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Abstract
Fuzzy phenomena exist widely in real life, and with the rapid development of big data technology we may gather information 
from multiple sources. So it is extremely meaningful to study fuzzy concepts in the context of multiple information sources. 
In this study, six novel kinds of double-quantitative multigranulation rough fuzzy set models are proposed. Both absolute 
and relative information are taken into account by utilizing the logical conjunction and disjunction operators to define the 
lower and upper approximations. Four decision regions can be computed based on the results of approximations, and the 
corresponding four decision rules are established. Some basic propositions of these models are discussed. The relationships 
among the six double-quantitative multigranulation rough fuzzy set models are analysed. The corresponding algorithms of 
obtaining four decision regions are given and the time complexity of them are analysed. Later a weather example is employed 
to illustrate that our models can divide data sets to the positive region, the negative region, the lower boundary region, and 
the upper boundary region, where the samples in the positive region completely support the concept set, the samples in the 
negative region completely oppose the concept set, and the samples in the lower and upper boundary may support or oppose 
the concept set. Finally, an experiment is conducted to demonstrate that our models perform better than the mean fusion 
method in terms of decision-making.

Keywords Double-quantitative rough set · Logical operators · Multigranulation rough fuzzy set · Multi-source decision 
systems

1 Introduction

In traditional machine learning, the decision attributes are 
categorical data, but in some scenarios, we may be required 
to deal with fuzzy decision issues. For example, in sentiment 
analysis, the decision attributes are the degree of human 
emotions such as a little angry, moderately happy, or pretty 
sad. However, the traditional machine learning methods can 
not deal with this kind of issue very well. Thus, it is neces-
sary and meaningful to research this kind of fuzzy decision 
issues. Fuzzy Set theory [54, 55] can be utilized to deal with 
fuzzy decision issues. Fuzzy Set theory(FST) is distinct from 
probability theory, which utilizes the membership degree of 

samples to depict the uncertainty, which can represent how 
much a sample is in a set. The classical set theory considers 
that one element either belongs to a set or not, but the fuzzy 
sets take into account membership function to describe the 
membership degree of an object to a fuzzy set. Oceans of 
researches concerning the fuzzy set theory have been con-
ducted, such as classification [12, 34, 39], regression [13, 33, 
37], cluster [1, 5, 7], and concept-cognitive learning [47]. 
It should be noted that one motivation of this study is to 
research the fuzzy phenomena existing in decision-making.

There is another method which is also commonly 
regarded as a useful uncertainty dealing tool. The rough set 
theory(RST) was firstly proposed by Pawlak [25], which 
can be commonly used in data analyses [26]. Oceans of 
researches concerning RST have been studied, such as 
attribute reduction [14, 57], information fusion [45, 46], and 
knowledge acquisition [35, 48]. With the development of 
RST, many useful extended models are established to handle 
different issues. Uncertainty measurement in RST, especially 
its models, has two fundamental styles: the absolute and 
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relative quantization. On the one hand, the graded rough set 
(GRS) [51] considers the absolute quantitative information, 
which is an extended rough set model. On the other hand, in 
the classical rough theory, the low approximation operator 
is defined on the basis that equivalence classes of samples 
are completely contained in the concept set. The condition 
is too strict at times. In a real application, we can consider 
to put a sample into the low approximation set when the 
proportion of equivalence class of the sample in the concept 
set is greater than a given threshold. Based on the above 
thought, the decision-theoretic rough set(DTRS) model [52] 
reckons a way to make a decision under a minimum risk, 
which can reflect relative quantitative information. There is 
no denying that the two kinds of quantitative information are 
very suitable to describe approximation space effectively. In 
recent years, many double-quantitative models that fuse two 
quantitative information have been constructed [4, 15–17, 
36, 48, 53, 56]. Furthermore, with the development of FST 
and RST, many studies have been conducted by combining 
the two theories to propose fuzzy rough set models [8, 11, 
24, 40] and rough fuzzy set models [3, 4, 15, 16, 38]. The 
rough fuzzy set models can effectively address fuzzy phe-
nomena. So in this work, six novel kinds of rough fuzzy set 
models are established considering the relative and absolute 
quantitative information.

The another motivation of this study is that multi-source 
data are common in real application, which can effectively 
characterize the uncertainty all over the human life. A lot 
of researches on multi-source data have been investigated, 
such as concept approximation [32] and chemical structure 
recognition [22]. In this paper, we concentrate on the multi-
source data collected from multiple information sources, 
called multi-source information system(MsIS). Neverthe-
less, most studies have been conducted just based on a single 
information system [2, 3, 6, 27, 41, 58]. There is no deny-
ing that the above methods can not be directly utilized to 
cope with the uncertainty phenomena of multi-source data. 
So it is meaningful to study the uncertainty phenomena of 
MsIS. Multigranulation rough set(MGRS) can be regarded 
as a useful tool in dealing with uncertainty issues in a MsIS. 
The MGRS was first proposed by Qian et al. [28, 29], which 
is suitable to handle multiple information sources by regard-
ing each information system as a granular structure. With 
the development of multigranulation rough set theory, many 
multigranulation issues [15, 18–21, 23, 30, 31, 36, 42–44, 
49, 50] have been studied based on this model. For example, 
MGDTRS model, using probability as a measurement index, 
was proposed by Qian et al. [30]. Lin et al. [23] proposed a 
model that combines multiple thresholds and multiple gran-
ulations to cope with interval-valued decision information 
systems. Xu et al. [42, 43]studied multigranulation rough 
set with respect to a fuzzy background. However, the above 

studies do not consider the relative and absolute information 
in terms of describing granulation space. So in this study, 
we combine two types of quantitative information and the 
MGRS theory to propose six novel kinds of multigranulation 
rough fuzzy set models(MGRFS) in a MsIS.

All in all, in this study, we propose six kinds of novel 
MGRFS models by combining the double-quantitative infor-
mation and the MGRS theory. We use the logical operators 
to utilize both the relative and absolute information in 
approximation operators, which can make the use of infor-
mation more comprehensive compared with many existing 
double-quantitative models [15, 17, 36, 48, 53]. These mod-
els all have the disadvantage that only one kind of quantita-
tive information is considered in the two approximation 
operators. For example, in [17], the upper approximation is 
de f ined  a s  R(𝛼,𝛽)(X) =

{
x ∈ U

|||P
(
X|[x]R

)
> 𝛽

}
 o r 

Rk(X) =
{
x ∈ U||||[x]R ∩ X|| > k

}
 , where �, � ∈ [0, 1] , k is a 

nonnegative integer, and [x]R denotes the equivalence class 
of  x  under  the  equivalence re la t ion R  and 
P
(
X|[x]R

)
=

|[x]R∩X|
|[x]R|  . The above two kinds of definition only 

utilize relative information(i.e. P
(
X|[x]R

)
 ) or absolute 

information(i.e. ||[x]R ∩ X|| ), not making full use of all the 
information. We can employ the logical operators to utilize 
both relative and absolute information at the same time, i.e. 
R(𝛼,𝛽)(X) ∩ R

k(X) =

{
x ∈ U

|||P
(
X|[x]

R

)
> 𝛽 ∧ ||[x]R ∩ X|| > k

}
 and 

R(𝛼,𝛽)(X) ∪ R
k(X) =

{
x ∈ U

|||P
(
X|[x]

R

)
> 𝛽 ∨ ||[x]R ∩ X|| > k

}
 .  

This improvement will use more information to make the 
approximation more reasonable, which is also considered in 
[4, 16]. In this study, we use the logical conjunction operator 
to define the optimistic, pessimistic, and mean models. And 
similarly, the logical disjunction operator is used to define 
the optimistic, pessimistic, and mean models. The six mod-
els utilize two types of quantitative information in the mean-
time to define the lower approximation operator and the 
upper approximation operator. It means that our models 
utilize more quantitative information in describing the 
approximation space.

The configuration of this paper is constructed as follow-
ing. In Sect. 2, some previous research work is reviewed, 
such as RST, the extended rough set models, FST, and 
MsDS. In Sect. 3, we propose three kinds of logical con-
junction multigranulation rough fuzzy set models, and some 
propositions of the approximation operators are discussed. 
Furthermore, four rules are established for decision-mak-
ing. In Sect. 4, we similarly propose three kinds of logical 
disjunction multigranulation rough fuzzy set models. The 
propositions of the approximation operators are discussed. 
And four rules are presented for decision-making. In Sect. 5, 
we discuss the relationships among these multigranulation 
rough fuzzy set models and a weather example is employed 
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to illustrate that our models can divide data sets into four 
decision regions. In Sect. 6, we give the corresponding algo-
rithms of these models, and the time complexity of them are 
analysed. Later, an experiment is conducted to demonstrate 
that our models perform better than the mean method in 
terms of decision-making. Finally, Sect. 7 comes up with 
the conclusion. We give an intuitive diagram of this study, 
which is shown in Fig 1.

2  Preliminaries

In this section, some basic concepts are reviewed, such as 
the fuzzy set theory, multi-source information system, the 
rough set theory, and the extended rough set theory.

2.1  Fuzzy set theory and multi‑source information 
systems

In this section, we firstly introduce the basic concept of the 
fuzzy set theory [54, 55]. In fuzzy sets theory, since classical 
sets have no abilities to recognize the membership degree of 
a sample x belonging to one set, so the membership function 
was proposed by Zadeh. A fuzzy set X̃ on U is defined as a 
set of order pairs which is shown as following:

where X̃(x) is the membership function, which satisfies 
X̃(x) ∈ [0, 1] , ∀x ∈ U . Let F(U) denote the set of all fuzzy 
subsets. And for any fuzzy sets X̃ , Ỹ ∈ F(U) , if X̃(x) ≤ Ỹ(x) 
, for all x ∈ U , then we denote it as X̃ ⊆ Ỹ  . And we reckon 
that X̃ = Ỹ  , when X̃(x) = Ỹ(x) , for all x ∈ U . Furthermore, 
the basic computation rules are defined as

X̃ =
{⟨

x, X̃(x)
⟩|x ∈ U

}
,

Now, let us introduce the basic concepts of MsIS, which is 
shown as following.

An information system can be denoted as 
IS =

(
U,AT ,VAT ,FAT

)
 , where U is a nonempty finite set of 

samples; AT is the nonempty finite set of condition attributes; 
VAT is the domain of attribute set; FAT ∶ U × AT → VAT is 
an information function.

A multi-source information system can be denoted as 
MsIS =

{
ISi =

(
U,ATi,VATi

,FATi

)
, i = 1, 2,… , n

}
 , where 

ISi denotes the i-th subsystem of the MsIS. It should be noted 
that in this study, we suppose that all subsystem have the 
same structure, which means that AT1 = AT2 = ⋯ = ATn . 
So the multi-source information system can be denoted as

An intuitive illustration is shown in Fig 2.
Specially, a multi-source decision system can be denoted 

as

where MsIS =
{
ISi

||ISi =
(
U,AT ,VAT ,Fi

)
, i = 1, 2,… , n

}
 , 

and D is the nonempty finite set of decision attributes, VD is 
the domain of decision attributes, and FD ∶ U × D → VD 
is an information function.

2.2  Rough set theory and extended rough set 
theory

In this subsection, we introduce the basic rough set theory 
[25] and its extended rough set theories.

The traditional rough set theory is established based on 
the equivalence relation. Let IS =

(
U,AT ,VAT ,FAT

)
 be an 

information system. For any B ⊆ AT ,an equivalence relation 
RB is defined by

X̃ ∪ Ỹ(x) = max
(
X̃(x), Ỹ(x)

)
,

X̃ ∩ Ỹ(x) = min
(
X̃(x), Ỹ(x)

)
,

X̃c(x) = 1 − X̃(x).

MsIS =
{
ISi

||ISi =
(
U,AT ,VAT ,Fi

)
, i = 1, 2,… , n

}
.

MsDS = MsIS ∪
{
D,VD,FD

}
,

Fig. 1  The basic diagram of this study

Fig. 2  A multi-source information box
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Based on RB , a partition of U can be denoted as 
U∕RB = {[x]RB

|x ∈ U } , where [x]RB
 is called the equivalence 

class of x under RB. For any X ⊆ U , the lower and upper 
approximations of X are defined by

Now, let us introduce the concept of the Graded Rough 
Set(GRS). The GRS [51] model was proposed by Yao and 
Lin [51], which utilizes the absolute information. Assume 
k is a nonnegative integer. For any A ⊆ AT  and X ⊆ U , the 
lower and upper approximations of X are defined as

Moreover, if X ∈ U , then lower and upper approximations 
are defined as

There is another important extended rough set model utiliz-
ing the relative information. Being different from the tradi-
tional RST theory, the decision-theoretic rough set (DTRS) 
[52]model make decision with minimum risk based on 
Bayesian decision procedure. In the Bayesian decision pro-
cedure, A =

{
a1, a2, ..., am

}
 is a f inite set states, 

Ω =
{
�1,�2, ...,�s

}
 is a finite set of possible actions, and 

P
(
�j|Y

)
 is the conditional probability of an object x belongs 

to state �j when the object is described by Y. When state is 
wj , let �

(
ai
|||�j

)
 denote the loss for taking action ai . For an 

object with description Y, the expected loss when taking 
action ai is denoted as R

�
ai�Y

�
=

s∑
j=1

�
�
ai
����j

�
P
�
�j�Y

�
 . Fur-

thermore, for the perspective of probabilistic rough set 
approximation operators, an equivalence class [x]R is 
regarded as the description of x [52]. And let Ω =

{
X,XC

}
 

be the state set denoting a sample is in X and not in X. So the 

RB = {(x, y) ∈ U × U|f (x, a) = f (y, a),∀a ∈ B}.

RB(X) =
{
x ∈ U

|||[x]RB
⊆X

}
,

RB(X) =
{
x ∈ U

|||[x]RB
∩X ≠ �

}
.

