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An Emerging Fuzzy Feature Selection Method Using
Composite Entropy-Based Uncertainty Measure and

Data Distribution
Weihua Xu, Kehua Yuan , Wentao Li , and Weiping Ding

Abstract—Feature selection based on neighborhood rough set
is a noteworthy step in dealing with numerical data. Informa-
tion entropy, proven in many theoretical analysis and practical
applications, is a compelling feature evaluation method for un-
certainty information measures. Nonetheless, information entropy
replaces probability with uncertainty measure to evaluate the av-
erage amount of information and ignores the decision distribution
of data, especially in describing the uncertainty in imbalanced
data. This paper discusses an emerging method for the feature
selection in fuzzy data with imbalanced data by presenting a local
composite entropy based on a neighborhood rough set. Based on
the neighborhood rough set model, we discuss a similar relation
to describe the relationship between different objects in unbal-
anced fuzzy data. In this process, to fully consider the distribution
characteristics of unbalanced data, we construct a local composite
entropy for handling the fuzzy decision systems with uncertainty
and decision distribution, which is proven to be monotonic. More-
over, to improve the selection efficiency, a local heuristic forward
greedy selection algorithm based on the local composite measure is
designed to select the optimal feature subset. Finally, experimental
results on twelve public datasets demonstrate that our method has
better classification performance than some state-of-the-art feature
selection methods in fuzzy data.

Index Terms—Composite information entropy, feature selection,
fuzzy decision dataset, local neighborhood rough set.

I. INTRODUCTION

R ECENTLY, feature selection, as a required step of data
preprocessing, has been widely applied to intelligent com-

puting, data mining, and machine learning [1], [2], [4], [13], [18].
The problems of high-dimensional computation, low classifica-
tion accuracy and over-fitting could be well solved by removing
the irrelevant and redundant features.
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As a powerful tool to deal with imprecision and uncertainty,
rough set theory has attracted extensive attention in feature selec-
tion [4], [9], [15], [21]. However, the classical rough set model
could only handle classified data, and other types of data need to
be converted into discrete data for further processing, which may
cause the loss of useful information [24], [26], [31]. Therefore,
the rough set model is further extended to deal with various types
of data, including set-valued data [14], interval valued data [8],
intuitionistic data [7], fuzzy data [5], [12], [15], [22]. Consider-
ing the tolerance of neighborhood rough set to data difference,
we try to adopt feature selection method based on neighborhood
rough set model in fuzzy data. There are many researches on
feature selection of neighborhood rough set. Yang et al. proposed
a novel neighborhood rough set model based on distance metric
learning and designed feature selection algorithm according to
distance’s properties [28]. By fuzzy neighborhood rough sets,
Zhang et al. proposed a heuristic feature selection algorithm
based on fuzzy-neighborhood relative decision entropy [32].
Yang et al. studied the dynamic fuzzy neighborhood rough
set approach for interval-valued information system with fuzzy
decision [29]. Barman et al. proposed a novel technique to detect
a suitable threshold of neighborhood rough set for hyperspectral
band selection [2]. Neighborhood rough set theory is an effective
mathematical method for feature selection by depicting uncer-
tainty. It is also noted that the calculation of neighborhood class
is a repetitive and redundant process, especially in the traversal
selection of features. Therefore, how to improve the efficiency
of selection is a problem worth studying.

In order to further improve compute efficiency, Qian et al.
proposed local neighborhood rough set model and designed
the corresponding attribute reduction in [15]. This novel idea
only needs to consider the objects in target concept, which
provides a convenient way to search the required information
directly and reduces the filtering time. It is more effective to
search knowledge from local viewpoint than global viewpoint.
Because of this remarkable feature of local rough set, scholars
focus on several generalized local rough set models for different
information systems [3], [5], [11], [26], [34].

It is well known that the applications of uncertainty mea-
sures have been reported more and more frequently in feature
selection. Wang et al. introduced distance measures into fuzzy
rough sets and designed attribute significance measure in de-
cision table [23]. Peng et al. constructed uncertainty measure
based on fuzzy symmetry relations and applied it to feature
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selection [13]. Wang et al. focused on constructing monotonic
uncertainty measures in probabilistic rough set model for at-
tribute reduction [22]. The above researches all focus on the un-
certainty from algebraic viewpoint and the uncertainty measures
could only describe the whole approximate ability of features
included in subset. Information entropy can reasonably quantify
the statistical characteristics of information, so it and some of
its deformations have been widely used in feature selection.
Zhang et al. investigated the incremental feature selection us-
ing a fuzzy-rough-set-based information entropy with incoming
instances [33]. Aremu et al. proposed a correlation and relative
entropy feature engineering framework specific to asset data [1].
Huang et al. presented an incremental feature selection method
based on the matrix representation of the conditional entropy [6].
It should be pointed out that the importance of features based
on information view only explains the impact of uncertainty
classification on features. It will be an emerging topic to combine
uncertainty measurement with information entropy for feature
selection to improve the quality of uncertainty measurement in
neighborhood decision system. Sun et al. proposed fuzzy neigh-
borhood information entropy based on uncertainty measures to
select feature subset in fuzzy neighborhood multigranulation
rough sets [18]. Song et al. introduced uncertainty measures
by using new defined divergence-based cross entropy measure
in decision making [17]. Sun et al. proposed a novel NMRS-
based attribute reduction method using Lebesgue and entropy
measures in incomplete neighborhood decision systems [21].
However, the above entropy measures only evaluate the im-
portance of features from the ability of conditional features to
deal with uncertainty while ignoring the characteristics of data
distribution, which is not applicable to dealing with unbalanced
distributed data.

