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Fuzzy concept has been an important methodology for data analysis, especially in the
classification research. Particularly, fuzzy concept could directly process the continuous
data through contrasting the numerical data into the membership degree of object to attri-
bute. However, the classical fuzzy concept only focuses on the positive information, that is,
the information about membership degree, while ignoring non-membership degree.
Meanwhile, since the limitations of individual cognition and cognitive environment, the
concept learning is progressive. Inspired by these thoughts, we design an incremental
learning mechanism based on progressive fuzzy three-way concept for object classification
in dynamic environment. In this paper, the object and attribute learning operators are first
defined to obtain fuzzy three-way concept. Then, a progressive fuzzy three-way concept
and its corresponding concept space are learned considering the progressive process of
concept learning. Moreover, the object classify mechanism and dynamic update mecha-
nism based on the progressive concept space are proposed, and their effectiveness is ver-
ified by numerical experiments. Finally, an incremental learning mechanism is further
designed for dynamic increased data and compared with other fuzzy classify methods.
All the experimental results carried on ten datasets from UCI and KEEL illustrate the
proposed learning mechanism is an excellent object classify algorithm.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Concept theory, as highly complementary to rough set theory, has been widely used in the applications of rule extraction,
object classification, machine learning, and so on [14,17,20,27,30]. The classical concept describes the essential
characteristics of the same kind of things through intent and extent, it provides a mathematical foundation for concept learn-
ing [12,15,21,22,28,29]. In classical concept, the relation between object and attribute is either one or the other, that is, an
attribute is owned or not owned by the object. Therefore, it can only deal with the discrete data such that continuous data
needs to be discretized by data preprocessing, this method would lose some useful information in learning process
[12,15,21]. Also, it is noted that the intent is only composed of attributes shared by the objects in extent, but ignores the
common unsuccessful attributes. The incompleteness of the information is easy to cause cognitive deviations.
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As an extension of the classical concept, the fuzzy concept can directly deal with the continuous data by transforming the
specific attribute values into the membership degree of object to these attributes, which not only reduces the time consump-
tion of discretization, but also retains the original information [4,13,17,30]. In recent years, many scholars have researched
the fuzzy concept in information description, recognition pattern, concept clustering, and so on [4,6,17,22]. Cross and Kan-
dasamy first compared the one-sided threshold approach and the fuzzy closure operator approach to obtain fuzzy concept
lattice, and found the extent produced by the threshold approach is a subset of the extent produced by the fuzzy closure
approach [4]. Xu et al. proposed a novel granular method of machine learning by using formal concept description of infor-
mation granules, which is valuable to deal with practical issues based on two-way concept in fuzzy set [22]. Compared with
classical concept, the fuzzy concept has more flexibility in the choice of concepts in fuzzy formal context. The three-way con-
cept as an another extension of classical concept can describe the conceptual information more comprehensively by further
considering the information that objects don’t have in common [12,15,21], which has been widely used in many areas, such
as decision making, rule extraction, knowledge discovery, data mining, and so on [2,8,9,17,20,21,24,27,30]. Zhan et al. first
constructed a three-way decision model in incomplete fuzzy decision systems and applied it to the modeling of incomplete
multi-attribute decision-making problems, and then provided a new perspective for realistic incomplete multi-attribute
decision-making problems. Their experimental results demonstrate the validity and superiority of their three-way concept
decision model [24]. Hao et al. analyzed the stability and properties of three-way concept and applied it to natural language
generation [8]. In addition, they further pioneered a novel problem and method for the incremental construction of three-
way concept lattice for knowledge discovery in social networks [9]. Moreover, Wei et al. performed the rules acquisition for
formal decision contexts from the perspective of three-way concept lattices [21]. The three-way thought provides a new idea
for dealing with the problem of data mining.

In natural circumstances, the concept learning is influenced by the cognitive environment and individual cognition, and
other factors, thus the concept learning process cannot be completed in one fell swoop [1,17,25]. Recently, some scholars
further investigated the concept learning based on the evolutionary computing to overcome the limitation on cognitive envi-
ronment, and its effectiveness is verified by various experimental results [1,5,7,18,19]. For dealing with interactive concept-
based multi-objective problems, Mukhopadhyay et al. introduced a new interactive concept-based multi-objective evolu-
tionary algorithm, which can be used in engineering problem [18]. Dragoni tried to analyze the sentiment expressed within
a document by establishing an evolutionary strategy based on the polarity values of concept-domain pairs [1]. Mi et al. fur-
ther constructed a novel fuzzy concept considering the limitations of cognition and environment, and the experimental
results show the proposed concept is effective in cognition recognition [17]. For the large datasets, how to effectively calcu-
late the concept space is very important. To reduce the complexity of the concept cognitive learning process, Zhang et al.
designed a concept update algorithm to represent concepts through a concept tree based on attribute topology [25]. Mi
et al. designed a concurrent concept cognitive learning mechanism to improve the learning efficiency [19]. In the application
of concept learning, the construction of concept and the update of concept space are two important issues, which influences
the performance of learning mechanism.

Object classification based on concept similarity is one of the most important application of concept learning. The label of
object can be obtained according to the concept of minimum distance from it. In this paper, we focus on designing a classify
mechanism based on concept space. We first define the object and attribute learning operators to obtain fuzzy three-way
concept. Then, we construct a progressive fuzzy three-way concept considering the limitations of individual cognition
and incompleteness of cognitive environment. Meanwhile, the similar indicator is designed to classify objects based on
the progressive concept space. To make full use of the information about added objects, we also propose an incremental
learning mechanism for the further concept learning. Finally, the effectiveness of proposed classify method is verified by
the numerical experiments. The block diagram of steps of the proposed approach is shown in the Fig. 1.

The remainder of this paper is organized as follows. In Section 2, we review the basic notions of regular formal context,
three-way concept, fuzzy formal context, fuzzy concept, and our motivation. In addition, the learning process of progressive
fuzzy three-way concept is shown in Section 3. Section 4 introduces how to classify the object and how to update the concept
space dynamically, and then designs an incremental learning mechanism based on progressive fuzzy three-way concept
(ILMPFTC). Moreover, to illustrate the validity of the ILMPFTC, some experiments are carried on ten datasets from UCI
and KEEL in Section 5. Finally, Section 6 covers some conclusions.
2. Preliminaries

In this section, we review some basic notions about fuzzy set, fuzzy concept, and three-way concept for the concept learn-
ing process, the details of which can be obtained from their corresponding references [15,26].
2.1. Regular formal context

The X;A; eR� �
is a regular formal context, where X ¼ x1; x2; . . . ; xnf g is the object set and A ¼ a1; a2; . . . ; amf g is the attribute

set. eR#X � A is the binary relation between X and A. eR x; að Þ 2 0;1f g, and eR x; að Þ ¼ 1 denotes x; að Þ 2 eR that reflects object x
has the attribute a or the a is owned by x.
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Fig. 1. Block diagram of steps of the proposed approach.
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Definition 1. Let X;A; eR� �
be a regular formal context, where eR is the binary relation. P Xð Þ and P Að Þ represent the power sets

of X and A. 8Q 2 P Xð Þ and B 2 P Að Þ, the object learning operator } : P Xð Þ�!P Að Þ and attribute learning operator
� : P Að Þ�!P Xð Þ are described as follows [17]:
Q} ¼ a 2 Aj8x 2 Q ; x; að Þ 2 eRn o
;

B� ¼ x 2 Xj8a 2 B; x; að Þ 2 eRn o
:

ð1Þ
Among this definition, the operator } and � reflect the common information between object and attribute, which is called
the positive learning operator.
Definition 2. Let X;A; eR� �
be a regular formal context, where eR is the binary relation. 8Q 2 P Xð Þ;B 2 P Að Þ, the Q ;Bð Þ is called

concept when [17]
Q} ¼ B;B� ¼ Q : ð2Þ

The Q and B are called the intent and extent of this concept, it reflects the attributes shared by objects and all objects that

have these attributes. In real life, some objects have the same attributes, but the attribute that they don’t have is obviously
different. Thus, it still has limitation to process the data only from the common information they share. The proposition of
three-way concept settles this limitation well.
2.2. Three-way concept

In this subsection, we also need to define negative operators }- and �- to obtain the information that object and attribute
don’t have.

Definition 3. Let X;A; eR� �
be a regular formal context, 8Q #X and B#A; eRc ¼ X � A� eR. The negative operator

}� : P Xð Þ�!P Að Þ and �� : P Að Þ�!P Xð Þ are described as follows [15]:
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Q}� ¼ a 2 Aj8x 2 Q ; x; að Þ 2 eRc
n o

;

B�� ¼ x 2 Xj8a 2 B; x; að Þ 2 eRc
n o

:
ð3Þ
The negative operator could induce the information that object and attribute don’t have in common. The object can be
described in more detail from both positive and negative perspectives.
Definition 4. Let X;A; eR� �
be a regular formal context, where BP Að Þ ¼ P Að Þ � P Að Þ is the collection of order pairs about

attributes. Define three-way operator / : P Xð Þ ! BP Að Þ; . : BP Að Þ ! P Xð Þ. 8Q #X and B#A;Q/ ¼ Q};Q}�
� �

and

B. ¼ B� \ B��. 8 Q #X and B1;B2 2 LA, the Q ; B1;B2ð Þð Þ is called object-oriented three-way concept when [15]
Q / ¼ B1;B2ð Þ; B1; B2ð Þ. ¼ Q : ð4Þ

The Q and B1;B2ð Þ are called the extent and intent of the three-way concept. Since it contains both positive and negative

information, this concept can describe object more detail.
2.3. Fuzzy formal context

The three-way concept can directly process the discrete data, and the continuous data only could be learned after dis-
cretization, this is a time-consuming process and could lost some useful information. Therefore, the fuzzy set is adopted
to construct fuzzy formal context.