AkX =

{
x ∈ U

|||
|||[x]RA

∩ X
||| > k

}

= ∪

{
[x]RA

|||
|||[x]RA

∩ X
||| > k

}
,

A
k
X =

{
x ∈ U

|||
|||[x]RA

||| −
|||[x]RA

∩ X
||| ≤ k

}

= ∪

{
[x]RA

|||
|||[x]RA

||| −
|||[x]RA

∩ X
||| ≤ k

}
.

Ak

�
X̃
�
=

⎧
⎪⎨⎪⎩
x ∈ U

������
�

y∈[x]RA

X̃(y) > k

⎫
⎪⎬⎪⎭
,

A
k

�
X̃
�
=

⎧
⎪⎨⎪⎩
x ∈ U

������
�

y∈[x]RA

�
1 − X̃(y)

�
≤ k

⎫
⎪⎬⎪⎭
.

conditional probability can be denoted as P
(
X||[x]R

)
 or 

P
(
XC||[x]R

)
 . And the action set is given by A =

{
a1, a2, a3

}
 

, where a1 , a2 , and a3 respectively denote x ∈ Pos(X) , 
x ∈ Neg(X) , and x ∈ Bnd(X) . And �

(
ai|X

)
 denote the loss 

incurred for taking action ai when an object is in X. Simi-
larly, �

(
ai
||XC

)
 denote the loss incurred for taking action ai 

when an object is not in X. Based on the above theory, the 
excepted loss can be denoted as

where �i1 = �
(
ai|X

)
, �i2 = �

(
ai
||XC

)
, i = 1, 2, 3 .

And the Bayesian decision rules are listed as

When 𝜆11 ≤ 𝜆31 < 𝜆21 and 𝜆22 ≤ 𝜆32 < 𝜆12 , the minimum-
risk decision rules can be denoted as following:

where

Furthermore, when 𝛼 > 𝛾 > 𝛽 , the minimum-risk decision 
rules can be denoted as

The lower and upper approximations of the DTRS model 
are defined as

R
(
a1
||[x]R

)
=�11P

(
X||[x]R

)
+ �12P

(
XC||[x]R

)
,

R
(
a2
||[x]R

)
=�21P

(
X||[x]R

)
+ �22P

(
XC||[x]R

)
,

R
(
a3
||[x]R

)
=�31P

(
X||[x]R

)
+ �32P

(
XC||[x]R

)
,

(P) If R
(
a1
||[x]R

)
≤ R

(
a2
||[x]R

)
and

R
(
a1
||[x]R

)
≤ R

(
a3
||[x]R

)
, decide x ∈ Pos(X),

(N) If R
(
a2
||[x]R

)
≤ R

(
a1
||[x]R

)
and

R
(
a2
||[x]R

)
≤ R

(
a3
||[x]R

)
, decide x ∈ Neg(X),

(B) If R
(
a3
||[x]R

)
≤ R

(
a1
||[x]R

)
and

R
(
a3
||[x]R

)
≤ R

(
a2
||[x]R

)
, decide x ∈ Bnd(X).

(P)If P
(
X||[x]R

)
≥ � and

P
(
X||[x]R

)
≥ �, decide x ∈ Pos(X),

(N)If P
(
X||[x]R

)
≤ � and

P
(
X||[x]R

)
≤ � , decide x ∈ Neg(X),

(B)If � ≤ P
(
X||[x]R

)
≤ �,

decide x ∈ Bnd(X),

� =
�12 − �32(

�12 − �32
)
+
(
�31 − �11

) ,

� =
�12 − �22(

�12 − �22
)
+
(
�21 − �11

) ,

� =
�32 − �22(

�32 − �22
)
+
(
�21 − �31

) .

(P) If P
(
X||[x]R

)
≥ 𝛼, decide x ∈ Pos(X),

(N) If P
(
X||[x]R

)
≤ 𝛽, decide x ∈ Neg(X),

(B) If 𝛽 < P
(
X||[x]R

)
< 𝛼, decide x ∈ Bnd(X).
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where P
(
X||[x]R

)
=

|[x]R∩X|
|[x]R|  . And furthermore, Sun et al.[38]

defined the fuzzy conditional probabilistic operator, which 
is defined as

Similarly, the lower and upper approximations of fuzzy set 
X̃ are defined as

The above rough set theories are structured on the basis of 
only one indiscernibility relation, but in a real application, 
we may need to utilize multiple indiscernibility relations to 
approximate the sample set. So in order to deal with the issue, 
the multigranulation rough set(MGRS)[28] model was pro-
posed, where a granularity represents an aspect of the sample 
set approximating. Let IS =

(
U,AT ,VAT ,FAT

)
 be an informa-

tion system. Given B1,B2, ...,Bn ⊆ AT  , for any Z ⊆ U , the 
optimistic lower and upper approximations are defined as

And the pessimistic lower and upper approximations are 
defined as

3  Logical conjunction multigranulation 
rough fuzzy set model in multi‑source 
decision systems

In this paper, when considering ISi , ∀x ∈ U , we define 
the type-I lower support function which is denoted as 
I − LSF

ISi

Z̃
(x) , the type-I upper support function which is 

apr
(𝛼,𝛽)

(X) =
{
x ∈ U

|||P
(
X||[x]R

)
≥ 𝛼

}
,

apr(𝛼,𝛽)(X) =
{
x ∈ U

|||P
(
X||[x]R

)
> 𝛽

}
,

P
�
X̃��[x]R

�
=

∑
y∈[x]R

X̃(y)

��[x]R��
, x ∈ U.

apr
(𝛼,𝛽)

(
X̃
)
=

{
x ∈ U

|||P
(
X̃||[x]R

)
≥ 𝛼

}
,

apr(𝛼,𝛽)
(
X̃
)
=

{
x ∈ U

|||P
(
X̃||[x]R

)
> 𝛽

}
.

n∑
i=1

Bi

O

(Z) =

{
x ∈ U

||||
n

∨
i=1

(
[x]Bi

⊆ Z
)}

,

n∑
i=1

Bi

O

(Z) =

{
x ∈ U

||||
n

∧
i=1

(
[x]Bi

∩ Z ≠ �
)}

.

n∑
i=1

Bi

P

(Z) =

{
x ∈ U

||||
n

∧
i=1

(
[x]Bi

⊆ Z
)}

,

n∑
i=1

Bi

P

(Z) =

{
x ∈ U

||||
n

∨
i=1

(
[x]Bi

∩ Z ≠ �
)}

.

denoted as I − USF
ISi

Z̃
(x) , the type-II lower support function 

which is denoted as II − LSF
ISi

Z̃
(x) and the type-II upper sup-

port function which is denoted as II − USF
ISi

Z̃
(x) . We utilize 

the four support function operators to define the lower and 
upper approximations of optimistic and pessimistic models.

Given a MsDS MsDS = MsIS ∪
{
D,VD,FD

}
 , where 

MsIS =
{
ISi

||ISi =
(
U,AT ,VAT ,Fi

)
, i = 1, 2, ..., n

}
 . Assume 

� ≤ � and �, � ∈ [0, 1] , and k is a nonpositive integer. For 
any fuzzy set Z̃ ∈ F(U) , these support functions are defined 
as follow:

where [x]ISi denotes the equivalence class of the sample x 
under ISi.

3.1  Logical conjunction optimistic multigranulation 
rough fuzzy set model(LCO‑MRFSM)

Definition 1 Given a MsDS MsDS = MsIS ∪
{
D,VD,FD

}
 , 

where MsIS =
{
ISi

||ISi =
(
U,AT ,VAT ,Fi

)
, i = 1, 2, ..., n

}
 . 

Assume � ≤ � and �, � ∈ [0, 1] , and k is a nonpositive inte-
ger. For any fuzzy set Z̃ ∈ F(U) , let LO

(𝛼,𝛽)∧k

(
Z̃
)
 denote the 

lower approximation and UM

(𝛼,𝛽)∧k

(
Z̃
)
 denote the upper approxi-

mation, which are defined as

(1)I − LSF
ISi

Z̃
(x) =

⎧
⎪⎨⎪⎩

1,
∑

y∈[x]ISi

�
1 − Z̃(y)

�
≤ k,

0, otherwise,

(2)I − USF
ISi

Z̃
(x) =

{
1, P

(
Z̃
|||[x]ISi

)
> 𝛽,

0, otherwise,

(3)II − LSF
ISi

Z̃
(x) =

{
1, P

(
Z̃
|||[x]ISi

)
≥ 𝛼,

0, otherwise,

(4)II − USF
ISi

Z̃
(x) =

⎧⎪⎨⎪⎩

1,
∑

y∈[x]ISi

Z̃(y) > k,

0, otherwise,

(5)

LO
(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

|||||

s∑
i=1

I − LSF
ISi

Z̃
(x) > 0

∧

s∑
i=1

II − LSF
ISi

Z̃
(x) > 0

}
,
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We can easily find that LO
(𝛼,𝛽)∧k

(
Z̃
)
 is not included in UO

(𝛼,𝛽)∧k

(
Z̃
)
 . 

So just like the method used in many existing double-quan-
titative model [4, 15–17, 36, 48, 53], we put samples that 
that belong to both LO

(𝛼,𝛽)∧k

(
Z̃
)
 and UO

(𝛼,𝛽)∧k

(
Z̃
)
 into the positive 

region, samples that do not belong to either LO
(𝛼,𝛽)∧k

(
Z̃
)
 or 

UO

(𝛼,𝛽)∧k

(
Z̃
)
 into the negative region, samples that belong to 

LO
(𝛼,𝛽)∧k

(
Z̃
)
 but do not belong to UO

(𝛼,𝛽)∧k

(
Z̃
)
 into the lower 

boundary region, samples that belong to UO

(𝛼,𝛽)∧k

(
Z̃
)
 but do not 

belong to LO
(𝛼,𝛽)∧k

(
Z̃
)
 into the upper boundary region.

The four decision regions can be computed by

The four regions can divide sample set U into four parts, 
where the samples in the positive region completely support 
the concept set, the samples in the negative region com-
pletely oppose the concept set, and the samples in the lower 
and upper boundary may support or oppose the concept set. 
Moreover, based on Definition 1, we can get some proposi-
tions of LCO-MRFSM.

Proposition 1 For any fuzzy sets Z̃ , M̃ ∈ F(U) , the following 
propositions are true. 

 (1). When Z̃ ⊆ M̃, LO
(𝛼,𝛽)∧k

(
Z̃
)
⊆ LO

(𝛼,𝛽)∧k

(
M̃
)
.

 (2). When Z̃ ⊆ M̃,UO

(𝛼,𝛽)∧k

(
Z̃
)
⊆ UO

(𝛼,𝛽)∧k

(
M̃
)
.

 (3). If k1 ≤ k2, then LO
(𝛼,𝛽)∧k1

(
Z̃
)
⊆ LO

(𝛼,𝛽)∧k2

(
Z̃
)
.

 (4). If 𝛽1 ≤ 𝛽2, thenUO

(𝛼,𝛽2)∧k

(
Z̃
)
⊆ UO

(𝛼,𝛽1)∧k

(
Z̃
)
.

 (5). UO

(𝛼,𝛽)∧k

(
Z̃
)
∪ UO

(𝛼,𝛽)∧k

(
M̃
)
⊆ UO

(𝛼,𝛽)∧k

(
Z̃ ∪ M̃

)
.

 (6). LO
(𝛼,𝛽)∧k

(
Z̃
)
∪ LO

(𝛼,𝛽)∧k

(
M̃
)
⊆ LO

(𝛼,𝛽)∧k

(
Z̃ ∪ M̃

)
.

 (7). UO

(𝛼,𝛽)∧k

(
Z̃ ∩ M̃

)
⊆ UO

(𝛼,𝛽)∧k

(
Z̃
)
∩ UO

(𝛼,𝛽)∧k

(
�M
)
.

 (8). LO
(𝛼,𝛽)∧k

(
Z̃ ∩ M̃

)
⊆ LO

(𝛼,𝛽)∧k

(
Z̃
)
∩ LO

(𝛼,𝛽)∧k

(
M̃
)
.

Proof 

(6)

UO

(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

|||||

s∑
i=1

I − USF
ISi

Z̃
(x) = s

∧

s∑
i=1

II − USF
ISi

Z̃
(x) = s

}
.

PosO
∧
(
Z̃
)
=LO

(𝛼,𝛽)∧k

(
Z̃
)
∩ UO

(𝛼,𝛽)∧k

(
Z̃
)
,

NegO
∧
(
Z̃
)
=

(
LO

(𝛼,𝛽)∧k

(
Z̃
))C

∩

(
UO

(𝛼,𝛽)∧k

(
Z̃
))C

,

UbnO
∧
(
Z̃
)
=UO

(𝛼,𝛽)∧k

(
Z̃
)
∩

(
LO

(𝛼,𝛽)∧k

(
Z̃
))C

,

LbnO
∧
(
Z̃
)
=LO

(𝛼,𝛽)∧k

(
Z̃
)
∩

(
UO

(𝛼,𝛽)∧k

(
Z̃
))C

.

(1) ∀ x ∈ LO
(𝛼,𝛽)∧k

(
Z̃
)
 , we have that ∃i , 

∑
y∈[x]ISi

�
1 − Z̃(y)

�
≤ k 

and ∃j , P
(
Z̃
|||[x]ISj

)
≥ 𝛼 . And we have that Z̃ ⊆ M̃ , so ∑

y∈[x]ISi

�
1 − M̃(y)

�
≤

∑
y∈[x]ISi

�
1 − Z̃(y)

�
≤ k  a n d 

P
(
M̃
|||[x]ISi

)
≥ P

(
Z̃
|||[x]ISi

)
≥ 𝛼 . Thus, we can get that 

x ∈ LO
(𝛼,𝛽)∧k

(
M̃
)
.

