. Finally, we conclude the paper and propose future research direction in Section 6. All termi-
nologies and abbreviations are presented in Table 1.

2. Preliminaries

In this section, some basic concepts, such as RST, IIS, CE, and MS-IIVDS are reviewed.
2.1. Rough Sets Theory [14]

Given IS = (U,AT, Vqr, far) be an information system(IS), where U is set of all the research objects, AT is the finite set of
attributes, Var is a domain of AT, and f,; : U x AT — V,r is an information function. In particular, DS = ISU {DT, Vpr, fpr}
be thought as decision system(DS), where IS is an information system, DT is the set of decision attributes, Vpr is the domain
of DT, and fp; : U x DT — Vpr is an information function. For any B C AT, an equivalence relation Rj is defined by

Table 1
The abbreviations of the terminologies.

Terminologies

Abbreviations

information system

IS

decision system DS
rough set theory RST
conditional entropy CE
incomplete information system 1S
incomplete decision system IDS
approximation classifier precision AP
approximation classifier quality AQ
multi-source information system MS-IS
incomplete interval-valued information system TIVIS
incomplete interval-valued decision system 1IVDS
multi-source incomplete interval-valued information system MS-IIVIS
multi-source incomplete interval-valued decision system MS-IIVDS
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Ry = {(x.,y) e Ux Ulf(x,a) = f(y,a),Va € B}, (1)

where f(x,a) and f(y, a) denote the value of x and y under q, respectively. For any X C U, the lower and upper approximations
of X are defined by

Ry(X) = {x € U|ixlg, € X}, (2)
Re(X) = {x c U‘[x]RBmX - @}, (3)

where [X],, = {y|(x,¥) € Rg}. Let U/D = {Y1,Y>,...,Yn} be the decision partition of U based on DT. For DS = (U,AT U DT, V., f),
the AP and AQ of U/D with respect to R are defined as following:

Z‘RB(YI'H

3

APy, (U/D) = S (4)
> IRs(Yi)]
i=1
> IRs(Y)]

AQg,(U/D) = = —. (5)

U

AP and AQ were first proposed by Pawlak [33,34], and can be used to measure the approximation classification precision and
quality. There higher the AP and AQ, the better the approximation classification precision and quality.

2.2. Incomplete Information System

An incomplete information system can be denoted as IIS = (U,AT, Var, f,r) ,where U is a nonempty finite set of samples;
AT is the nonempty finite set of condition attributes; V4 is the domain of AT;f : U x AT — V/r is an information function and
there exist a € AT and x € U such that f(x,a) = x(missingvalue). In particular, IDS = IlISU {DT, Vpr,fpr} be thought as an
incomplete decision system(IDS), where IIS is an incomplete information system, DT is the set of decision attributes, Vpr
is the domain of DT, and f); : U x DT — Vpr is an information function.

The equivalence relation is not suitable for processing the missing value, so in [35,36], a new tolerance relation is defined
to deal with the IIS. For an IIS, for any B C AT, let T(B) denote the tolerance relation, which is defined as follows:

T(B) = {(x.y)If (x,a) =f(y,@)orf (x,a) = xorf(y,a) = «,Va € B}. (6)
The tolerance class of sample x with respect to the attribute set B is defined as follows:

Ts(x) = {yl(x,y) €T(B)}. (7)
And for any B C AT, the tolerance relation T(B) is defined as follows:

T(B) = maeBT(a)- (8)

The tolerance class of sample x; with respect to B is denoted as Tg(x;) = {xj\ (x,-,xj) € T(B)}. Furthermore, for any X C U, the
lower and upper approximations of X are defined as follows:

Tp(X) = {xi € UTs(x;) C X}, 9)
To(X) = {x € U[Ts(x;) N X # &} (10)
2.3. Conditional Entropy

In [6], a novel conditional entropy is proposed to measure the uncertainty of IDS. Let IDS = (U,AT UDT,V,f) denote an
IDS. For any BC AT, U/UDD = {Y1,Y,...,Ym}, the conditional entropy of D with respect to B is computed as follows:

I & | Ta(x:) nyjl, {TB(x,»)mY,»|
HIDB) = =3 > g Tow)] \ty

Furthermore, the conditional entropy H(D|B) satisfies the following propositions:

(1) 0 < H(DIB) < |U|log U],
(2) H(D|B) < H(D|C), if CCB.
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2.4. Multi-source Incomplete Interval-valued Decision System

An incomplete interval-valued information system can be denoted as IIVIS = (U, AT, Var, f4r) ,where U is a nonempty finite
set of samples; AT is the nonempty finite set of condition attributes; V,r is the domain of AT;f,; : U x AT — V7 is an infor-

mation function such that f(x,a) = [fL(x, a),fY(x, a)] or « (missing value), where f*(x,a) and f’(x,a) denote the lower and

upper endpoints of the interval, respectively.
An MS-IIVIS can be denoted as

MS — [IVIS = {uws,-‘uws,- - (U,ATi, VATﬂfAﬂ) d=1.2,... n},

where IIVIS; is the i-th incomplete interval-valued information subsystem.
Specially, an MS-IIVDS can be denoted as

MS — IIVDS = MS — IIVIS U {DT, Vpr, fpr},

where MS — IIVIS is the multi-source incomplete interval-valued information system, DT is the set of decision attributes, Vpr
is the domain of DT, and f); : U x DT — Vpr is an information function.

Example 2.1. To present the MS — IIVDS intuitively, we give an Example 2.1 as follows. Table 2-5 are four incomplete
interval-valued information tables, which denote the results of medical examinations of ten patients based on four hospitals.
The attributes a;-ag represent hemoglobin count, leukocyte count, blood fat, blood sugar, platelet count, and Hb level. The
symbol * means that a doctor can not determine the level of a project. Assume that
Vp = {Leukemiapatient, Nonleukemiapatient}, and U/D = {Y1,Y,}, where Y; = {X1,X2,X¢,X3,X9}, Y2 = {X3,X4,X5,X7,X10}

3. Information fusion based on information entropy in MS-IIVDS

In recent years, many incomplete information systems have been generated with the era of big data. So it is essential to
fuse these data acquired from multiple sensors. Information fusion aims to produce a comprehensive and unified presenta-
tion of multiple information systems. Information entropy can represent the amount of information, which can be used to
measure the importance of an information system. This section proposes a novel fusion method for MS-IIVDS with informa-
tion entropy.

Definition 3.1. . Given an IIVIS IIVIS = (U, AT, Var, f41), where U = {Xq,X,...,Xn}. Vx;,X; € U and for any a € AT, the distance
of any two samples in U with respect to attribute a is defined as follows:

0, if f(xi,a) = = or f(x;,a) = *,
. . ER v 2 (12)
\/(f (x;,a) —f (x;.,a)) + (f (x;,a) — f (xj,a)) , else.

disq (x;, %) =

Definition 3.2. Given an IIVIS IIVIS = (U,AT, Var,far), for any a € AT, the tolerance relation T, is defined as follows:

disq (xi, X;)

To =4 (x,%) max(dis, (x;,y))
ye

<o or f(xi,a) = =orf (x;,a) = * p, (13)

where o denotes the threshold. The tolerance class of x; under a is denoted as Ta(x;) = {X;|(x;, %;) €Tq}.

Table 2

The first source of information.
U a a as ag as ag
X1 [128.26,139.97] [1.00,5.00] [115.87,124.98] * * [70.18,93.23]
Xa [118.40,130.97] [3.99,11.00] [176.96,124.99] [79.48,118.98] * *
X3 [108.53,119.97] [2.79,10.00] [112.38,121.98] [119.07,179.97] [66.28,84.98] [78.18,100.32]
Xq [125.11,133.97] [1.99,9.00] [111.48,120.98] [60.78,98.98] * [66.38,89.17]
X5 [126.69,135.97] [4.39,11.00] [111.98,295.95] [81.58,119.98] [139.37,282.95] [43.89,74.99]
Xe [126.29,214.96] [6.29,16.00] * * [68.28,87.98] [27.99,61.81]
X7 [123.04,196.96] [4.49,9.00] [177.26,268.95] [84.28,153.97] [77.98,97.98] [30.09,60.80]
Xg [158.85,233.95] [10.09,20.00] * [102.28,162.97] [65.28,84.98] *
Xo [118.40,149.97] [11.99,22.00] [224.96,268.95] [90.28,150.97] * [77.98,89.17]
X10 [141.09,214.96] [8.39,18.00] [177.17,267.95] [67.98,118.98] [109.38,252.96] [39.89,70.93]
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Table 3

The second source of information.
U a; a; as ay as ag
X1 [129.07,139.99] [3.00,7.00] [115.89,124.99] [68.50,107.99] [43.40,186.99] [70.20,92.66]
Xp * [4.00,11.00] [176.99,124.99] [79.50,118.99] [80.40,223.99] [67.20,88.63]
X3 * [2.80,10.00] [112.39,121.99] [119.09,179.99] * [78.20,99.71]
X4 [125.89,133.99] [2.00,9.00] [111.49,120.99] [60.80,98.99] [99.99,259.99] [66.40,88.63]
X5 [127.48,135.99] [4.40,11.00] [111.99,295.99] * * [43.90,74.53]
Xg [127.08,214.99] [6.30,16.00] [204.29,295.99] [81.00,162.99] [68.30,88.00] [28.00,61.44]
X7 [123.81,196.99] [4.50,9.00] [177.29,268.99] [84.30,153.99] [78.00,98.00] [30.10,60.43]
Xg * [10.10,20.00] [224.09,314.98] [102.30,162.99] * [25.80,56.40]
Xg [119.14,149.99] [12.00,22.00] [224.99,268.99] [90.30,150.99] [71.30,91.00] [78.00,88.63]
X10 * [8.40,18.00] [177.19,267.99] * [109.39,252.99] [39.90,70.50]