Definition 5. Let X ¼ x1; x2; . . . ; xnf g be a non-empty object set, the fuzzy set eF on X is described as follows [26]:
eF ¼ < x;leF xð Þ > jx 2 X
n o

; ð5Þ
where leF xð Þ 2 0;1½ �, which denotes the membership of object x with respect to eF , and lceF xð Þ ¼ 1� leF xð Þ is the non-

membership degree. The LX denotes the set of all fuzzy sets on X.

In formal concept analysis, the concept is defined as a unit composed of intent and extent. The intent reflects the essential
attributes of this concept, and the extent includes all objects that have essential attributes. The crisp relation between object
and attribute is limited in numerical data. Thus, the fuzzy formal context is proposed to describe the relation between object
and attribute.

Definition 6. The triplet X;A; eR� �
is a fuzzy formal context, where X ¼ x1; x2; . . . ; xnf g is the object set and

A ¼ a1; a2; . . . ; amf g is the attribute set. eR is the fuzzy relation between X and A, each x; að Þ has a membership degreeeR x; að Þ 2 0;1½ � to eR. eR x; að Þ can be explained as the membership degree of object x to attribute a or the degree to which

attribute a is owned by object x, thus the eR could be considered as a fuzzy relation between owning and being owned defined

on objects and attributes. X;A; eR;D; eE� �
is called fuzzy formal decision context when the D is decision attribute andeE : A� D�! 0;1f g. If eE x; að Þ ¼ 1, the object has the attribute a, otherwise, x does not have a.
2.4. Fuzzy concepts
Definition 7. Let X;A; eR� �
be a fuzzy formal context, where the LA denotes the all fuzzy sets on A. In this paper, the fuzzy seteB 2 LA could be explained as the owned relation of attributes by objects, each eB aj

� �
is the owned degree of attribute aj by

objects. 8Q 2 P Xð Þ and eB 2 LA, the object learning operator eG : P Xð Þ�!LA and attribute learning operator eH : LA�!P Xð Þ are
described as follows [17]:
eG Qð Þ aj
� � ¼ ^

x2Q
eR x; aj
� �� �

; aj 2 A;

eH eB� �
¼ x 2 XjeR x; aj

� �
P eB aj

� �
; j ¼ 1;2; . . . ;m

n o
:

ð6Þ
The Q ; eB� �
is called fuzzy concept if eH eB� �

¼ Q ; eG Qð Þ aj
� � ¼ eB for j ¼ 1;2; . . . ;m, and the Q and eB are the extent and intent

of this fuzzy concept, respectively. Similar to positive learning operator in three-way concept, the operators eG and eH describe

the relation between object and attribute through membership degree that is the positive information, thus eG and eH are
called positive object and attribute learning operators, respectively.
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2.5. Motivation

The classical concept describes objects from these attributes they share, which is only suitable for processing discrete
data. When we deal with numerical data, discretization and binarization of data are essential, which would lose some impor-
tant information that influences further research. The proposition of fuzzy concept settles this limitation well. However, the
fuzzy concept only describes the objects from the positive aspect of the commonality of the objects in the set X, ignoring the
negative information of the attributes, which impacts the accuracy of the information description. The fuzzy three-way con-
cept settles the above issues well. In this paper, we first define the fuzzy three-way concept, and then investigate the concept
learning process based on it. The Example 1 is first given to illustrate the superiority of fuzzy three-way concept compared
with fuzzy concept.

Example 1. Table 1 is a fuzzy formal decision context with 28 objects and 2 conditional attributes, where
X1 ¼ x1; x2; . . . ; x11f g;X2 ¼ x12; x13; . . . ; x19f g, and X3 ¼ x20; x21; . . . ; x28f g. They are described by b1 and b2. The detail
corresponding distribution of objects is shown in Fig. 2.
Given the fuzzy formal decision context, suppose the intent and extent of fuzzy concept induced by X1 are fB1 and Q1.

According to Definition 7, we have fB1 b1ð Þ ¼ V
x2X1

eR x; b1ð Þ
� �

¼ 0:17 and fB1 b2ð Þ ¼ V
x2X1

eR x; b2ð Þ
� �

¼ 0:08, then the fuzzy setfB1 ¼ 0:17=b1 þ 0:08=b2. Also, the extent Q1 ¼ eH fB1

� �
¼ x 2 X1jeR x; bj

� �
P eB1 bj

� �
; j ¼ 1;2

n o
¼ X1 [ x15; x16; x17;fð

x20; . . . ; x28gÞ. The fuzzy concept Q1;
eB1

� �
is learned from the learning operator in Definition 7. Similarly, we could obtain

the other two fuzzy concepts X2 [ x1; x2; x3; x5; x6; x8; x20; x22; . . . ; x26f g; 0:02;0:39ð Þð Þ and X3; 0:59;0:32ð Þð Þ induced by X2

and X3. The relative distribution about the extent of fuzzy concepts is shown in Fig. 3. In this figure, the shapes with red,
blue and green denote the three different classes data, and the objects surrounded by a frame are in the extent of fuzzy con-
cept. According to this figure, we find the color of the objects in the same box is different, except the extent of
X3; 0:59;0:32ð Þð Þ. In the rose and black frames, there are respectively three and two different colors of objects, that is, there
are different classes of objects in the same concept and may cause error in learning process. This example shows the fuzzy
concept only induced by the positive information is not accurate in concept learning. Therefore, it is necessary to study the
concept learning based on positive and negative information.

3. The learning process of progressive fuzzy three-way concept

The fuzzy concept can deal with numerical data, and the intent of it characterises the lower membership degree of object
in a certain set to attribute. The membership degree only describes the positive information, which is limited in concept
learning process, the Example 1 illustrates this. Therefore, we further design the negative learning operator to obtain the
fuzzy three-way concept inspired by three-way concept. This section mainly investigates the learning process of fuzzy
three-way concept and the construction of its corresponding progressive concept space.

3.1. Fuzzy three-way concept

To obtain the fuzzy three-way concept, we further need to design the negative learning operator based on fuzzy concept.
The positive operator describes objects from membership degree, the negative depicts information from the opposite view-
point, that is, the non-membership degree.
Table 1
A fuzzy formal decision context.

Object b1 b2 Class Object b1 b2 Class

1 0.32 0.63 1 15 0.26 0.39 2
2 0.36 0.52 1 16 0.28 0.41 2
3 0.48 0.83 1 17 0.28 0.47 2
4 0.38 0.08 1 18 0.04 0.47 2
5 0.26 0.80 1 19 0.02 0.60 2
6 0.55 0.86 1 20 0.81 0.59 3
7 0.68 0.11 1 21 0.91 0.32 3
8 0.46 0.76 1 22 0.96 0.66 3
9 0.52 0.26 1 23 0.92 0.73 3
10 0.45 0.23 1 24 0.61 0.87 3
11 0.17 0.26 1 25 0.59 0.88 3
12 0.06 0.65 2 26 0.69 0.52 3
13 0.11 0.56 2 27 0.75 0.34 3
14 0.07 0.40 2 28 0.72 0.45 3
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Fig. 3. The distribution of objects in the extent of fuzzy concepts.

Fig. 2. The distribution of objects depicted in Table 1.
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Definition 8. Let X;A; eR� �
be a fuzzy formal context. eRc is a fuzzy set that reflects the non-membership degree of x; að Þ to eR.

8Q #X and eB 2 LA, the negative object learning operator eG� : P Xð Þ�!LA and negative attribute learning operatoreH� : LA�!P Xð Þ are described as follows:
eG� Qð Þ aj
� � ¼ ^

x2Q
eRc x; aj
� �� �

; aj 2 A;

eH� eB� �
¼ x 2 XjeRc x; aj

� �
P eB aj

� �
; j ¼ 1;2; . . . ;m

n o
:

ð7Þ
The eG� Qð Þ aj
� �

reflects the minimum non-membership degree of x; að Þ to eR on attribute aj, and the aim of operator eH� is to

find the objects in X satisfying eR� x; aj
� �

P eB; j ¼ 1;2; . . . ;m. The positive and negative operators all have the following
properties:
Property 1. Let Q ;Q1;Q2 #X; eB; eB1; eB2 2 LA, we have

(1) eG Q2ð Þ# eG Q1ð Þ if Q1 #Q2;
eH fB2

� �
# eH fB1

� �
if fB1 #fB2 ;

(2) Q # eH eG Qð Þ; eB ¼ eG eH eB� �
;
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(3) eG Qð Þ ¼ eG eH eG Qð Þ; eH eB� �
¼ eH eG eH eB� �

;

(4) Q # eH eB� �
() eB# eG Qð Þ;

(5) eG Q1 [ Q2ð Þ ¼ eG Q1ð Þ \ eG Q2ð Þ; eH eB1 [ eB2

� �
¼ eH eB1

� �
\ eH eB2

� �
;

(6) eG Q1ð Þ [ eG Q2ð Þ# eG Q1 \ Q2ð Þ; eH eB1

� �
[ eH eB2

� �
# eH eB1 \ eB2

� �
.

