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Abstract

In the literature, there have been numerous studies demonstrating experimentally that type-2 fuzzy models outperform their 

type-1 counterparts. Although the advantages of these models seem to be well justiied, the quantiication of the improve-

ments is not carefully evaluated and critically assessed in the existing studies. A thorough multi-objective experimental 

numeric evaluation of beneits of type-2 fuzzy models is still lacking. In this study, a numeric evaluation of the performance 

of type-1 and type-2 fuzzy models is carried out in terms of the criteria of accuracy and computing overhead, which leads to 

a thorough analysis of existing trade-ofs between these two performance indexes. In the proposed numeric evaluation, type-2 

fuzzy models are evaluated against their associated type-1 counterparts (the type-2 associated type-1 models sharing similar 

structure and the same development method). Three architectures of fuzzy models are involved in the comparative studies 

presented here: (1) fuzzy clustering method-based Takagi-Sugeno (TS) fuzzy models (Fuzzy C-Means based type-1, Fuzzy 

C-Means based interval type-2); (2) static TS-based fuzzy models (static type-1, A2C0, A2C1, EKFT2 and their associated 

type-1 models) and (3) evolving TS fuzzy models (SEIT2 and its associated type-1 counterpart, SCIT2 and its associated 

type-1 model). The experiments are carried out by involving 15 publicly available datasets. The accuracy of these two types 

of fuzzy models is assessed vis-a-vis their development time. Testing is involved to evaluate whether there are statistically 

signiicant diferences between the performance of the type-2 and type-1 fuzzy models.

Keywords Accuracy · Design complexity · Experimental evaluation · Type-1 TS fuzzy model · Type-2 TS fuzzy model

1 Introduction

Fuzzy models have been recognized as important and efec-

tive architectures in handling uncertainty in system mod-

eling and as such have been used in many areas, including 

control [6, 7], pattern recognition [8, 9, 48] and many oth-

ers [16–20, 27, 33, 50–54]. In recent years, fuzzy models 

involved type-2 fuzzy sets started to become more visible 

showing their advantages over type-1 fuzzy models [21–23]. 

Based on this observation, a number of studies have been 

conveyed and the advantages of type-2 fuzzy models when 

compared with type-1 fuzzy models have been reported.

As the inherent extension of type-1 fuzzy sets, type-2 

fuzzy sets and models need more parameters in their rep-

resentation. At the same time, an additional type-reduction 

stage before defuzziication (decoding) becomes necessary 

to transform type-2 fuzzy sets into its numeric representa-

tive. Without any doubt, these aspects make the type-2 fuzzy 

inference systems more complex than the associated type-1 

systems. To lower the associated complexity and reduce the 
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related computing overhead, a lot of eforts of exploring ei-

cient type-reduction methods and designing simpliied archi-

tecture of type-2 fuzzy models (usage of a few type-2 fuzzy 

sets for the most critical input regions and type-1 fuzzy sets 

for the others) have been reported in the references

[24–26, 28–32, 34, 36–43]. While the computational 

overhead is essential, only a few of the existing studies elab-

orate on the advantages of type-2 fuzzy models when being 

compared with type-1 fuzzy systems being weighed against 

the associated computational cost. It is still unclear and un-

carefully quantiied whether the gain (advantages conveyed 

by the type-2 fuzzy systems) are beneicial in terms of costs 

(development time). Another important issue, which is miss-

ing in the existing studies, is a thorough comparative analy-

sis. Although type-1 and type-2 fuzzy models are shown to 

be universal approximators [44–47], the performance of the 

systems is still impacted by numerous factors, for example, 

initial values of the parameters and training methods. Sta-

tistical testing is important to evaluate whether there are 

statistically signiicant improvements delivered by type-2 

fuzzy models.

The ultimate objective of this study is to carry out a 

thorough comparative quantitative analysis of type-2 and 

type-1 fuzzy models by involving the criteria of accuracy 

and computing overhead. A comparative statistical analy-

sis supports a framework in which comparative studies are 

completed. To make the comparison fair, the following 

development framework along with optimization setting 

are established: (1) type-1 and type-2 fuzzy models used 

in the comparison are developed using the same kinds of 

methods: if type-1 fuzzy models are developed based on 

Fuzzy C-Means (FCM) and the least square error method 

(LSE), then the interval type-2 fuzzy models are constructed 

based on FCM or interval type-2 FCM clustering method 

and the LSE, etc.; (2) fuzzy sets used in type-1 and type-2 

fuzzy models are described by the same form of membership 

functions, say if type-2 is a Gaussian membership function 

with uncertain mean, then the corresponding type-1 fuzzy 

set is described in terms of Gaussian membership function; 

(3) as type-2 fuzzy models are impacted (especially in terms 

of the ensuing computational eiciency) by the type-reduc-

tion method, four type-reduction methods (Karnik–Mendel 

iterative procedure (KM) [49], q factor method (QF) [41], 

Nie–Tan method (NT) [35] and center of set type reducer 

without sorting requirement (COSTRWSR) [11]) are used 

in the design of interval type-2 fuzzy models (except for 

SEIT2, SCIT2 and EKFT2).

In this study, the structures of interval type-2 fuzzy mod-

els based on FCM and the interval type-2 FCM clustering 

algorithm with four kinds type-reduction and defuzziication 

methods (KM, NT, QF and COSTRWSR) are formulated. 

The accuracy of interval type-2 fuzzy models are compared 

with that of type-1 fuzzy models against the associated 

computing overhead. The nonparametric test is used to 

tell whether there are signiicant diferences between the 

performances of interval type-2 and type-1 fuzzy models. 

We consider multiple input-single output fuzzy models 

where x ∈ R
n and  y ∈ R. The input-output data ( �

k
 , tar-

get
k
 ) ( �

k
∈ R

n , target
k
∈ R , k = 1, 2,… , N ) are split into the 

training and testing set R
tr
 and R

te
 . In all the models, the 

minimized performance index Q expressing their accuracy 

comes as a sum of squared errors, namely

where FM denotes the fuzzy model under discussion, 

M = N
tr
 or N

te
 , N

tr
= card(X

tr
) and N

te
= card(X

te
).

The paper is organized as follows. In Sect. 2, the struc-

tures of type-1 and type-2 fuzzy models are discussed. In 

Sect. 3, experimental studies are given. Conclusions are 

presented in Sect. 4.