Table 4

The third source of information.
u a, a; as ay as ag
X1 * [3.00,7.00] [115.87,124.97] * [43.39,186.96] [70.18,93.42]
X2 [118.15,130.97] * * [79.48,118.97] [80.38,223.95] [67.18,89.36]
X3 * [2.80,10.00] [112.37,121.97] * [66.28,84.98] [78.18,100.53]
X4 * [2.00,9.00] [111.47,120.97] [60.79,98.98] * [66.38,89.36]
X5 [126.42,135.97] [4.40,11.00] [111.97,295.93] [81.58,119.97] [139.37,282.93] [43.89,74.14]
X6 [126.02,214.9] [6.30,16.00] [204.25,295.93] [80.98,162.96] [68.28,87.98] [27.99,61.94]
X7 [122.77,196.95] [4.50,9.00] [177.26,268.94] [84.28,153.96] [77.98,97.98] [30.09,60.93]
Xg [158.51,233.94] [10.10,20.00] [224.05,314.93] [102.28,162.96] [65.28,84.98] [25.79,56.87]
Xo [118.15,149.96] [12.00,21.99] [224.95,268.94] * [71.28,90.98] *
X10 [141.79,214.95] [8.40,18.00] [177.16,267.94] [67.98,118.97] [109.37,252.94] [39.89,71.08]

Definition 3.3. Given a MS-IIVDS MS — [IVDS = MS — IIVISuU {DT, Vpr, fpr }, where {I1,I5,...,Is} denotes the set of informa-
tion sources of it, U = {X1,X2,...,X,} and U/UDD = {Y4,Y>,...,Y}. For any a € AT, the uncertainty measurement of I, for a

under D is defined as follows:

(14)

& Tax) N Y| [T x) N
D“ ZZ ‘U| 1 |Tq Xx {

i=1 j=1

where Ti(x;) denote the tolerance class of sample x; of attribute a under I,.

Proposition 3.1. Given a MS-IIVDS MS — IVDS = MS — IIVIS U {DT, Vpr, f pr}, the uncertainty measurement H* (D|I4) satisfies

(1) 0 < H(D|I,) < U] log U],
(2) H*(D|lo,) < HY(D|l,,,) if Tg:(x) C Tg" (x).

Proof. (1) We first demonstrate that H*(D|I;) > 0. Vx; € U, when 3Y; satisfies T!(x;) C Y; and Vk # j, T(x;) N Y; = &, then

we can get log %] _ g and |T4(x;) N Yy| = 0. In this situation, H*(D|I;) = 0. And we know H*(D|I,) is nonnegative, so the

[T30x0)]
minimum value of H*(D|l,) is 0.
Now, let us demonstrate that H*(D|Iy) < |U|log|U|. We can get that
u| Td (Xl T Ul Ta(x)NY, U
P 00) 5 g B 15 g e o) <
|ﬁ(x‘)m | because [Ta(x) NYj| + |Ta(x) N Y;| <|U And when Td(x;) = U, we have
—y Y s sl g il v yom Ml joglil < 5o s log = Ul log U] because |Y| > 1. Thus the maxi-

mum value ofH” (D|l) is |U| log |U|.

(2) Given the function f(x,y) =
T =log(1+1) -4 Let g(t)

> 0. Similarly, we can find Z =

=log(1+¢t)—

y T x

—xlog XXTy we have

129

it When t > 0, we can get % —

o _

X+y

<1+c2

;>0 when x >0 and y >0. We all know

When x >0 and y >0, let
> 0, so g(t) > g(0) =
% (x) mY‘

t=2Y we have

X

0. Thus, we can get

ﬂY‘ and
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Te@) NYj| < Tg;" (x)nYj|. Then based on the monotonicity of the function f(x,y), we have
n m ‘T‘j; (x)NY; TS (x)NY; " m ‘Tg;" (x)myj’ Tg]r" (x)nY; . " .
=S Hg— log <YL g log , which means H® (D|I,,) <H%(D|l,,).
77;; Ny |+ Tgf @)ny§ Tg;" Ny |+ ng"' x)nys

We observe that the smaller the H’(D|l,), the more important the I,. Thus, we have the following Definition 3.4, which
can be used to fuse MS-IIVDS.

Definition 3.4. Let {I;,]5,...,Iy} denotes the set of information sources of MS-IIVDS, U = {x1,X3,...,Xs}. The i;-th system
which is the most important for attribute a, can be obtained by

i, = argminH"(D|1}). (15)
ke{1,2,..,.N}
Based on Definition 3.4, we can create a new information table through computing H*(D|l,). Firstly, for any attribute a € AT
and Iy € {I1,I2,..., Iy}, the value of H*(D|l;) is computed. Secondly, for any attribute a, we find the smallest value of H*(D|I;)
and then we put the values of all samples under a with respect to I, into the new table. Finally, a new incomplete information
table is generated based on the above method. After that, we utilize the maximum fusion results of the samples in the tol-
erance classes of the missing value samples to complete missing values, which can be denoted as

. L U . o
f(x;, a) = { L,E%i&)f (@), max £7(x,a) |, i fxi,0) = (16)
f(xi, a), else.

An intuitive diagram of fusion is shown in Fig. 1. The static Algorithm3.1 is given in the following. In Algorithm3.1, the
time complexity of the step 5 is O(JU|). So the time complexity of the step 1 to 15is O(N x |AT| x |U| x (|U| + |U/D|)). Thus the
time complexity of Algorithm3.1 is O(N x |AT| x |U| x (|U| + |U/D|) + |AT|).

Algorithm3.1: The static fusion algorithm of multi-source information systems based on information entropy

Data: MS — [IVDS = {(U,AT;, Var,, fi» D, Vp, fp) . i = 1,2,..., N}; the decision partition
U/D=1{Y,Y5,.., Y.}
Result: A new fusion table
1 forg=1:Ndo

2 # N is the number of information sources.
3 for each a € AT do
4 He (D1, ) « 0;
5 for i=1:|U| do
6 compute T (x;);
7 for j=1:m do
8 # m is the cardinality of |U/D)|.
9 if |7 (x; 1 ¥;)| > O then
10 ‘ He (D |Iq) « H (D |Iq) _ |Tf,’(|x£/)|ij| 10g |7;;;l?)‘|//|
1 end
12 end
13 end
14 end
15 end
16 for each a € AT do
17 compute i, = argmin H* (D|I;)
ke(l.2.....5)
18 end
19 return (ij’l‘ Va2 s VZ‘A"T"')




X. Zhang, X. Chen, W. Xu et al. Information Sciences 608 (2022) 1-27

Example 3.1 (Continued from Example 2.1). Based on Definition 3.3, we can calculate the conditional entropy of each source
for each attribute. Take the attribute a; of the first source of information for example. Without loss of generality, let the value
of o be 0.5. First, we can compute the distance between any two samples based on Eq. (12). For example, the distance
between x; and x, under a; with respect to the first source is computed by disq(x1,Xx2) =

\/(128.26 —118.4)? + (139.97 — 130.97)* = 13.3499. The distance matrix Dis is shown as follows.

0 13.3499 28.0941
13.3499 0 14.7754 7.34939
28.0941 14.7754 0 21.6957 24.1974
6.77911 7.34939 21.6957 0 2.54772 80.9943
429961 9.67908 24.1974 2.54772 0 78.987 61.0984
75.0127 84.3552 96.6293 80.9943 78.987 O 18.289 37.697
57.2293 66.151 78.3407 63.0229 61.0984 18.289 O 51.4912 47.2199
98.8354 110.643 124.594 105.523 103.127 37.697 51.4912 0 93.2203 26.0058
14.047 18.9966 31.5759 17.3472 16.2673 65.4661 47.2199 93.2203 0 68.8368
76.0758 86.9971 100.409 82.548 80.2889 14.8003 25.4934 26.0058 68.8368 0

6.77911 4.29961

9.67908

75.0127
84.3552
96.6293

57.2293
66.151

78.3407
63.0229

98.8354
110.643
124.594
105.523
103.127

14.047

18.9966
31.5759
17.3472
16.2673
65.4661

76.0758
86.9971
100.409
82.548

80.2889
14.8003
25.4934

Dis =

Dividing each element of Dis by the maximum value of all the elements in the corresponding row, we can get the matrix Dis".

0 0.1351 0.2843 0.0686 0.0435 0.7590 0.5790 1 0.1421 0.7697
0.1207 0 0.1335 0.06642 0.0875 0.7624 0.5979 1 0.1717 0.7863
0.2255 0.1186 0 0.1741 0.1942 0.7756 0.6288 1 0.2534 0.8059
0.0642 0.0696 0.2056 0 0.0241 0.7675 0.5972 1 0.1644 0.7823
0.0417 0.0939 0.2346 0.0247 O 0.7659 0.5925 1 0.1577 0.7785
0.7763 0.8730 1 0.8382 08174 0 0.1893 0.6775 0.1532
0.7305 0.8444 1 0.8045 0.7799 0.2335 0 0.6028 0.3254
0.7933 0.8880 1 0.8470 0.8277 03026 04132 0 0.7482 0.2087
0.1507 0.2038 0.3387 0.1861 0.1745 0.7023 0.5065 1 0 0.7384
0.7577 0.8664 1 0.8221 0.7997 0.1474 0.2539 0.2590 0.6856 0

Dis” =

Then the tolerance classes of these ten samples are computed based on Eq. (13). For example, because 0, 0.1351, 0.2843,
0.0686, 0.0435, and 0.1421 are smaller than 0.5, so x1, X2, X3, X4,Xs, and xg are put in the tolerance class of x; under a;.

To, (X1) = {X1,X5,X3,X4, X5, X0}, Ty, (X2) = {X1,X2,X3,Xa, X5, X0},
Ty, (X3) = {X1,X2,X3,X4, X5, Xo }, Ty (Xa) = {X1,X2,X3,X4, X5, X},
T, (Xs) = {X1,%2,X3,X4,X5,Xo }, Ty, (X6) = {X6, X7, X5, X10},

Ty, (x7) = {X6,X7,X10}, Ty, (Xs) = {X6,X7,Xs, X10},

Ty, (Xo) = {X1,X2,X3,X4,X5,Xe }, Ty, (X10) = {Xs,X7,Xs,X10}.