Inspired by the above ideas, we try to improve information
entropy to enhance further its ability to describe uncertainty in
feature selection. Compared with some existing methods, the
designed measure can comprehensively evaluate the features
and improve object classification performance. Experimental
results also verify the effectiveness of this method. The main
contributions of this paper are as follows:
� We improved the ability of information entropy to describe

uncertainty and designed a composite information entropy
(CIE) to depict features in a fuzzy decision dataset. Com-
pared with some existing methods, this measure could se-
lect excellent features that have better object classification
performance.

� Unlike other information entropy measures, the designed
local composite information entropy focuses on the un-
certainty measure and decision distribution, improving its
ability to describe uncertainty and better evaluate selection
features. Meanwhile, a forward heuristic algorithm can be
designed to select essential features based on the mono-
tonicity of the designed measure. The heuristic algorithm
settles the NP problem of finding attribute reduction subset
very well, significantly reducing the time complexity of
selecting the optimal feature subset.

� Moreover, local thought is also considered in the fea-
ture selection. The local neighborhood rough set avoids

Fig. 1. Block diagram of steps of the proposed approach.

the unnecessary calculation out of target concept, further
improving selection efficiency. Compared with the global
rough set, the feature selection algorithm based on the local
rough set has better classification accuracy and error.

This paper is organized as follows. Some related works about
feature selection are introduced in Section II. In Section III, the
preliminaries of local neighborhood rough set is reviewed. The
composite information entropy and its properties are shown in
Section IV. Section V introduces the local heuristic property se-
lection algorithm and analysis its corresponding time complex-
ity. In Section VI, we verify the effectiveness and robustness of
designed algorithms in twelve public datasets from the classify
accuracy induced by reduction. Finally, the conclusions and the
further works are described in Section VII. Moreover, the block
diagram of steps of the proposed approach is shown in the Fig. 1.

II. RELATED WORKS

With the development of information science, the data scale
becomes bigger and the redundant information increases corre-
spondingly. The feature selection as a reduction method has been
widely used in data mining. As we all know, the feature evalua-
tion index, selection strategy and stop criteria are the three key
elements in feature selection algorithm. These three elements are
directly related to the result of feature selection. At present, the
researches try to improve the classification performance through
designing different select measure according to the characterizes
of data.

As an important tool to deal with uncertain information, rough
set theory does not need any prior knowledge in conceptual
approximation, so it is further applied to feature selection al-
gorithm. For dealing with real data, Qian et al. designed the
significant measure based on lower approximation to measure
the importance of attributes and adopted a forward strategy to
select excellent features until the positive region is the same
as original ones [26]. Zhou et al. applied the rough set theory
to online stream feature selection and designed an online early
terminated streaming feature selection algorithm. In their pro-
posed algorithm, the dependency degree function is regarded as
the early terminated mapping function, and the feature still can
be selected unless the function gap between next subset and the
current subset is less than a certain value β [35]. Wang et al. de-
fined information function based on neighborhood dependency
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function and designed heuristic feature selection algorithm [27].
As for fuzzy decision data, sheeja et al. given the new definition
of fuzzy rough set based on diverse measure and designed feature
selection algorithm on the corresponding approximations [20].
In 2016, Wang et al. defined the dependency between fuzzy de-
cision and conditional attributes and employed the dependency
to evaluate the significance of candidate feature, using which
a greedy feature subset selection algorithm is designed [4].
Thereupon, they proposed a feature selection algorithm based on
fuzzy approximation in parameterized fuzzy neighborhood [25].

To improve the select efficiency, the various strategy is de-
signed. Chen et al. utilized the parallel of neighborhood distance
matrix to design parallel algorithm for computing reduction in
DNRS, the corresponding reduced subset behaves well in classi-
fication accuracy and consume time [4]. For dynamic data, Sang
et al. proposed an incremental feature selection method [16].
Jiang et al. defined the intra-class radius and inter-class radius to
distinguish samples and also proposed an accelerator attribute
reduction algorithm based on supervised neighborhood rough
set. Their experimental results show the accelerator reduction
algorithm is effective and efficient for feature selection [9].

Feature selection aims to select a minimal feature subset with
as much important information as possible. For fuzzy data,
we mainly research a feature selection approach to improve
the object classification performance. Compared with existing
researches, the designed algorithm could evaluate features based
on uncertainty measure and data distribution from information
entropy viewpoint. All the superiority of proposed algorithm is
verified through numerical experiments.

III. PRELIMINARIES

In this section, some basic concepts are reviewed, including
fuzzy decision dataset, local neighborhood rough set and some
measures of rough set model.