2  Structure of the fuzzy models

In this section, we briely recall the generally encountered 

structure and the design of the fuzzy models, both type-1 

and type-2 being used in this comparative study.

2.1  Clustering method based fuzzy models

1. FCM based type-1 structure The Takagi-Sugeno (TS) 

fuzzy model is the commonly used rule-based model. 

Considering c rules with fuzzy sets in the condition part 

built around prototypes �1, �2,… , �
c
 , the rules assume 

the following form 

where A
i(i = 1, 2,… , c) is a condition part (fuzzy set) 

deined in the input space described by the following mem-

bership function (as a matter of fact, the formula describing 

this fuzzy set comes as a direct consequence of the use of 

the FCM algorithm) and � = [x1, x2, x
n
]T,

The conclusion part is a local linear function described 

by a  vector  of  parameters  �
i
= [ai

0
, a

i

1
,… , a

i

n
] , 

� = [�T

1
, �T

2
,… , �T

c
] ( �T

i
 is the transpose of �

i
 ) and 

�
i
= �

Ai (�)[1, �T ]T , i = 1, 2,… , c . In the virtue of form of 

the performance index, the optimal solution to the estimation 

of the parameters of the conclusion parts is determined using 

the well-known expression

(1)Q =

∑M

k=1
(FM(�k) − targetk)

2

M
,

(2)−if � is Ai, then yi
= ai

0
+ ai

1
x1 +⋯ + ai

n
xn,

(3)
�Ai (�) =

1

∑c

j=1

�
���−�i��
���−�j��

� 2

m−1

.
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w h e r e  �
tr
=

⎛
⎜
⎜
⎜
⎝

�
T

1
(�1) �

T

2
(�1) … �

T

c
(�1)

�
T

1
(�2) �

T

2
(�2) … �

T

c
(�2)

… … … …

�
T

1
(�

N
tr

) �T

2
(�

N
tr

) … �
T

c
(�

N
tr

)

⎞
⎟
⎟
⎟
⎠

,  �
i
∈ �

tr
 , 

�tr = [y1, y2,… , yNtr
]T , i = 1, 2,… , N

tr
.

This generic fuzzy model is denoted here as FCMT1-1. 

For further comparative analysis, we consider more advanced 

architectures in which we admit the local model to be quadratic 

with respect to the input variables assuming the form

where i = 1, 2,… , c.

This model is denoted as FCMT1-2. Note that the 

FCMT1-2 is a linear model with respect to the parameters 

standing in the conclusion part (albeit the dimensionality of 

the parameter space has been increased). From the design 

perspective, this augmented model is developed in the same 

manner as FCMT1-1. 

2. Clustering method based interval type-2 fuzzy model

  To compare the performance of the type-1 and type-2 

fuzzy models, we introduce the clustering method based 

interval type-2 fuzzy models. Two forms of methods 

are introduced here: a) interval type-2 FCM [13] based 

interval type-2 fuzzy model (IT2FCMIT2-1); and b) 

FCM based interval type-2 fuzzy model (FCMIT2-1). 

For these two models, only their antecedent parts are 

interval type-2 fuzzy sets. Their consequent parts are 

composed of linear functions. They share the same 

structure as described below 

where Ãi(i = 1, 2,… , c) is a condition condition part (type-2 

fuzzy set) deined in the input space described by the mem-

bership functions (7) and (8) (for interval type-2 FCM based 

interval type-2 fuzzy models) or (9) and (10) (for FCM based 

interval type-2 fuzzy models) and � = [x1, x2,… , x
n
]T,

(4)�opt = (�T
tr
�tr)

−1�T
tr
�tr,

(5)
− if � is Ai

then yi
= ai

0
+ ai

1
x

1
+ ai

2
x

2

+⋯ + ai
n
xn + ai

n+1
x2

1
+⋯ + ai

2n
x2

n

(6)− if � is Ãi
then yi

= ai
0
+ ai

1
x

1
+ ai

2
x

2
+⋯ + ai

n
xn

(7)�Ãi (�) = max

⎛
⎜⎜⎜⎝

1

∑c

j=1
(
���−�i��
���−�j�� )

2

m1−1

,
1

∑c

j=1
(
���−�i��
���−�j�� )

2

m2−1

⎞
⎟⎟⎟⎠
,

(8)�
Ãi
(�) = min

⎛
⎜⎜⎜⎝

1

∑c

j=1
(
���−�i��
���−�j�� )

2

m1−1

,
1

∑c

j=1
(
���−�i��
���−�j�� )

2

m2−1

⎞
⎟⎟⎟⎠
,

in which �
i
 is the prototype obtained with the interval type-2 

FCM ( i = 1, 2,… , c ) and m
1
 and m

2
 are two values of the 

fuzziiers.

For the FCM-based model, two groups of prototypes 

(�1

1
, �1

2
,… , �1

c
) and (�2

1
, �2

2
,…

, �2

c
) are obtained when running the method using two 

values of the fuzziier m
1
 and m

2
 . The upper and lower mem-

bership grades are obtained as follows:

where (�1

1
, �1

2
,… , �1

c
) and (�2

1
, �2

2
,… , �2

c
) are the prototypes 

given by the FCM clustering algorithm associated wuth the 

fuzzification coefficients m
1
 and m

2
 , respectively. And 

�
2
k
= arg min1≤j≤c

(
||�1

i
− �

2
j
||
)
 , i = 1, 2,… , c . The closer the 

values of m
1
 and m

2
 , the closer the values of �

Ãi
(�) and 

�
Ãi (�) . To make the interval type-2 fuzzy sets relect a level 

of granularity, a higher diference between m1 and m2 is 

preferred. For both of the two interval type-2 fuzzy models, 

four type-reduction and defuzziication methods (KM, NT, 

COSTRWSR and QF) are considered to produce a numeric 

output of the model.