We can then compute the conditional entropy based on Eq. (14).
H"Dh)=-(6x3xIni+LxInl+3xZxn2+6xxIni+3x2xIn2+2xInj)
=3.5180607171761813

Table 5

The fourth source of information.
U a; a; as ay as ag
X * [3.00,7.00] [115.90,125.00] * * [70.20,92.01]
X2 [119.99,131.00] [4.00,11.00] [177.00,125.00] [79.50,119.00] * [67.20,88.01]
X3 [109.99,112.00] * [112.40,121.98] [119.10,180.00] [66.30,85.00] [78.20,99.01]
X4 [126.79,134.00] [2.00,9.00] [111.48,120.98] [60.80,99.00] [100.00,260.00] [66.40,88.01]
Xs [128.39,136.00] [4.40,11.00] * [81.60,120.00] [139.40,283.00] [43.90,74.01]
Xg [127.99,215.00] [6.30,16.00] [204.30,296.00] [81.00,163.00] [68.30,88.00] [28.00,61.01]
X7 * [4.50,9.00] [177.30,269.00] [84.30,154.00] [78.00,98.00] [30.10,60.01]
Xs * [10.10,20.00] [224.10,315.00] [102.30,163.00] [65.30,85.00] [25.80,56.00]
X [119.99,150.00] [12.00,22.00] [225.00,269.00] [90.30,151.00] [71.30,91.00] [78.00,88.01]
X10 [142.99,215.00] * [177.20,268.00] [68.00,119.00] [109.40,253.00] *

8
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Similarly, we can compute the conditional entropy of other sources for attributes. The results are shown in Table 6. Based
on Definition 3.4 and Eq. (16), we can get the fused complete interval-valued system, which is shown in Table 7.

4. Dynamic fusion mechanisms and algorithms with the change of information sources and attributes in MS-IIVDS

In this section, four incremental fusion mechanisms and the corresponding algorithms are proposed with the change of
information sources and conditional attributes. We study four dynamic cases (a) inserting information sources and removing
attributes; (b) inserting sources and attributes; (¢) removing sources and attributes; (d) removing sources and inserting attri-
butes. We illustrate the four situations of variation intuitively, in Fig. 2.

Case (a). Addition of information sources and deletion of conditional attributes.

Let MS — IIVDS' denote the multi-source incomplete interval-valued decision system at time t. In the following section, an
incremental fusion mechanism is discussed when some sources are added and some conditional attributes are deleted at
time t+ 1. Suppose {Ini1,Ini2,...,In;an} are inserted into multi-source system and {a@n_ani1,...,0an} are deleted from
multi-source system at time t + 1. Then we have the following properties.

Proposition 4.1. For {ay,...,a, an}, the following properties are true:
. a; . a; t+1 _ gt .
(1) If QE{N+1.I\IBIZI:»1~.N+AN}H (Dllq) > qs{rlr,lzl.?,N}H (D|lg). then Vo =Vai
2) If i H*% (DI i H%(D|I,), th Vil = v, (@), wh = i H%(D|I Vi, (a;
2) qe{N+1Jr\lTer1mN+AN} ( |q) < qe{rlr-121~r<l--N} ( {q) then a4 'q(al) where 4 ke(N+all,‘Ng+Izr.l.,l,.rl}J+AN} (DIl and ’q(al)

denotes the value of a; under I,.

Proof. 1) If min HY%(D|ly) = min_ H%(D|l;), then we can get min H'(D|ly) =
qe{N+1,N+2,...N+AN} qe{1.2,...N} qe{1,2,...N,N+1,N+2,.. .N+AN}
min H®(D|l,), so the information source which is pivotal for a is unchanged. Thus, we have V™' = V.
qe{1,.2,..., i i
2) If min H%(D|I min H%(D|l;), then we can get that after {In.1,In:2,...,] are inserted,
) ge{N+1,N+2,...N+AN} ( | q) < qe{1.2,...N} ( } q) & Uit Iz, Ivsant
i H'(D|I) = i H%(D|I,), so the information source which is pivotal for a is transformed to
qe{1,2,...N,N+1,N+2,...N+AN} qe{N+1,N+2,...N+AN}
I, where q = argmin  H%(D|Iy).

ke{N+1,N+2,...N+AN}
Based on Proposition 4.2, we can incrementally update the fusion table when new sources are obtained and abandon
invalid conditional attributes.

Example 4.1. (Continued from Example 2.1). Suppose that we collect the results of medical examinations for these ten
patients from only two hospitals in the beginning. Next, through the discussion of experts, it is found that the attributes 'Hb

Table 6

The conditional entropy of information sources for attributes.
U I I, I3 Iy
a; 3.518060717 5.822436317 5.143121988 5.525041931
a, 3.591140530 3.489391305 3.832629088 4.675589474
as 4.418716649 3.029712081 3.947781877 4.118612056
ay 4.729955328 4.741077973 5.013015008 3.978180671
as 5.721367701 4.846218014 4.001406785 4.489755422
ag 4.577481598 3.253486559 4.039229581 4.007040281

Table 7

The result of fusion based on information entropy.
U a; a, as ay as ag
X1 [128.26,139.97] [3.00,7.00] [115.89,124.99] [60.80,180] [43.39,186.96] [70.20,92.66]
X2 [118.40,130.97] [4.00,11.00] [176.99,124.99] [79.50,119.00] [80.38,223.95] [67.20,88.63]
X3 [108.53,119.97] [2.80,10.00] [112.39,121.99] [119.10,180.00] [66.28,84.98] [78.20,99.71]
X4 [125.11,133.97] [2.00,9.00] [111.49,120.99] [60.80,99.00] [43.39,282.93] [66.40,88.63]
X5 [126.69,135.97] [4.40,11.00] [111.99,295.99] [81.60,120.00] [139.37,282.93] [43.90,74.53]
X6 [126.29,214.96) [6.30,16.00] [204.29,295.99] (81.00,163.00] [68.28,87.98] [28.00,61.44]
X7 [123.04,196.96] [4.50,9.00] [177.29,268.99] [84.30,154.00] [77.98,97.98] [30.10,60.43]
Xs [158.85,233.95] [10.10,20.00] [224.09,314.98] [102.30,163.00] [65.28,84.98] [25.80,56.40]
Xo [118.40,149.97] [12.00,22.00] [224.99,268.99] [90.30,151.00] [71.28,90.98] [78.00,88.63]
X10 [141.09,214.96] [8.40,18.00] [177.19,267.99] (68.00,119.00] [109.37,252.94] [39.90,70.50]
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Fig. 2. Four changing cases of multi-source information system.

Table 8
The results of conditional entropy at time t.
U I I
a 3.518060717 5.822436317
a; 3.591140530 3.489391305
as 4.418716649 3.029712081
as 4.729955328 4,741077973
as 5.721367701 4.846218014
ag 4.577481598 3.253486559
Table 9
The results of conditional entropy at time t + 1.
U I8 L I3 Iy
a 3.518060717 5.822436317 5.143121988 5.525041931
a; 3.591140530 3.489391305 3.832629088 4.675589474
as 4.418716649 3.029712081 3.947781877 4.118612056
ay 4.729955328 4.741077973 5.013015008 3.978180671

level’ and 'platelet count’ are not necessary for determining whether a patient has leukemia, and these experts decide that
the patients should go to more hospitals to get checked. The situation is the same as Case (a).

Let us abstract the above situation mathematically. Suppose that in time t, the MS-IIVDS has two sources I; and I;, where the
attributes are a;-as. The results of conditional entropy at time t are shown in Table 8. Then in time t + 1, two sources I3 and I,

10



X. Zhang, X. Chen, W. Xu et al. Information Sciences 608 (2022) 1-27

Table 10

The final fusion results at time ¢ + 1.
U a; a; as ay
X1 [128.26,139.97] [3.00,7.00] [115.89,124.99] [60.80,180]
Xo [118.40,130.97] [4.00,11.00] [176.99,124.99] [79.50,119.00]
X3 [108.53,119.97] [2.80,10.00] [112.39,121.99] [119.10,180.00]
X4 [125.11,133.97] [2.00,9.00] [111.49,120.99] [60.80,99.00]
X5 [126.69,135.97] [4.40,11.00] [111.99,295.99] [81.60,120.00]
Xg [126.29,214.96] [6.30,16.00] [204.29,295.99] [81.00,163.00]
X7 [123.04,196.96] [4.50,9.00] [177.29,268.99] [84.30,154.00]
Xg [158.85,233.95] [10.10,20.00] [224.09,314.98] [102.30,163.00]
Xg [118.40,149.97] [12.00,22.00] [224.99,268.99] [90.30,151.00]
X10 [141.09,214.96] [8.40,18.00] [177.19,267.99] [68.00,119.00]

are inserted into MS-IIVDS, and as and as are removed from the original attributes set. The results of conditional entropy at

time t + 1 are shown in Table 9. Based on the Property 4.1, we only need to compute H* (D|I;), wherei=1,2,3,4 andj = 3,4.

Fori=1,2,3,4, the ‘l'lillilzl} H% (D|Ij) represents the former information which does not need to be recalculated. The final fusion
Jjell,

results at time t + 1 are shown in Table 10.
The dynamic algorithm is given in Algorithm4.3; its time complexity of it is shown in Table 14.