Proof. (1) According to the definition of object learning operator, we have eG Q1ð Þ aj
� � ¼ V

x2Q1
eR x; aj
� �

andeG Q2ð Þ aj
� � ¼ V

x2Q2
eR x; aj
� �

. Because Q1 #Q2;^x2Q2
eR x; aj
� �

6
V

x2Q1
eR x; aj
� �

, then eG Q2ð Þ# eG Q1ð Þ holds. In addition, foreB1 # eB2; eH eB1

� �
¼ x 2 XjeR x; aj

� �
P eB1 aj

� �
; j ¼ 1;2; . . . ;m

n o
and eH eB2

� �
¼ x 2 XjeR x; aj

� �
P eB2 aj

� �
; j ¼ 1;2; . . . ;m

n o
. TheeH eB2

� �
# eH eB1

� �
holds since eB1 aj

� �
6 eB2 aj

� �
for j ¼ 1;2; . . . ;m.

(2) Given the subset Q of X, it is easy to obtain eH eG Qð Þ ¼ x 2 XjeR x; aj
� �

P eG Qð Þ aj
� �

; j ¼ 1;2; . . . ;m
n o

. Also, the object

induced by eH eB� �
, whose membership degree of attribute is greater than that of eB according toeH eB� �

¼ x 2 XjeR x; aj
� �

P eB aj
� �

; j ¼ 1;2; . . . ;m
n o

, thus eG eH eB� �
aj
� � ¼ ^

x2eH eB� �eR x; aj
� � ¼ eB aj

� �
for all aj 2 A. eB ¼ eG eH eB� �

is

obtained.

(3) According to (2), we know eB ¼ eG eH eB� �
for fuzzy set eB. Since eG Qð Þ and eB are the fuzzy sets on A, it is easy to obtaineG Qð Þ ¼ eG eH eG Qð Þ and eH eB� �

¼ eH eG eH eB� �
.

(4) Since eH eB� �
¼ x 2 XjeR x; aj

� �
P eB aj

� �
; j ¼ 1;2; . . . ;m

n o
, and Q # eH eB� �

, thus eR x; aj
� �

P eB aj
� �

for all aj 2 A. Further, we

obtain eG Qð Þ aj
� � ¼ V

x2Q eR x; aj
� �

P eB aj
� �

for all aj 2 A, therefore, eB# eG Qð Þ. On the contrary, if eB# eG Qð Þ; eB aj
� �

6eH Qð Þ aj
� � ¼ V

x2Q eR x; aj
� �

for all aj 2 A. Meanwhile, eH eB� �
¼ x 2 XjbR x; aj

� �
P eB aj

� �
; j ¼ 1;2; . . . ;m

n o
andeB aj

� �
6

V
x2Q eR x; aj

� �
6

V
x2XeR x; aj

� �
for j ¼ 1;2; . . . ;m, thus Q # eH eB� �

holds.

(5) eG Q1 [ Q2ð Þ aj
� � ¼ ^x2Q1[Q2

eR x; aj
� � ¼ ^x2Q1

eR x; aj
� �� �

^ ^x2Q2
eR x; aj
� �� �

¼ eG Q1ð Þ aj
� � ^ eG Q2ð Þ aj

� �
; eH fB1 [ fB2

� �
¼ x 2 XjeR x; aj

� �
P fB1 [ fB2

� �
aj
� �

; j ¼ 1;2; . . . ;m
n o

¼ x 2 XjeR x; aj
� �

P fB1 aj
� �

;
n

j ¼ 1;2; . . . ;mg \ x 2 XjeR x; aj
� �

P fB2 aj
� �

; j ¼ 1;2; . . . ;m
n o

¼ eH fB1

� �
\ eH fB2

� �
. Therefore, the (5) in Property 1 holds.

(6) According to Definition 7, we know eG Q1ð Þ [ eG Q2ð Þ
� �

aj
� � ¼ ^x2Q1

eR x; aj
� �� �

_ ^x2Q2
eR x; aj
� �� �

6

^x2Qi
eR x; aj
� �

i ¼ 1;2ð Þ 6 ^x2Q1\Q2
eR x; aj
� � ¼ eG Q1 \ Q2ð Þ aj

� �
. Also, eH fB1

� �
[ eH fB2

� �
¼ x 2 XjeR x; aj

� �
P fB1 aj

� �
; j ¼ 1;2; . . . ;m

n o
[

x 2 XjeR x; aj
� �

P fB2 aj
� �

; j ¼ 1;2; . . . ;m
n o

¼ x 2 XjeR x; aj
� �

P fB1 aj
� � ^ fB2 aj

� �
; j ¼ 1;2; . . . ;m

n o
¼ eH fB1 \ fB2

� �
. Thus, we could

obtain eG Q1ð Þ [ eG Q2ð Þ# eG Q1 \ Q2ð Þ and eH eB1

� �
[ eH eB2

� �
# eH eB1 \ eB2

� �
based on the above analysis.
Property 2. Let Q ;Q1;Q2 #X; eB; eB1; eB2 2 LA, we have

(1) eG� Q2ð Þ# eG� Q1ð Þ if Q1 #Q2; eH� B2ð Þ# eH� B1ð Þ if B1 #B2;

(2) Q # eH�eG� Qð Þ; eB ¼ eG� eH� eB� �
;

(3) eG� Qð Þ ¼ eG� eH�eG� Qð Þ; eH� eB� �
¼ eH�eG� eH� eB� �

;

(4) Q # eH� eB� �
() eB# eG� Qð Þ;

(5) eG� Q1 [ Q2ð Þ ¼ eG� Q1ð Þ \ eG� Q2ð Þ; eH� eB1 [ eB2

� �
¼ eH� eB1

� �
\ eH� eB2

� �
;

(6) eG� Q1ð Þ [ eG� Q2ð Þ# eG� Q1 \ Q2ð Þ; eH� eB1

� �
[ eH� eB2

� �
# eH� eB1 \ eB2

� �
.

Proof. Similar to Property 1, it is easy to find that the above properties about negative object and attribute learning oper-
ators hold.
Definition 9. Let X;A; eR� �
be a fuzzy formal context. The object learning operator / : P Xð Þ�!BP LA

� �
and attribute learning

operator . : BP LA
� �

�!P Xð Þ. 8Q #X; eB1; eB2 2 LA;Q / ¼ eG Qð Þ; eG� Qð Þ
� �

and eB1; eB2

� �.

¼ eHeB1 \ eHeB2. We call Q ; eB1; eB2

� �� �
is a

fuzzy three-way concept when
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Q / ¼ eB1; eB2

� �
; eB1; eB1

� �.

¼ Q : ð8Þ

The fuzzy three-way concept could depict the relation between object and attribute more detail from the membership

degree and non-membership degree. The Q1; eB1; eB2

� �� �
is the sub-concept of Q2; eB3; eB4

� �� �
, denoted as

Q1;
eB1; eB2

� �� �
6 Q2;

eB3; eB4

� �� �
when Q1 #Q2

eB1; eB2

� �
P eB3; eB4

� �� �
.

In a fuzzy formal context, given an object set, we could obtain a fuzzy three-way concept according to the properties of
object and attribute operators.

Property 3. Let X;A; eR� �
be a fuzzy formal context. 8Q #X; eH eG Qð Þ \ eH� eG� Qð Þ; eG Qð Þ; eG� Qð Þ

� �� �
is a fuzzy three-way concept.

� � � �

Proof. We only need to demonstrate 1ð Þ eG Qð Þ; eG� Qð Þ .

¼ eH eG Qð Þ \ eH�eG� Qð Þ and 2ð Þ eH eG Qð Þ \ eH� eG� Qð Þ /

¼eG Qð Þ; eG� Qð Þ
� �

.

(1) According to definition of operator ., it is easy to obtain eG Qð Þ; eG� Qð Þ
� �.

¼ eH eG Qð Þ \ eH�eG� Qð Þ.
(2) Because eG Qð Þ aj

� � ¼ V
x2Q

eR x; aj
� �

, for aj 2 A and eH eG Qð Þ ¼ x 2 XjR x; aj
� �

P
V

x2QR x; aj
� �

; j ¼ 1;2; . . . ;m
n o

;eH�eG� Qð Þ ¼ x 2 XjRc x; aj
� �

P
V

x2Q
eR� x; aj

� �
; j ¼ 1; 2; . . . ;m

n o
¼ x 2 Xj1 � Rc x; aj

� �
6 1 � V

x2QR
c x; aj
� �

; j ¼ 1; 2; . . . ;m
n o

¼
x 2 XjR x; aj

� �
6

W
x2QR x; aj

� �
; j ¼ 1; 2; . . . ;m

n o
.

Therefore, eH eG Qð Þ \ eH�eG� Qð Þ ¼ x 2 XjVx2QR x; aj
� �

6 R x; aj
� �

6
Wn

x 2 QR x; aj
� �

; j ¼ 1;2; . . . ;mg; eG eH eG Qð Þ \e�
H�eG� Qð ÞÞ aj

� � ¼ V
x2QR x; aj

� � ¼ eG Qð Þ aj
� �

for j ¼ 1;2; . . . ;m.

In the other hand, eH eG Qð Þ \ eH�eG� Qð Þ ¼ x 2 XjVx2QR x; aj
� �

6 R x; að
n

jÞ 6 W
x2QR x; aj

� �
; j ¼ 1;2; . . . ;mg ¼ x 2 Xjf

1�V
x2QR x; aj

� �
P 1� R x; aj

� �
P 1�W

x2QR x; aj
� �

; j ¼ 1;2; . . . ;mg ¼ x 2 XjWx2QR
c x; aj
� �

P 1� R x; aj
� �

P
V

x2QR
c x; aj
� �

; j ¼ 1;
n

2; . . . ; mg, thus eG� eH eG Qð Þ \ eH�eG� Qð Þ
� �

aj
� � ¼ V

x2QR
c x; aj
� � ¼ eG� Qð Þ aj

� �
, for any aj 2 A holds.