A. Fuzzy Decision Dataset

Definition 1 [26]: Let FDD = (U,N) be a fuzzy decision
dataset, where U = {x1, x2, . . . , xn} denotes the set of finite
objects, N = B ∪D denotes the union of conditional attribute
set B = {b1, b2, . . . , bm}, decision attribute set D = {d}, and
B ∩D = ∅. For ∀b ∈ N and ∀x ∈ U , b(x) represents the value
of object x under the attribute b. Also, if b(x) ∈ [0, 1] for all
conditional attributes, the I is called fuzzy decision dataset. A
fuzzy decision dataset is shown in Table I.

B. Local Neighborhood Rough Set in Fuzzy Decision Dataset

The classical rough set model can only deal with categorical
data accurately due to the strict equivalence relation, which lacks
inclusiveness in numerical data. For this limitation, we use the
Euclidean distance Δ to describe the relationship between any
two objects in universe under neighborhood relation RA defined
on A ⊆ B in a fuzzy decision dataset. Given δ, two samples can
be considered to be the same when the distance between them
is less than or equal to δ. δRA

(x) denotes the neighborhood

TABLE I
A FUZZY DECISION DATASET

classes [26] of x on RA, which is defined as

[x]δRA
= {xs|Δ(x, xs) ≤ δ, xs ∈ U}. (1)

Based on the neighborhood classes, we will introduce the global
and local neighborhood rough set model to approximate target
concept by two definite sets, lower approximation and upper
approximation.

Definition 2 [26]: Let FDD = (U,B ∪D) be a fuzzy deci-
sion dataset, where U/D = {D1, D2, . . . , Ds}. Given neighbor
radius δ, the neighborhood relation and corresponding neighbor-
hood class of object x ∈ U defined on A ⊆ B can be expresses
asRδ

A and [x]δRA
. Then, for anyDi ∈ U/D, the global lower and

upper approximations of Di under RA are respectively defined
as

Rδ
G,A(Di) =

{
x|[x]δRA

⊆ Di, x ∈ U
}

=
{
x|[x]δRA

⊆ Di, x ∈ Di

}
,

Rδ
G,A(Di) =

{
x|[x]δRA

∩Di 	= ∅, x ∈ U
}

= ∪{
[x]δRA

|[x]δRA
∩Di 	= ∅, x ∈ Di

}
. (2)

The pair < Rδ
G,A(Di), Rδ

G,A(Di) > is called global neighbor-
hood rough set.

According to Definition 2, We need to compare the relation-
ship between target concept and the object class in U . It is a
time-consuming project for obtaining the target approximations
by traversing all objects, especially in big scale data. Actually,
the target objects what we looking for can be obtained through
the target concept. The local rough set model proposed by Qian
et al. has settled this problem well.

Definition 3 (Continue to Definition III-B): For any Di ∈
U/D, the local lower and upper approximations of Di under
RA are respectively defined as

Rδ
A(Di) =

{
x|[x]δRA

⊆ Di, x ∈ Di

}
,

Rδ
A(Di) =

{
x|[x]δRA

∩Di 	= ∅, x ∈ Di

}
. (3)
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The pair < Rδ
A(Di), Rδ

A(Di) > is called local neighborhood
rough set. The local rough set only needs to compare the rela-
tionship between target concept and object classed in Di while
the global rough set needs to obtain the all information from the
universe U according to definition III-B, thus it could reduce the
time complexity in concept approximation.

Definition 4 (Continue to Definition III-B): The local lower
approximation Rδ

A(D) and upper approximation Rδ
A(D) in

fuzzy decision dataset are defined by

Rδ
A(D) =

{
Rδ

A(D1), R
δ
A(D2), . . . , R

δ
A(Ds)

}
,

Rδ
A(D) =

{
Rδ

A(D1), Rδ
A(D2), . . . , Rδ

A(Ds)
}
. (4)

The local positive, negative and boundary regions are
POSRδ

A
(D) =

⋃s
i=1 R

δ
A(Di), NEGRδ

A
(D) =

⋃s
i=1(U −

Rδ
A(Di) and BNDRδ

A
(D) =

⋃s
i=1(R

δ
A(Di)−Rδ

A(Di)).

C. Accuracy Measures of Rough Set Model

In neighborhood rough set theory, the accuracy of model de-
pends on the size of positive, negative and boundary regions [26].
The smaller the positive region and the larger the negative
region are, the weaker its accuracy is. Moreover, the smaller
the boundary region of rough model is, the stronger ability to
deal with uncertainty is. The following measures are usually
used to describe the approximate ability of rough set.

Definition 5 [30]: Given a fuzzy decision dataset FDD =
(U,N), the neighborhood radius is δ. ∀Di ∈ U/D, the accuracy
of approximations
γRδ

A
(Di) in neighborhood rough set is defined as

γRδ
A
(Di) =

|Rδ
A(Di)|
|Di| .

(5)

In order to further consider the possibility of the upper ap-
proximation, the accuracy of approximationsα(Rδ

A)(Di) is also
defined as

αRδ
A
(Di) =

|Rδ
A(Di)|

|Rδ
A(Di)|

.
(6)

The accuracy of approximation αRδ
A
(Di) could comprehen-

sive describe the accuracy of rough set model from certain and
possible aspects. The above two measures depict neighborhood
rough set based on approximations, they all have a positive
relationship with the approximate ability, that is, the larger the
value, the more accurate the model.

