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Abstract
Covering based multigranulation rough fuzzy set, as a generalization of granular computing
and covering based rough fuzzy set theory, is a vital tool for dealing with the vagueness
and multigranularity in artificial intelligence and management sciences. By means of neigh-
borhoods, we introduce two types of coverings based (optimistic, pessimistic and variable
precision) multigranulation rough fuzzy set models, respectively. Some axiomatic systems
are also obtained. The relationships between two types of coverings based (optimistic, pes-
simistic and variable precision) multigranulation rough fuzzy set models are established.
Based on the theoretical discussion for the covering based multigranulation rough fuzzy set
models, we present an approach to multiple criteria group decision making problem. These
two types of basic models and the procedure of decision making methods as well as the
algorithm for the new approach are given in detail. By comparative analysis, the ranking
results based on two different models have a highly consensus. Although there exist some
different ranking results on these two methods, the optimal selected alternative is the same.

Keyword Multigranulation rough set · Covering based (optimistic, pessimistic and variable
precision) multigranulation rough fuzzy set · Neighborhood · Covering based rough fuzzy
set · Multiple criteria group decision making

1 Introduction

Rough set theory (briefly, RST) was firstly mentioned by Pawlak (1982) as a useful approach
to copy with uncertain information. Until now, this theory has been applied to many differ-
ent research fields, such as control, knowledge discovery, data analysis, pattern recognition,
information process, granular computing, and so on (for examples, see Abu-Donia 2012;
Greco et al. 2001; Jensen and Shen 2007; Yao 2010, 2016). It is well known that Pawklak’s
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model builds on an equivalence relation that characterizes a partition formed by classes of
indiscernible object which causes the limited applications. Due to the reason, many gener-
alized rough set models has been established by many researchers in these years, such as,
rough fuzzy set and fuzzy rough set models, general binary relations, neighborhood rough
sets, probabilistic rough sets, decision-theoretic rough sets, soft rough sets, rough soft sets,
and so on (see Chen et al. 2014; Dubois and Prade 1990; Qian et al. 2014b; Sun and Ma
2015b, 2017; Wu and Zhang 2004; Yao 1998; Yeung et al. 2015; Zhan et al. 2017a, b). Now
it is widely accepted that these general rough set models provide very useful and flexible
environments to cope with roughness and vagueness in a more precise manner.

As one of the extended models, covering based rough set model (briefly, CRS-model)
is a vital research topic of generalized RST. CRS is a very powerful tool that enables the
researcher to study data mining in a more general manner. Nowadays, many researchers
investigated this topic in recent thirty years.

After Dubois and Prade (1990) proposed two classes of important concepts of rough
fuzzy sets (briefly, RFSs) and fuzzy rough sets (briefly, FRSs) by combining rough sets and
fuzzy sets, many researchers proposed many generalized FRS-models. At the same time,
some scholars generalized CRS-models to fuzzy covering-based rough sets (briefly, FRC)
by combining fuzzy sets and CRSs.

Zadeh (1997) introduced the concept of granular computing and analysed fuzzy infor-
mation granulation. Nowadays, this theory plays an important role in soft computing,
data mining, information systems, machine learning, and so on, for examples, see Yao
(2005), Pedrycz (2013), Pedrycz et al. (2008) and Zhang et al. (2016). Qian et al. (2010b)
extended Pawlak’s single granular rough set models to multigranulation rough set models
(briefly, MGRS-models). For more details, see Qian et al. (2010a, 2014a, b). Nowadays,
MGRS has become an attractive topic in AI and management sciences and has attracted
many researchers to engage in this area from theoretical and applied aspects, for examples,
see Huang et al. (2014), Lin et al. (2012, 2013), Sun andMa (2015a), She and He (2012), Xu
and Leung (1998), Xu et al. (2012, 2013), Yang et al. (2012a, b) and Yao and She (2015) and
Zhang et al. (2017, 2018).

Group decision-making (briefly, GDM) attempts to provide solutions to solve such com-
plex real-world problems. However in real life, many decision-making problems in fields like
industrial engineering, management science or operational research usually require multiple
criteria decision making (briefly, MCDM). Consequently, to tackle both settings multiple
criteria group decision making (briefly, MCGDM) or pursues the selection or ranking of the
feasible alternatives by a group, in the presence of conflicting and interactive criteria.

In continuation of these research efforts we proceed to investigate the MCGDM problem.
By viewing existing studies, it appears that there is a lack of investigation on the applications
inmultiple criteria group decisionmakingmethods by covering basedmultigranulation rough
fuzzy set models. This motivates the present paper on covering based multigranulation rough
fuzzy set models, as well as their applications in multiple criteria group decision making.
Based on the theoretical discussion for the covering based multigranulation rough fuzzy set
models, we present an approach to multiple criteria group decision making problem. These
two types of basic models and the procedure of decision making methods as well as the
algorithm for the new approach are given in detail. By comparative analysis, the ranking
results based on two different models have a highly consensus. Although there exist some
different ranking results on these two methods, the optimal selected alternative is the same.