(2) The process of proof is similar to (1).
(3) ∀ x ∈ LO

(𝛼,𝛽)∧k1

(
Z̃
)
 , we have that ∃i , 

∑
y∈[x]ISi

�
1 − Z̃(y)

�
≤ k1 

and ∃j , P
(
Z̃
|||[x]ISj

)
≥ 𝛼 . When k1 ≤ k2 , we have that ∑

y∈[x]ISi

�
1 − Z̃(y)

�
≤ k1 ≤ k2 . So x ∈ LO

(𝛼,𝛽)∧k2

(
Z̃
)
.

(4) The process of proof is similar to (3).
(5) ∀ x ∈ UO

(𝛼,𝛽)∧k

(
Z̃
)
∪ UO

(𝛼,𝛽)∧k

(
�M
)

 ,  we have that ∀i , 

P
(
Z̃
|||[x]ISi

)
> 𝛽  a n d  

∑
y∈[x]ISi

Z̃(y) > k  o r  ∀j  , 

P
(
M̃
|||[x]ISj

)
> 𝛽 and 

∑
y∈[x]ISj

M̃(y) > k . Then we can get 

∀i , P
(
Z̃ ∪ M̃

|||[x]ISi
)
≥ max

{
P
(
Z̃
|||[x]ISi

)
,P

(
M̃
|||[x]ISi

)}
 > 𝛽 

and ∑
y∈[x]ISi

�
Z̃ ∪ M̃

�
(y) ≥ max

�
∑

y∈[x]ISi

Z̃(y),
∑

y∈[x]ISi

M̃(y)

�
> k

 . Thus, 

x ∈ UO

(𝛼,𝛽)∧k

(
Z̃ ∪ M̃

)
.

(6) The process of proof is similar to (5).
(7) ∀ x ∈ UO

(𝛼,𝛽)∧k

(
Z̃ ∩ M̃

)
 ,  w e  h a v e  t h a t  ∀i  , 

P
((

Z̃ ∩ M̃
)|||[x]ISi

)
> 𝛽  and 

∑
y∈[x]ISi

�
Z̃ ∩ M̃

�
(y) > k  . 

T h e n  w e  c a n  g e t  t h a t  ∀i  , 
P
(
Z̃
|||[x]ISi

)
≥ P

((
Z̃ ∩ M̃

)|||[x]ISi
)
> 𝛽  a n d ∑

y∈[x]ISi

Z̃(y) ≥
∑

y∈[x]ISi

�
Z̃ ∩ M̃

�
(y) > k . So x ∈ UO

(𝛼,𝛽)∧k

(
Z̃
)
 . 

We can also get x ∈ UO
(𝛼,𝛽)∧k

(
M̃
)
 . Thus, we have 

x ∈ UO
(𝛼,𝛽)∧k

(
Z̃
)
∩ UO

(𝛼,𝛽)∧k

(
M̃
)
.

(8) The process of proof is similar to (7).

In this paper, the concept set Z̃ is a fuzzy set on U. Now, 
let us consider the situation that Z̃ degenerates into a clas-
sical set. The following Propositions 2 and 3 show that our 
model and optimistic multigranulation rough set model 
[28] have the similar form when each information system is 
regarded as a granularity.

Proposition 2 When Z̃ ⊆ U , then we can get if k = 0 or �=1,

Proof When Z̃ ⊆ U , which means Z̃ is a crisp set of the uni-
verse, then the membership function of it is degenerated as

(7)LO
(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

||||
s

∨
i=1

(
[x]ISi ⊆ Z̃

)}
.

Z̃(y) =

{
1, y ∈ Z̃,

0, y ∉ Z̃.
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If k=0, we can get that 
∑

y∈[x]ISi

�
1 − Z̃(y)

�
≤ k is equivalent to 

|||[x]ISi
|||=

∑
y∈[x]ISi

Z̃(y) . Thus, ∀y ∈ [x]ISi , y ∈ Z̃ , which means 

that [x]ISi ⊆ Z̃ . Thus, the support function I − LSF
ISi

Z̃
(x) = 1 

is equivalent to [x]ISi ⊆ Z̃ . And in the meantime, we can get 
P
(
Z̃
|||[x]ISi

)
 = 1 ≥ � , which means II − LSF

ISi

Z̃
(x) = 1 . Simi-

larly, if �=1, we have that P
(
Z̃
|||[x]ISi

)
 =1 is equivalent to ∑

y∈[x]ISi

Z̃(y)

���[x]ISi
���

= 1 , which also means that |||[x]ISi
|||=

∑
y∈[x]ISi

Z̃(y) . Thus, 

the support function II − LSF
ISi

Z̃
(x) = 1 is equivalent to 

[x]ISi ⊆ Z̃ . And in the meantime, we can get 
∑

y∈[x]ISi

�
1 − Z̃(y)

�
 

= 0 < k , which means I − LSF
ISi

Z̃
(x) = 1 . So we can get that 

LO
(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

||||
s

∨
i=1

(
[x]ISi ⊆ Z̃

)}
 if k = 0 or �=1.  

 ◻

Proposition 3 When Z̃ ⊆ U , then we can get if k = 0 and 
� = 0,

Proof The process is similar to Proposition 2.   ◻

Through the above discussions, we all know that four 
decision regions can be employed to do decision-making. 
Thus, we can induce four decision rules based on the defini-
tion of four decision regions. For convenient, let PZ̃, i(x) 
denote P

(
Z̃|[x]ISi

)
 and WZ̃, i(x) denote 

∑
y∈[x]ISi

Z̃(y) . Take 
(
PO

)
 

as an example. If ∀i , PZ̃, i(x) > 𝛽 ∧WZ̃, i(x) > k , then we can 
get x is in the upper approximation. In the same way, when 
∃i , PZ̃, i(x) ≥ 𝛼 ∧ ∃j,WZ̃, j(x) ≥

|||[x]ISj
||| − k , we have x is in 

lower approximation. So if both of these conditions are met, 
we can decide that x is in the positive region. The remaining 
three decision rules can be generated similarly. The four 
rules are presented as following:

We propose LCO-MRFSM by considering the concept of 
optimistic multigranulation rough set model. Furthermore, 

(8)UO

(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

||||
s

∧
i=1

(
[x]ISi ∩ Z̃ ≠ �

)}
.

(
PO

)
If∀i, PZ̃, i(x) > 𝛽 ∧WZ̃, i(x) > k and

∃i, PZ̃, i(x) ≥ 𝛼 ∧ ∃j,WZ̃, j(x) ≥
|||[x]ISj

||| − k, decide x ∈ PosO
∧
(
Z̃
)
,

(
NO

)
If∀i, PZ̃, i(x) < 𝛼 ∨ ∀j,WZ̃, j(x) <

|||[x]ISi
||| − k and

∃i, PZ̃, j(x) ≤ 𝛽 ∨WZ̃, i(x) ≤ k, decide x ∈ NegO
∧
(
Z̃
)
,

(
UBO

)
If∀i, PZ̃, i(x) < 𝛼 ∨ ∀j,WZ̃, j(x) <

|||[x]ISj
||| − k and

∀i, PZ̃, i(x) > 𝛽 ∧WZ̃, i(x) > k, decide x ∈ UbnO
∧
(
Z̃
)
,

(
LBO

)
If∃i, PZ̃, i(x) ≥ 𝛼 ∧ ∃j,WZ̃, j(x) ≥

|||[x]ISj
||| − k and

∃i, PZ̃, i(x) ≤ 𝛽 ∨WZ̃, i(x) ≤ k, decide x ∈ LbnO
∧
(
Z̃
)
.

we can define the pessimistic model by utilizing the concept 
of pessimistic multigranulation rough set model.

3.2  Logical conjunction pessimistic 
multigranulation rough fuzzy set model 
(LCP‑MRFSM)

Definition 2 Given a MsDS MsDS = MsIS ∪
{
D,VD,FD

}
 , 

where MsIS =
{
ISi

||ISi =
(
U,AT ,VAT ,Fi

)
, i = 1, 2, ..., n

}
 . 

Assume � ≤ � and �, � ∈ [0, 1] , and k is a nonpositive inte-
ger. For any fuzzy set Z̃ ∈ F(U) , let LP

(𝛼,𝛽)∧k

(
Z̃
)
 denote the 

lower approximation and UP

(𝛼,𝛽)∧k

(
Z̃
)
 denote the upper approxi-

mation, which are defined as

The four decision regions, similar to LCO-MRFSM, can be 
computed as

The sample set U can be divided into four parts by the four 
decision regions. Furthermore, based on Definition 2, we can 
get some propositions of LCP-MRFSM, which are similar 
to the propositions of LCO-MRFSM.

Proposition 4 For any fuzzy sets Z̃ , M̃ ∈ F(U) , the following 
propositions are true. 

 (1). When Z̃ ⊆ M̃, LP
(𝛼,𝛽)∧k

(
Z̃
)
⊆ LP

(𝛼,𝛽)∧k

(
M̃
)
.

 (2). WhenZ̃ ⊆ M̃,UP

(𝛼,𝛽)∧k

(
Z̃
)
⊆ UP

(𝛼,𝛽)∧k

(
M̃
)
.

 (3). If k1 ≤ k2, thenL
P

(𝛼,𝛽)∧k1

(
Z̃
)
⊆ LP

(𝛼,𝛽)∧k2

(
Z̃
)
.

 (4). If 𝛽1 ≤ 𝛽2, thenU
P

(𝛼,𝛽2)∧k

(
Z̃
)
⊆ UP

(𝛼,𝛽1)∧k

(
Z̃
)
.

 (5). UP

(𝛼,𝛽)∧k

(
Z̃
)
∪ UP

(𝛼,𝛽)∧k

(
M̃
)
⊆ UP

(𝛼,𝛽)∧k

(
Z̃ ∪ M̃

)
.

(9)

LP
(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

|||||

s∑
i=1

I − LSF
ISi

Z̃
(x) = s

∧

s∑
i=1

II − LSF
ISi

Z̃
(x) = s

}
,

(10)

UP

(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

|||||

s∑
i=1

I − USF
ISi

Z̃
(x) > 0

∧

s∑
i=1

II − USF
ISi

Z̃
(x) > 0

}
.

PosP
∧
(
Z̃
)
=LP

(𝛼,𝛽)∧k

(
Z̃
)
∩ UP

(𝛼,𝛽)∧k

(
Z̃
)
,

NegP
∧
(
Z̃
)
=

(
LP

(𝛼,𝛽)∧k

(
Z̃
))C

∩

(
UP

(𝛼,𝛽)∧k

(
Z̃
))C

,

UbnP
∧
(
Z̃
)
=UP

(𝛼,𝛽)∧k

(
Z̃
)
∩

(
LP

(𝛼,𝛽)∧k

(
Z̃
))C

,

LbnP
∧
(
Z̃
)
=LP

(𝛼,𝛽)∧k

(
Z̃
)
∩

(
UP

(𝛼,𝛽)∧k

(
Z̃
))C

.
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 (6). LP
(𝛼,𝛽)∧k

(
Z̃
)
∪ LP

(𝛼,𝛽)∧k

(
M̃
)
⊆ LP

(𝛼,𝛽)∧k

(
Z̃ ∪ M̃

)
.

 (7). UP

(𝛼,𝛽)∧k

(
Z̃ ∩ M̃

)
⊆ UP

(𝛼,𝛽)∧k

(
Z̃
)
∩ UP

(𝛼,𝛽)∧k

(
M̃
)
.

 (8). LP
(𝛼,𝛽)∧k

(
Z̃ ∩ M̃

)
⊆ LP

(𝛼,𝛽)∧k

(
Z̃
)
∩ LP

(𝛼,𝛽)∧k

(
M̃
)
.

Proof The proof process is similar to Proposition 4.   ◻

Now, let us consider the situation that Z̃ degenerates into 
a classical set. The following Propositions 5 and 6 show 
that our model and the pessimistic multigranulation rough 
set model [28] have the similar form when each information 
system is regarded as a granularity.

Proposition 5 When Z̃ ⊆ U , then we can get if k = 0 or �=1,

Proof The proof process is similar to Proposition 2.   ◻

Proposition 6 When Z̃ ⊆ U , then we can get if k = 0 and 
� = 0,

Proof The proof process is similar to Proposition 3.   ◻

Four decision rules can be established based on the cor-
responding four decision regions, which are presented as 
following:

(11)LP
(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

||||
s

∧
i=1

(
[x]ISi ⊆ Z̃

)}
.

(12)UP

(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

||||
s

∨
i=1

(
[x]ISi ∩ Z̃ ≠ �

)}
.

fuzzy set Z̃ ∈ F(U) , the O∧ model considers one sample x to 
belong to the lower approximation when it satisfies ∃ i , ∑
y∈[x]ISi

�
1 − Z̃(y)

�
≤ k and ∃ j , P

(
Z̃
|||[x]ISj

)
≥ 𝛼 . The condi-

tion seems too lenient. While the P∧ model considers one 
sample x to belong to the lower approximation when it satis-
fies ∀ i , 

∑
y∈[x]ISi

�
1 − Z̃(y)

�
≤ k and P

(
Z̃
|||[x]ISi

)
≥ 𝛼 . The 

condition seems too strict. So in 3.3 and 4.3, we propose a 
kind of moderate condition by considering the mean number 
of P

(
Z̃|[x]ISi

)
 and 

∑
y∈[x]ISi

Z̃(y).

Definition 3 Given a MsDS MsDS = MsIS ∪
{
D,VD,FD

}
 , 

where MsIS =
{
ISi

||ISi =
(
U,AT ,VAT ,Fi

)
, i = 1, 2, ..., n

}
 . 

Assume � ≤ � and �, � ∈ [0, 1] , and k is a nonpositive inte-
ger. For any fuzzy set Z̃ ∈ F(U) , let LM

(𝛼,𝛽)∧k

(
Z̃
)
 denote the 

lower approximation and UM

(𝛼,𝛽)∧k

(
Z̃
)
 denote the upper approxi-

mation, which are defined as

(13)

LM
(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

|||||
1

s

s∑
i=1

PZ̃, i(x) ≥ 𝛼

∧
1

s

s∑
i=1

WZ̃c, i(x) ≤ k

}
,

where PZ̃, i(x) denotes P
(
Z̃|[x]ISi

)
 and WZ̃, i(x) denotes 

 
∑

y∈[x]ISi

Z̃(y).