The uncertainty could be described by the amount of infor-
mation, and the greater the amount of information, the less
the uncertainty. In 1948, Shannon put forward the concept of
Shannon entropy to describe the amount of information, which
is defined as follows.

Definition 6 [19]: For random variance Y , where its value
range is {Y1, Y2, . . . , Ys}, p(Yi) is the corresponding probability
of Yi, then the shannon information entropy H(p) is

H(p) = −
∑
Yi∈Y

p(Yi)log(p(Yi)). (7)

D. Motivation

In data analysis, removing irrelevant and redundant features
is a necessary step for further processing. Recently, rough set
model as an important tool to deal with uncertainty knowledge
has been widely used to feature selection. However, most of
the existing studies focus on uncertainty measures to evaluate
features, but ignore the distribution of data. Therefore, we try to
design an indicator combining uncertainty and data distribution
to evaluate feature from the perspective of information entropy.
Compared with other existing indicators, the indicator proposed
in this paper can describe characteristics more comprehensively,
as shown in the following Example.

Example 1: A fuzzy decision dataset is shown in Table I,
where U = {x1, x2, . . . , x10} and B contains four conditional
attributes {b1, b2, b3, b4} and d is decision attribute.

We divide the conditional features into two granules, that is,
B1 = {b1, b2} and B2 = {b3, b4}. For obtaining the lower and
upper approximations of two decision classes under B1, we first
calculate the distance between any two objects under B1, which
is shown in distance matrix D1.

M1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.04 0.12 0.07 0.17 0.38 0.34 0.27 0.13 0.19
0.04 0 0.13 0.07 0.18 0.34 0.31 0.25 0.13 0.21
0.12 0.13 0 0.05 0.29 0.44 0.42 0.21 0.01 0.30
0.07 0.07 0.05 0 0.24 0.40 0.37 0.22 0.06 0.26
0.17 0.18 0.29 0.24 0 0.37 0.30 0.42 0.29 0.04
0.38 0.34 0.44 0.40 0.37 0 0.08 0.38 0.46 0.41
0.34 0.31 0.42 0.37 0.30 0.08 0 0.40 0.43 0.34
0.27 0.25 0.21 0.22 0.42 0.38 0.40 0 0.22 0.45
0.13 0.13 0.01 0.06 0.29 0.46 0.43 0.22 0 0.30
0.19 0.21 0.30 0.26 0.04 0.41 0.34 0.45 0.30 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let δ = 0.16, the neighborhood on relation R{B1} are

[x1]
δ
RB1

= [x2]
δ
RB1

= [x3]
δ
RB1

= [x4]
δ
RB1

= [x9]
δ
RB1

= {x1, x2, x3, x4, x9},
[x5]

δ
RB1

= [x10]
δ
RB1

= {x5, x10},

[x6]
δ
RB1

= [x7]
δ
RB1

= {x6, x7},

[x8]
δ
RB1

= {x8}.
Then, we obtain the lower and upper approximations of

Di(i = 1, 2) according to Definition III-B as follows.
Rδ

{B1}(D1) = ∅,

Rδ
{B1}(D2) = {x8};

Rδ
{B1}(D1) = {x1, x2, x3, x4, x5, x6},

Rδ
{B1}(D2) = {x7, x8, x9, x10}.

Then, the αRδ
B1

(Di) are obtained

αRδ
B1

(D1) =
1
10 , αRδ

B1

(D2) =
1
10 .

It is noted that the αRδ
A
(D) is set to 1

n for convenience
when the lower approximation is ∅. According to the lower
approximation, there is no object that can be determined to
belong to D1, and there is only one object that is determined
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Fig. 2. The classification results of KNN on B1.

Fig. 3. The classification results of KNN on B2.

to belong to D2. Similarly, we could obtain the lower and upper
approximations of two decision classes under B2 are

Rδ
{B2}(D1) = {x1},

Rδ
{B2}(D2) = {x8, x9};

Rδ
{B2}(D1) = {x1, x2, x3, x4, x5, x6},

Rδ
{B2}(D2) = {x7, x8, x9, x10}.

Then, the αRδ
B2

(Di) are

αRδ
B2

(D1) =
1
10 , αRδ

B2

(D2) =
1
5 .

The information entropy index combing with lower
and upper approximation reflects the uncertain informa-
tion on different classes, and it has a reverse relation
with certainty. The values of information entropy IA(D) =∑

Di∈U/D αRδ
A
(Di)logαRδ

A
(Di) under B1 and B2 are 0.58 and

0.65, respectively. Thus, the feature subset B1 is considered to
be better than B2. The classification results of 1NN and 3NN on
B1 and B2 are shown in Fig. 2 and Fig. 3.

The subgraph (a) and (b) in Fig. 2 characterise the predict
classification results on B1 when the neighbor parameter is 1
and 3, respectively. From these two pictures, we could find that
the decision boundary is not clear, and none of the cases in
the second category are classified correctly. However, we could
find that the decision boundary of K-Nearest Neighbors(KNN)
classifier on B2 is clear, and there is only an object that is clearly
misclassified. From the classification comparison between B1

and B2, the feature subset B2 stands out more than B1.