In conclusion, there are eH eG Qð Þ \ eH�eG� Qð Þ
� �/

¼ eG Qð Þ; eG� Qð Þ
� �

and eG Qð Þ; eG� Qð Þ
� �.

¼ eH eG Qð Þ \ eH�eG� Qð Þ, thuseH eG Qð Þ \ eH�eG� Qð Þ; eG Qð Þ; eG� Qð Þ
� �� �

is a fuzzy three-way concept.

Example 2 (Continue to Example 1). Given an object set, we can obtain the corresponding fuzzy three-way concept according

to Property 3. Given X1, we could obtain a fuzzy three-way concept, whose intent eG X1ð Þ; eG� X1ð Þ
� �

Þ ¼ 0:17;0:08ð Þ;ð
0:32;0:14ð ÞÞ and extent eH eG Qð Þ \ eH�eG� Qð Þ ¼ X1

�
. Similarly, the X2; 0:02;0:39ð Þ; 0:72;0:35ð Þð Þð Þ and X3; 0:59;0:32ð Þ;ðð

0:04;0:12ð ÞÞÞ induced by X2 and X3 can be obtained.
The distribution of extent induced by these three-way concepts is shown in Fig. 4. Also, we find that the objects in extent

are all the same class, which is more accurate than that of fuzzy concept. The fuzzy three-way concept describes object from
membership degree and non-membership degree, it limits the objects to a smaller range by adding restriction(non-
membership degree). This example illustrates the comprehensiveness of fuzzy three-way concept in concept learning process.

3.2. Construction of fuzzy three-way concept space

The objects between the same groups influence each other, especially those who are extremely similar. In fuzzy formal
context, the similarity of objects is usually described by the distance between their attributes, and the greater the distance,
the smaller the similarity. In this paper, we adopt the Euclidean distance to describe objects’ similarity.

Definition 10. Let X;A; eR� �
be a fuzzy formal context. 8xi; xj 2 X, then give their corresponding membership degrees eRi;s andeRj;s of x; aið Þ and x; aj

� �
, non-membership degrees eRc

i;s and
eRc
j;s for s ¼ 1;2; . . . ;m. Then, their difference is described by the

following Euclidean distance function [16]
d xi; xj
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

s¼1

keRi;s � eRj;sk2 þ jeRc
i;s � eRc

j;sk2
� �s

: ð9Þ
Since eRc ¼ 1� eR, we have keRi;s � eRj;sk2 þ jeRc
i;s � eRc

j;sk2 ¼ 2keRi;s � eRj;sk2, that is, the distance between different objects is only

determined by keRi;s � eRj;sk2 for s ¼ 1;2; . . . ;m. For convenience, we adopt the following distance function to select the similar
objects.
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d xi; xj
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

s¼1

keRi;s � eRj;sk2
s

: ð10Þ
Usually, the objects are considered to be the same when their distance is smaller than a certain value. In this paper, we set
the certain value is d, and then we could first obtain the similar class of any object.

Definition 11. Let X;A; eR;D; eE� �
be a fuzzy formal decision context, where X=D ¼ X1;X2; . . . ;Xlf g and eE#X � A is the binary

relation between X and D. For x 2 Xi i ¼ 1;2; . . . ; lð Þ and aj 2 A j ¼ 1;2; . . . ;mð Þ, the membership degree of x; aj
� �

to eR is eR x; aj
� �

,

non-membership degree is eRc x; aj
� �

. Then, its similar classes Qx is described as follows:
Qx ¼ y 2 Xijd x; yð Þ 6 df g: ð11Þ

Based on the similar class set Qx, we could obtain a fuzzy three-way concept according to Definition 9. Meanwhile, it is

noted that the value of d will influence the size of similar classes, the minimum membership degree and non-membership
degree will different in different object sets, and then the intent will changes with extent, so the fuzzy three-way concept
will be influenced by the value of d. Furthermore, the object classify mechanism proposed in this paper is based on fuzzy
three-way concept, thus the d will further influence the object classify performance of proposed algorithm. The fuzzy
three-way concept space is constructed as follows.
Definition 12. Let X;A; eR;D; eE� �
be a fuzzy formal decision context, where X ¼ X1;X2; . . . ;Xlf g. Given Xi, the fuzzy three-way

concept space Ci about Xi is defined as follows:
Ci ¼ eH eG Qxð Þ \ eH�eG� Qxð Þ; eG Qxð Þ; eG� Qxð Þ
� �� �

jx 2 Xi

n o
: ð12Þ
The fuzzy three-way concept space is C ¼ C1;C2; . . . ;Clf g, and each Ci is called the subspace of C. In prior knowledge,
each object could be learned accurately. The process of constructing fuzzy three-way concept space is given in Algorithm 1.

Algorithm 1. The construction of fuzzy three-way concept space.
Example 3. The Table 2 is an example of fuzzy formal decision context based on Table 1, there are ten objects are divided
into three classes based on two attributes.

Given d ¼ 0:2, for the objects in class 1, we can obtain their similar classes
Qx1 ¼ x1; x2; x4f g;Qx2 ¼ x1; x2; x3; x4f g;Qx3 ¼ x2; x3f g;Qx4 ¼ x1; x2; x4f g. Then the fuzzy three-way concepts can be obtained
according to Definition 12: x1; x2; x4f g; 0:04;0:47ð Þ; 0:89;0:35ð Þð Þð Þ; x1; x2; x3; x4f g; 0:11;0:47ð Þ; 0:72;0:35ð Þð Þð Þ;
x2; x3f g; 0:04;0:47ð Þðð , 0:72;0:44ð ÞÞÞ; x1; x2; x4f g; 0:04;0:47ð Þ; 0:89;0:35ð Þð Þð Þ.
For the objects in class 2 and 3, their similar classes and the fuzzy three-way concept sub-spaces induced by them in class

2 and 3 are.
Qx5 ¼ x5f g, Qx6 ¼ x6f g, Qx7 ¼ x7f g;
x5f g; 0:32;0:63ð Þ; 0:68;0:37ð Þð Þð Þ, x6f g; 0:55; 0:86ð Þ; 0:45;0:14ð Þð Þð Þ; x7f g; 0:68;0:11ð Þ; 0:32;0:89ð Þð Þð Þ.

Qx8 ¼ x8; x10f g, Qx9 ¼ x9; x10f g, Qx10 ¼ x8; x9; x10f g;
x8; x10f g; 0:75;0:40ð Þ; 0:19;0:41ð Þð Þð Þ; x9; x10f g; 0:75;0:32ð Þ; 0:09;0:60ð Þð Þð Þ; x8; x9; x10f g; 0:75;0:32ð Þ; 0:09;0:41ð Þð Þð Þ.

3.3. Construction of progressive fuzzy three-way concept space

In fuzzy three-way concept space, concepts influence each other, and there is even a lot of repetitive information between
them. Meanwhile, we should note that concept cognition is generally regarded as progressive because of the limitations of
individual cognitive and the incompleteness of cognitive environment. Thus, in this subsection, we mainly construct a pro-
gressive fuzzy three-way concept based on the original fuzzy three-way concept space.
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Definition 13. For these fuzzy three-way concepts Q1;
eG Q1ð Þ; eG� Q1ð Þ

� �� �
; Q2;

eG Q2ð Þ; eG� Q2ð Þ
� �� �

; . . . ; Qu;
eG Quð Þ

��
,eG� Quð ÞÞÞ 2 Ci, if there exists Q1 #Q2 # � � � #Qu, then the Qu;

eG Quð Þ; eG� Quð Þ
� �� �

is called supremum concept. The

progressive fuzzy three-way concept is defined as follows:
Qi;j ¼ Q1 [ Q2 [ Qu;

Gi;j;G
�
i;j

� �
¼ 1

2u�1
eG Q1ð Þ; eG� Q1ð Þ

� �
þ eG Q2ð Þ; eG� Q2ð Þ
� �

þ 2 eG Q3ð Þ; eG� Q3ð Þ
� �

þ . . .þ 2u�2 eG Quð Þ; eG� Quð Þ
� �� �

:
ð13Þ
The Qi;j; Gi;j;G
�
i;j

� �� �
is a progressive fuzzy three-way concept, and the corresponding concept subspace is

Pi ¼ Qi;j; Gi;j;G
�
i;j

� �� �
jj ¼ 1;2; . . . ; si

n o
, where si is the number of concept in subspace. In the learning process of progressive

concept, the intent of different sub-concept is given different weight according to its corresponding extent’s size. The influ-
ence of sub-concept on the generation of new concept is heightened with the increase of extent. Meanwhile, the sum of
weights in all concepts is 1, that is, the sum of the total effects is 1. The detail processes of selecting supremum concept
and obtaining progressive fuzzy three-way concept space are shown in Algorithm 2.

Algorithm 2. The construction of progressive fuzzy three-way concept space.
Fig. 4. The distribution of objects in the extent of fuzzy three-way concepts.
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Table 2
A fuzzy formal decision context.