For KM and COSTRWSR, the left and right ends ( yl and y
r
 ) 

of the type-reduced interval are given. For KM, it goes on this 

way (let us name it with the computation of yl ): step (1) sort the 

data in the primary domain in ascending order and match the 

associated weights; step (2) initialize the weights and defuzzi-

ied value; step (3) ind the switch points; step (4) according to 

the switch point, update the weights and calculate the associated 

defuzziied value; step (5) check the termination condition and 

perform correspondingly. Hence the amount of computation for 

each step is: step (1) c(c-1); step (2) 5c-2; step (3) c-1; step (4) 

4c-1; step (5) 2. Hence in each iteration the total computational 

amount for KM is 2 c2+18c-2. For COSTRWSR, it consists of the 

following steps (also name the computation of yl ): step (1) check 

the weights and determine whether it is necessary to perform the 

followed steps; step (2) initialize; step (3) calculate the common 

terms; step (4) conditionally update �i

l
 and check the stop condi-

tion to activate the associated steps. The computational amount 

of COSTRWSR for each step is: step (1) c; step (2) c; step (3) 

10c-3; step (4) 16c. Considering one more common term and the 

diference between the upper and lower weights, the total compu-

tational amount for COSTRWSR is 58c-5 in each iteration. That 

is to say, if we assume these two methods could convergence 

(9)�Ãi (�) = max

⎛
⎜⎜⎜⎝

1

∑c

j=1
(
���−�1

i
��

���−�1

j
�� )

2

m1−1

,
1

∑c

j=1
(
���−�2

i
��

���−�2

j
�� )

2

m2−1

⎞
⎟⎟⎟⎠
,

(10)�
Ãi
(�) = min

⎛
⎜⎜⎜⎝

1

∑c

j=1
(
���−�1

i
��

���−�1

j
�� )

2

m1−1

,
1

∑c

j=1
(
���−�2

i
��

���−�2

j
�� )

2

m2−1

⎞
⎟⎟⎟⎠
,
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in less than c iterations, the computational complexity of COS-

TRWSR and KM are O(c2) and O(c), respectively. While for NT 

method and QF method, their associated computational amount 

are 6c − 3 and 6c, respectively. For KM and COSTRWSR, the 

gradient descent algorithm is used to optimize the parameters 

in the consequent part. For the detailed algorithm of KM refer 

to [1]. Here we concentrate on the calculation of the other three 

kinds of methods.

Detailed algorithm for COSTRWSR

COSTRWSR is introduced in [11] along with the follow-

ing formulae

in which �i

l
 , �i

r
= 0, 1 and i = 1, 2,… , c.

Make

Then using the gradient descent algorithm, for the (k + 1)

-th iteration, we have

in which

and

(11)yl =

∑c

i=1
�i

l
�Ãi (�)yi +

∑c

i=1
(1 − �i

l
)�

Ãi
(�)yi

∑c

i=1
�i

l
�Ãi (�) +

∑c

i=1
(1 − �i

l
)�

Ãi
(�)

,

(12)yr =

∑c

i=1
�i

r
�Ãi(�)yi +

∑c

i=1
(1 − �i

r
)�

Ãi
(�)yi

∑c

i=1
�i

r
�Ãi(�) +

∑c

i=1
(1 − �i

r
)�

Ãi
(�)

,

(13)y = (yl + yr)∕2.

(14)
�̃

ctr

i
(�) = 0.5

�

�i

l
�

Ãi (�) + (1 − �i

l
)�

Ãi
(�)

∑c

i=1
�i

l
�

Ãi(�) +
∑c

i=1
(1 − �i

l
)�

Ãi
(�)

+
�i

r
�

Ãi (�) + (1 − �i

r
)�

Ãi
(�)

∑c

i=1
�i

r
�

Ãi(�) +
∑c

i=1
(1 − �i

r
)�

Ãi
(�)

�

[1, �T ]T , (i = 1, 2,… , c).

(15)�(k+1) = �(k) −

2

(

(�̃ctr
(k)

tr
)T �̃ctr

(k)

tr
�(k) − (�̃ctr

(k)

tr
)T�(tr)

)

N
tr

,

(16)

�̃
ctr

(k)

tr
=

⎛
⎜⎜⎜⎜⎜⎜⎝

�
�̃

ctr
(k)

1
(�1)

�T �
�̃

ctr
(k)

2
(�1)

�T

…

�
�̃

ctr
(k)

c
(�1)

�T

�
�̃

ctr
(k)

1
(�2)

�T �
�̃

ctr
(k)

2
(�2)

�T

…

�
�̃

ctr
(k)

c
(�2)

�T

… … … …�
�̃

ctr
(k)

1
(�

N
tr
)

�T �
�̃

ctr
(k)

2
(�

N
tr
)

�T

…

�
�̃

ctr
(k)

c
(�

N
tr
)

�T

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(17)

�̃
ctr(k)

i
(�j) = 0.5

⎛
⎜⎜⎝

�i(k)

l
�Ãi(�j) + (1 − �i(k)

l
)�

Ãi
(�j)

∑c

i=1
�i(k)

l
�Ãi (�j) +

∑c

i=1
(1 − �i(k)

l
)�

Ãi
(�j)

⎞
⎟⎟⎠
[1, �T

j
]T

+

⎛
⎜⎜⎝

�i(k)

r
�Ãi(�j) + (1 − �i(k)

r
)�

Ãi
(�j)∑c

i=1
�i(k)

r
�Ãi (�j) +

∑c

i=1
(1 − �i(k)

r
)�

Ãi
(�j)

⎞
⎟⎟⎠
[1, �T

j
]T ,

where �j ∈ �tr , �tr = [y1, y2,… , yNtr
], i = 1, 2,… , c;j = 1, 2,… , Ntr , 

and k = 1, 2,… , Itera (maximum iteration).

Detailed algorithm for QF

According to the deinition of q factor method in [41] denote

Making use of the gradient descent algorithm and LSE, for 

the (k + 1)− th iteration, we have

in which

where

and �j ∈ �tr, �tr = [y1, y2,… , yNtr
], i = 1, 2,… , c;j = 1, 2,… , Ntr, 

and k = 1, 2,… , Itera (maximum iteration).

Detailed algorithm for NT

According to the nature of the NT method [35], make

Then using LSE, we obtain the closed-form solution:

where

(18)

�̃
q

i
(�) =

�

q�
Ãi
(�)

∑c

i=1
�

Ãi
(�)

+
(1 − q)�Ãi (�)
∑c

i=1
�Ãi(�)

�

[1, �
T ]T , (i = 1, 2,… , c).