Algorithm4.1: The incremental algorithm with the addition of sources and deletion of attributes

Data: the original fusion table (V}“, Vigsos Vo s Vi s V;HM); the deleted attributes set
{@n+1, Qni2s -y Anipn}; the inserted sources set {Iy+1, In+2, ..., IN+an}; the decision partition
U/D = {Yl, Yz, vees Ym};

Result: An updated fusion table.

for g =N+1: N+ AN do

for each a € {a,,a,, ...,a,} do

‘ compute H* (D |Iq ); # n is the number of remained attributes.

end

1
2

3

4 end
5

6 for eacha € {ay,as, ..., a,} do
7

if min H (D |Iq) > min H“ (D |Iq) then
q€{N+1,N+2,...N+AN} q<f1,2,....N}
1 _
8 | vt =V,
end
o | if min He(D|1,) < min He(D|,) then
qe{N+1,N+2,...N+AN} qefl.2,....N}
11 virl = Vi,(@),q = arg min H®(D|I,) #V},(a)denotes the value of attribute a under the
KN+1,N+2,...N+AN}
information source /,
12 end
13 end
1 1 1
14 return (Vi Vit Vet

Case (b). Addition of information sources and addition of conditional attributes.
Suppose {In1,Ini2,---,Inian} are inserted into multi-source system and {a.1,...,dnan} are inserted into multi-source
system at time ¢ + 1. Then we have the following propositions.

Proposition 4.2. For {a;,ay,...,a,}, the following propositions are true:

. a a; t+1 _ gt .
(i qe(Nn,l\IJIPzI,,l,,.NMN)H (Dita) > aclion N)H (Dllg). then V™ = Vs

s a; H aj t+1 X — H a; .
(2) If quﬂ_mlzl}’NﬂN}H (D|Iy) <q6{1?.121“11N}H (D|lg), then Vg™ =V, (a;), where q kg(fon%szRMN}H (D|Iy) and V,,(a;)

denotes the value of a; under I,.

11



X. Zhang, X. Chen, W. Xu et al. Information Sciences 608 (2022) 1-27

Proof. Proposition 4.3 is similar to Proposition 4.2, so its proof is similar to that of Proposition 4.2.

Proposition 4.3. For {a,1,0n2, ..., 00 an}, We have Vg =V (a;), whereq = argmin H®(D|l;) and V;, (a;) denotes the the
ke{12,...N+AN}

value of g; under ;.
Proof. It is easy to demonstrate Proposition 4.5 based on Definition 3.4.

Example 4.2 (Continued from Example 2.1). Suppose that in the beginning, we collect the results of medical examinations
based on hemoglobin count, leukocyte count, blood fat, and blood sugar for these ten patients from only two hospitals. Next,
the experts decide that Hb level and platelet count are necessary for determining whether a patient has leukemia, and direct
that the patients go to more hospitals for checkup. The situation is the same as Case (b).

Let us abstract the above situation mathematically. Suppose that in time ¢, the MS-IIVDS has two sources I; and I, where the
attributes are a;-a4. The results of entropy at time t are shown in Table 11. Then in time t + 1, two sources I3 and I, are
inserted into MS — IIVDS, and as and ag are inserted into the original attributes set. The results of entropy at time ¢+ 1
are the same as Table 6. Based on the Propositions 4.3 and 4.5, we only need to compute H (D|I;), where i = 1,2,3,4 and

j=3,4 and H%(D|I;),where i = 5,6 and j =1,2,3,4. For i = 1,2,3,4, the _Il;l]iIzl} H%(D|I;) represents the former information
Jeul,

which doed not need to be recalculated. The final fusion results at time t + 1 are the same as Table 7.
The dynamic algorithm is given in Algorithm4.2; its time complexity is shown in Table 14.

Algorithm4.2: The incremental algorithm with the addition of sources and addition of attributes

Data: the original fusion table (Vz;] Vs V;n); the inserted sources set {In1, In+2, ..., Iy+an); the inserted
attributes set {@,+1, dy+2, ..., dn+an}; the decision partition U/D = {Y1,Ya, ..., Y}
Result: An updated fusion table
1 forg=N+1: N+ AN do
for ecach a € {a;,as, ...,a,, .., dyip,} dO
compute H¢ (D |Iq ); # n is the number of original attributes.
end
end
forg=1:Ndo
for each a € {a,,1,aps2, ..., dpian} do
compute H* (D |Iq)
end

o e NN N B W N

end
for ecach a € {a;,a, ...,a,} do
if min He(D|1,) 2 min H(D|l,) then
GEIN+1,N+2,...N+AN} g€l .2,...N}
13 IRARERY
14 end
15 if min H¢ (D |Iq) < min H* (D |Iq) then
qe{N+1,N+2,...N+AN} q<f{1,2,....N}

16 yirl = Vi (a),q = arg min H*(D|Iy) #V} (a) denotes the value of attribute a under the
KN+1,N+2,...N+AN}
information source 1,

=
)

o
N

17 end
18 end
19 for each a € {a,+1, ansa, ..., Guipnn) dO

20 compute i, = argmin H*(D|l})
ke{1,2,....N+AN}

21 LetV, =V;, (a)
22 end
23 return (VL VEL VLV, L Vi)

ay ° "ay

12
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Table 11

The results of conditional entropy at time t.
§) I I
a 3.518060717 5.822436317
a; 3.591140530 3.489391305
as 4.418716649 3.029712081
ay 4.729955328 4.741077973

Case (c). Deletion of information sources and deletion of conditional attributes. Suppose {In_ani1,InN-ani2,---,In} and

{@n-An+1,0n-an+2, - - -, 0y} are removed from {I;, >, ..., In,Ins1,...,In;an} at time ¢t + 1. Then we have Proposition 4.6.
Proposition 4.4. labelspsproposition5 For {ai,...,a,_an}, the following propositions are true:
. a; > . a; t+1 _yt-
(1) If qe{N—AN+TI\}E1AN+2 ,,,,, N}H (Dllq) > qe{l,g‘.l..l,gl—AN}H (D[lg), then Va Vas

H%(D|ly) < H®(D|l,), then V;"' =V, (a;), where g = argmin H%(D|l;) and V,,(a;)

(2) If min i
qe{N-AN+1,N-AN+2,..N} qe{1.2,..N-AN} ke{1,2...N—AN}

denotes the value of a; under I,.

Proof. (1) If " H%(D|l;) > min  H%(D|l,), then we can get

min
qe{N-AN+1,N-AN+2,.... qe{1,2,...N—AN}

H'(D|l,) = _min _ H(D|I,),

m
qe{1,2,...N} qe{1,2,...N—AN}

so the information source which is pivotal for a is unchanged. Thus we have Vf]i” = V.

(2)If " H%(D|lj) < min  H%(D|l;), then we can get that

min
qe{N-AN+1,N-AN+2,..., qe{1.2,...N-AN}

H (D]Iy) = Ol

m min
qe{1,2,...N} qe{N—AN+1,N-AN+2,...,

Thus after {In_an+1,In-an+2,--.,In} are removed, the information source which is pivotal for a is changed to I;, where

qg= argmin H%(D|ly).
ke{1.2,...N—AN}

Example 4.3 (Continued from Example 2.1). Suppose that in the beginning, we collect the results of hemoglobin count,
leukocyte count, blood fat, blood sugar, Hb level, and platelet count for these ten patients from four hospitals. Next, the
experts decide that Hb level and platelet count are not necessary for determining whether a patient has leukemia. The
experts note that there was equipment failure during medical examinations in two hospitals; therefore, the results of the
two hospitals must be removed. The situation is the same as Case (c).

Let us abstract the above situation mathematically. Suppose that in time t, the MS-IIVDS has four sources I;- I5, where the
attributes are a,-as. The results of entropy at time t are the same as Table 6. Then in time t + 1, two sources I3 and I, are
removed from MS-IIVDS, and, as and ag are removed from the original attributes set. The results of entropy at time ¢ + 1
are shown in Table 11. Based on the Proposition 4.3, for the remaining attributes, we only need to use the former information

1‘1‘{1;1;11} H*(D|I;) and 1‘1‘{1111‘21} H®(D|I,) to update the fusion information table without any recalculation. The final fusion results at
qe{3, qeqld,

time t + 1 are shown in Table 12.
The dynamic algorithm is given in Algorithm4.3; its complexity is shown in Table 14.

Table 12

The final fusion results at time ¢t + 1.
U a; a as Qg
X1 [128.26,139.97] [3.00,7.00] [115.89,124.99] [60.78,179.97]
Xo [118.40,130.97] [4.00,11.00] [176.99,124.99] [79.48,118.98]
X3 [108.53,119.97] [2.80,10.00] [112.39,121.99] [119.07,179.97]
Xq [125.11,133.97] [2.00,9.00] [111.49,120.99] [60.78,98.98]
Xs5 [126.69,135.97] [4.40,11.00] [111.99,295.99] [81.58,119.98]
X6 [126.29,214.96] [6.30,16.00] [204.29,295.99] [60.78,179.97]
X7 [123.04,196.96] [4.50,9.00] [177.29,268.99] [84.28,153.97]
Xg [158.85,233.95] [10.10,20.00] [224.09,314.98] [102.28,162.97]
Xo [118.40,149.97] [12.00,22.00] [224.99,268.99] [90.28,150.97]
X10 [141.09,214.96] [8.40,18.00] [177.19,267.99] [67.98,118.98]

13
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Algorithm4.3: The incremental algorithm with the deletion of sources and attributes.

Data: the original fusion table (V;I, Vis o V;,,’ V;M ey V;M“); the deleted attributes set
{an+1, Anias -y neant; the deleted sources set {Iyy1, Iy, ..., In+an}; the decision partition
U/D={Y1,Ys,....Y,};

Result: An updated fusion table.

1 for each a € {ay,a, ...,a,} do
2 # n is the number of remained attributes.
3| if min He(D|1,) > min He(D|,) then
ge{N+1,N+2,..., N+AN} qefl,2,...,N}
4 ERARERY
5 end
6 if min H¢ (D |Iq) < min H¢ (D |Iq) then
GEIN+1,N+2,...N+AN} g€ll1.2,...N}
7 fol =V, (a),q = argmin H* (D |I;) #V] (a) denotes the value of attribute a under the information
K{1.2....N}
source I,
8 end
9 end
1 1 1
10 return (Vf;l’ Vi LV )

Case (d). Deletion of information sources and addition of conditional attributes. Suppose {Iy_ani1,In-ani2,--.,In} are
removed from {I;,l5,...,Iy} and {@y;1,0ns2, - .., Gnian} are inserted at time ¢t + 1. Then we have the following propositions.