(
PP

)
If∀ i, PZ̃, i(x) ≥ 𝛼 ∧WZ̃, i(x) ≥

|||[x]ISi
||| − k and

∃ i, WZ̃, i(x) > k ∧ ∃ j, PZ̃, j(x) > 𝛽, thendecide x ∈ PosP
∧
(
Z̃
)
,(

NP
)
If ∀i, WZ̃, i(x) ≤ k ∨ ∀ j, PZ̃, j(x) ≤ 𝛽 and

∃ i,PZ̃, i(x) < 𝛼 ∨ WZ̃, i(x) <
|||[x]ISi

||| − k, then decide x ∈ NegP
∧
(
Z̃
)
,

(
UBP

)
If∃ i, WZ̃, i(x) > k ∧ ∃ j, PZ̃, j(x) > 𝛽 and

∃ i, PZ̃, i(x) < 𝛼 ∨WZ̃, i(x) <
|||[x]ISi

||| − k, then decide x ∈ UbnP
∧
(
Z̃
)
,

(
LBP

)
If∀ i, PZ̃, i(x) ≥ 𝛼 ∧WZ̃, i(x) ≥

|||[x]ISi
||| − k and

∀i, WZ̃, i(x) ≤ k ∨ ∀ j, PZ̃, j(x) ≤ 𝛽, then decide x ∈ LbnP
∧
(
Z̃
)
,

3.3  Logical conjunction mean multigranulation 
rough fuzzy set model(LCM‑MRFSM)

The above O∧ and P∧ models utilize the support function 
operators to define the approximation operators. For any 

where PZ̃, i(x) denotes P
(
Z̃|[x]ISi

)
 and WZ̃, i(x) denotes ∑

y∈[x]ISi

Z̃(y).

(14)

UM

(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

|||||
1

s

s∑
i=1

WZ̃, i(x) > k

∧
1

s

s∑
i=1

PZ̃, i(x) > 𝛽

}
,
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The four decision regions can be computed as

The four regions can divide sample set U into four parts. 
Moreover, we also can get some propositions of LCM-
MRFSM based on Definition 3.

Proposition 7 For any fuzzy sets Z̃ , M̃ ∈ F(U) , the following 
propositions are true. 

 (1). When Z̃ ⊆ M̃, LM
(𝛼,𝛽)∧k

(
Z̃
)
⊆ LM

(𝛼,𝛽)∧k

(
M̃
)
.

 (2). When Z̃ ⊆ M̃,UM

(𝛼,𝛽)∧k

(
Z̃
)
⊆ UM

(𝛼,𝛽)∧k

(
M̃
)
.

 (3). If k1 ≤ k2, thenLM
(𝛼,𝛽)∧k1

(
Z̃
)
⊆ LM

(𝛼,𝛽)∧k2

(
Z̃
)
.

 (4). If 𝛽1 ≤ 𝛽2, thenUM

(𝛼,𝛽2)∧k

(
Z̃
)
⊆ UM

(𝛼,𝛽1)∧k

(
Z̃
)
.

 (5). UM

(𝛼,𝛽)∧k

(
Z̃
)
∪ UM

(𝛼,𝛽)∧k

(
M̃
)
⊆ UM

(𝛼,𝛽)∧k

(
Z̃ ∪ M̃

)
.

 (6). LM
(𝛼,𝛽)∧k

(
Z̃
)
∪ LM

(𝛼,𝛽)∧k

(
M̃
)
⊆ LM

(𝛼,𝛽)∧k

(
Z̃ ∪ M̃

)
.

 (7). UM

(𝛼,𝛽)∧k

(
Z̃ ∩ M̃

)
⊆ UM

(𝛼,𝛽)∧k

(
Z̃
)
∩ UM

(𝛼,𝛽)∧k

(
M̃
)
.

 (8). LM
(𝛼,𝛽)∧k

(
Z̃ ∩ M̃

)
⊆ LM

(𝛼,𝛽)∧k

(
Z̃
)
∩ LM

(𝛼,𝛽)∧k

(
M̃
)
.

Proof The proof process is similar to Proposition 3.   ◻

Now, let us consider the situation that Z̃ degenerates into 
a classical set. The following Propositions 8 and 9 show 
that our model and the pessimistic multigranulation rough 
set model [28] have the similar form when each information 
system is regarded as a granularity.

Proposition 8 When Z̃ ⊆ U , then we can get if k = 0 or �=1,

Proof The proof process is similar to Proposition 2.   ◻

Proposition 9 When Z̃ ⊆ U , then we can get if k = 0 and 
� = 0,

Proof The proof process is similar to Proposition 3.   ◻

The decision rules can be established based on the four 
decision regions, which are presented as following:

PosM
∧
(
Z̃
)
=LM

(𝛼,𝛽)∧k

(
Z̃
)
∩ UM

(𝛼,𝛽)∧k

(
Z̃
)
,

NegM
∧
(
Z̃
)
=

(
LM

(𝛼,𝛽)∧k

(
Z̃
))C

∩

(
UM

(𝛼,𝛽)∧k

(
Z̃
))C

,

UbnM
∧
(
Z̃
)
=UM

(𝛼,𝛽)∧k

(
Z̃
)
∩

(
LM

(𝛼,𝛽)∧k

(
Z̃
))C

,

LbnM
∧
(
Z̃
)
=LM

(𝛼,𝛽)∧k

(
Z̃
)
∩

(
UM

(𝛼,𝛽)∧k

(
Z̃
))C

.

(15)LM
(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

||||
s

∧
i=1

(
[x]ISi ⊆ Z

)}
.

(16)UM

(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

||||
s

∨
i=1

(
[x]ISi ∩ Z ≠ �

)}
.

where PZ̃, i(x) denotes P
(
Z̃|[x]DSi

)
 and WZ̃, i(x) denotes ∑

y∈[x]DSi

Z̃(y).

4  Logical disjunction multigranulation 
rough fuzzy set model in multi‑source 
decision systems

In this section, similar to LCO-MRFSM, LCP-MRFSM, 
and LCM-MRFSM, we define three other multigranula-
tion rough fuzzy set models by using the logical disjunction 
operator. And some propositions of them are discussed.

4.1  Logical disjunction optimistic multigranulation 
rough fuzzy set model(LDO‑MRFSM)

Definition 4 Given a MsDS MsDS = MsIS ∪
{
D,VD,FD

}
 , 

where MsIS =
{
ISi

||ISi =
(
U,AT ,VAT ,Fi

)
, i = 1, 2, ..., n

}
 . 

Assume � ≤ � and �, � ∈ [0, 1] , and k is a nonpositive inte-
ger. For any fuzzy set Z̃ ∈ U , let LO

(𝛼,𝛽)∨k

(
Z̃
)
 denote the lower 

approximation and UM

(𝛼,𝛽)∨k

(
Z̃
)
 denote the upper approxima-

tion, which are defined as

�
PM

�
If

s∑
i=1

PZ̃, i(x)

S
≥ 𝛼 ∧

s∑
i=1

WZ̃, i(x)

S
> k and

s∑
i=1

WZ̃c, i(x)

S
≤ k, then decide x ∈ PosM

∧
�
Z̃
�
,

�
NM

�
If

s∑
i=1

PZ̃, i(x)

S
≤ 𝛽 ∨

s∑
i=1

WZ̃, i(x)

S
≤ k and

s∑
i=1

PZ̃, i(x)

S
< 𝛼 ∨

s∑
i=1

WZ̃c, i(x)

S
> k, then decide x ∈ NegM

∧
�
Z̃
�
,

�
UBM

�
If

s∑
i=1

PZ̃, i(x)

S
> 𝛽 ∧

s∑
i=1

WZ̃, i(x)

S
> k and

s∑
i=1

WZ̃c, i(x)

S
> k ∨

s∑
i=1

PZ̃, i(x)

S
< 𝛼, then decide x ∈ UbnM

∧
�
Z̃
�
,

�
LBM

�
If

s∑
i=1

PZ̃, i(x)

S
≥ 𝛼 ∧

s∑
i=1

WZ̃c, i(x)

S
≤ k and

s∑
i=1

PZ̃, i(x)

S
≤ 𝛽 ∨

s∑
i=1

WZ̃, i(x)

S
≤ k, then decide x ∈ LbnM

∧
�
Z̃
�
,

(17)

LO
(𝛼,𝛽)∨k

(
Z̃
)
=

{
x ∈ U

|||||

s∑
i=1

I − LSF
ISi

Z̃
(x) > 0

∨

s∑
i=1

II − LSF
ISi

Z̃
(x) > 0

}
,
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We also can easily find that LO
(𝛼,𝛽)∨k

(
Z̃
)
 is not included in 

UO

(𝛼,𝛽)∨k

(
Z̃
)
 . So just like the above method, we put samples that 

that belong to both LO
(𝛼,𝛽)∨k

(
Z̃
)
 and UO

(𝛼,𝛽)∨k

(
Z̃
)
 into the positive 

region, samples that do not belong to either LO
(𝛼,𝛽)∨k

(
Z̃
)
 or 

UO

(𝛼,𝛽)∨k

(
Z̃
)
 into the negative region, samples that belong to 

LO
(𝛼,𝛽)∨k

(
Z̃
)
 but do not belong to UO

(𝛼,𝛽)∨k

(
Z̃
)
 into the lower 

boundary region, samples that belong to UO

(𝛼,𝛽)∨k

(
Z̃
)
 but do not 

belong to LO
(𝛼,𝛽)∨k

(
Z̃
)
 into the upper boundary region.

The four decision regions can be computed as

The four regions can divide sample set U into four parts, 
where the samples in the positive region completely support 
the concept set, the samples in the negative region com-
pletely oppose the concept set, and the samples in the lower 
and upper boundary may support or oppose the concept set. 
Furthermore, based on Definition 4, we can get some propo-
sitions of LDO-MRFSM.

Proposition 10 For any fuzzy sets Z̃ , M̃ ∈ F(U) , the follow-
ing propositions are true. 

 (1). When Z̃ ⊆ M̃, LO
(𝛼,𝛽)∨k

(
Z̃
)
⊆ LO

(𝛼,𝛽)∨k

(
M̃
)
.

 (2). WhenZ̃ ⊆ M̃,UO

(𝛼,𝛽)∨k

(
Z̃
)
⊆ UO

(𝛼,𝛽)∨k

(
M̃
)
.

 (3). If k1 ≤ k2, thenLO
(𝛼,𝛽)∨k1

(
Z̃
)
⊆ LO

(𝛼,𝛽)∨k2

(
Z̃
)
.

 (4). If 𝛽1 ≤ 𝛽2, thenUO

(𝛼,𝛽2)∨k

(
Z̃
)
⊆ UO

(𝛼,𝛽1)∨k

(
Z̃
)
.

 (5). UO

(𝛼,𝛽)∨k

(
Z̃
)
∪ UO

(𝛼,𝛽)∨k

(
M̃
)
⊆ UO

(𝛼,𝛽)∨k

(
Z̃ ∪ M̃

)
.

 (6). LO
(𝛼,𝛽)∨k

(
Z̃
)
∪ LO

(𝛼,𝛽)∨k

(
M̃
)
⊆ LO

(𝛼,𝛽)∨k

(
Z̃ ∪ M̃

)
.

 (7). UO

(𝛼,𝛽)∨k

(
Z̃ ∩ M̃

)
⊆ UO

(𝛼,𝛽)∨k

(
Z̃
)
∩ UO

(𝛼,𝛽)∨k

(
M̃
)
.

 (8). LO
(𝛼,𝛽)∨k

(
Z̃ ∩ M̃

)
⊆ LO

(𝛼,𝛽)∨k

(
Z̃
)
∩ LO

(𝛼,𝛽)∨k

(
M̃
)
.

Proof The demonstration process is similar to Proposition 
1.   ◻

(18)

UO

(𝛼,𝛽)∨k

(
Z̃
)
=

{
x ∈ U

|||||

s∑
i=1

I − USF
ISi

Z̃
(x) = s

∨

s∑
i=1

II − USF
ISi

Z̃
(x) = s

}
.

PosO
∨
(
Z̃
)
= LO

(𝛼,𝛽)∨k

(
Z̃
)
∩ UO

(𝛼,𝛽)∨k

(
Z̃
)
,

NegO
∨
(
Z̃
)
=

(
LO

(𝛼,𝛽)∨k

(
Z̃
))C

∩

(
UO

(𝛼,𝛽)∨k

(
Z̃
))C

,

UbnO
∨
(
Z̃
)
= UO

(𝛼,𝛽)∨k

(
Z̃
)
∩

(
LO

(𝛼,𝛽)∨k

(
Z̃
))C

,

LbnO
∨
(
Z̃
)
= LO

(𝛼,𝛽)∨k

(
Z̃
)
∩

(
UO

(𝛼,𝛽)∨k

(
Z̃
))C

.

Now, let us consider the situation that Z̃ degenerates into 
a classical set. The following Propositions 11 and 12 demon-
strate that our model and optimistic multigranulation rough 
set model [28] have the similar form when each information 
system is regarded as a granularity.

Proposition 11 When Z̃ ⊆ U , then we can get if k = 0 or �
=1,

Proof The proof process is similar to Proposition 2.   ◻

Proposition 12 When Z̃ ⊆ U , then we can get if k = 0 and 
� = 0,

Proof The proof process is similar to Proposition 3.   ◻

The decision rules can be established based on the four 
decision regions. For convenient, let PZ̃, i(x) denote 
P
(
Z̃|[x]ISi

)
 and WZ̃, i(x) denote 

∑
y∈[x]ISi

Z̃(y) . Then these rules 

are presented as following:

4.2  Logical disjunction pessimistic 
multigranulation rough fuzzy set 
model(LDP‑MRFSM)

Definition 5 Given a MsDS MsDS = MsIS ∪
{
D,VD,FD

}
 , 

where MsIS =
{
ISi

||ISi =
(
U,AT ,VAT ,Fi

)
, i = 1, 2, ..., n

}
 . 