(19)q(k+1) = q(k) −

d
(

�
q(k)

tr �(k) − �tr

)T(

�
q(k)

tr �(k) − �tr

)

dq

�̃
q(k)

tr =

⎛
⎜⎜⎜⎜⎜⎜⎝

�
�̃

q(k)

1
(�1)

�T �
�̃

q(k)

2
(�1)

�T

…

�
�̃

q(k)

c (�1)

�T

�
�̃

q(k)

1
(�2)

�T �
�̃

q(k)

2
(�2)

�T

…

�
�̃

q(k)

c (�2)

�T

… … … …�
�̃

q(k)

1
(�Ntr

)

�T �
�̃

q(k)

2
(�Ntr

)

�T

…

�
�̃

q(k)

c (�Ntr
)

�T

⎞
⎟⎟⎟⎟⎟⎟⎠

,

�̃
q(k)

i
(�j) =

�

q(k)�
Ãi
(�j)

∑c

i=1
�

Ãi
(�j)

+
(1 − q(k))�Ãi (�j)
∑c

i=1
�Ãi (�j)

�

[1, �
T
j
]T ,

�(k) =

(

(

�
q(k)

tr

)T

�
q(k)

tr

)−1
(

�
q(k)

tr

)T

�tr,

(20)

�̃
nt

i
(�) =

�

�
Ãi
(�) + �

Ãi(�)

∑c

i=1
�

Ãi
(�) +

∑c

i=1
�

Ãi (�)

�

[1, �
T ]T , (i = 1, 2,… , c).

(21)�opt =

(

(

�̃nt
tr

)T
�̃nt

tr

)

−1
(

�̃nt
tr

)T
�tr,
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�j ∈ �tr, �tr = [y1, y2,… , yNtr
]T , j = 1, 2,… , Ntr.

We also consider the model of which the conclusion 

part is made up of the quadratic variable of the inputs as 

following

where i = 1, 2,… , c.

We mark interval type-2 fuzzy models as IT2FCMIT2-2 

and FCMIT2-2 of which the prototypes are given by the 

interval type-2 FCM, and FCM, respectively. The crisp out-

puts are given by those four kinds of type-reduction and 

defuzziication methods (KM, QF, NT and COSTRWSR), 

too. For the training of this model, it is similar with that of 

FCMT2-1, so the detailed discussion is omitted here.

2.2  Selected type‑2 fuzzy models and the induced 
type‑1 fuzzy models

In what follows, we summarize several selected type-2 fuzzy 

models used in the comparative experiments. We focus here 

on interval-valued fuzzy models as being commonly used; 

they are generalized in comparison with type-1 fuzzy models 

but do not carry an overall computing burden associated 

with full-ledged type-2 fuzzy models. 

1. Self-evolving Interval Type-2 Fuzzy Neural Network 

(SEIT2)

  This SEIT2 fuzzy neural network proposed in [1] is an 

interval type-2 T-S fuzzy model coming in the following 

form 

 where Ãi
j
 is the interval type-2 fuzzy set with Gaussian 

membership function expressed as (22)-(24) and 
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0
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(22)− if � is Ãi then yi
= ai

0
+ ai

1
x1 + ai

2
x2 +⋯ + ai

n
xn + ai

n+1
x2

1
+⋯ + ai

2n
x2

n
,

(23)
− if x

1
is Ãi

1
and x

2
is Ãi

2
and … and xn is Ãi

n

then yi
= ãi

0
+ ãi

1
x

1
+ ãi

2
x

2
+⋯ + ãi

n
xn

(24)�Ãi
j
= exp

(

−(xj − mi
j
)2∕(2(�i

j
)2)

)

,

  In more detail, the upper �Ãi
j
(xj) and lower �

Ãi
j

(xj) 

membership function are expressed as follows. 

(25)�Ãi
j
(xj) =

⎧
⎪⎪⎨⎪⎪⎩

exp

�
−

(xj−mi
j1
)2

2(�i
j
)2

�
, xj ≤ mi

j1
;

1, mi
j1
< xj < mi

j2
;

exp

�
−

(xj−mi
j2
)2

2(�i
j
)2

�
, xj ≥ mi

j2
.

This model involves two types of learning: the structure 

learning and the parameter learning. It is a self-evolving 

model meaning that initially there are no rules in the rule 

base of SEIT2. The rules are generated after receiving the 

training data, which is considered as the structure learning 

proceeds. When a rule (assume it is the i
0
-th rule) is gener-

ated, the parameters ( mi
j1
 , mi

m2
 and �i

j
 in the condition part, 

b
i

0
 , si

0
 , bi

j
 and si

j
 in the conclusion part i = 1, 2,… , i0 and 

j = 1, 2,… , n ) will be tuned, which is the parameter learning 

part. The parameters of the condition part are tuned by the 

gradient descent algorithm. While for the conclusion part, 

the parameters are optimized by the Kalman ilter. The KM 

method [2, 10] is used as the type-reduction method.

Induced SEIT1

The type-1 fuzzy model associated with SEIT2 could be 

formulated as follows, and here mark it as SEIT1,

where Ai
j
 is the type-1 fuzzy set with Gaussian membership 

function expressed as follows and ai
0
, ai

j
∈ �,

in which mi
j
 , �i

j
∈ � , i = 1, 2,… , c and j = 1, 2,… , n.

For SEIT1, it has the same number of rules with SEIT2. 

For the training of SEIT1, the parameters of the condi-

tion part (antecedent part) are trained with the gradient 

descent algorithm; while for those of the conclusion part 

(consequent part), they are trained with the Kalman ilter 

algorithm. 

(26)�
Ãi
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2. Self-evolving Compensatory Interval Type-2 Fuzzy 

Neural Network (SCIT2)

  This SCIT2 fuzzy neural network introduced in [3] is 

regarded as an interval type-2 fuzzy model whose rules 

come in the following form 

 where Ãi

k
 is interval type-2 fuzzy set and the deinition 

of its membership function refer to (22)–(24); 

ai
0
, ai

j
∈ textbfR are numeric values, � i ∈ [0, 1] is a com-

pensation degree, i = 1, 2,… , c and j = 1, 2,… , n.

  This model exhibits a self-evolving architecture. Its 

design involves structural and parametric learning. The 

learning proceeds in a similar manner as in the SEIT2 

architecture. In this model, the defuzziied (decoded) 

output is expressed in the following way 

 w h e r e  �i =

�

∏n

j=1
�

Ãi
j

�1−� i+� i∕n

, 

�
i
=
�

∏n

j=1
�Ãi

j

�1−� i+� i∕n

, i = 1, 2,… , c and q is an 

adjustable parameter [23].

Induced SCIT1

The corresponding compensatory type-1 fuzzy structure 

of SCIT2 come as follows and mark it as SCIT1

where Ai
j
 is type-1 fuzzy set and the deinition of its member-

ship function refer to (27); ai
0
, ai

j
∈ � are numeric values, 

�
i ∈ [0, 1] is a compensation degree, i = 1, 2,… , c and 

j = 1, 2,… , n.