Object b1 b2 Class

1 0.06 0.65 1
2 0.11 0.56 1
3 0.28 0.47 1
4 0.04 0.47 1
5 0.32 0.63 2
6 0.55 0.86 2
7 0.68 0.11 2
8 0.81 0.59 3
9 0.91 0.32 3
10 0.75 0.4 3
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Example 4 (Continue to Example 3). According to Definition 13, we can further learn the progressive fuzzy three-way
concept based on original fuzzy three-way concept in Example 3 as follows:
P1;1 ¼ x1; x2; x3; x4f g; 0:075; 0:47ð Þ; 0:784;0:395ð Þð Þð Þ;
P2;1 ¼ x5f g; 0:32;0:63ð Þ; 0:68;0:37ð Þð Þð Þ;
P2;2 ¼ x6f g; 0:55;0:86ð Þ; 0:45;0:14ð Þð Þð Þ;
P2;3 ¼ x7f g; 0:68;0:11ð Þ; 0:32;0:89ð Þð Þð Þ;
P3;1 ¼ x1; x2; x3f g; 0:75; 0:34ð Þ; 0:115;0:505ð Þð Þð Þ:
In the new concept space, the first and third subspaces have only one progressive fuzzy three-way concept, while the sec-
ond subspace has three progressive fuzzy three-way concepts because of the difference between extent of original concept.
Compared with original concept, the progressive concept retains the original information based on the cognitive rules, and
reduces the redundant concept that could improve the learning efficiency of concept recognition.
4. The incremental learning mechanism of progressive fuzzy three-way concept

When the new object is added, the progressive fuzzy three-way concept can not be updated without the class label. Thus,
how to identify the class label of added object based on the concept space is a question worth exploring. In this section, we
first design similar indicator that can be used for classification, and then propose an incremental learning mechanism based
on progressive fuzzy three-way concept(ILMPFTC) for dynamically increasing data.
4.1. Classification mechanism based on progressive fuzzy three-way concept

In the progressive fuzzy three-way concept space, the objects in each concept could be learned accurately by the extent of

concept and they all have the same class label. When adding an object xa whose membership degree to eR is eB, the most intu-

itive way to judge its category is to compare the difference between eB and the intent of existing progressive concept.

Definition 14. Given the initial progressive fuzzy three-way concept space P ¼ P1; . . . ;Plf g, the added object xa whose

membership degree and non-membership degree to eR are eB and eBc . Then, the difference between xa and the existing j� th

progressive concept Qi;j; Gi;j;G
�
i;j

� �� �
in Pi is described as follows:
DEC xa;Pi;j
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

keB � Gi;jk2 þ keBc � G�
i;jk2

q
: ð14Þ
The smaller the value of DEC xa;Pi;j
� �

, the stronger the similarity. The added object xa can be classified according to the
principle of minimum distance. This classification mechanism is illustrated by the following Example 5.
Example 5 (Continue to Example 4). Suppose the object xa ¼ x28 in Table 1 is the added object, whose membership degree toeR is eB ¼ 0:72;0:45ð Þ, non-membership degree eBc ¼ 0:28;0:55ð Þ, and its class label is 3. Now, we identify its class label
according to the distance between xa and the existing progressive concepts. The distances between x28 and the progressive
fuzzy three-way concepts are DEC xa;P1;1

� � ¼ 1:17;DEC xa;P2;1
� � ¼ 0:88;DEC xa;P2;2

� � ¼ 0:89;DEC xa;P2;3
� � ¼

0:68;DEC xa;P3;1
� � ¼ 0:29.
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Because the progressive concept P3;1 is in the 3� th class, thus the xa could be classified into the third category, which is
consistent with its real label.

Algorithm 3. Classify mechanism based on the progressive fuzzy three-way concept.

This classification mechanism based on the progressive fuzzy three-way concept is shown in Algorithm 3. Also, the label
of xa still can be identified by the same learning mechanism based on the progressive fuzzy concept (LMPFC), which will be
compared with ILMPFTC in the experimental section.

4.2. Dynamic update mechanism of progressive fuzzy three-way concept space

When an object xa is added, we first adjust its class label according to Algorithm 4. Suppose its label is the i, then
X0 ¼ Xi [ xaf g, it is very time-consuming to recalculate all concepts for obtaining the progressive concept space. To reduce
the learning time, we design a dynamic update mechanism to learn the concept. In this process, we only need to compute
the difference between xa and xc 2 Xi to update the similar class instead of recalculating the difference between any two
objects in X0

i. The dynamic update process of progressive concept space is shown in Algorithm 4.

Algorithm 4. Dynamic update mechanism of progressive fuzzy three-way concept space.

The Algorithm 4 introduces the dynamic update process of progressive fuzzy three-way concept space. The difference
between dynamic update algorithm and static update algorithm lies in how to update the fuzzy three-way concept space,
that is, the lines 4–12 of the pseudo-code, thus we only need to compare the difference between dynamic update and static
update algorithm in obtaining new fuzzy three-way concept space. Suppose the added object is classed into i� th class, that
is, X 0

i ¼ Xi [ xaf g. When update the j� th fuzzy three-way concept, we first need to compute the difference between xa and xj,
the complexity is m. The intent of new fuzzy three-way concept can be obtained through comparing the original concept
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eG Qxj

� �
; eG� Qxj

� �� �
with eB; eBc

� �
, if xa 2 Qxj , the time complexity of update concept is 2�m. Similarly, the extent of new con-

cept can be obtained based on the extent eH eG Qxj

� �
\ eH�eG� Qxj

� �
of original concept, thus the complexity of obtaining extent

is O m� jXij � jeH eG Qxj

� �
\ eH�eG� Qxj

� �
j

� �� �
. Since there are jXij concepts in the original concept space, thus the total com-

plexity of pseudo-code 7–12 lines is O m�PjXi j
j¼1 1þ 2þ 2 jXij � jeH eG Qxj

� �
\ eH�eG� Qxj

� �
j

� �� ��
. Therefore, the time complexity

of dynamic update fuzzy three-way concept is O m�PjXi j
j¼1 1þ 2þ 2 jXij � jeH eG Qxj

� �
\ eH�eG� Qxj

� �
j

� �� ��
. For the classic static

update algorithm, it needs to recalculate the all similar classes of objects in X0
i and then regain the new fuzzy three-way con-

cept according to Definition 14, thus the whole time complexity of static update concept space is

O m�PjX0
i j

j¼1j jX 0
ij þ 2jQxj j þ 2jX 0

ij
� �� �

. Because 1 6 jXij;2 6 jQxj j and jXij � jeH eG Qxj

� �
\ eH�eG� Qxj

� �
j 6 jXij, the time complexity

of dynamic update algorithm is less than that of static update algorithm.

4.3. Incremental learning mechanism of progressive fuzzy three-way concept

The development of information science makes it possible to update data in real time. How to efficiently achieve the cog-
nitive learning is important in dynamic environment. The dynamic update mechanism designed in Section 4.2 achieves con-
cept learning based on the relationship between the added objects and original concept space, this is an incremental learning
mechanism. The incremental learning mechanism based on progressive fuzzy three-way concept could be obtained for
object classification by combing the classification mechanism and dynamic update mechanism. For the dynamic increased
data without label, we first need to adjust its label, and then update the concept space for the further learning. After these
two steps, the added objects could be used to classify new objects in the future. This incremental concept learning mecha-
nism takes advantage of new information about added objects to make the further concept learning, which improves the
learning efficiency and classify performance compared with learning mechanism of progressive three-way concept
(LMPFTC). The Algorithm 5 introduces the whole process of ILMPFTC.

Algorithm 5. The incremental learning mechanism based on progressive fuzzy three-way concept.

The Fig. 5 vividly shows the incremental learning process based on progressive fuzzy three-way concept. Given a fuzzy

formal decision context with three types of objects. The objects in decision context are firstly divided into three classes
according to the decision attribute, then the similar classes of objects are obtained. Subsequently, the fuzzy three-way con-
cept is learned and its corresponding space is constructed according to Definition 9. Considering the limitations of individual
cognitive and the incompleteness of cognitive environment, we further learn the progressive fuzzy three-way concept and
classify the added objects according to the similarity [17]. All the classed objects are added into the original fuzzy formal
decision context and are used to the further concept learning process. This mechanism achieves the incremental learning
for dynamic increased data, and its classify performance has been improved due to the learned of new information.

5. Experimental analysis

In this section, we verify the effectiveness of proposed algorithm through numerical experiments, which is mainly
reflected in the following aspects: (1) the classification performance of ILMPFTC; (2) the convergence of incremental classify
mechanism; (3) the efficiency of dynamic update mechanism.

5.1. Experimental design

To verify the accuracy performance of the proposed learning mechanism (ILMPFTC), we compare it with LMPFC [16], KNN
[3], FuzzyKNN [10], IF-KNN [11], and FENN [23]. According to the analysis of Definition 11, we know the parameter d is an
important parameter that influences the classify accuracy in ILMPFC. In the experiments, the optimal d is selected according
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Fig. 5. The incremental learning mechanism based on progressive fuzzy three-way concept.
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to the classify accuracy of added objects, the select range is 0;1½ � with step 0:001. Similarly, the parameter d in LMPFC can be
obtained. The other four compared algorithms all have the same neighbor parameter k, where k ¼ 3 in this paper. Ten exper-
imental datasets are obtained from UCI Machine Learning Repository and KEEL, their detail information is shown in Table 3.
In the preprocessing stage, the dataset is fuzzified to get the membership degree belonging to the interval [0,1]. Therefore,
these datasets are first fuzzified by using [6]
eR xi; aj
� � ¼ f xi; aj

� ��min f aj
� �� �

max f aj
� �� ��min f aj

� �� � : ð15Þ
where the f xi; aj
� �

denotes the value of xi in attribute aj, the max f aj
� �� �

and min f aj
� �� �

denote the maximum and minimum

value of all objects in attribute aj. In the fuzzy formal decision context, the fuzzy value of eR x; að Þ reflects the membership

degree of x; að Þ to eR. Usually, the fuzzy set eR could be understood as the ownership degree of object to attribute. The greater
the value of f x; að Þ, the greater the degree to which x owns attribute a, the formula (15) as a method of fuzzification could
convert the original numerical into fuzzy formal decision context.