Assume � ≤ � and �, � ∈ [0, 1] , and k is a nonpositive inte-
ger. For any fuzzy set Z̃ ∈ F(U) , let LP

(𝛼,𝛽)∨k

(
Z̃
)
 denote the 

lower approximation and UP

(𝛼,𝛽)∨k

(
Z̃
)
 denote the upper approxi-

mation, which are defined as

(19)LO
(𝛼,𝛽)∨k

(
Z̃
)
=

{
x ∈ U

||||
s

∨
i=1

(
[x]ISi ⊆ Z̃

)}
.

(20)UO

(𝛼,𝛽)∨k

(
Z̃
)
=

{
x ∈ U

||||
s

∧
i=1

(
[x]ISi ∩ Z̃ ≠ �

)}
.

(
PO

)
If∀i, PZ̃, i(x) > 𝛽 ∨ ∀j,WZ̃, j(x) > k and

∃i,WZ̃, i(x) ≥
|||[x]ISi

||| − k ∨ PZ̃, i(x) ≥ 𝛼, decide x ∈ Pos∨
O

(
Z̃
)
,

(
NO

)
If∀i, PZ̃, i(x) < 𝛼 ∧WZ̃, i(x) <

|||[x]ISi
||| − k and

∃i, PZ̃, i(x) ≤ 𝛽 ∧ ∃j,WZ̃,j(x) ≤ k, decide x ∈ Neg∨
O

(
Z̃
)
,

(
UBO

)
If∀i, PZ̃, i(x) < 𝛼 ∧WZ̃, i(x) <

|||[x]ISi
||| − k and

∀i, PZ̃, i(x) > 𝛽 ∨ ∀j,WZ̃, j(x) > k, decide x ∈ Ubn∨
O

(
Z̃
)
,

(
LBO

)
If∃i, PZ̃, i(x) ≥ 𝛼 ∨WZ̃, i(x) ≥

|||[x]ISi
||| − k and

∃i, PZ̃, i(x) ≤ 𝛽 ∧ ∃j,WZ̃, j(x) ≤ k, decide x ∈ Lbn∨
O

(
Z̃
)
.
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The four decision regions, similar to LDO-MRFSM, can be 
computed as

The four regions can divide sample set U into four parts. 
Furthermore, based on Definition 5, we can get some propo-
sitions of LDP-MRFSM.

Proposition 13 For any fuzzy sets Z̃ , M̃ ∈ F(U) , the follow-
ing propositions are true. 

 (1). When Z̃ ⊆ M̃, LP
(𝛼,𝛽)∨k

(
Z̃
)
⊆ LP

(𝛼,𝛽)∨k

(
M̃
)
.

 (2). WhenZ̃ ⊆ M̃,UP

(𝛼,𝛽)∨k

(
Z̃
)
⊆ UP

(𝛼,𝛽)∨k

(
M̃
)
.

 (3). If k1 ≤ k2, thenLP
(𝛼,𝛽)∨k1

(
Z̃
)
⊆ LP

(𝛼,𝛽)∨k2

(
Z̃
)
.

 (4). If 𝛽1 ≤ 𝛽2, thenUP

(𝛼,𝛽2)∨k

(
Z̃
)
⊆ UP

(𝛼,𝛽1)∨k

(
Z̃
)
.

 (5). UP

(𝛼,𝛽)∨k

(
Z̃
)
∪ UP

(𝛼,𝛽)∨k

(
M̃
)
⊆ UP

(𝛼,𝛽)∨k

(
Z̃ ∪ M̃

)
.

 (6). LP
(𝛼,𝛽)∨k

(
Z̃
)
∪ LP

(𝛼,𝛽)∨k

(
M̃
)
⊆ LP

(𝛼,𝛽)∨k

(
Z̃ ∪ M̃

)
.

 (7). UP

(𝛼,𝛽)∨k

(
Z̃ ∩ M̃

)
⊆ UP

(𝛼,𝛽)∨k

(
Z̃
)
∩ UP

(𝛼,𝛽)∨k

(
M̃
)
.

 (8). LP
(𝛼,𝛽)∨k

(
Z̃ ∩ M̃

)
⊆ LP

(𝛼,𝛽)∨k

(
Z̃
)
∩ LP

(𝛼,𝛽)∨k

(
M̃
)
.

Proof The proof process is similar to Proposition 1.   ◻

Now, let us consider the situation that Z̃ degenerates into 
a classical set. The following Propositions 14 and 15 demon-
strate that our model and optimistic multigranulation rough 
set model [28] have the similar form when each information 
system is regarded as a granularity.

Proposition 14 When Z̃ ⊆ U , then we can get if k = 0 or �
=1,

(21)

LP
(𝛼,𝛽)∨k

(
Z̃
)
=

{
x ∈ U

|||||

s∑
i=1

I − LSF
ISi

Z̃
(x) = s

∨

s∑
i=1

II − LSF
ISi

Z̃
(x) = s

}
,

(22)

UP

(𝛼,𝛽)∨k

(
Z̃
)
=

{
x ∈ U

|||||

s∑
i=1

I − USF
ISi

Z̃
(x) > 0

∨

s∑
i=1

II − USF
ISi

Z̃
(x) > 0

}
.

PosP
∨
(
Z̃
)
= LP

(𝛼,𝛽)∨k

(
Z̃
)
∩ UP

(𝛼,𝛽)∨k

(
Z̃
)
,

NegP
∨
(
Z̃
)
=

(
LP

(𝛼,𝛽)∨k

(
Z̃
))C

∩

(
UP

(𝛼,𝛽)∨k

(
Z̃
))C

,

UbnP
∨
(
Z̃
)
= UP

(𝛼,𝛽)∨k

(
Z̃
)
∩

(
LP

(𝛼,𝛽)∨k

(
Z̃
))C

,

LbnP
∨
(
Z̃
)
= LP

(𝛼,𝛽)∨k

(
Z̃
)
∩

(
UP

(𝛼,𝛽)∨k

(
Z̃
))C

.

Proof The proof process is similar to Proposition 2.   ◻

Proposition 15 When Z̃ ⊆ U , then we can get if k = 0 and 
� = 0,

Proof The proof process is similar to Proposition 3.   ◻

The decision rules can be established based on the four 
decision regions, which are presented as follow:

where PZ̃, i(x) denotes P
(
Z̃|[x]ISi

)
 and WZ̃, i(x) denotes ∑

y∈[x]ISi

Z̃(y).

4.3  Logical disjunction mean multigranulation 
rough fuzzy set model(LDM‑MRFSM)

Definition 6 Given a MsDS MsDS = MsIS ∪
{
D,VD,FD

}
 , 

where MsIS =
{
ISi

||ISi =
(
U,AT ,VAT ,Fi

)
, i = 1, 2, ..., n

}
 . 

Assume � ≤ � and �, � ∈ [0, 1] , and k is a nonpositive inte-
ger. For any fuzzy set Z̃ ∈ F(U) , let LM

(𝛼,𝛽)∨k

(
Z̃
)
 denote the 

lower approximation and UM

(𝛼,𝛽)∨k

(
Z̃
)
 represent the upper 

approximation, which are defined as

(23)LP
(𝛼,𝛽)∨k

(
Z̃
)
=

{
x ∈ U

||||
s

∧
i=1

(
[x]ISi ⊆ Z̃

)}
.

(24)UP

(𝛼,𝛽)∨k

(
Z̃
)
=

{
x ∈ U

||||
s

∨
i=1

(
[x]ISi ∩ Z̃ ≠ �

)}
.

(
PP

)
If∀i, PZ̃, i(x) ≥ 𝛼 ∨ ∀j, WZ̃, j(x) ≥

|||[x]ISj
||| − k and

∃i, WZ̃, i(x) > k ∨ PZ̃, i(x) > 𝛽, decide x ∈ PosP
∨
(
Z̃
)
,(

NP
)
If∀i, PZ̃, i(x) ≤ 𝛽 ∧WZ̃, i(x) ≤ k and

∃i, PZ̃, i(x) < 𝛼 ∧ ∃j, WZ̃, j(x) <
|||[x]ISj

||| − k, decide x ∈ NegP
∨
(
Z̃
)
,

(
UBP

)
If∃i, PZ̃, i(x) > 𝛽 ∨WZ̃, i(x) > k and

∃i, PZ̃, i(x) < 𝛼 ∧ ∃j, WZ̃, j(x) <
|||[x]ISj

||| − k, decide x ∈ UbnP
∨
(
Z̃
)
,

(
LBP

)
If∀i, PZ̃, i(x) ≥ 𝛼 ∨ ∀j, WZ̃, j(x) ≥

|||[x]ISj
||| − k and

∀i, PZ̃, i(x) ≤ 𝛽 ∧WZ̃, i(x) ≤ k, decide x ∈ LbnP
∨
(
Z̃
)
,

(25)

LM
(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

|||||
1

s

s∑
i=1

PZ̃, i(x) ≥ 𝛼

∨
1

s

s∑
i=1

WZ̃c, i(x) ≤ k

}
,

(26)

UM

(𝛼,𝛽)∧k

(
Z̃
)
=

{
x ∈ U

|||||
1

s

s∑
i=1

WZ̃, i(x) > k

∨
1

s

s∑
i=1

PZ̃, i(x) > 𝛽

}
,
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where PZ̃, i(x) denotes P
(
Z̃|[x]ISi

)
 and WZ̃, i(x) denotes ∑

y∈[x]ISi

Z̃(y).

The four decision regions can be computed as

The sample set U can be divided into four parts by the corre-
sponding decision regions. Furthermore, based on Definition 
6, we can get some propositions of LDM-MRFSM.

Proposition 16 For any fuzzy sets Z̃ , M̃ ∈ F(U) , the follow-
ing propositions are true. 

 (1). When Z̃ ⊆ M̃, LM
(𝛼,𝛽)∨k

(
Z̃
)
⊆ LM

(𝛼,𝛽)∨k

(
M̃
)
.

 (2). WhenZ̃ ⊆ M̃,UM

(𝛼,𝛽)∨k

(
Z̃
)
⊆ UM

(𝛼,𝛽)∨k

(
M̃
)
.

 (3). If k1 ≤ k2, thenLM
(𝛼,𝛽)∨k1

(
Z̃
)
⊆ LM

(𝛼,𝛽)∨k2

(
Z̃
)
.

 (4). If 𝛽1 ≤ 𝛽2, thenU
M

(𝛼,𝛽2)∨k

(
Z̃
)
⊆ UM

(𝛼,𝛽1)∨k

(
Z̃
)
.

 (5). UM

(𝛼,𝛽)∨k

(
Z̃
)
∪ UM

(𝛼,𝛽)∨k

(
M̃
)
⊆ UM

(𝛼,𝛽)∨k

(
Z̃ ∪ M̃

)
.

 (6). LM
(𝛼,𝛽)∨k

(
Z̃
)
∪ LM

(𝛼,𝛽)∨k

(
M̃
)
⊆ LM

(𝛼,𝛽)∨k

(
Z̃ ∪ M̃

)
.

 (7). UM

(𝛼,𝛽)∧k

(
Z̃ ∩ M̃

)
⊆ UM

(𝛼,𝛽)∨k

(
Z̃
)
∩ UM

(𝛼,𝛽)∨k

(
M̃
)
.

 (8). LM
(𝛼,𝛽)∨k

(
Z̃ ∩ M̃

)
⊆ LM

(𝛼,𝛽)∨k

(
Z̃
)
∩ LM

(𝛼,𝛽)∨k

(
M̃
)
.

Proof The proof process is similar to Proposition 1.   ◻

Now, let us consider the situation that Z̃ degenerates into 
a classical set. The following Propositions 17 and 18 demon-
strate that our model and pessimistic multigranulation rough 
set model [28] have the similar form when each information 
system is regarded as a granularity.

Proposition 17 When Z̃ ⊆ U , then we can get if k = 0 or �
=1,

Proof The proof process is similar to Proposition 2.   ◻

Proposition 18 When Z̃ ⊆ U , then we can get if k = 0 and 
� = 0,

PosM
∨
(
Z̃
)
= LM

(𝛼,𝛽)∨k

(
Z̃
)
∩ UM

(𝛼,𝛽)∨k

(
Z̃
)
,

NegM
∨
(
Z̃
)
=

(
LM

(𝛼,𝛽)∨k

(
Z̃
))C

∩

(
UM

(𝛼,𝛽)∨k

(
Z̃
))C

,

UbnM
∨
(
Z̃
)
= UM

(𝛼,𝛽)∨k

(
Z̃
)
∩

(
LM

(𝛼,𝛽)∨k

(
Z̃
))C

,

LbnM
∨
(
Z̃
)
= LM

(𝛼,𝛽)∨k

(
Z̃
)
∩

(
UM

(𝛼,𝛽)∨k

(
Z̃
))C

.

(27)LM
(𝛼,𝛽)∨k

(
Z̃
)
=

{
x ∈ U

||||
s

∧
i=1

(
[x]ISi ⊆ Z

)}
.

(28)UM

(𝛼,𝛽)∨k

(
Z̃
)
=

{
x ∈ U

||||
s

∨
i=1

(
[x]ISi ∩ X ≠ �

)}
.

Proof The proof process is similar to Proposition 3.   ◻

The decision rules can be established based on the four 
decision regions, which are presented as follow:

where PZ̃, i(x) denotes P
(
Z̃|[x]ISi

)
 and WZ̃, i(x) denotes ∑

y∈[x]ISi

Z̃(y).

5  Relationship between logical conjunction 
and disjunction multigranulation rough 
fuzzy set models

In Sects. 3 and 4, we respectively define three logical con-
junction models and three logical disjunction models. In 
the following, we will discuss the relationship among these 
models. The connections between these models are intui-
tively presented in Fig3.