According to above analysis, we know that the feature selec-
tion based on the indicator combing approximation space and
decision distribution could achieve the better classification. In
this paper, we further design feature selection algorithm comb-
ing with data class distribution. The innovations of this paper
are as follows: (1) Introduce composite information entropy to
depict the importance of feature in neighborhood rough set. (2)
Compared with global rough set, the local rough set only needs
to obtain the object information in target decision, which avoids
some unnecessary computation. In order to improve reduction
efficiency, we select feature from the local viewpoint inspired
by this idea. (3) A greedy heuristic forward algorithm based on
composite information measure is designed for feature selection.

IV. COMPOSITE INFORMATION ENTROPY MEASURE BASED ON

LOCAL NEIGHBORHOOD ROUGH SET IN FUZZY DECISION

DATASET

In a decision dataset, the rough set model is employed for
depicting uncertainty caused by the difference of lower approx-
imation and upper approximation, and this uncertainty measure
only describes the feature contained in a subset of features.
Meanwhile, there are many class imbalanced data, and the
distribution of these data will affect the evaluation of features.
Therefore, we propose an emerging composite information en-
tropy to measure rough set model combing with approximations
and all kinds of distribution inspired by Shannon entropy.
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Definition 7: Given FDD = (U,B ∪D). Let neighborhood
radius δ, the Rδ

A(D) and Rδ
A(D) denote local lower and upper

approximation on neighborhood relation RA. Then the compos-
ite information entropy CIE(A,D) is defined as

CIE(A,D) = −
s∑

i=1

|Di|
|U | log

|Rδ
A(Di)|

|Rδ
A(Di)|

. (8)

The composite information entropy measure depicts the
uncertainty more detail due to the combination of |Di|

|U | (i =
1, 2, . . . , s) and approximations. It is worth noting that the local
upper approximation of the decision target is itself according

to the definition of approximations, thus
|Rδ

A(Di)|
|Rδ

A(Di)|
is reduced to

|Rδ
A(Di)|
|Di| . This measure satisfies the following properties.
Proposition 1: For ∀A ⊆ B, CIE(A,D) ≥ 0.
Proof: According to the definition of rough set, we know

|Rδ
A(Di)|

|Rδ
A(Di)|

∈ [0, 1] for all target decisions, log
|Rδ

A(Di)|
|Rδ

A(Di)|
≤ 0 for i =

1, 2, . . . , s, then CIE(A,D) ≥ 0.
Proposition 2: For ∀A ⊆ B,

1) If there exists Di satisfying
|Rδ

A(Di)|
|Rδ

A(Di)|
= 0(i = 1, 2, . . . , s),

then CIE(A,D) → ∞;

2) If
|Rδ

A(Di)|
|Rδ

A(Di)|
= 1 for all Di(i = 1, 2, . . . , s), then

CIE(A,D) = 0.
Proof: The above two properties are easily obtained accord-

ing to the definitions of rough set and CIE(A,D).
Proposition 3: Let A ⊆ A′, then CIE(A′, D) ≤

CIE(A,D).
Proof: Given a certain δ, because A ⊆ A′, RA′ ⊆ RA, then

Rδ
A(Di) ⊆ Rδ

A′(Di) and Rδ
A′(Di) ⊆ Rδ

A(Di), further we have
|Rδ

A′ (Di)|
|Rδ

A′ (Di)|
≥ |Rδ

A(Di)|
|Rδ

A(Di)|
for i = 1, 2, . . . , s. It is easily to be ob-

tained that CIE(A′, D) ≤ CIE(A,D) according to the prop-
erties of log function.

There is a reverse relationship between CIE(A,D) and
neighborhood relation R, that is, with the finer the relationship,
the higher the approximation ability of the rough set model
is, and the smaller the value of CIE(A,D) is. When the
Rδ

A′(Di)| = |Rδ
A′(Di)| for all target decisions, the CIE(A,D)

reaches the minimum 0.
Example 2: Continue to Example 2.1, we further compute the

composite information entropy CIE({Bi}, Dj)(i, j = 1, 2) to
measure the importance of features combined with approxima-
tions and decision distribution.

The decision distribution is
P (D1) =

3
5 , P (D2) =

2
5 .

Thus, the value of composite information entropy
CIE({Bi}, D)(i = 1, 2) are

CIE({B1}, D) = 1.94, CIE({B2}, D) = 1.35.
The smaller the value of it, the less uncertainty information

in the neighborhood, then the attribute B2 will be selected
according toCIE. The composite information entropy has more
advantages in the process of feature selection.

Definition 8: Given FDD = (U,B ∪D) and A ⊆ B, then
A is a feature select reduction of B iff:

1) CIE(A,D) = CIE(B,D);
2) CIE(A′, D) � CIE(B,D) for any A′ ⊂ A.

V. FEATURE SELECTION ALGORITHM BASED ON COMPOSITE

INFORMATION ENTROPY MEASURE

The composite information entropy, combing with approx-
imations of target concept and distribution of decision class,
could comprehensively reflect the approximation ability of
rough set model defined on a certain feature subset.

1) The approximate ability could reflected by the value of
CIE(A,D). The higher the value of CIE, then the weaker the
ability of A to deal with uncertainty.