In each dataset, 70% of the data is used to train the model, the remaining data is divided into ten equal parts and added to
the test set to verify the classify performance of the ILMPFTC and the effectiveness of dynamic update mechanism. All the
algorithms are implemented in Matlab 2016b and carry out on a personal computer with Intel(R) Core(TM) i5-1135G7
CPU@2.40GH 2.42GH, and 16 GB memory.
5.2. The comparison of classify performance between different algorithms

In this subsection, we verify the excellence of ILMPFTC through classify performance, which includes the following three
aspects: (1) to illustrate the effectiveness of fuzzy three-way thought through the comparison between LMPFTC and LMPFC;
(2) to show the advantages of incremental mechanism through the comparison between ILMPFTC and LMPFTC; (3) to verify
the superiority of proposed classify mechanism through the comparison between ILMPFTC and other four fuzzy classify
methods.
5.2.1. The classification performance comparison between LMPFTC and LMPFC
Table 4 records the optimal d and classify accuracy of LMPFTC and LMPFC on ten datasets. The last column represents the

average accuracy and standard deviation(std) of accuracy. On all datasets, we find that the accuracy of LMPFTC is almost
greater than or equal to that of LMPFC every time, except set 5. The LMPFTC is better than LMPFC in 9 datasets in accuracy
and excellent on set 1, set 2, set 6, set 8, set 9 in standard deviation. Meanwhile, the data in Table 5 shows that the average
classify accuracy of LMPFTC in ten datasets is higher than that of LMPFC, which verifies the effectiveness of fuzzy three-way
concept. Further, to test whether there is a significant difference between LMPFTC and LMPFC from a statistical perspective,
we adopt the Wilcoxon pairwise test to compare this experiment. Given the test threshold is 0.05, the test P-value is
0:006 < 0:05, we could reject the null hypothesis(there is no difference between the two algorithms) and consider there
is a significant difference between LMPFTC and LMPFC. The more vividly comparison is shown in Fig. 6, it can be obtained
that the classify accuracy of LMPFTC is significantly higher than that of LMPFC in most datasets. Compared with fuzzy con-
cept, the fuzzy three-way concept also uses negative information to describe the object, which adds constraint on concept
learning but can make the learning concept more accurate, thus improving the classify performance. The above experimental
results confirm this point.
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Table 3
Dataset description.

No. Dataset Sample Attribute Class

set1 AuditData 772 17 2
set2 BreastCancer 683 9 2
set3 BreastCancerCoimbra 116 9 2
set4 Contraceptive Method Choice 1473 9 3
set5 glass 214 9 6
set6 Liver Disorders 345 6 2
set7 Nursery 12960 8 5
set8 Occupancy 20560 5 2
set9 Wireless Indoor Localization 2000 7 4
set10 Wilt 4839 5 2

Table 4
The optimal d and classify accuracy (%) of LMPFTC and LMPFC when adding new objects.

Dataset Method d t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Average ± std

set1 LMPFTC 0.679 100.00 100.00 100.00 100.00 100.00 100.00 92.55 89.13 82.61 77.83 94:21� 8:38
LMPFC 0.139 100.00 100.00 100.00 100.00 100.00 100.00 92.55 88.59 82.13 76.09 93.93 ± 8.88

set2 LMPFTC 0.222 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.38 98.89 99.00 99:73� 0:46
LMPFC 1 100.00 100.00 100.00 100.00 100.00 100.00 99.29 95.00 93.33 91.50 97.91 ± 3.31

set3 LMPFTC 0.674 100.00 100.00 100.00 100.00 93.33 88.89 76.19 66.67 59.26 53.33 83:77� 18:40
LMPFC 0.473 66.67 66.67 66.67 66.67 66.67 61.11 57.14 58.33 55.56 56.67 62.21 ± 4.90

set4 LMPFTC 0.100 61.36 55.68 51.52 53.41 52.73 48.86 48.05 47.44 45.96 44.77 50:98� 5:04
LMPFC 0.220 31.82 42.05 40.91 40.34 41.36 42.05 40.26 38.35 36.87 34.77 38.88 ± 3.42

set5 LMPFTC 0.100 83.33 75.00 66.67 75.00 76.67 75.00 71.43 70.83 70.37 70.00 73.43 ± 4.64
LMPFC 0.032 83.33 83.33 72.22 75.00 76.67 75.00 71.43 70.83 70.37 70.00 74:82� 5:01

set6 LMPFTC 0.735 100.00 100.00 96.67 95.00 86.00 75.00 65.71 61.25 55.56 52.00 78:72� 19:10
LMPFC 0.575 100.00 100.00 100.00 97.50 84.00 71.67 62.86 56.25 50.00 46.00 76.83 ± 22.12

set7 LMPFTC 0.200 65.21 62.50 44.50 55.93 64.74 70.62 72.53 69.33 68.27 71.44 64:51� 8:60
LMPFC 0.500 0.00 0.00 0.00 0.00 0.00 0.00 4.49 11.86 17.67 22.58 5.66 ± 8.58

set8 LMPFTC 0.010 99.03 99.35 99.57 99.68 99.74 99.78 99.74 99.21 97.24 96.64 99:00� 1:12
LMPFC 0.005 96.10 89.29 92.21 94.16 95.32 96.10 92.35 93.30 93.96 92.79 93.56 ± 2.07

set9 LMPFTC 0.255 100.00 100.00 100.00 100.00 99.66 99.15 98.31 97.46 97.74 97.97 99:03� 1:05
LMPFC 0.220 61.02 70.34 66.10 74.15 78.98 81.64 83.78 85.38 87.01 88.14 77.65 ± 9.36

set10 LMPFTC 0.005 58.62 78.62 85.52 88.79 90.62 91.84 92.91 93.71 93.33 93.45 86:74� 10:95
LMPFC 0.050 57.24 54.83 49.66 45.00 42.48 42.30 41.87 42.24 44.75 46.48 46.69 ± 5.51

Table 5
The average accuracy and their Wilcoxon test result of LMPFTC and LMPFC.

Mechanism set1 set2 set3 set4 set5 set6 set7 set8 set9 set10 Average P-value

LMPFTC 94.21 99.73 83.77 50.98 73.43 78.72 64.51 99.00 99.03 86.74 83.01 –
LMPFC 93.93 97.91 62.21 38.88 74.82 76.83 5.66 93.56 77.65 46.69 66.81 0.006
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5.2.2. The classification performance comparison between ILMPFTC and LMPFTC
For the object classification problem of dynamic increased data, it is limited to use only the original information for clas-

sification. The incremental learning mechanism further utilizes the information about added objects based on the original
data, it can update the data table in time and avoid the lack of useful information. The Table 6 records the classify accuracy
of added objects under ILMPFTC and LMPFTC. From this table, we find the ILMPFTC achieves the highest average accuracy in
9 datasets, and the average accuracy of ten datasets is also higher than that of LMPFTC, which shows the incremental mech-
anism could improve the object classify performance compared with the LMPFTC.
5.2.3. The classification performance comparison between ILMPFTC and other fuzzy classify algorithms
In this subsection, we verify the advantages of LMPFTC compared with the other four fuzzy classify algorithms based on

the KNN classifier. Table 7 records the classify accuracy with the increase of objects, the average accuracy, and corresponding
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Table 6
The optimal d and claffify accuracy (%) of ILMPFTC and LMPFTC when adding new objects.

Dataset Method d t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Average ± std

set1 ILMPFTC 0.740 100.00 100.00 100.00 100.00 100.00 100.00 91.93 88.04 86.47 87.39 95:38� 5:80
LMPFTC 0.679 100.00 100.00 100.00 100.00 100.00 100.00 92.55 89.13 82.61 77.83 94.21 ± 7.95

set2 ILMPFTC 0.240 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.38 98.89 99.00 99:73� 0:43
LMPFTC 0.222 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.38 98.89 99.00 99:73� 0:43

set3 ILMPFTC 0.690 100.00 100.00 100.00 100.00 100.00 88.89 90.48 79.17 70.37 66.67 89:56� 12:44
LMPFTC 0.674 100.00 100.00 100.00 100.00 93.33 88.89 76.19 66.67 59.26 53.33 83.77 ± 17.46

set4 ILMPFTC 0.150 52.27 55.68 54.55 55.68 55.00 51.89 50.97 51.14 48.48 47.05 52:27� 2:84
LMPFTC 0.100 61.36 55.68 51.52 53.41 52.73 48.86 48.05 47.44 45.96 44.77 50.98 ± 4.78

set5 ILMPFTC 0.099 83.33 75.00 61.11 70.83 73.33 72.22 69.05 68.75 68.52 68.33 71.05 ± 5.43
LMPFTC 0.100 83.33 75.00 66.67 75.00 76.67 75.00 71.43 70.83 70.37 70.00 73:43� 4:40