For the lower approximation of the proposed six models, 
we can find that the conditions of LCO-MRFSM and LDO-
MRFSM are the loosest among them, while LCP-MRFSM 
and LDP-MRFSM are the most stringent. On the contrary, 
for the upper approximation, LCO-MRFSM and LDO-
MRFSM are the most stringent, while LCP-MRFSM and 
LDP-MRFSM are the most loosest. We all know that the 
looser the conditions, the bigger the approximation set and 
the more stringent the conditions, the smaller the approxima-
tion set. Proposition 19 shows the concrete form.

�
PM

�
If

s∑
i=1

PZ̃, i(x)

S
> 𝛽 ∨

s∑
i=1

WZ̃, i(x)

S
> k and

s∑
i=1

PZ̃, i(x)

S
≥ 𝛼 ∨

s∑
i=1

WZ̃c, i(x)

S
≤ k, decide x ∈ PosM

∨
�
Z̃
�
,

�
NM

�
If

s∑
i=1

PZ̃, i(x)

S
≤ 𝛽 ∧

s∑
i=1

WZ̃, i(x)

S
≤ k and

s∑
i=1

PZ̃, i(x)

S
< 𝛼 ∧

s∑
i=1

WZ̃c, i(x)

S
> k, decide x ∈ NegM

∨
�
Z̃
�
,

�
UBM

�
If

s∑
i=1

PZ̃, i(x)

S
> 𝛽 ∨

s∑
i=1

WZ̃, i(x)

S
> k and

s∑
i=1

WZ̃c, i(x)

S
> k ∧

s∑
i=1

PZ̃, i(x)

S
< 𝛼, decide x ∈ UbnM

∨
�
Z̃
�
,

�
LBM

�
If

s∑
i=1

PZ̃, i(x)

S
≥ 𝛼 ∨

s∑
i=1

WZ̃c, i(x)

S
≤ k and

s∑
i=1

PZ̃, i(x)

S
≤ 𝛽 ∧

s∑
i=1

WZ̃, i(x)

S
≤ k, decide x ∈ LbnM

∨
�
Z̃
�
,
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Proposition 19 Given a MsDS MsDS = MsIS ∪
{
D,VD,FD

}
 , 

where MsIS =
{
ISi

||ISi =
(
U,AT ,VAT ,Fi

)
, i = 1, 2, ..., n

}
 . 

Assume � ≤ � and �, � ∈ [0, 1] , and k is a nonpositive inte-
ger, for any Z̃ ∈ F(U) , we have that 

 (1). LP
(𝛼,𝛽)∨k

(
Z̃
)
⊆ LM

(𝛼,𝛽)∨k

(
Z̃
)
⊆ LO

(𝛼,𝛽)∨k

(
Z̃
)
,

 (2). UO
(𝛼,𝛽)∨k

(
Z̃
)
⊆ UM

(𝛼,𝛽)∨k

(
Z̃
)
⊆ UP

(𝛼,𝛽)∨k

(
Z̃
)
,

 (3). LP
(𝛼,𝛽)∧k

(
Z̃
)
⊆ LM

(𝛼,𝛽)∧k

(
Z̃
)
⊆ LO

(𝛼,𝛽)∧k

(
Z̃
)
,

 (4). UO
(𝛼,𝛽)∧k

(
Z̃
)
⊆ UM

(𝛼,𝛽)∧k

(
Z̃
)
⊆ UP

(𝛼,𝛽)∧k

(
Z̃
)
.

Proof (1) ∀x ∈ LP
(𝛼,𝛽)∨k

(
Z̃
)
 , we have ∀i , 

∑
y∈[x]ISi

�
1 − Z̃(y)

�
≤ k 

or P
(
Z̃
|||[x]ISi

)
≥ 𝛼 . So we can get 1

s

s∑
i=1

PZ̃, i(x) ≥ 𝛼 or 
1

s

s∑
i=1

WZ̃c, i(x) < k  . Thus, LP
(𝛼,𝛽)∨k

(
Z̃
)
⊆ LM

(𝛼,𝛽)∨k

(
Z̃
)
 . And 

∀x ∈ LM
(𝛼,𝛽)∨k

(
Z̃
)

 ,  w e  h a v e  1

s

s∑
i=1

PZ̃, i(x) ≥ 𝛼  o r 
1

s

s∑
i=1

WZ̃c, i(x) ≤ k . So we can get ∃i , 
s∑

i=1

PZ̃, i(x) ≥ 𝛼 or 
s∑

i=1

WZ̃c, i(x) ≤ k . Thus, LM
(𝛼,𝛽)∨k

(
Z̃
)
⊆ LO

(𝛼,𝛽)∨k

(
Z̃
)
.

(2)-(4) The process is similar to (1).

Proposition 19 discusses the relationship of approxima-
tion operators of the logical conjunction and disjunction 
model respectively. Next, we will discuss the relationship 
between the logical conjunction and disjunction models.

Proposition 20 Given a MsDS MsDS = MsIS ∪
{
D,VD,FD

}
 , 

where MsIS =
{
ISi

||ISi =
(
U,AT ,VAT ,Fi

)
, i = 1, 2, ..., n

}
 . 

Assume � ≤ � and �, � ∈ [0, 1] , and k is a nonpositive inte-
ger, if � + � = 1,then we can induce that, for any Z̃ ∈ F(U) , 

 (1). U∗
(𝛼,𝛽)∧k

(
Z̃c
)
=

(
L∗
(𝛼,𝛽)∨k

(
Z̃
))c

,

 (2). L∗
(𝛼,𝛽)∧k

(
Z̃c
)
=

(
U∗

(𝛼,𝛽)∨k

(
Z̃
))c

,

where * denotes one of the optimistic, pessimistic, and mean 
models.
Proof (1) We just prove the optimistic model. 
∀x ∈ UO

(𝛼,𝛽)∧k

(
Z̃c
)
 , we have ∀i , P

(
Z̃c|||[x]ISi

)
> 𝛽  and 

∑
y∈[x]ISi

�
1 − Z̃(y)

�
> k . And we can find that P

(
Z̃c|||[x]ISi

)
> 𝛽 

is equivalent to P
(
Z̃
|||[x]ISi

)
< 1 − 𝛽 = � . So

which is equivalent to the definition of LO
(𝛼,𝛽)∨k

(
Z̃
)
.

(2) The process is familiar to (1).

Proposition 20 shows the relationship of approximation 
operators between logical conjunction and disjunction mod-
els, which means that the two kinds of models can be trans-
lated into each other when � + � = 1 . For example, under 
the case � + � = 1 , we can compute the lower approxima-
tion of the logical disjunction models, and then the upper 
approximation of the logical conjunction models can be 
obtained based on (1) of Proposition 20. Now, let us discuss 
the containment relationship of approximations and decision 
regions of the proposed six models.

�
UO

(𝛼,𝛽)∧k

�
Z̃c
��c

=

⎧
⎪⎨⎪⎩
x ∈ U

�������
∃ i, P

�
Z̃
���[x]ISi

�
≥ 𝛼 ∨ ∃ j,

�
y∈[x]ISj

�
1 − Z̃(y)

�
≤ k

⎫
⎪⎬⎪⎭
,

Fig. 3  A summary diagram of 
the connections between these 
models
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Proposition 21 Given a MsDS MsDS = MsIS ∪
{
D,VD,FD

}
 , 

where MsIS =
{
ISi

||ISi =
(
U,AT ,VAT ,Fi

)
, i = 1, 2, ..., n

}
 . 

Assume � ≤ � and �, � ∈ [0, 1] , and k is a nonpositive inte-
ger, then for any Z̃ ∈ F(U) , we can get that 

(1) L∗
(𝛼,𝛽)∧k

(
Z̃
)
⊆ L∗

(𝛼,𝛽)∨k

(
Z̃
)
,

(2) U∗
(𝛼,𝛽)∧k

(
Z̃
)
⊆ U∗

(𝛼,𝛽)∨k

(
Z̃
)
,

where * denotes one of the optimistic, pessimistic, and mean 
models.
Proof It is easy to prove (1) and (2).   ◻

Proposition 21 manifests the containment relationship of 
approximations. The approximations of the logical disjunc-
tion models are larger than the approximations of the logical 
conjunction models. Based on it, we can induce the follow-
ing Proposition 22.

P r o p o s i t i o n  2 2  G i v e n  a  M s D S 
MsDS =

{{
ISi =

(
U,AT ,VAT ,Fi

)
, i = 1, 2, ..., s

}
∪MD

}
 , 

� , � , and a positive integer k, where � ≤ � and �, � ∈ [0, 1] , 
then for any Z̃ ∈ F(U) , we can get that 

 (1). Pos∗∧
(
Z̃
)
⊆ Pos∗

∨
(
Z̃
)
,

 (2). Neg∗∨
(
Z̃
)
⊆ Neg∗

∧
(
Z̃
)
,

where * denotes one of the optimistic, pessimistic, and mean 
models.
Proof It is easy to prove based on Proposition 21.   ◻

Proposition 22 indicates the containment relationship 
of positive and negative regions. The positive regions of 
the logical disjunction models are larger than the logical 
conjunction models, while the negative regions of them are 
smaller than the logical conjunction models.

Next, we apply our models in a weather example to evalu-
ate the effectiveness of them for decision-making. Given a 
MsDS MsDS which contains four information sources, 
which is shown in Table 1. And a1 , a2 , a3 , and a4 respectively 
represents outlook, temperature, humidity, and windy. The 
decision attribute d̃ is a fuzzy set representing good weather 
and the memberships of samples are denoted as 
d̃ =

{
1

3
,
1

2
,
1

6
,
1

6
,
1

2
,
2

3
,
5

6
,
1

2
,
5

6
,
1

3
,
5

6
,
1

2
,
1

3
,
1

3

}
. There is no deny-

ing that the thresholds � , � , and k will affect the performance 
of models. So in this study, we consider three cases to evalu-
ate the effectiveness of our models for decision-making. And 
the corresponding loss functions are given. It should be 
noted that the large value of k will make the conditions of 
the support functions become too strict so that the samples 
in the approximation sets will become very small. Thus, in 
most situations the value of k should not be too large. With-
out loss of generality, in this study the value of k is set to 1.

Case 1. When � + �=1, we consider the following loss 
function:

Then we can get � = 0.5 and � = 0.5 . Then the results of 
approximation are shown in Table 2.

From Table 2, we can easily find that the lower approxi-
mation of LDP-MRFSM is contained in LDM-MRFSM, and 
the lower approximation of LDM-MRFSM is contained in 

�PP = 0, �PN = 19,

�BP = 12, �BN = 7,

�NP = 19, �NN = 0.

Table 1  weather data U IS
1

IS
2

IS
3

IS
4

a
1

a
2

a
3

a
4

a
1

a
2

a
3

a
4

a
1

a
2

a
3

a
4

a
1

a
2

a
3

a
4

d̃

x
1

0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 1/3
x
2

0 0 0 1 2 1 1 1 0 0 0 1 1 1 0 1 1/2
x
3

2 1 0 0 1 0 0 0 2 1 0 0 1 0 0 0 1/6
x
4

2 1 0 0 1 0 0 0 2 1 0 0 2 0 0 1 1/6
x
5

2 2 1 0 2 1 1 1 2 2 1 1 0 1 0 0 1/2
x
6

2 2 1 1 0 1 1 0 2 2 1 1 0 1 1 0 2/3
x
7

1 2 1 1 1 2 1 1 0 2 1 0 1 2 1 1 5/6
x
8

0 1 0 0 2 1 1 1 1 1 0 1 0 1 0 0 1/2
x
9

1 2 1 1 0 1 1 1 0 2 1 0 1 2 1 1 5/6
x
10

2 1 1 0 2 1 1 0 0 0 0 0 1 0 1 0 1/3
x
11

0 1 1 1 0 2 1 0 0 1 1 1 0 2 0 1 5/6
x
12

1 1 0 1 2 1 1 1 1 1 0 1 0 1 0 0 1/2
x
13

2 1 0 1 0 0 0 0 2 0 1 1 2 1 1 0 1/3
x
14

2 1 0 1 2 1 1 0 2 0 1 1 2 1 1 0 1/3
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LDO-MRFSM, which satisfies (1) of Proposition 19. And 
(2)–(4) of Proposition 19 can also be verified to be true 
under case 1. Furthermore, when we consider the decision 
attribute d̃c =

{
2

3
,
1

2
,
5

6
,
5

6
,
1

2
,
1

3
,
1

6
,
1

2
,
1

6
,
2

3
,
1

6
,
1

2
,
2

3
,
2

3

}
 , we can 

obtain the approximations of the six models, which are pre-
sented in Table 3. Proposition 20 can be demonstrated to be 
true based on Tables 2 and 3.

The decision regions, according to Table 2, can be com-
puted via definition. The results are shown in Table 4. Sam-
ples in the positive region completely support the concept 
set, and samples in the negative region completely oppose 
the concept set, while samples in the upper and lower bound-
ary regions may support or oppose the concept set. For 
example, by using the LDO-MRFSM, x6 , x7 , x9 , and x11 are 
judged to have good weather while x13 and x14 are judged to 
not have good weather. The rest of the days are uncertain 
whether they have good weather or bad weather. Further-
more, we can find that LCP-MRFSM and LCM-MRFSM can 
divide the data set to four decision regions, LCO-MRFSM 

and LDP-MRFSM can divide the data set to two decision 
regions, and LDO-MRFSM and LDM-MRFSM can divide 
the data set to three decision regions.

Case 2. When 𝛼 + 𝛽 < 1, we consider the following loss 
function:

Then we can get � = 0.5 , � = 0.4 . The results of approxima-
tions are shown in Table 5.