Proposition 4.5. For {a;,ay,...,a,}, the following propositions are true:

. aj : a; t+1 _ st .
(1)1 qE{N—AN+TI\}E1AN+2 ,,,,, N}H (D|IQ) > qe{l,gl,‘.l..l,gl—AN}H (D‘IQ)' then Vo = Ve

: a; : aj t+1 X _ H a; .
@I v Ty, (Plla) < min  HY(Dlly). then Vo™ = Vi, (@), where g = argmin H"(D|L) and V;,(a)

denotes the value of a; under I,.
Proof. Proposition 4.2 is similar to Proposition 4.6, so its proof is similar to that of Proposition 4.6.

Proposition 4.6. For {a,,1,au2,--.,anan}, We have Vg =V (a;), where ¢ = argmin H%(D|I};) and V},(a;) denotes the
ke{1,2,...N—AN}

value of a; under I;.
Proof. It is easy to confirm based on the Definition 3.4.

Example 4.4 (Continued from Example 2.1). Suppose that in the beginning, we collect the results of hemoglobin count,
leukocyte count, blood fat, and blood sugar for these ten patients from four hospitals. Next, the experts decide that Hb level
and platelet count are necessary for determining whether a patient has leukemia. The experts further discover that the
relevant equipment in two hospitals failed during medical examination, therefore, the results from the two hospitals must be
removed. The situation is the same as Case (d).

Table 13

The final fusion results at time ¢t + 1.
8] a, a, as ay as ag
X1 [128.26,139.97] [3.00,7.00] [115.89,124.99] [60.78,179.97] [43.40,186.99] [70.20,92.66]
X2 [118.40,130.97] [4.00,11.00] [176.99,124.99] [79.48,118.98] [80.40,223.99] [67.20,88.63]
X3 [108.53,119.97] [2.80,10.00] [112.39,121.99] [119.07,179.97] [43.40,259.99] [78.20,99.71]
X4 [125.11,133.97] [2.00,9.00] [111.49,120.99] [60.78,98.98] [99.99,259.99] [66.40,88.63]
Xs5 [126.69,135.97] [4.40,11.00] [111.99,295.99] [81.58,119.98] [43.40,259.99] [43.90,74.53]
X6 [126.29,214.96] [6.30,16.00] [204.29,295.99] [60.78,179.97] [68.30,88.00] [28.00,61.44]
X7 [123.04,196.96] [4.50,9.00] [177.29,268.99] [84.28,153.97] [78.00,98.00] [30.10,60.43]
Xs [158.85,233.95] [10.10,20.00] [224.09,314.98] [102.28,162.97] [43.40,259.99] [25.80,56.40]
Xo [118.40,149.97] [12.00,22.00] [224.99,268.99] [90.28,150.97] [71.30,91.00] [78.00,88.63]
X10 [141.09,214.96] [8.40,18.00] [177.19,267.99] [67.98,118.98] [109.39,252.99] [39.90,70.50]
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Table 14
The comparison of the time complexity between the static and dynamic algorithm.
Cases Static algorithm Dynamic algorithm
(a) O((N + AN) x n x [U| x (|U| +m) + n) O(AN x n x |U| x (|U| +m) + n)
(b) O(((N+ AN) x (n+ An)) x |U| x (|U|+m) +n+ An) O((N x An+ AN x (n+ An)) x [U| x (|JU| +m) +n+ An)
(c) O(N x n x |U| x (U] +m) +n) O(n)
(d) O(N x (n+ An) x |U| x (|U| + m) +n + An) O(N x An x |U| x (JU|+m) +n+ An)

Let us abstract the above situation mathematically. Suppose that in time t, the MS-IIVDS has four sources I;- I, where the
attributes are a;-a4. The results of entropy at time t are the same as Table 9. Then in time t + 1, two sources I3 and I, are
removed from MS-IIVDS, and as and as are inserted into the original attributes set. The results of entropy at time t + 1
are the same as Table 8. Based on Propositions 4.6 and 4.2, we only need to compute H% (D|I;), where i = 5,6 and j = 1,2.

Fori=1,2,3,4, the 'n?lirzl\, H%(D|I;) and vr1{13i£1} H% (D|I;) represents the former information which does not need to be recalcu-
jef1, je{3;

lated. The final fusion results are shown in Table 13.
The dynamic algorithm is given in Algorithm4.4; its time complexity is shown in Table 14.

Algorithm4.4: The incremental algorithm with the deletion of sources and addition of attributes

Data: the original fusion table (szp Vzix V;”); the deleted sources set {Iy1, Ins2, ..., Intan}; the inserted
attributes set {a,+1, @42, ---, n+an}; the decision partition U/D = {Y1,Ya, ..., Y };
Result: An updated fusion table.
1 forg=1:Ndo

2 for each a € {a,1,ap42, ..., dpian) dO
3 ‘ compute H* (D Iq);
4 end
5 end
6 for eacha € {ay,as,...,a,} do
7| if min H'(D|l;) > min H(D|I,) then
q€{N+1,N+2,...N+AN} qefl,2,....N}

s | | vitl=V,

end
w0 | if min He(D|1,) < min He(D|,) then

GE{N+1.N+2....N+AN} q€(1.2,...N}
11 VC’,+1 =V (a),q = arg min H* (D |I};) #V,,(a) denotes the value of attribute a under the information
K{1.2....N}
source I,
12 end
13 end
14 for each a € {a,1, 0,42, ..., Ayipn} dO
15 compute i, = argmin H (D|I})
ke(1,2,...N}

16 LetV, =V; (a)
17 end

18 return (V’+1 yitl ...,th’jl,VarHl,...,VaJ,A,,).

a >’ ax

Furthermore, the comparison of the time complexity between dynamic algorithms and the static fusion Algorithm3.1 is
given in Table 14. From the perspective of time complexity, we observe that the four dynamic fusion algorithms can reduce
the runtime effectively.

5. Experimental analysis

This section reports on experiments conducted to illustrate the effectiveness of our fusion method and the efficiency of
the incremental mechanisms based on nine data sets from UCI [37], shown in Table 15. All experiments were performed
using a personal computer, and the operating environment is summarized in Table 16. It is well known that multi-source
incomplete interval-valued data sets are not directly obtained from any public databases; therefore, we used the method

15



X. Zhang, X. Chen, W. Xu et al. Information Sciences 608 (2022) 1-27

Table 15
The description of data sets.
No. Data sets Abbreviation Samples Attributes Classes
1 Wine Wine 178 13 3
2 Connectionist Bench (Sonar, Mines vs. Rocks) CB 208 60 2
3 Speaker Accent Recognition SAR 329 12 6
4 Ecoli Ecoli 336 8 8
5 Breast Cancer Wisconsin(Diagnostic) Breast 569 30 2
6 Hill-Valley HV 606 101 2
7 South German Credit SGC 1000 21 2
8 Wall-Following Robot Navigation Data Wall 5456 24 4
9 Shill Bidding Dataset Shill 6321 13 2
Table 16
Operating Ambient.

Name Model Parameter

CPU Intel(R) Core(TM) i5-6300HQ 2.30 GHz

Platform Python 3.7

System Windows7 64bit

Memory DDR3 8 GB;1600Mhz

Hard Disk HTS545050A7E680 500 GB

in [31] to generate a multi-source interval-valued data set. The first step is to convert the original single-valued data into

interval-valued data by f'(x,a) = v(x,a) — 26, and f’(x,a) = v(x,a) + 26, where v(x,a) denotes the value of x under a
and o, denotes the standard deviation of the a with the same class of x. The second step is to generate m random numbers

{ri,r2,...,rm} which satisfy the normal distribution N(0,0.1). And then if r; >0, let fi(x,a)=f"(x,a)(1—r;) and
fl(x.a) = f(x,a)(1 + ). Otherwise, let fi(x,a) = f*(x a)(1 + 1) and f{(x.a) = f(x,a)(1 - ry). Let fi(x.a) = [fi(x,a).f] (x,a)]
be the value of x under a in i-th subsystem. Thus, m subsystems are generated. And the missing values are created by ran-
domly deleting 10% data. In the following experiments, for each data set, we generated 20 sources to constitute an MS-IIVDS.

5.1. The analysis of fusion effectiveness
As in [31], AP and AQ reflect the precision and quality of approximation classification, respectively, confirming that they

can be used as fusion performance metrics. We compare the fusion effectiveness between the proposed fusion method and
three common fusion methods based on AP, AQ. The three common fusion methods are

ic{1.2...N Tie{12,.N

(1) MaxF,(x) = { min }ff(x,a) max )ff’(x, a)},

. - L . U
@) Minfy() = | max fiix.a),_min f/xa)

(3) MeanF,(x) = {;,zNjf(x, a),%if}’ (x,a)} ,
i=1 i=1

where fi(x,a) and f} (x,a) denote the left and right endpoints of i — th information source with respect to attribute a.