set6 ILMPFTC 0.730 100.00 100.00 96.67 95.00 94.00 83.33 72.86 67.50 61.11 56.00 82:65� 16:06
LMPFTC 0.735 100.00 100.00 96.67 95.00 86.00 75.00 65.71 61.25 55.56 52.00 78.72 ± 18.12

set7 ILMPFTC 0.240 65.21 64.05 68.90 73.52 78.81 82.35 82.58 76.19 70.13 68.97 73:07� 6:37
LMPFTC 0.200 65.21 62.50 44.50 55.93 64.74 70.62 72.53 69.33 68.27 71.44 64.51 ± 8.16

set8 ILMPFTC 0.016 99.35 99.51 99.68 99.76 99.81 99.84 99.86 98.97 96.99 96.35 99:01� 1:21
LMPFTC 0.010 99.03 99.35 99.57 99.68 99.74 99.78 99.74 99.21 97.24 96.64 99.00 ± 1.06

set9 ILMPFTC 0.108 100.00 100.00 99.44 99.15 98.98 98.87 98.55 98.73 98.87 98.47 99:11� 0:52
LMPFTC 0.255 100.00 100.00 100.00 100.00 99.66 99.15 98.31 97.46 97.74 97.97 99.03 ± 1.00

set10 ILMPFTC 0.014 63.45 80.00 85.52 88.62 90.21 91.15 92.32 93.10 92.72 92.83 86:99� 8:76
LMPFTC 0.005 58.62 78.62 85.52 88.79 90.62 91.84 92.91 93.71 93.33 93.45 86.74 ± 10.38

Fig. 6. The comparison of classify performance between LMPFTC and LMPFC.
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stand deviation. From this table, we find that the ILMPFTC gets the maximum value of 7 times in 10 datasets, while the other
four algorithms have achieved the maximum value for 3, 1, 1 and 0 times, respectively. Meanwhile, we obtain the average
rank of classification accuracy on ILMPFTC is 1.9((1 + 1 + 1 + 2+5 + 1 + 1 + 4+1 + 1)/10), and that of others are respectively 3.4,
2.8, 3.4, 2.5, which illustrates the superior of ILMPFTC in object classification. At the same time, the stand deviation of
ILMPFTC in set1, set2, set4, set5, set7, set9, set10 is smaller than that of KNN, FuzzyKNN, IF-KNN, and FENN, indicating that
ILMPFTC has relatively better robustness than other algorithms.
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Table 7
The parameter and classify accuracy (%) of five algorithms when adding objects.

Dataset Method d t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Average ± std Rank

set1 ILMPFTC 0.740 100.00 100.00 100.00 100.00 100.00 100.00 91.93 88.04 86.47 87.39 95:38� 5:80 1
KNN 3 100.00 100.00 100.00 100.00 100.00 100.00 92.55 88.59 82.13 77.39 94.07 ± 8.15 2
Fuzzy KNN 3 100.00 100.00 100.00 100.00 100.00 100.00 92.55 88.59 82.13 77.39 94.07 ± 8.15 2
IF-KNN 3 100.00 100.00 100.00 100.00 100.00 100.00 92.55 88.59 82.13 77.39 94.07 ± 8.15 2
FENN 3 100.00 100.00 100.00 100.00 100.00 100.00 92.55 88.59 82.13 77.39 94.07 ± 8.15 2

set2 ILMPFTC 0.240 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.38 98.89 99.00 99:73� 0:43 1
KNN 3 100.00 100.00 100.00 100.00 99.02 99.18 99.30 98.16 98.36 98.04 99.21 ± 0.76 5
Fuzzy KNN 3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.77 98.91 99.02 99.67 ± 0.51 2
IF-KNN 3 100.00 100.00 100.00 100.00 99.02 99.18 99.30 98.16 98.36 98.53 99.25 ± 0.69 4
FENN 3 100.00 100.00 100.00 100.00 99.02 99.18 99.30 98.77 98.91 99.02 99.42 ± 0.49 3

set3 ILMPFTC 0.690 100.00 100.00 100.00 100.00 100.00 88.89 90.48 79.17 70.37 66.67 89:56� 12:44 1
KNN 3 33.33 66.67 60.00 69.23 70.59 70.00 65.22 55.56 56.67 55.88 60.31 ± 10.62 5
Fuzzy KNN 3 66.67 83.33 70.00 76.92 70.59 70.00 65.22 55.56 53.33 52.94 66.46 ± 9.55 3
IF-KNN 3 66.67 83.33 70.00 76.92 70.59 70.00 65.22 55.56 53.33 52.94 66.46 ± 9.55 3
FENN 3 66.67 83.33 90.00 76.92 70.59 70.00 60.87 51.85 50.00 47.06 66.73 ± 13.67 2

set4 ILMPFTC 0.150 52.27 55.68 54.55 55.68 55.00 51.89 50.97 51.14 48.48 47.05 52.27 ± 2.84 2
KNN 3 56.82 57.09 57.58 60.36 56.36 50.38 48.38 46.88 45.96 44.55 52:43� 5:49 1
Fuzzy KNN 3 56.82 55.68 50.76 54.55 50.45 46.97 47.73 47.44 46.97 45.45 50.28 ± 3.87 3
IF-KNN 3 59.09 53.41 48.48 52.84 49.09 45.08 45.78 45.45 45.20 43.86 48.83 ± 4.64 5
FENN 3 63.64 53.41 49.24 50.57 46.82 43.18 44.48 46.31 46.97 47.05 49.17 ± 5.57 4

set5 ILMPFTC 0.099 83.33 75.00 61.11 70.83 73.33 72.22 69.05 68.75 68.52 68.33 71.05 ± 5.43 5
KNN 3 83.33 83.33 72.22 75.00 76.67 75.00 71.43 64.58 64.81 63.33 72:97� 6:85 2
Fuzzy KNN 3 83.33 83.33 72.22 75.00 76.67 72.22 69.05 64.58 64.81 65.00 72.62 ± 6.70 3
IF-KNN 3 83.33 83.33 72.22 75.00 76.67 72.22 69.05 60.42 61.11 60.00 71.34 ± 8.30 4
FENN 3 83.33 91.67 83.33 83.33 80.00 75.00 69.05 60.42 61.11 60.00 74.72 ± 10.85 1

set6 ILMPFTC 0.730 100.00 100.00 96.67 95.00 94.00 83.33 72.86 67.50 61.11 56.00 82:65� 16:06 1
KNN 3 50.00 50.00 43.33 45.00 39.22 49.18 54.93 59.26 61.54 59.80 51.23 ± 7.15 3
Fuzzy KNN 3 40.00 45.00 36.67 42.50 39.22 49.18 56.34 60.49 62.64 60.78 49.28 ± 9.47 4
IF-KNN 3 40.00 45.00 36.67 42.50 37.25 45.90 53.52 58.02 60.44 58.82 47.81 ± 8.68 5
FENN 3 70.00 45.00 36.67 40.00 41.18 50.82 57.75 61.73 64.84 66.67 53.46 ± 11.65 2

set7 ILMPFTC 0.240 65.21 64.05 68.90 73.52 78.81 82.35 82.58 76.19 70.13 68.97 73:07� 6:37 1
KNN 3 62.11 60.88 43.52 55.21 64.16 70.14 72.12 69.98 70.25 73.23 64.16 ± 8.79 4
Fuzzy KNN 3 64.18 61.90 44.21 55.73 64.57 70.48 71.53 69.47 69.79 72.82 64.47 ± 8.38 3
IF-KNN 3 70.88 65.25 46.44 57.40 65.91 71.60 72.34 73.26 73.17 75.86 67.21 ± 8.60 2
FENN 3 64.18 58.82 42.15 54.18 63.34 69.46 70.95 72.04 72.08 74.88 64.21 ± 9.63 5

set8 ILMPFTC 0.016 99.35 99.51 99.68 99.76 99.81 99.84 99.86 98.97 96.99 96.35 99.01 ± 1.21 4
KNN 3 98.38 99.03 99.35 99.51 99.61 99.68 99.65 98.80 98.79 97.91 99:07� 0:57 1
Fuzzy KNN 3 98.38 99.03 99.35 99.51 99.61 99.68 99.65 98.80 98.79 97.91 99:07� 0:57 1
IF-KNN 3 98.38 99.03 99.35 99.51 99.61 99.68 99.65 98.80 98.79 97.91 99:07� 0:57 1
FENN 3 98.38 99.03 99.35 99.51 99.61 99.68 99.65 98.50 98.54 97.71 99.00 ± 0.64 5

set9 ILMPFTC 0.108 100.00 100.00 99.44 99.15 98.98 98.87 98.55 98.73 98.87 98.47 99:11� 0:52 1
KNN 3 100.00 100.00 100.00 99.58 97.99 98.32 97.84 98.11 98.32 98.15 98.83 ± 0.89 3
Fuzzy KNN 3 100.00 100.00 99.44 99.16 97.32 97.76 97.36 97.69 97.95 97.82 98.45 ± 1.02 5
IF-KNN 3 100.00 100.00 99.44 99.16 97.32 97.76 97.36 97.69 97.95 97.99 98.47 ± 1.01 4
FENN 3 100.00 100.00 99.44 99.16 97.32 97.76 97.60 97.90 98.13 98.32 98.56 ± 0.95 2

set10 ILMPFTC 0.014 63.45 80.00 85.52 88.62 90.21 91.15 92.32 93.10 92.72 92.83 86:99� 8:76 1
KNN 3 53.10 75.52 83.22 87.41 89.79 89.38 92.61 93.53 93.56 93.94 85.21 ± 12.01 5
Fuzzy KNN 3 52.41 75.86 83.68 87.76 90.21 91.72 92.91 93.79 94.02 94.42 85.68 ± 12.38 2
IF-KNN 3 51.72 75.52 83.22 87.41 89.93 91.49 92.71 93.62 93.87 94.28 85.38 ± 12.53 4
FENN 3 51.72 75.86 83.45 87.59 90.07 91.61 92.81 93.71 93.87 94.28 85.50 ± 12.52 3
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The results of the Wilcoxon pairwise test are shown in Table 8, it can be obtained that there exists a significant difference
between KNN, FuzzyKNN, IF-KNN, and ILMPFTC when the test threshold is 0.05, and the ILMPFTC is different from FENN
when the test threshold is 0.1. Also, the average accuracy of ten datasets on ILMPFTC is 84.88, which is higher than that
of other four algorithms. Therefore, we could consider the ILMPFTC is excellent in object classification compared with algo-
rithms based on KNN classifier.
5.3. The comparison of overall classify performance when adding objects