The decision regions, according to Table 5, can be com-
puted via definition. The results are shown in Table 6. Take 
the decision results of LCO-MRFSM as an example. x1 , x3 , 
x4 , x10 , x13 , and x14 are judged to not have good weather. 
The rest of the days are uncertain whether they have good 
weather or bad weather. Furthermore, we can find that in 
Case 2, LCP-MRFSM and LCM-MRFSM can also success-
fully divide the data set to four decision regions, the LCO-
MRFSM and LDP-MRFSM can divide the data set to two 
decision regions, and LDO-MRFSM and LDM-MRFSM can 
divide a data set to three decision regions.

Case 3. When 𝛼 + 𝛽 > 1, we consider the following loss 
function:

�PP = 0, �PN = 19,

�BP = 16, �BN = 3,

�NP = 20, �NN = 0.

�PP = 0, �PN = 17,

�BP = 10, �BN = 2,

�NP = 12, �NN = 0.

Table 2  k=1, � = 0.5 , � = 0.5

Model Lower Upper

LCO-MRFSM x
2,5,6,7,8,9,11,12

∅

LDO-MRFSM x
1,2,3,4,5,6,7,8,9,10,11,12

x
6,7,9,11

LCP-MRFSM x
6,7,9,11

x
5,6,7,9

LDP-MRFSM x
2,5,6,7,8,9,11,12

x
2,5,6,7,8,9,11,12

LCM-MRFSM x
2,6,7,9,11

x
5,7,9

LDM-MRFSM x
1,2,5,6,7,8,9,10,11,12

x
5,6,7,8,9,11,12

Table 3  The approximations of six models with respect to d̃c

Model Lower Upper

LCO-MRFSM x
1,2,3,4,5,8,10,12,13,14

x
13,14

LDO-MRFSM x
1,2,3,4,5,6,7,8,9,10,11,12,13,14

x
1,3,4,10,13,14

LCP-MRFSM x
1,3,4,10,13,14

x
1,3,4,10,13,14

LDP-MRFSM x
1,2,3,4,8,10,11,12,13,14

x
1,2,3,4,5,8,10,12,13,14

LCM-MRFSM x
1,2,3,4,10,13,14

x
3,4,13,14

LDM-MRFSM x
1,2,3,4,6,8,10,11,12,13,14

x
1,3,4,5,8,10,12,13,14

Table 4  k=1, � = 0.5 , � = 0.5

Model Pos Neg Ubn Lbn

LCO-MRFSM ∅ x
1,3,4,10,13,14

∅ x
2,5,6,7,8,9,11,12

LDO-MRFSM x
9,11,6,7

x
13,14

∅ x
1,2,3,4,5,8,10,12

LCP-MRFSM x
9,6,7

x
1,2,3,4,8,10,12,13,14

x
5

x
11

LDP-MRFSM x
2,5,6,7,8,9,11,12

x
1,3,4,10,13,14

∅ ∅

LCM-MRFSM x
9,7

x
1,3,4,8,10,12,13,14

x
5

x
2,11,6

LDM-MRFSM x
5,6,7,8,9,11,12

x
3,4,13,14

∅ x
1,2,10

Table 5  k=1, � = 0.5 , � = 0.4

Model Lower Upper

LCO-MRFSM x
2,5,6,7,8,9,11,12

∅

LDO-MRFSM x
1,2,3,4,5,6,7,8,9,10,11,12

x
2,5,6,7,8,9,11,12

LCP-MRFSM x
6,7,9,11

x
2,5,6,7,8,9,12

LDP-MRFSM x
2,5,6,7,8,9,11,12

x
2,5,6,7,8,9,11,12

LCM-MRFSM x
2,6,7,9,11

x
5,7,8,9,12

LDM-MRFSM x
1,2,5,6,7,8,9,10,11,12

x
2,5,6,7,8,9,11,12

Table 6  k=1, � = 0.5 , � = 0.4

Model Pos Neg Ubn Lbn

LCO-MRFSM ∅ x
1,3,4,10,13,14

∅ x
2,5,6,7,8,9,11,12

LDO-MRFSM x
2,5,6,7,8,9,11,12

x
13,14

∅ x
1,10,3,4

LCP-MRFSM x
9,6,7

x
1,3,4,10,13,14

x
8,2,12,5

x
11

LDP-MRFSM x
2,5,6,7,8,9,11,12

x
1,3,4,10,13,14

∅ ∅

LCM-MRFSM x
9,7

x
1,3,4,10,13,14

x
8,12,5

x
2,11,6

LDM-MRFSM x
2,5,6,7,8,9,11,12

x
3,4,13,14

∅ x
1,10
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Then we can get � = 0.6 , � = 0.5 . The results of approxima-
tions are shown in Table 7.

The decision regions, according to Table 7, can be com-
puted via definition. The results are shown in Table 8. Take 
the LCM-MRFSM as an example. x9 and x7 are judged to 
have good weather. x1 , x2 , x3 , x4 , x8 , x10 , x12 , x13 , and x14 are 
judged to not have good weather. The rest of the days are 
uncertain whether they have good weather or bad weather. 
Furthermore, we can find that LCP-MRFSM, LCM-MRFSM 
and LDM-MRFSM can divide the data set to four decision 
regions, LCO-MRFSM can divide it to two decision regions, 
and LDO-MRFSM, LDP-MRFSM models can divide it to 
three decision regions.

All in all, we can find that the proposed six models can 
successfully divide a data set into two, three or four deci-
sion regions, and Proposition 19-22 can be verified based on 
the results of the case study. Furthermore, we can find that 
the positive regions of the logical conjunction models are 
smaller than the logical disjunction models, and the nega-
tive regions of them are larger than the logical disjunction 

models. It stems from Propositions 21 and 22, which can be 
shown in Fig 4.

6  The algorithm of the proposed six 
methods and the experimental analysis

In this section, we firstly give the corresponding six algo-
rithms of obtaining the four regions based on the proposed 
six methods, and the time complexity of these algorithms 
is analysed. Later, we apply our models in ten data sets to 
demonstrate that our models perform better than the mean 
method.

When we obtain a MsDS MsDS = MsIS ∪
{
D,VD,FD

}
 , 

where MsIS =
{
ISi

||ISi =
(
U,AT ,VAT ,Fi

)
, i = 1, 2, ..., n

}
 . 

Take LCO-MRFSM as an example. The value of k, � , and � 
are set in the beginning. For each sample x, the equivalence 
class of it under ISi is calculated. After that, the value of 
the support functions is computed, and then the lower and 
upper approximations can be computed based on Definition 
1. Finally, we can obtain the four decision regions employ-
ing the results of approximations. The processes of the other 
five models are similar to the process of LCO-MRFSM. The 
corresponding six algorithms about how to calculate the 
four decision regions are given in Algorithm 1-6. For the 
algorithm 1, the time complexity of step 5 can be regarded 
as O(1) when we use the package in python named the 
Numpy 1.16.5 because the package can avoid doing loops 
when computing the equivalence classes. That is the reason 
why we use python as the programming language. And the 
time complexity of the step 6, 9, 12, and 15 is O(|U|) in the 
worst case. So the total complexity is O(|U| × (s × |U|)) = 
O
(
s × |U|2) , where s denotes the source number of MsDS. 

The time complexity of the algorithm 2-4 is the same as 
the algorithm 1. For the algorithm 5 and 6 , the time com-
plexity of step 6 and 7 is O(|U|) in the worst case. And the 
complexity of the step 9 is O(s). So the total complexity 
is O(|U| × (s × |U| + s)) = O

(
s × |U|2 + s × |U|) . We can 

easily find that the time complexity of LCM-MRFSM and 
LDM-MRFSM methods is larger than LCO-MRFSM, LDO-
MRFSM, LCP-MRFSM, and LDP-MRFSM in the worst 
case. 

Table 7  k=1, � = 0.6 , � = 0.5

Model Lower Upper

LCO-MRFSM x
6,7,9,11

∅

LDO-MRFSM x
1,2,3,4,5,6,7,8,9,10,11,12

x
6,7,9,11

LCP-MRFSM x
7,9,11

x
5,6,7,9

LDP-MRFSM x
6,7,9,11

x
2,5,6,7,8,9,11,12

LCM-MRFSM x
6,7,9,11

x
5,7,9

LDM-MRFSM x
1,2,6,7,9,10,11

x
5,6,7,8,9,11,12

Table 8  k=1, � = 0.6 , � = 0.5

Model Pos Neg Ubn Lbn

LCO-MRFSM ∅ x
1,2,3,4,5,8,10,12,13,14

∅ x
9,11,6,7

LDO-MRFSM x
9,11,6,7

x
13,14

∅ x
1,2,3,4,5,8,10,12

LCP-MRFSM x
9,7

x
1,2,3,4,8,10,12,13,14

x
5,6

x
11

LDP-MRFSM x
9,11,6,7

x
1,3,4,10,13,14

x
8,2,12,5

∅

LCM-MRFSM x
9,7

x
1,2,3,4,8,10,12,13,14

x
5

x
11,6

LDM-MRFSM x
9,11,6,7

x
3,4,13,14

x
8,12,5

x
1,2,10

Fig. 4  The comparison of logi-
cal conjunction and disjunction 
models
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Table 9  Information about the 
data sets

No. Data sets Source Abbreviation Samples Attributes

1 Machine CPU Performance KEEL MCP 209 7
2 Concrete Compressive Strength UCI CCS 1030 9
3 Website Phishing UCI WP 1353 10
4 Contraceptive Method Choice UCI CMC 1473 9
5 Airfoil Self-Noise UCI ASN 1503 6
6 Wine Quality - red UCI WQR 1599 12
7 ANACALT KEEL ANA 4052 8
8 Wine Quality - white UCI WQW 4898 12
9 Shill Bidding Dataset UCI Shill 6321 13
10 Electrical Grid Stability Simulated Data UCI Ele 10000 14
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Table 10  Operating Environment

Name Model Parameter

CPU Intel(R)Core(TM) i5-6300HQ 2.30GHz
Platform Python 3.7
System Windows7 64bit
Memory DDR3 8GB;1600Mhz
Hard Disk HTS545050A7E680 500GB

Fig. 5  The generation process of MsIS



1041International Journal of Machine Learning and Cybernetics (2022) 13:1021–1048 

1 3

Fig. 6  The number of samples in decision regions of ASN by using the proposed six models

Fig. 7  The number of samples 
in decision regions of ASN by 
using MeanF

∧ model
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Table 11  The four regions of 
three cases in MCP

Model � = 0.5 , � = 0.5 � = 0.6 , � = 0.5 � = 0.5 , � = 0.4

Pos Neg Ubn Lbn Pos Neg Ubn Lbn Pos Neg Ubn Lbn

LCO-MRFSM 0 205 0 4 0 206 0 3 0 205 0 4
LDO-MRFSM 4 1 0 204 4 1 0 204 8 1 0 200
LCP-MRFSM 0 205 0 4 0 206 0 3 0 205 0 4
LDP-MRFSM 4 34 0 171 4 34 0 171 8 33 1 167
LCM-MRFSM 0 205 0 4 0 206 0 3 0 205 0 4
LDM-MRFSM 4 30 0 175 4 30 0 175 9 30 0 170
MeanF

∧ 0 205 0 4 0 206 0 3 0 205 0 4
MeanF

∨ 4 0 0 425 4 0 0 425 9 0 0 200

Table 12  The four regions of 
three cases in CCS

Model � = 0.5 , � = 0.5 � = 0.6 , � = 0.5 � = 0.5 , � = 0.4

Pos Neg Ubn Lbn Pos Neg Ubn Lbn Pos Neg Ubn Lbn

LCO-MRFSM 0 708 0 322 0 822 0 208 0 708 0 322
LDO-MRFSM 316 0 0 714 316 0 0 714 514 0 0 516
LCP-MRFSM 31 708 10 281 29 816 12 173 31 704 14 281
LDP-MRFSM 316 9 13 692 312 9 17 692 503 6 16 505
LCM-MRFSM 36 711 1 282 31 820 6 173 36 711 1 282
LDM-MRFSM 319 15 0 696 318 15 1 690 510 10 5 505
MeanF

∧ 0 711 0 319 0 823 0 207 0 711 0 319
MeanF

∨ 319 0 0 711 319 0 0 711 515 0 0 515
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Table 13  The four regions of 
three cases in WP

Model � = 0.5 , � = 0.5 � = 0.6 , � = 0.5 � = 0.5 , � = 0.4

Pos Neg Ubn Lbn Pos Neg Ubn Lbn Pos Neg Ubn Lbn

LCO-MRFSM 44 651 0 658 44 788 0 521 44 651 0 658
LDO-MRFSM 497 110 0 746 497 110 0 746 623 110 0 620
LCP-MRFSM 354 727 17 255 329 815 42 167 354 704 40 255
LDP-MRFSM 561 487 30 275 548 487 43 275 649 461 56 187
LCM-MRFSM 358 722 1 272 357 802 2 192 358 708 15 272
LDM-MRFSM 561 496 8 288 558 496 11 288 641 489 15 208
MeanF

∧ 0 702 0 651 0 805 0 548 0 702 0 651
MeanF

∨ 548 0 0 805 548 0 0 805 651 0 0 702

Table 14  The four regions of 
three cases in CMC

Model � = 0.5 , � = 0.5 � = 0.6 , � = 0.5 � = 0.5 , � = 0.4

Pos Neg Ubn Lbn Pos Neg Ubn Lbn Pos Neg Ubn Lbn

LCO-MRFSM 0 606 0 867 0 921 0 552 0 606 0 867
LDO-MRFSM 487 0 0 986 487 0 0 986 826 0 0 647
LCP-MRFSM 91 641 14 727 56 937 49 431 91 637 18 727
LDP-MRFSM 546 52 10 865 538 52 18 865 842 37 25 569
LCM-MRFSM 72 642 0 759 69 943 3 458 72 641 1 759
LDM-MRFSM 549 48 0 876 549 48 0 876 838 48 0 587
MeanF