2) With the increase of the number of features, the higher
the accuracy of rough set model, and the smaller the value of
CIE(A,D) is.

Given a feature subset A ⊆ B, we could measure the im-
portance of attribute a respect to A through the value of
CIE(A ∪ {a}, D). The smaller the value of CIE(A ∪ {a}) is,
the greater the reduced uncertainty is, that is, the more important
the attribute is in the process of approximation.

From Definition 9, we know that there may have multi-
ple reduction sets, but one attribute reduction is enough in
some cases. As for this problem, we choose a heuristic for-
ward greedy attribute selection algorithm to select features that
have the same approximate ability with original data. We will
firstly define two significance measures to depict feature as
follows.

Definition 9: Given FDD = (U,B ∪D) and neighborhood
radius δ. For ∀b ∈ B, the inner significance measure of b with
respect to B is defined as

IM(b,B,D) = CIE(B − {b}, D)− CIE(B,D). (9)

The higher the value of IM(b,B,D), the higher the
increase of information entropy relative to CIE(B,D),
which indicates that feature b is the most important rela-
tive to B. Therefore, we first select the feature b satisfying
argmaxb∈B IM(b,B,D).

Definition 10: Given FDD = (U,B ∪D) and neighbor-
hood radius δ. Let A ⊆ B, for ∀a ∈ B −A, the outer signif-
icance measure of b with respect to A is defined as

SM(b, A,D) = CIE(A,D)− CIE(A ∪ {b}, D). (10)

The higher the value of SM(b, A,D), the more it decreases
relative to CIE(A,D), which illustrates the importance of
feature b respect to A.

In order to improve the efficiency of selection, a heuristic for-
ward algorithm is adopted to choose the important feature subset
in fuzzy decision datasest. We will confirm the first selected
feature bo satisfying argmaxb∈B IM(b,B,D), and then select
the other excellent ones according to the maximum principle of
indicator SM . It is worth noting that the larger SM is, the more
important b is relative to A. When the SM(b, A,D) → 0, the b
could not be selected. Letβ = 0.05, the process terminates when
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Fig. 4. The process of selecting excellent features based on composite infor-
mation entropy.

the judgment condition is not satisfied. The more detail selection
process and pseudo code is shown in Fig. 4 and Algorithm 1,
respectively.

On the basis of measures SM and IM , the local feature
selection algorithm based on composite information entropy
(LFSACIE) is designed and shown in Algorithm 1. Similarly,
the corresponding feature selection algorithm based on
global rough set is called as GFSACIE. In step 2, we first
need to compute the local lower and upper approximations
according to neighborhood in target decision, whose time
complexity is O(

∑s
j=1((|B|+ 1)|Dj ||U |+ 2|Dj |2)), then

we obtain the composite information entropy CIE(B,D)
whose time complexity is O(s), thus the complexity
of step 2 is O(

∑s
j=1((|B|+ 1)|Dj ||U |+ 2|Dj |2 + 1)

while that of global rough set is O((|B|+ 1)|U |2 +
2
∑s

j=1(|Dj ||U |+ 1)). Similarly, the time complexity of
step 3 is O(|B|(∑s

j=1(|B||Dj ||U |+ 2|Dj |2 + 1))). If ao
is the ith selected feature, the time complexity of step 8 is
O((|B| − i+ 1)(

∑s
j=1((i+ 1)|Dj ||U |+ 2|Dj |2 + 1) + 1))

due to the computation of CIE and SM . In the process
of obtaining optimal feature ao, we need to select the
feature satisfying argmaxak∈B−A SM(ak, A,D), whose
time complexity is O(|B| − i+ 1). Also, the complexity
is O(1) for step 10. Suppose the reduction set contains l
properties finally, the whole time complexity of step 7 is
O(

∑l
i=1(|B| − i+ 1)(

∑s
j=1((i+ 1)|Dj ||U |+ 2|Dj |2 + 1))

+ 1 + |B| − i) while that of global one is O(
∑l

i=1(|B| −
i+ 1)((i+ 1)|U |2 +∑s

j=1(2|Dj ||U |+ 1) + 1 + |B| − i))
because the corresponding rough set model needs to obtain all
information granular determined by objects from whole
universe. Due to |Dj ||U | � |Dj |2, the local algorithm

TABLE II
DATASETS DESCRIPTION

TABLE III
THE NUMBER OF FEATURES SELECTED BY LFSACIE UNDER DIFFERENT

RADIUS ON TWELVE DATASETS

could reduce the compute complexity compared with global
algorithm, especially in Big Data.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we design a series of numerical experiments to
verify the effectiveness of the proposed algorithm (LFSACIE),
which is mainly reflected in the following three aspects: (1) the
number of selected attributes; (2) the superiority of local feature
selection algorithm compared with global algorithm and (3) the
accuracy performance of selection algorithms under different
classifiers.

A. Experimental Design

Three attribute reduction methods based on rough set theory
are selected to compare with the LFSACIE, and the more details
about them are as follows.