It has the same number of rules as SCIT2. And also, 

the parameters in the antecedent part are trained with the 

gradient descent method, while for those in the consequent 

part, they are trained with the Kalman–Filter algorithm. 

3. Extended Kalman ilter based learning Algorithm for 

Type-2 Fuzzy Logic Systems (EKFT2)

  The rules of this model are described in the following 

form [4], 
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n

then yi
= ãi
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 where Ãi
j
 is interval type-2 fuzzy set and its membership 

function is deined as (31)-(33); ai
0
, ai

j
∈ � , i = 1, 2,… , c 

and j = 1, 2,… , n . 

 where hi
j
∈ [hi

j2
, hi

j1
] , hi

j
∈ � , hi

j1
> 1 , 0 < hi

j2
< 1 , 

i = 1, 2,… , c and j = 1, 2,… , n.

  The lower and upper membership functions come in 

the form, 

In this model, the number of rules is speciied in advance and 

t h e  p a r a m e t e r s  (  ei
j
, di

j
, hi

j1
, di

j2
, ai

0
 a n d  ai

j
 , 

i = 1, 2,… , c;j = 1, 2,… , n ) are optimized by the extended 

Kalman ilter. The defuzziied output is expressed as follows.

where f i
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n
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, f
i
=

n
∏

j=1

�Ãi
j
, i = 1, 2,… , c . We denote it 

as the NT method [35].

Induced EKFT1

The type-1 fuzzy structure against with EKFT2 is deined 

as follows and denote it as EKFT1,

where Ai
j
 is interval type-1 fuzzy set, ai

0
, ai

j
∈ � , 

i = 1, 2,… , c and j = 1, 2,… , n . Its membership function is 

deined as follows.
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j
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j
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It exhibits the same number of rules as EKFT2. All of the 

parameters ( ei
j
 , di

j
 , ai

0
 and ai

j
 , i = 1, 2,… , c and j = 1, 2,… , n ) 

are optimized with the use of the extended Kalman ilter 

algorithm.

The following two forms of standard interval type-2 

fuzzy models are introduced in [12]. They are constructed as 

following. 

4. Antecedents Type-2 and Consequent Crisp Number 

Fuzzy Model (A2C0) and Antecedents Type-2 and Con-

sequent Type-1 Fuzzy Model (A2C1)

A2C0

The interval type-2 fuzzy model of which the consequent 

part is linear function is described as follows.

where Ãi
j
 is interval type-2 fuzzy set and the deinition of its 

membership function refer to (22)-(24); ai
0
, ai

j
∈ � , 

i = 1, 2,… , c and j = 1, 2,… , n.

A2C1

The interval type-2 fuzzy structure where its condition part 

is type-1 fuzzy sets is deined as follows

where Ãi
j
 is interval type-2 fuzzy set and the deinition of its 

m e m b e r s h i p  f u n c t i o n  r e fe r  t o  ( 2 2 ) - ( 2 4 ) ; 

ãi
0
= [bi

0
− si

0
, bi

0
+ si

0
], ãi

j
= [bi

j
− si

j
, bi

j
+ si

j
] , bi

0
, si

0
, bi

j
, si

j
∈ � , 

i = 1, 2,… , c and j = 1, 2,… , n.

For A2C1 and A2C0, the number of their rules is pre-speci-

ied. The parameters standing in the antecedent and consequent 

parts are both trained with the gradient descent algorithm. For 

each of them (A2C1 and A2C0), four kinds of type reduction 

and defuzziication methods are applied. These four kinds of 

methods are KM, NT, QF and COSTRWSR.

Standard Type-1 Fuzzy Logic Model (ST1)

The type-1 fuzzy model which has the same number of 

rules with A2C0 and A2C1, could be formulated as follows, 

and we mark it as ST1.

where Ai
j
 is the type-1 fuzzy set with Gaussian membership 

function expressed as (27) and ai

0
 , ai

j
∈ R , i = 1, 2,… , c and 

j = 1, 2,… , n.
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3  Experimental studies

For the fuzzy models discussed above, 15 datasets are used 

for carrying out a thorough performance analysis. The 

publicly available datasets coming from the UCI machine 

learning repository [14], the KEEL-dataset repository [15] 

and Statlib-Datasets Archive, are considered. Furthermore a 

commonly used Mackey-Glass time series is experimented 

with. A concise description of the data sets used in the 

experiments are listed in Table 1. It should be noted here that 

we use abbreviation for each dataset as: Auto MPG (APG); 

Boston Housing (BoH); Concrete Slump (CSI); Diabetes 

(Dia); Estimate of the percentage of body fat (EPB); Istan-

bul Stock Exchange (ISE); Laser (Las); Daily electricity 

energy (Dee); NNGC1 (NNG); NO2 (No2); Plastic (Pla); 

Pm 10 (P10); Quaake (Qua); Yacht Hydrodynamics (YaH); 

Mackey-Glass (McG).

For the interval type-2 structures equipped with q factor 

type reduction method, the data set is split into the training, 

validation, and testing data (60%-10%-30%) . The value of q 

is initialized with 10 random numbers (with uniform distri-

bution) lying in [0, 1]. The one which minimizes the average 

of the performance index of the training and validation set is 

chosen. For all of the type-1 fuzzy models and the interval 

type-2 fuzzy models of which the type reduction method is 

KM, NT or COSTRWSR (not q factor method), the data set 

is split into the training and testing data (70%-30%). The 

experiments are repeated 15 times. As shown in (1), the 

mean square error (MSE) is used to evaluate the perfor-

mance of the model. Experiments are completed based on 

Matlab 2017b running on a Lenovo Thinkpad desktop com-

puter with Intel Core i7-6700 CPU @ 3.4GHz and 16GB 

memory, Windows 7 Professional system.

For anyone in the 15 datasets, the Wilcoxon rank-sum test 

[5] is used to tell whether there are signiicant diferences 

between the accuracy of one type-2 fuzzy model and its 

associated type-1 fuzzy model. For example, to tell whether 

there are signiicant diferences between the accuracy of 

SEIT2 and SEIT1, the values of Q for 15 times experiments 

of SEIT2 are compared with those of SEIT1 with Wilcoxon 

rank-sum test. As it is usually believed that the type-2 fuzzy 

model could outperform the type-1 model, the alternative 

hypothesis against the null hypothesis H
0
 that �̃

1
= �̃

2
 is 

H
1
∶ �̃

1
> �̃

2
 , where �̃

1
 and �̃

2
 are the median mean squared 

errors of the type-1 and type-2 fuzzy models, respectively. 