Table 17
AP and AQ of Wine with the variation of o.
AP AQ

alpha CeF MaxF MinF MeanF CeF MaxF MinF MeanF
0.5 0.4150 0.3716 0.3370 0.3769 0.5899 0.5449 0.5169 0.5506
0.45 0.6792 0.5822 0.5683 0.5964 0.8090 0.7360 0.7247 0.7472
0.4 0.8639 0.7980 0.8163 0.7889 0.9270 0.8876 0.8989 0.8820
0.35 0.9669 0.9560 0.9669 0.9669 0.9831 0.9775 0.9831 0.9831
03 1.0000 0.9888 1.0000 1.0000 1.0000 0.9944 1.0000 1.0000
0.25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 18
AP and AQ of CB with the variation of o
AP AQ
o CeF MaxF MinF MeanF CeF MaxF MinF MeanF
0.5 0.7049 0.7261 0.6062 0.6574 0.8269 0.8413 0.7548 0.7933
0.45 0.8009 0.8326 0.7119 0.7702 0.8894 0.9087 0.8317 0.8702
0.4 0.8909 0.8995 0.8326 0.8489 0.9423 0.9471 0.9087 0.9183
0.35 0.9531 0.9716 0.8909 0.9531 0.9760 0.9856 0.9423 0.9760
03 1.0000 0.9904 0.9716 0.9904 1.0000 0.9952 0.9856 0.9952
0.25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Table 19
AP and AQ of SAR with the variation of o.
AP AQ
o CeF MaxF MinF MeanF CeF MaxF MinF MeanF
0.5 0.0996 0.0677 0.0810 0.0471 0.3131 0.2462 0.2736 0.1793
0.45 0.1899 0.1421 0.1851 0.1242 0.4681 0.4073 0.4742 0.3647
0.4 0.2612 0.2194 0.2493 0.2243 0.5471 0.5076 0.5471 0.5106
0.35 0.3389 0.3008 0.2912 0.2989 0.6140 0.5714 0.5805 0.5805
0.3 0.4387 0.4135 0.3842 0.4034 0.6748 0.6535 0.6505 0.6474
0.25 0.6190 0.5856 0.5316 0.5921 0.7903 0.7690 0.7416 0.7720
0.2 0.8563 0.8487 0.7919 0.8408 0.9240 0.9210 0.8906 0.9149
0.15 0.9819 0.9819 0.9701 0.9819 0.9909 0.9909 0.9848 0.9909
0.1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Table 20
AP and AQ of Ecoli with the variation of a.
AP AQ
o CeF MaxF MinF MeanF CeF MaxF MinF MeanF
0.5 0.0325 0.0026 0.0085 0.0048 0.0893 0.0089 0.0238 0.0149
0.45 0.0442 0.0061 0.0224 0.0088 0.1042 0.0179 0.0536 0.0238
0.4 0.2047 0.0681 0.1875 0.0873 0.3601 0.1577 0.3304 0.1815
0.35 0.3926 0.1848 0.4386 0.3137 0.5714 0.3333 0.6161 0.4911
0.3 0.6271 0.4483 0.7731 0.5520 0.7708 0.6190 0.8720 0.7113
0.25 0.9037 0.6430 0.9941 0.7827 0.9494 0.7968 0.9970 0.8869
0.2 1.0000 0.7968 1.0000 0.9941 1.0000 0.8869 1.0000 0.9970
0.15 1.0000 0.9649 1.0000 1.0000 1.0000 0.9821 1.0000 1.0000
0.1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Table 21
AP and AQ of Breast with the variation of o.
AP AQ
o CeF MaxF MinF MeanF CeF MaxF MinF MeanF
0.5 0.0252 0.0107 0.0143 0.0116 0.0492 0.0211 0.0281 0.0228
0.45 0.0431 0.0197 0.0215 0.0206 0.0826 0.0387 0.0422 0.0404
0.4 0.0636 0.0289 0.0336 0.0317 0.1195 0.0562 0.0650 0.0615
0.35 0.0859 0.0498 0.0557 0.0498 0.1582 0.0949 0.1054 0.0949
0.3 0.1223 0.0911 0.0974 0.0921 0.2179 0.1670 0.1775 0.1687
0.25 0.2004 0.1732 0.1805 0.1793 0.3339 0.2953 0.3058 0.3040
0.2 0.3694 0.3202 0.3357 0.3357 0.5395 0.4851 0.5026 0.5026
0.15 0.6398 0.6051 0.5983 0.6028 0.7803 0.7540 0.7487 0.7522
0.1 0.9621 0.9621 0.9420 0.9520 0.9807 0.9807 0.9701 0.9754
0.05 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

17



X. Zhang, X. Chen, W. Xu et al. Information Sciences 608 (2022) 1-27

Table 22
AP and AQ of HV with the variation of a.
AP AQ
o CeF MaxF MinF MeanF CeF MaxF MinF MeanF
0.5 0.0075 0.0000 0.0000 0.0000 0.0149 0.0000 0.0000 0.0000
0.45 0.0100 0.0000 0.0008 0.0000 0.0198 0.0000 0.0017 0.0000
0.4 0.0066 0.0008 0.0008 0.0008 0.0132 0.0017 0.0017 0.0017
0.35 0.0092 0.0008 0.0008 0.0008 0.0182 0.0017 0.0017 0.0017
03 0.0125 0.0017 0.0033 0.0025 0.0248 0.0033 0.0066 0.0050
0.25 0.0151 0.0058 0.0100 0.0066 0.0297 0.0116 0.0198 0.0132
0.2 0.0211 0.0159 0.0202 0.0159 0.0413 0.0314 0.0396 0.0314
0.15 0.0306 0.0280 0.0306 0.0289 0.0594 0.0545 0.0594 0.0561
0.1 0.0448 0.0412 0.0368 0.0377 0.0858 0.0792 0.0710 0.0726
0.05 0.0812 0.0793 0.0678 0.0754 0.1502 0.1469 0.1271 0.1403
Table 23
AP and AQ of SGC with the variation of o.
AP AQ
o CeF MaxF MinF MeanF CeF MaxF MinF MeanF
0.5 0.6849 0.5662 0.6949 0.4482 0.8130 0.7230 0.8200 0.6190
0.45 0.9512 0.9048 0.9212 0.9399 0.9750 0.9500 0.9590 0.9690
0.4 0.9646 0.9493 0.9531 0.9531 0.9820 0.9740 0.9760 0.9760
035 0.9685 0.9724 0.9763 0.9589 0.9840 0.9860 0.9880 0.9790
03 0.9960 0.9920 0.9900 0.9940 0.9980 0.9960 0.9950 0.9970
0.25 0.9960 0.9980 0.9940 0.9940 0.9980 0.9990 0.9970 0.9970
0.2 0.9980 1.0000 0.9980 0.9980 0.9990 1.0000 0.9990 0.9990
0.15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Table 24
AP and AQ of Wall with the variation of o.
AP AQ
o CeF MaxF MinF MeanF CeF MaxF MinF MeanF
0.5 0.1414 0.0720 0.1101 0.0871 0.3185 0.1880 0.2626 0.2192
0.45 0.1858 0.1150 0.1419 0.1357 0.3842 0.2674 03127 0.3037
04 0.2449 0.1712 0.1899 0.1768 0.4606 0.3572 0.3831 0.3640
035 0.2920 0.2393 0.2271 0.2408 0.5148 0.4489 0.4322 0.4511
03 0.3511 0.2922 0.2826 0.2907 0.5753 0.5119 0.4984 0.5092
0.25 0.4086 0.3591 0.3411 0.3563 0.6276 0.5795 0.5629 0.5761
0.2 0.5008 0.4459 0.4256 0.4475 0.7025 0.6562 0.6380 0.6565
0.15 0.5979 0.5517 0.5232 0.5514 0.7729 0.7392 0.7170 0.7383
0.1 0.6945 0.6616 0.6405 0.6523 0.8363 0.8160 0.8024 0.8098
0.05 0.8023 0.7773 0.7592 0.7750 0.9008 0.8860 0.8759 0.8845
Table 25
AP and AQ of Shill with the variation of o.
AP AQ
o CeF MaxF MinF MeanF CeF MaxF MinF MeanF
0.5 0.0984 0.0596 0.0603 0.0586 0.1792 0.1125 0.1137 0.1107
0.45 0.1351 0.0968 0.0903 0.0885 0.2381 0.1766 0.1656 0.1626
0.4 0.1875 0.1477 0.1256 0.1388 0.3158 0.2574 0.2232 0.2438
0.35 0.2945 0.2418 0.2264 0.2367 0.4550 0.3895 0.3692 0.3829
03 0.4275 0.4042 0.3509 03616 0.5990 0.5757 0.5195 0.5311
0.25 0.5860 0.5396 0.4784 0.5255 0.7390 0.7010 0.6472 0.6890
0.2 0.7500 0.7221 0.6707 0.7072 0.8571 0.8386 0.8029 0.8285
0.15 0.8635 0.8431 0.8306 0.8370 0.9268 0.9149 0.9075 09112
0.1 0.9485 0.9443 0.9274 0.9401 0.9736 0.9714 0.9623 0.9692
0.05 0.9852 0.9843 0.9818 0.9831 0.9926 0.9921 0.9908 0.9915
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We compare the four methods with the threshold « variation in the nine data sets. Tables 17-25 show AP and AQ of
fusion results with the variation of o, where CeF denotes the proposed conditional entropy fusion method. The value of o
is set from 0.05 to 0.5 with a step of 0.05. From the result, in the Wine data set, when the threshold changes from 0.35 to
0.5, the CeF method clearly outperforms the other three fusion methods and the CeF method is better than the Max method
when the value of « is 0.3 and when the threshold changes from 0.05 to 0.25, the values of AP and AQ of the four fusion
methods are equal. For the data set CB, our method is significantly better than MinF and MeanF methods when the value
of o is set from 0.3 to 0.5. For the SAR data set, when the value of o is varied from 0.2 to 0.5, the CeF method outperforms
all the comparison methods For the Ecoli data set, the CeF method is better than MaxF and MeanF methods when « is set
from 0.2 and 0.5 and when the value of « is 0.4 and 0.5, our method is better than MinF. In the Breast data set, the fusion
performance of the CeF method is the best when the value of the threshold is set from 0.15 to 0.5. The proposed method
outperforms the other methods in most situations in Diabetic data set. For HV, Wall, and Shill data sets, the CeF method per-
forms best in almost all situations. All in all, from the perspective of AP, AQ, the CeF method outperforms these common
fusion methods on most occasions. Thus, our method present a better choice to fuse multi-source incomplete interval-
valued decision information systems in most situations.