1) A feature selection algorithm based on fuzzy rough
set(FSAFRS) [20]: Sheeja et al. introduced a new fuzzy rough
sets based on the divergence measure of fuzzy sets, and then
designed a feature selection algorithm using fuzzy positive
region.
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TABLE IV
THE CLASSIFICATION PERFORMANCE OF FEATURES SELECTED BY LFSACIE UNDER DIFFERENT RADIUS ON TWELVE DATASETS

2) A novel early terminated online streaming feature selection
framework(OSFS-ET) [35]: Zhou et al. choose the dependency
degree function in rough set theory as the early terminated
mapping function to construct online streaming feature selec-
tion, where K = 9 about neighbors and β = 0.01 for select
criteria.

3) A local attribute reduction algorithm proposed by Qian
et al. (LARD) [26]: the core idea is to keep the certainty of
the rough set model no less than the original model. The feature
selection measure is the same as LFSALA, and the neighborhood
radius δ = 0.001.

4) A local feature selection algorithm based on self-
information (LFSASI): Wang et al. have explored some
measures to describes the importance of attribute and proposed
corresponding feature selection mechanism [24]. In the process
of attribute selection, IB(D) shows high distinguishing ability

TABLE V
THE CONSUME TIME OF GFSACIE AND LFSACIE

of feature subset B. Thus, they adopted this measure to design
heuristic reduction algorithm to compare with LFSACIE under
the same conditions, where δ = 0.15, β = 0.01.

5) Feature subset selection based on fuzzy neighborhood
rough set(FSFNRS) [27]: To make the new model tolerate
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Fig. 5. The average classify performance on different feature subset induced by different neighborhood radius.

noises in data, Wang et al. built a variable-precision fuzzy
neighborhood rough set and designed corresponding feature
selection algorithm based on dependency measure constructed
on lower approximation, where λ = 0.2, α = 0.9.

6) A fitting model for feature selection with fuzzy rough
sets(FMFSFRS) [25]: Wang et al. first constructed a new fuzzy
rough set model through introducing a parameter, then defined
the significance measure of a candidate attribute based on fuzzy
dependency function and designed a greedy forward algorithm
for feature selection, where λ = 0.1, δ = 0.3.

7) Factor Analysis: As a feature dimension method, it can
find hidden representative factors in many variables. Classifying
variables of the same nature into one factor can reduce the
number of variables and test the hypothesis of the relationship
between variables.

8) Principal component analysis(PCA): It aims to use the idea
of dimensionality reduction to transform multiple indicators into
a few comprehensive indicators.

Moreover, in order to illustrate the effectiveness of local
reduction algorithm, we further compare the selection results
of designed algorithm and its corresponding global algorithm
GFSASI in section B. All the algorithms mentioned are run
on a personal computer with Intel(R) Core(TM) i5-1135G7
CPU@2.40GH 2.42GH, and 16 GB memory. The reduction
and classification algorithms are using the software MATLAB
2016b.

The twelve datasets from UCI Machine Learning Repository
are adopted to conduct numerical experiments, whose detail
information is shown in Table II. The the values of conditional
attributes are first normalized into interval [0,1]. It is noted that
the neighborhood radius is an important parameter that will
influence feature selection results, thus we set δ to vary from 0.01
to 0.1 with a step of 0.01 for selecting the optimal neighborhood
radius. Moreover, in order to further verify the advantages of the
LFSACIE algorithm, two classical classifiers Decision Tree(DT)
and K-Nearest Neighbors(KNN) based on Gini index and five
neighborhoods are selected to estimate the classification accu-
racy and robustness of reduction algorithms, respectively. In the
classification experiments, we adopt ten-folds cross validation
to evaluate the different feature subset, each dataset is split to
ten equal portions in each experiment, nine of them are used as
the training model of the training set and the remaining one is
used as the test set.

B. Experimental Analysis

We mainly verify the effectiveness of designed algorithms
from three aspects: 1) the process of optimal neighborhood
radius; 2) the comparison between local algorithm and global
algorithm; and 3) the comparison between LFSACIE and other
feature selection algorithms. Note that, the Raw represents the
experimental results about original data.
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Fig. 6. The classify performance of different reduction algorithms on two classifiers.

TABLE VI
THE FEATURE SELECTION RESULTS OF PROPOSED ALGORITHM FROM GLOBAL

AND LOCAL VIEWPOINTS

1) The Reduction Performance of LFSACIE Under Different
Neighborhood Radius: Table III records the number of selected
features under different radius and Table IV records the cor-
responding classification performance on Decision Tree, KNN
classifers. The aim of feature selection is to reduce the redundant
features and further improve the classification performance, thus
we select the optimal radius of different datasets according to the
maximum average accuracy. Moreover, the average accuracy of
different datasets is shown in Fig. 5, where the red dotted line
represents the optimal radius. The optimal radius is selected for
feature selection in proposed LFSACIE algorithm.

2) The Comparison Between LFSACIE and GFSACIE:
Compared with global rough set, the local rough set model
ignores the unnecessary computing out of target concept, which
could significantly improve the compute efficiency. The con-
sume time of LFSACIE and GFSACIE algorithm is shown
in Table V. From this table, we know the consume time of
LFSACIE is lower than GFSACIE in each datasets, and the time
gap between two algorithms becomes bigger with the increases
of data scale. Meanwhile, the selected features induced by these
two algorithms are same except the sets 6, 11, 12 according to the
Table VI. For the three datasets, we evaluate their feature subsets
on DT and KNN classifiers, and find the average accuracy of

subsets induced by LFSACIE is higher than that of GFSACIE.
Therefore, we could obtain that the LFSACIE is an efficient
method for feature selection compared with GFSACIE.