As these two samples (consider the 15 values of Q of SEIT2 

as one sample and for those of SEIT1 as another sample) are 
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of equal size, we just take the size of the sample of type-1 as 

n
1
 and that of type-2 as n

2
 , hence we have n

1
= n

2
= 15 . For 

the signiicant test of accuracy of FCMIT2-1 vs FCMT1-

1, IT2FCMIT2-1 vs FCMT1-1, SCIT2 vs SCIT1, A2C1 vs 

ST1, A2C0 vs ST1, etc., the test is completed in the same 

way as SEIT2 vs SEIT1 for any dataset in 15 datasets.

For the purpose of convenience, the abbreviation of the 

type-2 fuzzy structures used in the experiments is listed in 

Tables 2 and 3. These abbreviations are used in all igures.

As we are concerned with a thorough comparative analy-

sis, we consider the relative accuracy and standard deviation 

(reported for the two classes of models) and express it as 

the ratio,

where pT1
 and pT2

 stand for the performances of the type-1 

and type-2 fuzzy model, respectively; and p = Q or � , in 

which � is the standard deviation of Q’s for each model 

(type-1 or type-2).

The development time required to design the model on a 

basis of the existing experimental data is the second crite-

rion being taken into account. We express it as the following 

ratio,

where t
T1

 and t
T2

 stand for the development time of the 

type-1 and type-2 fuzzy model, respectively. The values of 

r
t
 close to 100% indicate that there is a high computing over-

head associated with the construction of type-2 fuzzy model.

To assess whether the improvements of the accuracy 

and stability delivered by the interval type-2 fuzzy models 

match its cost (pay more development time) when 

(42)rp = (1 − pT2∕pT1) × 100%,

(43)r
t
= (1 − t

T1∕t
T2) × 100%,

compared with those of type-1 fuzzy models. The values 

of rQ − rt and ratios of rQ > rt ( rrQ>rt
 ) associated with each 

data set and each interval type-2 structure are displayed in 

Figs. 1 and 2, respectively. While the values of r
r
�
>r

t

 for 

each data set and each interval type-2 fuzzy model are 

displayed in Figs. 3 and 4, accordingly. When the value of 

rQ − rt is larger than 0, this means compared with the sav-

ing time ratio associated with type-1 fuzzy model when 

compared with type-2 fuzzy model, the ratio of the 

improvement conveyed by the type-2 fuzzy model when 

compared with type-1 fuzzy model is higher. Then we can 

say that the cost associated with type-2 fuzzy models 

Table 1  List of datasets used in 

the experiments
Name Features Cases Origin of the data

APG 8 398 http://archive.ics.uci.edu/ml/datasets/Auto+MPG

BoH 13 506 http://lib.stat.cmu.edu/datasets/boston

CSl 10 103 http://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test

Dia 2 43 http://sci2s.ugr.es/keel/dataset.php?cod=45

EPB 14 252 http://lib.stat.cmu.edu/datasets/bodyfat

ISE 8 563 http://archive.ics.uci.edu/ml/datasets/

ISTANBUL+STOCK+EXCHANGE

Las 4 993 http://sci2s.ugr.es/keel/dataset.php?cod=47

Dee 6 365 http://sci2s.ugr.es/keel/dataset.php?cod=46

NNG 4 370 http://sci2s.ugr.es/keel/dataset_smja.php?cod=942

No2 7 500 http://lib.stat.cmu.edu/datasets/NO2.dat

Pla 2 1650 http://sci2s.ugr.es/keel/dataset.php?cod=74

P10 7 500 http://lib.stat.cmu.edu/datasets/PM10.dat

Qua 3 2178 http://sci2s.ugr.es/keel/dataset.php?cod=75

YaH 7 308 http://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics

McG 2 500 Matlab

Table 2  List of abbreviation of type-2 fuzzy structure used in the fol-

lowing igures

Fuzzy structure Type reduction method Abbreivation

FCMIT2-1 KM F21-KM

NT F21-NT

QF F21-QF

COSTRWSR F21-SR

FCMIT2-2 KM F22-KM

NT F22-NT

QF F22-QF

COSTRWSR F22-SR

A2C0 KM 20-KM

NT 20-NT

QF 20-QF

COSTRWSR 20-SR

SEIT2 KM EI2

EKFT2 NT KF2
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matches its gain. While if rQ − rt is negative, then the cost 

fails to meet the gain. Obviously, the higher of the positive 

value of rQ − rt and rrQ>rt
 , the better the cost matches the 

gain for the type-2 fuzzy models. This is similar with that 

of r
r
�
>r

t

.

With the results shown in Fig. 1, it could be concluded 

that for the training set, the value of rrQ>rt
 is lower than 

20% , while for testing set, the number of datasets for 

rrQ>rt
> 50% is lower than 2 in 15 datasets. Meaning that, 

for most datasets (for more than 73% datasets), the gain 

cannot meet the associated cost for the type-2 fuzzy mod-

els when compared with the corresponding type-1 fuzzy 

systems.

As is shown in Fig. 2, for the A2C0, A2C1, SEIT2 

(EIT2 in igures) and SCIT2 (CIT2 in igures), the value 

of rrQ>rt
 is zero for the training set. While for the testing 

set, only when A2C0 and A2C1 are equipped with NT 

method, the value of rrQ>rt
 is lower than 10% and for the 

rest, rrQ>rt
 is zero. For the irst order and second order 

fuzzy clustering method based interval type-2 fuzzy mod-

els, for all of the structures the value of rrQ>rt
 is lower than 

10% for training set. While for the testing set, this value is 

higher than 30% for F21-NT, I21-NT, F22-NT and I22-NT 

when m = 1.5 and I21-NT when m = 2.5 . For EKFT2 (KF2 

in igures), rrQ>rt
 is around 30% for both the training and 

testing set.

As can be seen in Fig. 3, similar with the results shown 

in Fig. 1, the value of rrQ>rt
 is lower than 30% for all of the 

training sets and the number of rrQ>rt
> 50% is no more 

than 3 in 15 datasets.