Furthermore, for the four methods, the smaller the threshold value, the larger the value of AP and AQ. It stems from the
fact that the decreasing of o results in the decreasing of tolerance class of each sample, so the lower approximation of the
object set becomes more extensive, and the upper approximation of the object set becomes smaller. Thus, the values of AP
and AQ increase when the value of o decreases. We can obtain a high value of AP and AQ by setting a small threshold value.
However, while a small value of « increases the values of AP and AQ high, it also results in small tolerance class of each sam-
ple, making the connection between samples small. Suppose in an extreme situation that the tolerance classes of all samples
barely consist of themselves, the samples will not relate to each other, making the task of data mining hard. Therefore, we are
supposed to select an appropriate threshold to extract the tolerance class of samples.

We compare the proposed method with the method using the single information source with maximum AP and AQ,
which are shown in Figs. 3 and 4. The results show that the proposed method, CeF, can improve AP and AQ by fusing multiple
information sources.

We conducted experiments to demonstrate that the new representation of multi-source data can improve the classifica-
tion tasks. Many existing classifiers cannot directly cope with interval-valued data; therefore, in [21], the extended classical
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Fig. 3. The comparison results between CeF and single information source with maximum AP.
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Fig. 4. The comparison results between CeF and single information source with maximum AQ.
Table 26
The classification accuracy of fusion results based on KNN.
DataSets KNN
CeF MaxF MinF MeanF
Wine(k = 15) 99.4+1.7 98.9+2.3 97.24+2.8 97.7+2.8
CB(k = 3) 86.6+7.7 80.3+7.2 80.8+8.2 79.4+7.7
SAR(k = 31) 56.5+7.9 54.7+6.0 40.2+8.6 35.6+7.8
Ecoli(k = 8) 95.8+2.4 94.0+3.4 95.8+2.8 94.9+4.3
Breast(k = 6) 63.5+7.2 62.6+6.0 62.6+4.7 62.6+3.9
HV(k = 5) 49.9+8.8 46.4+6.7 45.1+7.5 45.4+3.8
SGC(k = 12) 70.5+3.0 68.9+4.1 70.1+4.8 69.6+3.9
Wall(k = 6) 59.5+1.4 59.8+0.7 58.4+1.6 58.9+1.2
Shill(k = 6) 89.3+1.2 89.2+1.2 89.1+1.2 89.2+1.2
Table 27
The classification accuracy of fusion results based on PNN.
DataSets PNN
CeF MaxF MinF MeanF
Wine(g=0.3) 99.4+1.7 97.7+2.8 97.7+2.8 98.9+2.2
CB(0=0.2) 86.1+6.6 82.7+7.8 80.8+7.8 81.3+7.6
SAR(0=0.41) 64.7+6.3 62.0+6.2 63.5+5.8 56.5+7.1
Ecoli(6=0.2) 96.7+3.6 94.6+3.8 96.4+3.7 94.6+4.4
Breast(0=0.2) 62.0+6.6 62.4+6.6 59.6+8.3 61.7+6.8
HV(0=0.31) 52.0+34 50.24+2.5 48.8+3.0 49.8+2.2
SGC(0=0.29) 70.7+£3.6 70.0+3.4 71.6+3.7 70.5+£3.7
Wall(6=0.2) 63.7+1.7 63.8+1.7 63.5+1.8 63.3+1.7
Shill(6=0.2) 89.0+1.3 89.1+14 88.8+1.3 89.0+1.3
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k-nearest neighbor (KNN) classifier and probabilistic neural network (PNN) classifier are proposed to address interval-valued
data. We adopted ten-fold cross-validation in classification, and the mean and standard deviation of classification accuracy
are shown in Tables 26 and 27. The parameters k and ¢ can affect the classification performance of KNN and PNN classifiers,
so we achieved the optimal result by adjusting the parameters.

We observe that for the KNN and PNN classifiers, the proposed fusion method performs better than the other three com-
mon fusion methods in most datasets. Furthermore, Wilcoxon signed-rank test was employed to determine whether the pro-
posed method is statistically better than the three common methods. Let the null hypothesis be
H, : CeF < MeanF /MinF/MaxF, which means that the distribution center of classification accuracy of the CeF method is less
than or equal to the distribution center of classification accuracy of the four common methods. So the alternative hypothesis
is Hy : CeF > MeanF /MinF/MaxF, which means that the distribution center of classification accuracy of the CeF method is lar-
ger than the distribution center of classification accuracy of the three common methods. The P-values of the comparison
results are shown in Table 28 and Table 29. Given a significance level of 10%, most comparison results are statistically
significant.

5.2. The analysis of efficiency

We demonstrate the efficiency of the proposed incremental fusion methods. We compare the running time between
incremental fusion algorithms and the static algorithm with the variation of information sources and attributes in nine data
sets. Without loss of generality, the value of o is set to 0.5. The results are displayed in Figs. 5-8. The number of attributes
and information sources is set from one value to another to compare the runtime of the incremental algorithms with the
static algorithm in the above four cases. The x-coordinate (a, b) denotes the number of attributes and the number of sources,
where a is the number of attributes and b is the number of sources, and the y-coordinate denotes the runtime of incremental
and static algorithms.

The runtime of incremental algorithms is significantly lower than the static algorithm for the four scenarios for the Wine
data set. Furthermore, for the other eight data sets, it is clear that in the four cases (a)-(d), the incremental fusion algorithms
outperform the static fusion algorithm in terms of running time. We employed the Wilcoxon signed-rank test to determine
whether the performance difference between the static and dynamic algorithms is statistically significant. Let the null
hypothesis be Hg : Tsiic < Tincrementar» Which means that the distribution center of the runtime of the static algorithm is less
than or equal to the distribution center of the runtime of the dynamic algorithm. The alternative hypothesis is
Hi : Tstatic > Tincrementars Which means that the distribution center of the runtime of the static algorithm is larger than the dis-

Table 28

P-values of the comparison results in classification accuracy based on KNN.
DataSets KNN

CeF>MaxF CeF>MinF CeF>MeanF

Wine(k = 15) 0.5 0.04733536 0.086784083
CB(k = 3) 0.006838343 0.004305063 0.004246019
SAR(k = 31) 0.362981813 0.002944635 0.002960769
Ecoli(k = 8) 0.027237018 0.5 0.068351292
Breast(k = 6) 0.418709626 0.36249459 0.322585841
HV(k = 5) 0.037701781 0.022005492 0.096258786
SGC(k = 12) 0.080200405 0.3674303 0.094690922
Wall(k = 6) 0.682355341 0.021912792 0.077565784
Shill(k = 6) 0.060667625 0.032750607 0.068351292

Table 29

P-values of the comparison results in classification accuracy based on PNN.
DataSets PNN

CeF>MaxF CeF>MinF CeF>MeanF

Wine(g=0.3) 0.086784083 0.086784083 0.5
CB(0=0.2) 0.030784922 0.004246019 0.00689685
SAR(0=0.41) 0.052585976 0.101545894 0.004545349
Ecoli(6=0.2) 0.02470581 0.5 0.028379723
Breast(g=0.2) 0.706031627 0.036917158 0.307633063
HV(0=0.31) 0.018015843 0.011247136 0.029529115
SGC(0=0.29) 0.01551626 0.994588677 0.328360643
Wall(6=0.2) 0.459380048 0.110335681 0.077384603
Shill(6=0.2) 0.993718499 0.028953633 0.58537577
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Fig. 6. Runtime times of incremental and static algorithms in Case(b).

tribution center of the runtime of the dynamic algorithm. The P-values of the four situations are all 8.417908123323452e-10.
Given a significance level of 5%, all the results are statistically significant. Furthermore, we computed the speed-up ratio of
the four incremental algorithms, which is calculated as R = Tsaicaigorithm / T incrementataigorithm, T+ d€notes the computational time of
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Table 30
The speed-up ratio of four incremental algorithms in nine data sets.
Ecoli a 213 2.79 3.72 4.70
b 1.60 2.21 2.88 347
c 185.00 121.00 67.00 27.00
d 4.88 5.55 6.54 7.00
Breast a 2.05 2.93 4.25 5.00
b 2.72 3.91 4.93 5.55
c 7040.00 4276.00 2162.00 720.00
d 3.34 3.86 5.28 6.31
CB a 4.86 5.74 6.31 7.00 7.50
b 1.21 1.95 2.40 2.79 3.17
c 714.00 533.00 382.00 252.00 146.00
d 1.70 2.50 3.11 4.06 4.64
SAR a 4.55 5.27 6.04 6.58 6.65
b 2.72 3.11 3.45 3.82 4.18
c 259.00 214.00 176.00 140.00 109.00
d 5.81 6.70 7.10 8.00 9.36
HV a 5.18 5.93 6.89 7.81 8.64
b 6.13 6.93 7.75 8.66 9.47
c 6381.25 6720.33 7664.00 5647.50 3952.00
d 5.32 6.07 6.78 7.80 8.48
Wine a 5.47 6.67 7.89 8.29 8.75
b 1.86 2.46 3.09 3.46 4.19
c 127.00 93.00 61.00 39.00 20.00
d 2.39 3.45 4.81 533 5.92
SGC a 5.86 6.73 7.82 8.78 9.71
b 2.14 2.59 3.16 3.58 4.19
c 3015.00 2220.00 1527.00 949.00 523.00
d 2.77 3.56 4.53 5.31 6.51
Wall a 4.02 4.21 5.10 5.74 6.13
b 1.13 1.50 1.91 1.98 2.44
c 42835.50 20420.00 19194.50 11014.50 9113.00
d 2.08 3.15 3.88 4.38 5.77
Shill a 3.98 4.58 5.04 5.18 5.26
b 1.69 1.45 2.16 2.51 2.97
c 47689.00 34950.00 23082.00 19418.00 8348.00
d 1.90 2.85 4.69 5.51 6.60
Table 31
The comparison results between static algorithm and incremental algorithm for Case (a).
Wine CB
Attributes Sources Static Incremental Ratio Attributes Sources Static Incremental Ratio
650 50 341.42 341.42 1,200 20 308.73 308.73
600 100 626.34 313.37 2.00 1100 40 566.44 283.69 2.00
550 150 866.55 287.35 3.02 1,000 60 769.51 257.67 2.99
500 200 1046.84 262.22 3.99 900 80 926.32 231.76 4.00
450 250 1180.38 234.95 5.02 800 100 1028.12 206.65 4.98
400 300 1263.11 208.67 6.05 700 120 1081.40 179.81 6.01
350 350 1281.69 183.02 7.00 600 140 1075.85 154.32 6.97
300 400 1260.04 157.56 8.00 500 160 1041.76 128.83 8.09
250 450 1158.18 131.01 8.84 400 180 924.99 102.65 9.01
200 500 1045.88 104.40 10.02 300 200 769.29 77.33 9.95
SAR Ecoli
Attributes Sources Static Incremental Ratio Attributes Sources Static Incremental Ratio
360 30 265.92 265.92 320 40 339.96 339.96
330 60 485.15 241.51 2.01 290 80 616.25 307.18 2.01
300 90 669.15 223.11 3.00 260 120 833.19 276.20 3.02
270 120 802.89 191.10 4.20 230 160 977.39 244.22 4.00
240 150 893.89 179.74 4.97 200 200 1067.90 211.96 5.04
210 180 934.91 154.18 6.06 170 240 1088.87 180.27 6.04
180 210 923.34 132.16 6.99 140 280 1047.23 148.26 7.06
150 240 887.16 108.47 8.18 110 320 922.37 116.70 7.90
120 270 836.07 89.34 9.36 80 360 765.22 85.38 8.96
90 300 707.12 75.96 9.31 50 400 541.87 52.51 10.32
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the x algorithm. The results of the speed-up ratio are shown in Table 30. From the results, the incremental algorithms yielded
2.05-9.71, 1.13-9.47, 20.00-47689.00, and 1.70-9.36x speed-up over the static algorithm in Case (a), (b), (c), and (d),
respectively. For Case (c), as shown in Example 4.3, the incremental fusion method uses the former information to update
the fusion table without any new information. In contrast, the static fusion algorithm needs to recalculate the information
entropy for each retained attribute with respect to each retained source. Thus, the speed-up ratio is very high for big data
sets, such as Wall and Shill. All in all, the proposed four incremental fusion mechanisms significantly reduce the runtime
of fusion with the variation of information sources and conditional attributes.