∧ 0 629 0 844 0 962 0 511 0 629 0 844
MeanF

∨ 511 0 0 962 511 0 0 962 844 0 0 629

Table 15  The four regions of 
three cases in ASN

Model � = 0.5 , � = 0.5 � = 0.6 , � = 0.5 � = 0.5 , � = 0.4

Pos Neg Ubn Lbn Pos Neg Ubn Lbn Pos Neg Ubn Lbn

LCO-MRFSM 0 498 0 1005 0 770 0 733 0 498 0 1005
LDO-MRFSM 1005 0 0 498 1005 0 0 498 1219 0 0 284
LCP-MRFSM 0 498 0 1005 0 770 0 733 0 498 0 1005
LDP-MRFSM 1005 0 0 498 1005 0 0 498 1219 0 0 284
LCM-MRFSM 0 498 0 1005 0 770 0 733 0 498 0 1005
LDM-MRFSM 1005 0 0 498 1005 0 0 498 1219 0 0 284
MeanF

∧ 0 498 0 1005 0 770 0 733 0 498 0 1005
MeanF

∨ 1005 2 0 496 1005 2 0 496 1218 2 0 283

Table 16  The four regions of 
three cases in WQR

Model � = 0.5 , � = 0.5 � = 0.6 , � = 0.5 � = 0.5 , � = 0.4

Pos Neg Ubn Lbn Pos Neg Ubn Lbn Pos Neg Ubn Lbn

LCO-MRFSM 18 744 0 837 18 744 0 837 18 744 0 837
LDO-MRFSM 855 10 0 734 855 10 0 734 855 10 0 734
LCP-MRFSM 271 744 0 584 271 744 0 584 271 744 0 584
LDP-MRFSM 855 209 0 535 855 209 0 535 855 209 0 535
LCM-MRFSM 153 744 0 702 153 744 0 702 153 744 0 702
LDM-MRFSM 855 92 0 652 855 92 0 652 855 92 0 652
MeanF

∧ 18 744 0 837 18 744 0 837 18 744 0 837
MeanF

∨ 855 10 0 734 855 10 0 734 855 10 0 734
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Table 17  The four regions of 
three cases in ANA

Model � = 0.5 , � = 0.5 � = 0.6 , � = 0.5 � = 0.5 , � = 0.4

Pos Neg Ubn Lbn Pos Neg Ubn Lbn Pos Neg Ubn Lbn

LCO-MRFSM 2471 395 173 1013 2467 396 177 1012 2471 306 262 1013
LDO-MRFSM 3655 156 155 86 3646 156 164 86 3681 142 169 60
LCP-MRFSM 2977 395 503 177 297 395 503 177 2977 271 627 177
LDP-MRFSM 3656 139 241 16 3542 139 355 16 3660 138 242 12
LCM-MRFSM 3039 396 430 187 3039 396 430 187 3039 280 546 187
LDM-MRFSM 3656 139 224 33 3550 139 330 33 3666 136 227 23
MeanF

∧ 0 408 0 3644 0 408 0 3644 0 408 0 3644
MeanF

∨ 3644 0 0 408 3644 0 0 408 3779 0 0 273

Table 18  The four regions of 
three cases in WQW

Model � = 0.5 , � = 0.5 � = 0.6 , � = 0.5 � = 0.5 , � = 0.4

Pos Neg Ubn Lbn Pos Neg Ubn Lbn Pos Neg Ubn Lbn

LCO-MRFSM 25 1641 0 3232 25 3838 0 1035 25 1640 1 3232
LDO-MRFSM 1061 0 0 3837 1060 0 1 3837 3258 0 0 1640
LCP-MRFSM 366 1771 38 2723 366 3838 38 656 366 1640 169 2723
LDP-MRFSM 1191 526 24 3157 1060 526 155 3157 3258 526 24 1090
LCM-MRFSM 211 1693 16 2978 211 3838 16 833 211 1640 69 2978
LDM-MRFSM 1113 205 0 3580 1060 205 53 3580 3258 205 0 1435
MeanF

∧ 0 1640 0 3258 0 3838 0 1060 0 1640 0 3258
MeanF

∧ 1060 0 0 3838 1060 0 0 3838 1060 0 0 3838

Table 19  The four regions of 
three cases in Shill

Model � = 0.5 , � = 0.5 � = 0.6 , � = 0.5 � = 0.5 , � = 0.4

Pos Neg Ubn Lbn Pos Neg Ubn Lbn Pos Neg Ubn Lbn

LCO-MRFSM 0 5646 0 675 0 5646 0 675 0 5646 0 675
LDO-MRFSM 675 0 0 5646 675 0 0 5646 675 0 0 5646
LCP-MRFSM 0 5646 0 675 0 5646 0 675 0 5646 0 675
LDP-MRFSM 675 0 0 5646 675 0 0 5646 675 0 0 5646
LCM-MRFSM 0 5646 0 675 0 5646 0 675 0 5646 0 675
LDM-MRFSM 675 0 0 5646 675 0 0 5646 675 0 0 5646
MeanF

∧ 0 5646 0 675 0 5646 0 675 0 5646 0 675
MeanF

∨ 675 0 0 5646 675 0 0 5646 675 0 0 5646

Table 20  The four regions of 
three cases in Ele

Model � = 0.5 , � = 0.5 � = 0.6 , � = 0.5 � = 0.5 , � = 0.4

Pos Neg Ubn Lbn Pos Neg Ubn Lbn Pos Neg Ubn Lbn

LCO-MRFSM 0 6380 0 3620 0 6380 0 3620 0 6380 0 3620
LDO-MRFSM 3620 0 0 6380 3620 0 0 6380 3620 0 0 6380
LCP-MRFSM 0 6380 0 3620 0 6380 0 3620 0 6380 0 3620
LDP-MRFSM 3620 0 0 6380 3620 0 0 6380 3620 0 0 6380
LCM-MRFSM 0 6380 0 3620 0 6380 0 3620 0 6380 0 3620
LDM-MRFSM 3620 0 0 6380 3620 0 0 6380 3620 0 0 6380
MeanF

∧ 0 6380 0 3620 0 6380 0 3620 0 6380 0 3620
MeanF

∨ 3620 0 0 6380 3620 0 0 6380 3620 0 0 6380
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Next, we do the following experiment to show that our 
models can be applied in real data sets. We download eight 
data sets on UCI[9] and two data sets on KEEL[10]. The 
information of the data sets is given in Table 9. All pro-
grams of experiments were designed using Python on a per-
sonal computer. The details of the environment are shown 
in Table 10. To apply the models we proposed, the decision 
attribute values of data sets should be in the range [0, 1], so 
we can normalize the decision attribute values to fuzzy data 
before experiments. The normalization formula is

where ṽ
(
es
)
 denotes the normalization result of v

(
es
)
.

We all know that multi-source data sets are not easily 
obtainable directly from machine learning data sets. In this 
study, we employ a method similar to [36] to generate a 
multi-source information system by adding noise. First, two 
random number sets 

{
ni
||ni ∼ N(0, 0.01), i = 1, 2, ..., s

}
 and {

ri
||ri ∼ U(0, 0.1), i = 1, 2, ..., s

}
 are produced randomly. 

Next, we randomly select 40% of the original data to add 

ṽ
(
es
)
=

v
(
es
)
−min

t

(
v
(
et
))

max
t

(
v
(
et
))

−min
t

(
v
(
et
)) ,

ni , and 20% of the remaining original data to add ri , and the 
rest keep uncharged. By repeating the above process, we 
can obtain s information systems. The generation process 
is presented in Fig5. In the following experiment, we con-
struct a multi-source information system which consists of 
ten information sources.

In the experiment, we compare our models with the 
mean fusion method which is commonly used. Before 
experiment, we introduce the mean fusion method. Given 
a MsIS = {IS1, IS2, ..., ISq} . The mean method integrates 
these subsystems to a single information system by using

where NewIS
(
xj, ak

)
 represents the fused information and 

ISi
(
xj, ak

)
 represents the information of i-th source. The 

mean fusion method is suitable to deal with data that is lit-
tle fluctuant. When data is high fluctuant, the method will 
have high errors.

It should be noted that in the following experiments, 
after we obtain a new information system by the mean 
fusion method, we can compute the lower and upper 

NewIS
(
xj, ak

)
=

1

q

q∑
i=1

ISi
(
xj, ak

)
,
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approximations and the four decision regions of it by the 
methods presented in [4]. So we can acquire two kinds of 
decision results, which correspond to the logical conjunction 
and disjunction models, denoted as MeanF∧ and MeanF∨ 
respectively. Then, the comparison can be conducted on 
the results of the four decision regions. By utilizing the six 
proposed models and the mean fusion models, each data 
set will be divided into four decision regions, which corre-
spond to the positive, negative, upper boundary, and lower 
boundary region. As previously stated, samples in the posi-
tive region completely support the concept set, and samples 
in the negative region completely oppose the concept set, 
while samples in the upper and lower boundary regions may 
support or oppose the concept set. As the previous weather 
example, let the value of k be 1, and we compare our mod-
els with mean method under three cases: � = � = 0.5; � 
= 0.6, � = 0.5; � = 0.5, � = 0.4. The corresponding loss 
functions are the same as the previous example. The results 
are presented in Tables 11, 12, 13, 14, 15, 16, 17, 18, 19 
and20. From Table11, we can find that, for the three cases, 
LDO-MRFSM, LDP-MRFSM and LDM-MRFSM can 
divide the data set to three decision regions, while the mean 
fusion models can only divide it to two decision regions. 
For the data sets CCS, CMC, and WQW, LDP-MRFSM, 
LCP-MRFSM, LCM-MRFSM, and LDM-MRFSM can 
divide datasets into three or four regions, while MeanF∨ 
and MeanF∧ models can only divide datasets to two regions 
under three cases. It shows that the four proposed models 
perform better than the mean fusion models for the deci-
sion-making in three situations. However, LDO-MRFSM 
and LCO-MRFSM can only divide these data sets into two 
regions just like MeanF∨ and MeanF∧ models for the three 
datasets. For the data set WP, the six proposed models can 
divide the data set to four decision regions or at least three 
decision regions, while the two kinds of mean fusion models 
can only divide the data set to the negative region and the 
lower boundary region or the positive region and the lower 
boundary region. For the data set WQR, the eight methods 
can all divide the data set to three decision regions. In the 
data set ANA, all proposed models perform better than the 
mean fusion methods for decision-making in three situa-
tions. For the data set ASN, the MeanF∨ model performs 
better than the proposed six models, dividing the data set to 
three regions, while the MeanF∧ model has the same effect 
as the proposed six models, only dividing the data set to two 
regions. Similarly, for the data sets Shill and Ele, our pro-
posed models and the mean fusion methods can only divide 
the data sets to two regions.

We can find that in the data sets ASN, Shill, and Ele, our 
models can only divide the data sets to two decision regions: 
the negative and the lower boundary region or the positive 
and the lower boundary region. It stems from the equiva-
lence classes of all samples are equivalent to themselves, 

called over granulation, which means [x]ISi = {x} , ∀x ∈ U . 
When the over granulation happens, for any fuzzy set 
Z̃ ∈ F(U) , we have I − LSF

ISi

Z̃
(x) = 1, ∀x ∈ U . So the lower 

approximation set of the logical disjunction models will be 
equivalent to U. Thus, none of samples will be put in the 
negative region or the upper boundary region. For the logical 
conjunction models, when the over granulation happens, we 
can have II − USF

ISi

Z̃
(x) = 0 , ∀x ∈ U . So the upper approxi-

mation set will be equivalent to an empty set. Thus, none 
of samples will be put in the upper boundary region or the 
positive region. Now, take the data set ASN as an illustra-
tive example. We compare the results of decision-making 
between our models and the mean fusion method MeanF∧ by 
setting the number of attributes from 1 to 5. Without loss of 
generality, set the value of k be 1 and � be 0.5 and � be 0.5. 
The results are shown in Fig 6 and Fig 7. From the results, 
we can find that the data set can be divided to four or three 
decision regions when the number of attributes is 1, 2, 3 
or 4 by using the proposed LCO-MRFSM, LDO-MRFSM, 
LCP-MRFSM, and LCM-MRFSM. However, by using these 
models, the data set can only be divided to two decision 
regions when the number of attributes is 5. Thus, we can get 
that the over granulation is caused by the 5-th attribute. And 
we can find that the data set ASN can only be divided to the 
lower boundary and the negative regions by using the mean 
fusion method MeanF∧ when the number of attributes is 1, 
2, 3 or 4. This indicates that LCO-MRFSM, LDO-MRFSM, 
LCP-MRFSM, and LCM-MRFSM are superior to the mean 
fusion method MeanF∧ in terms of decision-making when 
over granulation has been resolved.

7  Conclusion

In this paper, we propose six double-quantitative multigran-
ulation rough fuzzy models in order to extract decision rules 
from a MsDS. Firstly, we define four kinds of support func-
tions by using the relative and information. We utilize these 
support functions to define the approximation operators of 
the optimistic and pessimistic models. Specially, we find 
that the conditions of optimistic models are too lenient and 
pessimistic models too strict. So in this paper, two kinds of 
moderate models called mean models are proposed. For the 
proposed six models, some propositions of the approxima-
tion operators are discussed. And the four decision regions 
can be computed based on the results of approximations. 
Later the four decision rules are established based on the 
four decision regions. Furthermore, the containment rela-
tionships of the approximations and decision regions are 
discussed, and when � + � = 1 , they can be translated 
into each other. A summary diagram of the relationships 
among these models are shown in Fig3. The corresponding 
algorithms are given and the time complexity of them are 
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analysed. Later, a weather example is utilized to illustrate 
the effectiveness of our models for decision-making. The 
results manifest that our models can successfully divide 
data sets into the positive region, the negative region, the 
lower and the upper boundary region, where samples in 
the positive region completely support the concept set, and 
samples in the negative region completely oppose the con-
cept set, while samples in the upper and lower boundary 
regions may support or oppose the concept set. Finally, an 
experiment is conducted to demonstrate that our models 
are more effective than the mean fusion method in terms of 
decision-making.
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