With the results shown in Fig. 4, it is easy to note that 

for the training set, the ratio of r
�
> r

t
 is lower than 20% 

for all of the structures, except for the EKFT2 (KF2 in 

igures). While for the testing set, for structures F21-NT, 

I21-KM, I21-NT, I21-QF, I21-SR, F22-NT, F22-QF, 

F22-SR, I22-NT, I22-QF and I22-SR when m = 1.5 and 

EKFT2 (KF2 in igures), the ratio of r
�
> r

t
 is no less than 

40% , while for the rest interval type-2 structures, this ratio 

is less than 40%.

As visualized in Fig. 5, for all of the training set, the 

ratio when the performances of interval type-2 fuzzy mod-

els show signiicant diferences when compared with type-1 

fuzzy models is lower than 40% , while for the testing set, the 

number of this ratio which is no less than 50% is no more 

than 3 in 15 datasets.

With the results shown in Fig. 6, the ratio when the per-

formances of interval type-2 fuzzy systems show signii-

cant diferences when compared with type-1 fuzzy systems 

is higher than 50% for F22-SR (when m = 1.5 , 2, 2.5 and 

3), FS-QF (when m = 3 ) and SEIT2 (EI2 in igures) for the 

training set, but this ratio is lower than 25% for these struc-

tures for the testing set. For most structures, the ratio when 

the performances of interval type-2 fuzzy systems show sig-

niicant diference when compared with type-1 fuzzy sys-

tems for the testing set is higher than that of the training set.

The average ratio of rQ > rt , r� > r
t
 and ratio for cases 

when the performances of the type-2 fuzzy models show 

signiicant diferences when compared with those of type-1 

fuzzy systems are shown in Fig. 7. Obviously, for training 

set, both rrQ>rt
 and r

r
�
>r

t

 are lower than 10% , and for testing 

set, these ratios are lower than 20% and 30% , respectively. 

For the ratios of cases when the performances of type-2 

fuzzy systems show signiicant diferences when compared 

with type-1 fuzzy models are lower than 20% and 25% for 

training and testing set, accordingly.

Overall, the ratios of rQ > rt , r� > r
t
 and the ratio for 

cases when the performance of the type-2 fuzzy models 

show signiicant diferences when compared with those of 

type-1 fuzzy systems are lower than 50% , no matter against 

each data set or each structure or the average ratio. Though 

for EKFT2 (KF2 in igures) and its associated type-1 struc-

ture, the ratio of rQ > rt and r
�
> r

t
 are around 40% , the 

ratio for cases when the performances of the type-2 fuzzy 

models show signiicant diferences when compared with 

type-1 fuzzy systems are lower than 20% . This results from 

that these kinds of structures are occupied with a fast type-

reduction and defuzziication (decoding) method which 

may cause higher value of rrQ>rt
 and r

r
�
>r

t

 , but these inter-

val type-2 structures does not produce signiicant difer-

ences when compared with its associated type-1 structures. 

For SEIT2 (EI2 in igures) and its associated type-1 struc-

ture, as SEIT2 uses KM as its type-reduction method 

Table 3  List of abbreviation of type-2 fuzzy structure used in the fol-

lowing igures

Fuzzy structure Type reduction method Abbreivation

IT2FCMIT2-1 KM I21-KM

NT I21-NY

QF I21-QF

COSTRWSR I21-SR

IT2FCMIT2-2 KM I22-KM

NT I22-NY

QF I22-QF

COSTRWSR I22-SR

A2C1 KM 21-KM

NT 21-NY

QF 21-QF

COSTRWSR 21-SR

SCIT2 QF CI2
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Fig. 1  Plots of rQ − rt and ratio 

when rQ > rt for each data set, 

a, c, e and g for training data, 

while b, d, f and h for testing 

data; a, b with m = 1.5 , c, d 

with m = 2 , e, f with m = 2.5 

and g, h with m = 3
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which develops slowly, this results in lower values of 

rQ > rt and r
�
> r

t
 which are both equal to zero, but higher 

ratios ( > 50% ) of cases of when the performances of the 

SEIT2 show signiicant diferences when compared with 

those of its associated type-1 fuzzy structure for the train-

ing set. For A2C0 and A2C1 (both of these structures are 

equipped with four kinds of type-reduction methods) and 

their associated type-1 structures, the values for rrQ>rt
 and 

r
r
�
>r

t

 and the ratio for cases when the performances of the 

type-2 fuzzy models show signiicant diferences when 

compared with those of type-1 fuzzy systems are lower 

than 20% for both training and testing set. And for most of 

the fuzzy clustering based interval type-2 structures (also 

they are equipped with 4 kinds of type-reduction methods) 

and their associated type-1 structures, the ratios of rQ > rt 

and r
�
> r

t
 and ratio for cases when the performances of 

the type-2 fuzzy models show signiicant diferences when 

compared with type-1 fuzzy systems for the testing set are 

higher than those of the training set.

Though there some improvements can be observed when 

the performances of interval type-2 fuzzy models are com-

pared with those of type-1. The average ratios of cases for 

Fig. 2  Plots of rQ − rt and ratio 

when rQ > rt for each type-2 

structure, a, c, e and g for train-

ing data, while b, d, f and h for 

testing data; a, b with m = 1.5 , 

c, d with m = 2 , e, f with 

m = 2.5 and g, h with m = 3
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rQ > rt and r
�
> r

t
 are lower than 10% and 30% for training 

set and testing set, respectively. This entails that the com-

puting overhead related with interval type-2 fuzzy models 

have cast a heavy burden, which originates because of more 

parameters needed to describe the membership functions 

of the interval type-2 fuzzy sets and the additional type-

reduction phase when transforming the interval type-2 fuzzy 

sets to numeric outcomes. Although, for a few cases, some 

signiicant improvements could be observed when the per-

formance of interval type-2 fuzzy models is compared with 

Fig. 3  Plots of ratio when 

r
�
> r

t
 for each data set a 

m = 1.5 , b m = 2 , c m = 2.5 and 

d m = 3 ; results of training data 

are displayed in the irst row, 

results of testing data are shown 

in the second row

Fig. 4  Plots of ratio when 

r
�
> r

t
 for each type-2 structure, 

a m = 1.5 , b m = 2 , c m = 2.5 

and d m = 3 ; results of training 

data are displayed in the irst 

row, results of testing data are 

shown in the second row
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the performance of type-1 fuzzy models, the ratios for these 

cases are lower than 20% and 30% for training set and testing 

set, correspondingly. In most cases, there are no signiicant 

improvements when the performances of interval type-2 

fuzzy models are compared with the quality delivered by 

the type-1 models.