Table 32
The comparison results between static algorithm and incremental algorithm for Case (b).
Wine CB

Attributes Sources Static Incremental Ratio Attributes Sources Static Incremental Ratio
200 50 103.01 103.01 300 20 76.99 76.99
250 100 249.99 151.21 1.65 400 40 201.48 125.42 1.61
300 150 453.35 203.44 2.23 500 60 390.03 177.20 2.20
350 200 734.17 257.64 2.85 600 80 624.24 231.91 2.69
400 250 1076.45 319.07 3.37 700 100 917.66 290.99 3.15
450 300 1450.23 373.51 3.88 800 120 1260.43 340.94 3.70
500 350 1875.09 433.73 4.32 900 140 1650.21 390.25 4.23
550 400 2350.14 483.73 4.86 1000 160 2083.11 442.59 4,71
600 450 2930.46 539.73 5.43 1,100 180 2620.99 498.44 5.26
650 500 3478.88 594.32 5.85 1200 200 3244.66 588.90 5.51

SAR Ecoli

Attributes Sources Static Incremental Ratio Attributes Sources Static Incremental Ratio
90 30 70.31 70.31 50 40 55.47 55.47
120 60 189.35 116.95 1.62 80 80 174.58 123.76 141
150 90 352.98 161.13 2.19 110 120 365.85 189.00 1.94
180 120 571.99 213.71 2.68 140 160 604.55 260.12 2.32
210 150 824.28 257.18 3.21 170 200 928.85 312.59 2.97
240 180 1147.67 303.94 3.78 200 240 1303.98 378.52 3.44
270 210 1495.46 354.01 4.22 230 280 1762.70 447.30 3.94
300 240 1894.52 397.55 4,77 260 320 2274.21 507.50 4.48
330 270 2369.06 445,98 5.31 290 360 2881.45 590.09 4.88
360 300 2967.62 520.43 5.70 320 400 3403.13 644.85 5.28

Table 33
The comparison results between static algorithm and incremental algorithm for Case (c).
Wine CB

Attributes Sources Static Incremental Ratio Attributes Sources Static Incremental Ratio
650 500 3360.82 3360.82 1,200 200 3114.14 3114.14
600 450 2893.80 0.78 3709.98 1100 180 2593.24 9.44 274.76
550 400 2368.33 0.72 3300.33 1,000 160 2096.62 9.11 230.13
500 350 1897.63 0.58 3287.62 900 140 1674.03 7.58 220.80
450 300 1445.30 0.55 2647.06 800 120 1256.01 7.27 172.77
400 250 1071.38 0.41 2641.46 700 100 910.14 5.46 166.69
350 200 746.92 0.37 1994.96 600 80 625.81 4.74 131.96
300 150 473.84 0.39 1214.96 500 60 387.10 3.76 102.96
250 100 263.05 0.20 1297.08 400 40 205.33 5.66 36.26
200 50 105.33 0.19 562.67 300 20 77.08 4.12 18.72

SAR Ecoli

Attributes Sources Static Incremental Ratio Attributes Sources Static Incremental Ratio
360 300 2791.22 2791.22 320 400 3525.45 3525.45
330 270 2193.11 0.51 4260.09 290 360 2860.22 0.42 6790.59
300 240 1839.44 0.37 4913.00 260 320 2287.41 0.44 5236.71
270 210 1449.08 0.41 3572.65 230 280 1758.43 0.36 4900.83
240 180 1021.09 0.27 3850.24 200 240 1292.98 0.33 3946.81
210 150 748.82 0.27 2823.59 170 200 910.16 0.27 3431.94
180 120 514.32 0.17 2997.18 140 160 612.60 0.23 2617.93
150 90 335.48 0.17 1955.00 110 120 352.80 0.17 2055.91
120 60 176.86 0.12 1417.13 80 80 17413 0.12 1395.25
90 30 66.69 0.09 712.50 50 40 54.02 0.08 692.60
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Table 34
The comparison results between static algorithm and incremental algorithm for Case (d).
Wine CB

Attributes Sources Static Incremental Ratio Attributes Sources Static Incremental Ratio
200 500 991.64 991.64 300 200 757.34 757.34
250 450 1141.26 217.15 5.26 400 180 918.36 228.93 4.01
300 400 1263.58 204.08 6.19 500 160 1026.53 223.46 4.59
350 350 1308.22 185.13 7.07 600 140 1089.48 186.19 5.85
400 300 1271.89 160.42 7.93 700 120 1093.27 161.79 6.76
450 250 1204.78 134.75 8.94 800 100 1038.90 136.11 7.63
500 200 1067.23 107.66 9.91 900 80 932.81 108.55 8.59
550 150 877.80 80.56 10.90 1000 60 778.96 82.57 9.43
600 100 635.41 53.90 11.79 1,100 40 570.50 55.43 10.29
650 50 344.47 26.93 12.79 1200 20 312.74 28.11 11.12

SAR Ecoli

Attributes Sources Static Incremental Ratio Attributes Sources Static Incremental Ratio
90 300 719.16 719.16 50 400 542.65 542.65
120 270 861.73 212.89 4.05 80 360 790.47 294.16 2.69
150 240 958.17 190.96 5.02 110 320 981.09 258.28 3.80
180 210 1002.07 165.53 6.05 140 280 1063.38 229.18 4.64
210 180 999.42 141.54 7.06 170 240 1106.55 198.34 5.58
240 150 952.71 117.87 8.08 200 200 1081.73 163.13 6.63
270 120 838.22 95.35 8.79 230 160 915.41 130.09 7.04
300 90 697.18 69.58 10.02 260 120 752.69 85.60 8.79
330 60 508.28 46.91 10.84 290 80 563.68 62.77 8.98
360 30 264.81 22.28 11.89 320 40 306.26 29.13 10.52

To demonstrate the efficiency of the proposed dynamic fusion mechanisms for Ms-I1IVDSs which consist of large sources
and attributes, we chose the datasets CB, SAR, Ecoli, and Wine to artificially construct four datasets by copying the original
conditional attributes 20, 30, 40, and 50 times respectively. Furthermore, we create 200, 300, 400, and 500 information
sources for the four datasets, respectively. The comparison results between static and incremental algorithms are shown
in Tables 31-34. From the results, the proposed four dynamic fusion approaches reduce runtime effectively for the datasets
that consist of large sources and attributes.

6. Conclusion and future work

In this paper, a novel fusion method is established to fuse multiple incomplete interval-valued information tables using
conditional entropy. We first define the distance between any two samples and use the distance to define the tolerance class.
Then we define the conditional entropy using the tolerance classes of samples and selecting information sources that are
pivotal for attributes to compose new information tables. After that, we complete the missing values using the maximum
fusion results of the samples in the tolerance classes of the missing value samples. We present the static algorithm to show
the fusion process and analyze its time complexity. Four incremental fusion approaches are proposed for the variation of
information sources and conditional attributes. The four incremental algorithms are established together with their time
complexities. In the end, experimental results on nine data sets show that, in the aspect of fusion effectiveness, the proposed
fusion method is better than the three common fusion methods in terms of AP and AQ in most scenarios. Moreover, the effi-
ciency analysis results show that, for the four scenarios, these incremental fusion approaches effectively save the running
time of fusion when the number of sources and attributes vary continuously.

In the era of big data, it sometimes takes a lot of time and money to label the category of each object. Therefore, it is of
great significance to extend this study to cope with unlabeled information systems, that is, unsupervised or semi-supervised
fusion methods. Establishing effective fusion mechanisms for this kind of problem is a challenge. Furthermore, we also face
some complicated classification problems in real life, such as multilabel classification, fuzzy classification, and hierarchical
classification. So it is also a profound direction to study how to improve the accuracy of these problems in multi-source infor-
mation systems.
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