The Fig. 7 shows the comparison of classify accuracy between ILMPFC and other four fuzzy classify algorithm. It is noted
that the five classify methods all have the downward trend as a whole with the increase of new objects to be identified. To
fully describe the classify performance of t time, it needs to combine the Acct(the classify accuracy at t time) and the change
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Table 8
The average accuracy of different classify algorithm and their corresponding Wilcoxon test results.

Mechanism set1 set2 set3 set4 set5 set6 set7 set8 set9 set10 Average P–value

ILMPFTC 95.38 99.73 89.56 52.27 71.05 82.65 73.07 99.01 99.11 86.99 84.88
KNN 94.07 99.21 60.31 52.43 72.97 51.23 64.16 99.07 98.83 85.21 77.75 0.084
Fuzzy KNN 94.07 99.67 66.46 50.28 72.62 49.28 64.47 99.07 98.45 85.68 78.00 0.043
IF-KNN 94.07 99.25 66.46 48.83 71.34 47.81 67.21 99.07 98.47 85.38 77.79 0.010
FENN 94.07 99.42 66.73 49.17 74.72 53.46 64.21 99.00 98.56 85.50 78.48 0.037

Fig. 7. The object classify performance of different algorithms when adding objects.
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of accuracy from t � 1 time to t time. Therefore, we design an indicator to measure the accuracy performance of different
algorithms as follows:
Table 9
The val

Mec

ILMP
KNN
Fuzz
IF-KN
FENN
IAP ¼
X9
t¼1

w1 � Acctþ1 � Acct
Acct

� 100%þw2 � Acctþ1

� �
: ð16Þ
where Acct and Acctþ1 denote the classify accuracy at t � th and t þ 1� th time, and Acctþ1�Acct
Acct

� 100 reflects the increase in

accuracy from t � th to t þ 1� th. The w1 and w2 denote the weight of Acctþ1�Acct
Acct

� 100% and Acctþ1. At any time, the higher
the classify accuracy of classification, the better of classify mechanism. Therefore, the larger the index value of IAP is, the
better the overall classify performance of the algorithm is with the increase of objects. In this paper, the weights of w1

and w2 are set to 0.4 and 0.6, respectively.
Table 9 records the values of indicator IAP under the different algorithms. From this table, we know the ILMPFTC obtains

the maximum value of IAP 7 times in 10 datasets, the other four fuzzy algorithms get the maximum value 0, 1, 2, 2 times,
ues of IAP for different algorithms when adding new objects.

hanism set1 set2 set3 set4 set5 set6 set7 set8 set9 set10 Average

FTC 56.34 59.77 51.34 30.92 41.10 45.98 44.68 59.25 59.34 55.60 50.43
54.94 59.38 41.79 30.14 41.95 31.87 39.81 59.47 59.14 56.14 47.46

y KNN 54.94 59.74 39.12 28.80 41.82 32.41 39.69 59.47 58.87 56.62 47.15
N 54.94 59.44 39.12 27.38 40.64 31.31 40.80 59.47 58.89 56.53 46.85

54.94 59.57 38.80 27.31 42.91 31.40 39.68 59.41 58.97 56.62 46.96

144



K. Yuan, W. Xu, W. Li et al. Information Sciences 584 (2022) 127–147
respectively. Meanwhile, the average IAP of ten datasets is the highest among five classify algorithms, thus we could obtain
the classify performance of ILMPFTC is better than other algorithms as the number of object increases.
5.4. The efficiency of dynamic update mechanism

A key issue of the incremental learning mechanism is to further use the information about added object for next learning,
therefore, how to efficiently update the original concept space after judging the category of the added objects is very impor-
Table 10
The consume time(s) of updating evolutionary concepts space on optimal d.

Dataset Algorithm t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

set1 Dynamic 1.15 1.17 1.23 1.54 1.69 1.78 1.85 1.96 2.04 2.09
Static 1.23 1.24 1.30 1.64 1.70 1.81 1.98 2.03 2.11 2.20

set2 Dynamic 1.04 1.07 1.13 1.18 1.20 1.25 1.41 1.42 1.45 1.49
Static 1.13 1.14 1.18 1.19 1.23 1.31 1.47 1.50 1.52 1.56

set3 Dynamic 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.06
Static 0.04 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.08

set4 Dynamic 3.12 3.17 3.18 3.20 3.27 3.26 3.20 2.99 3.08 3.19
Static 3.10 3.41 3.77 3.87 3.89 4.20 4.54 4.52 4.70 4.90

set5 Dynamic 0.07 0.08 0.08 0.09 0.10 0.10 0.11 0.11 0.12 0.12
Static 0.08 0.09 0.09 0.10 0.11 0.11 0.13 0.13 0.14 0.14

set6 Dynamic 0.30 0.31 0.35 0.35 0.37 0.39 0.40 0.41 0.43 0.45
Static 0.30 0.31 0.35 0.36 0.39 0.41 0.42 0.43 0.45 0.49

set7 Dynamic 4.37 4.72 5.41 5.66 6.26 6.79 7.04 7.32 7.67 8.21
Static 4.72 4.98 5.55 5.65 6.29 6.87 7.38 7.83 8.25 8.81

set8 Dynamic 84.15 99.02 109.75 113.51 128.56 133.60 134.50 140.67 153.24 160.20
Static 91.44 109.94 126.77 150.44 188.28 227.17 262.26 269.38 271.84 278.17

set9 Dynamic 218.80 288.74 364.44 454.82 514.33 538.72 619.72 646.72 702.72 738.72
Static 236.47 308.13 393.26 490.10 542.48 579.22 658.22 696.22 763.22 836.89

set10 Dynamic 593.66 692.62 816.93 1002.48 1180.78 1284.78 1407.78 1434.78 1563.78 1663.58
Static 646.66 843.34 1084.78 1394.46 1624.46 1628.46 1811.67 1845.92 2084.92 2284.92

Fig. 8. The consume time of updating concepts on dynamic and static mechanisms.
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tant. The update mechanism in ILMPFTC is designed to be dynamic for saving time, and its effectiveness is verified by the
comparison between dynamic algorithm and static algorithm.

The Table 10 and Fig. 8 record the elapsed time of the dynamic algorithm and static algorithm for concept update with
object increases. The computational time increases with the object increases in each dataset. When the data scale is small,
the difference of time between dynamic and static algorithms is also small. The time gap increases as the data size increases,
especially in large datasets. These results fully illustrate the advantages of the dynamic mechanism in updating concept
space.

According to the above analysis, the incremental learning mechanism is an efficient for object classification:
1) The classify performance of learning mechanism based on fuzzy three-way concept is superior to the learning mech-

anism based on fuzzy concept, which is verified in Section 5.2.1.
2) The incremental learning mechanism can further improve the classify accuracy by making further use of the informa-

tion of added objects and realizing the update of concept space in time.
3) In the aspect of object classification, the ILMPFTC is better than the other four fuzzy classify algorithms based on KNN

classifier, and which is further verified by the statistical test. Meanwhile, the classify performance of ILMPFTC is the best
among five classify algorithms with the increases of object.

4) Compared with static algorithm, the dynamic update mechanism could significantly improve the calculation efficiency
of concept updating.

According to the above analysis, the ILMPFTC based on progressive fuzzy three-way concept is an excellent algorithm in
object classification.

6. Conclusion

With the development of information technology, the data updates rapidly and the data without label makes it difficult
for us to learn. How to identify the class label of added objects is important in data mining. Recently, the learning algorithm
based on the concept thought has been widely used in object classification. In regular formal context, the concept describes
object through the intent and extent, but it is limited in dealing with numerical data. Meanwhile, the absence of negative
information in classical concept could also reduce the learn accuracy. The proposed ILMPFTC algorithm based on progressive
fuzzy concept settles the above issues and can achieve a better classify performance. As the updated concept is further used
for learning, the concept space contains new information about new objects, so the incremental mechanism can improve the
classification accuracy. Meanwhile, the dynamic update mechanism in ILMPFTC is introduced to obtain the updated concept
space after adding new objects. All the above concludes are verified in experiments on ten public datasets. In real life, as long
as you can describe the object from concept thought, the ILMPFTC can be used to settle its corresponding classify problem,
such as pattern recognition and face recognition. At the same time, the idea of incremental learning can also be applied to
dynamic increased data, such as time series data. Moreover, the concept learning itself is a complex problem, so how to
describe a concept and how to efficiently construct the concept space is a point worthy our further study.
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