When contrasting type-2 fuzzy models with their type-1 

counterparts, as reported in Table 4 and 5, the improvement 

Fig. 5  Ratios of cases when the 

values of Q of type-2 models 

show signiicant diference 

(critical value equals to 0.05) 

when compared with those of 

the associated type-1 models for 

each dataset a, b with m = 1.5 , 

c, d with m = 2 , e, f with 

m = 2.5 and g, h with m = 3 ; 

results of training data are 

displayed in the irst row, results 

of testing data are shown in the 

second row

Fig. 6  For each type-2 structure, 

ratios of cases when its values 

of Q show signiicant diference 

(critical value equals to 0.05) 

when compared with those of 

the associated type-1 model a 

with m = 1.5 , b with m = 2 , c 

with m = 2.5 and d with m = 3 ; 

results of training data are 

displayed in the irst row, results 

of testing data are shown in the 

second row
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Fig. 7  a Ratios of cases when 

rQ > rt ; b ratios of cases when 

r
�
> r

t
 and (c) ratios of cases 

when the performances of the 

type-2 models show signiicant 

diference with those of type-1 

models for training and testing 

data ( m = 1.5, 2, 2.5 and 3)

Table 4  Average ratios of 

improvements ( rQ ) and saving 

time ( r
t
 ) for each dataset when 

m = 1.5 and m = 2

Dataset m = 1.5 m = 2

rQ r
t
 (%) rQ r

t
 (%)

Training (%) Testing (%) Training (%) Testing (%)

APG − 4.71 4.12 72.50 − 4.24 − 8.62 77.25

BoH − 8.78 22.68 75.03 − 10.06 3.43 78.23

CSl 2.68 52.17 63.97 − 1.76 37.71 68.92

Dia 9.21 23.45 70.64 − 4.74 − 3.24 76.07

EPB 4.76 64.55 69.91 2.03 58.75 73.19

ISE − 13.35 40.35 65.33 − 16.03 8.21 69.32

Las − 16.42 − 12.75 68.64 − 7.52 − 6.56 72.18

Dee − 3.78 0.75 73.64 − 5.05 − 1.03 77.07

NNG − 10.01 − 3.27 72.83 − 8.80 − 2.61 77.25

No2 − 6.68 8.73 69.75 − 6.73 0.60 75.03

Pla − 5.30 − 6.85 72.83 − 5.21 − 6.77 78.24

P10 − 7.59 8.93 71.44 − 8.51 − 6.44 76.13

Qua − 0.90 0.15 77.28 − 1.39 − 0.58 80.15

YaH − 1.65 14.82 64.71 − 0.39 0.94 70.28

McG 0.50 − 0.40 68.69 0.61 − 0.96 73.48

Table 5  Average ratios of 

improvements ( rQ ) and saving 

time ( r
t
 ) for each dataset when 

m = 2.5 and m = 3

Dataset m = 2.5 m = 3

rQ r
t
 (%) rQ r

t
 (%)

Training (%) Testing (%) Training (%) Testing (%)

APG − 3.18 − 6.71 75.14 − 2.98 − 11.31 76.44

BoH − 10.10 − 1.98 75.88 − 9.26 − 2.61 77.48

CSl 4.55 39.59 64.86 − 3.29 13.04 67.26

Dia − 7.46 − 5.31 72.18 − 6.64 − 5.39 72.82

EPB 6.87 44.91 69.98 10.11 37.61 72.07

ISE − 7.38 3.70 65.44 − 3.92 0.80 67.95

Las − 7.99 − 4.99 68.85 − 6.67 − 4.25 71.01

Dee − 5.34 − 2.65 73.66 − 4.06 − 2.14 74.75

NNG − 8.48 − 2.53 74.00 − 8.41 − 2.57 74.92

No2 − 5.99 − 4.49 72.26 − 5.36 − 6.42 74.12

Pla − 5.39 − 6.77 76.30 − 5.32 − 6.88 77.29

P10 − 7.19 − 9.01 73.34 − 7.81 − 11.06 75.04

Qua − 1.38 − 0.40 78.34 − 1.35 − 0.34 79.25

YaH − 1.17 − 5.11 66.28 − 0.52 − 2.03 68.45

McG 0.53 − 0.60 70.63 0.53 − 0.69 71.89
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of accuracy is in-between −4.54 and 5.39% (on average) 

for training and testing sets, respectively. These indings 

are associated with the signiicant computing overhead of 

around 72.62% (on average). These values are data-depend-

ent as visualized in Fig. 8. In a nutshell, the completed 

experiments demonstrate that the gain in accuracy is quite 

limited (or in some cases some loses of accuracy have been 

reported) while a substantially higher computing overhead 

and a significantly increased complexity of the overall 

design process has been noted.

4  Conclusions

The comprehensive experimental study reported in the paper 

ofers a well-supported evidence and carefully quantiied com-

parative analysis of performance of type-2 and type-1 fuzzy 

models. It becomes apparent that a very limited improvement 

(or eventually degradation) in accuracy is signiicantly ofset 

by substantial computing overhead. The number of parameters 

of type-2 fuzzy models is far larger than those being present in 

the type-1 counterpart. This calls for more advanced learning 

procedures; the engagement of both type reduction and decod-

ing (defuzziication) makes the overall structure of the model 

complex and quite challenging with regard to the eicient 

usage of optimization mechanisms. This observation sounds 

quite pessimistic and, more radically, one may even question 

the relevance of type-2 fuzzy models. Nevertheless one has to 

put the indings in a certain perspective and revisit carefully 

a way in which type-2 models are evaluated and used. The 

accuracy criterion is numeric, viz. one evaluates the numeric 

manifestation of type-2 fuzzy model. The far richer format of 

results of this model, viz type-2 or interval-valued fuzzy set is 

lost and underutilized. One may conclude that a lot of develop-

ment efort has not been fully taken advantage of. This phe-

nomenon has been witnessed in case of type-1 fuzzy models 

but to a lesser extent. We badly need diferent evaluation crite-

ria, which, as a matter of fact, are well aligned with the quan-

tiication of the quality of the non-numeric (granular) results 

produced by fuzzy models. Granular computing and models 

ensuing there [49] where the results are indeed information 

granules could ofer an attractive and sound alternative and 

highlight a need for a paradigm shift. As of now, this direction 

has not been pursued in type-2 fuzzy modeling.
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