3) The Comparison Between LFSACIE and Other Feature
Dimension Methods: There are six feature selection algorithms
and two feature dimension methods are compared with the
proposed algorithm LFSACIE, and the comparison between
them is mainly from two aspects, the number of selected fea-
tures and the corresponding classification performance. From
Table VII, we find the average number of selected features
for all feature selection algorithms is smaller than that of
original data, thus all the algorithms can achieve dimension-
ality reduction. The average number of selected features of
proposed algorithm is 4, ranking second out of ten compared
algorithms. In order to appraise these feature subsets, we further
observe the classification accuracy of them on DT and KNN
classifiers, the detail comparison is shown in Fig. 6. We could
find that the bar of LFASCIE is significantly higher than that
of other algorithms except set 7 and set 8 on Decision Tree
classifier, and the height of the bar of LFASCIE is also bet-
ter than that of other algorithms on KNN classifier in most
datasets.

Moreover, the more detail information is recorded in Tables
VIII and IX. On Decision Tree classifier, LFSACIE achieves the
highest accuracy ten times in twelve datasets, and the average
accuracy is also the maximum value among all the compared
algorithms and original data, thus the LFSACIE could select
an excellent feature subset that can achieve a better classify
performance. Similarly, the accuracy performance of LFSACIE
on KNN classifier is also superior than that of other algorithms.
There are eight datasets where LFSACIE behaves better than
other algorithms among twelve datasets. Meanwhile, the average
accuracy is 87.54 that is the highest value, and the average error
is 4.53 that is the lowest value, those above classify performance
shows that the LFSACIE is an excellent and robust method for
feature selection.

In order to test whether there exists significant difference
between different algorithms in classify performance, we adopt
the Wilcoxon pairwise test to compare these experimental re-
sults. Given the test threshold is 0.1, we could find that all the
test P-values are smaller than threshold according to Table X,
thus we could reject the null hypothesis and consider there is
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TABLE VII
THE NUMBER OF FEATURES SELECTED INDUCED BY DIFFERENT ALGORITHMS

TABLE VIII
THE CLASSIFY PERFORMANCE OF DIFFERENT ALGORITHMS ON DECISION TREE CLASSIFIER

TABLE IX
THE CLASSIFY PERFORMANCE OF DIFFERENT ALGORITHMS ON KNN CLASSIFIER
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TABLE X
THE WILCOXON TEST RESULTS OF LFSACIE AND OTHER COMPARED ALGORITHMS

a significant difference between LFSACIE and other feature
selection algorithms.

C. Experimental Discussion

The above experimental analysis show that the local feature
selection method based on composite information entropy in
fuzzy decision dataset is excellent in select efficiency and clas-
sification performance.

1) In algorithm LFSACIE, the feature evaluation index CIE
first considers the deterministic and possible relative information
by the upper and lower approximation ratio rather than just
the specific information of one of them, which allows us to
choose relatively few attributes to describe the same uncertain
information as the original data.

2) In addition, the composite information entropy CIE fur-
ther considers the distribution of decision attribute, which makes
the selected feature more reasonable. Therefore, the classifica-
tion performance and robustness of the selected feature subset
based on CIE are better than those of other algorithms.

3) Finally, this algorithm LFSACIE adopts a forward heuristic
selection mechanism, which greatly improves the efficiency of
reduction. Besides, the composite information entropy CIE
only considers the target information and ignores the other
redundant information in universe, it reduces some unnecessary
computation compared with global ones.

It is noted that the consume time of obtaining features based
on CIE still needs to be improved due to the complexity of
index. Meanwhile, this mechanism is built on static data, it
needs to repeat all the additional and existing information when
adding objects or features, which is time-consuming for select-
ing the optimal feature subset, especially in large-scale dataset.
Generally, the updated dataset is related to the original ones.
If we can calculate the updated data information based on their
relationship, it will greatly improve the computational efficiency.
Therefore, the feature selection mechanism for dynamic data
also needs further to be explored.

VII. CONCLUSION

With the development of information science, the scale of data
is getting bigger and a sample could be described by multiple
attributes. In most practical situations, it is not a wise choice to
make decisions based on all properties due to the existence of
redundant attributes, thus the task of choosing important them
is necessary in fuzzy decision dataset. In order to overcome
the limitation of feature selection based on lower approxima-
tion in classical rough set, the local feature selection method
related to composite information entropy measure is proposed
in this paper, meanwhile, its corresponding heuristic algorithm
LFSACIE is designed. The numerical experiment results on

twelve public datasets show that the LFSACIE is an accurate
and robust method which could select relative fewer features
to approximate target decision and achieve better classification
performances. Moreover, the LFSACIE greatly reduces con-
sume time compared with GFSACIE according to the analysis
of time complexity and experimental results. In conclusion, the
LFSACIE is a relatively better method for feature selection.
Based on the research results in this paper, the compute process
of feature indicator and the selection mechanism for dynamic
data can be further explored.
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