In view of this reason, in the present paper, we investigate two types of coverings based
multigranulation rough fuzzy set models by means of the neighborhoods, which is different
from the existing literatures. It is listed as follows: Sect. 2 gives detailedly literature review
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on rough sets and extenshions and decision making methods. Section 3 is devoted to recall
some basic concepts and fundamental properties related to RST and CRSs. In Sects. 4 and 5,
by means of neighborhoods, we introduce two types of coverings based (optimistic, pes-
simistic and variable precision) multigranulation rough fuzzy set models, respectively. Some
axiomatic systems are also obtained. The relationships between two types of coverings based
(optimistic, pessimistic and variable precision) multigranulation rough fuzzy set models are
established in Sect. 6. Finally, we give an application of multiple criteria group decision mak-
ing methods by covering based multigranulation rough fuzzy set models in Sect. 7. Section 8
gives the discussion and points out some future work in this topic.

2 Literature review

This section gives a necessarily short overview of rough set theory and their extensions and
covering based fuzzy rough sets. We also include some comments on the problem of decision
making in an uncertain environment as refers to these specific frameworks.

2.1 Rough set theory and extensions

Covering based rough set theory is an important extension of rough sets. Pomykala (1987)
defined two dual approximation operators. Bonikowski et al. (1998) proposed another
CRS-model by minimal description. Further, Tsang et al. (2008) proposed the third CRS-
model. Zhu (2007, 2009a, b) and Zhu andWang (2003, 2007, 2012) proposed some kinds of
CRS-models and discussed the relationships among them. Xu and Zhang (2007) proposed a
new CRS-model and discussed measuring roughness. Further, Liu and Sai (2009) compared
the relationships between Zhu’s CRS-models andXu’s CRS-models. Further important prop-
erties related to CRS-models are proved in Ma (2012, 2015), Yao and Yao (2012) and Zhu
(2011).

Deng et al. (2007) defined a fuzzy coverings by a fuzzy relation. Li et al. (2008) discussed
fuzzy covering based generalized fuzzy rough operators. Ma (2016) investigated two kinds
of fuzzy rough coverings by means of a fuzzy β-neighborhood. Further, Yang and Hu (2016)
discussed some types of fuzzy β-coverings based on rough sets, which are generalizations
of Ma (2016). Recently, D’eer et al. (2016, 2017) discussed fuzzy neighborhoods based on
FRCs. In view of the above literatures, they would constitute a foundation of FRC-models.
These studies have aroused interest in rough covering theory, which has quickly become an
important and useful research topic in uncertainty theory.

Xu et al. (2014, 2011) put forth the concept of multigranulation rough fuzzy set models
(according to the view of Dubios and Prade) by means of an equivalent relation. In fact,
it should be called a multigranulation rough fuzzy set based on Dubois and Prade’s idea
in Dubois and Prade (1990). Liu et al. (2014); Liu and Pedrycz (2016) proposed covering-
based multigranulation fuzzy rough sets.

2.2 Decisionmakingmethods

Mardani et al. (2015) reviewed multiple criteria group decision making methods based on
fuzzy set theory from 1994 to 2014. Regarding decision making methods based on rough set
theory,many researchers put forth new procedures and techniques too [the reader is addressed
to Sun and Ma (2015b, 2017) for examples].
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Recently, Sun et al. (2017b) put forward three-way group decisionmaking based onmulti-
granulation fuzzy decision. At the same time, Sun et al. (2017a) proposed multigranulation
fuzzy rough set models and corresponding decision making applications.

Our research method is especially motivated by these interesting proposals.

3 Basic terminologies and results

This section reviews some terminologies and results related to RST, CRS and MGRSs.
Throughout this article U denotes a finite non-empty set and ρ is an equivalence relation of
U × U . The equivalence relation ρ induces a partition of U , denoted by [x]ρ , and U/ρ =
{[x]ρ |∀x ∈ U } stands for the equivalence classes of x . Let μ denote a fuzzy set of U . For
any set U , F(U ) denotes its all fuzzy sets.

3.1 Covering based rough sets

Let C be a family of non-empty subsets Ui of U . If
⋃

Ui∈CUi = U , then C is called a
covering of U . The pair (U , C) is called a covering approximation space (briefly, CAS).

Let (U , C) be a CAS and x ∈ U , the neighborhood of x is defined by NC(x) = ⋂{Ui ∈
C|x ∈ Ui }.

Let� = {C1, C2, . . . , Cm}be a family of coverings ofU ,whereCi ={Ci1, Ci2, . . . , Cili },
for all i = 1, 2, . . . ,m. We can define the neighborhood of x of � is defined by NCi (x) =⋂{Ci j ∈ Ci |x ∈ Ci j , j = 1, 2, . . . , l}, for all i = 1, 2, . . . ,m.

Definition 3.1 (Zhu 2009a) Let (U , C) be a CAS. For any X ⊆ U , the lower and upper
approximations of X w.r.t. C are defined

C(X) = {x ∈ U |NC(x) ⊆ X}
and

C(X) = {x ∈ U |NC(x) ∩ X �= ∅}.
IfC(X) = C(X), then X is called exact, otherwise X is a covering based rough set (briefly,

CRS).

3.2 Covering based rough fuzzy sets

Definition 3.2 Let (U , C) be a CAS. For anyμ ∈ F(U ), the lower and upper approximations
of μ w.r.t. C are defined

C(μ)(x) =
∧

{μ(y)|y ∈ NC(x)}

and
C(μ)(x) =

∨
{μ(y)|y ∈ NC(x)},

for all x ∈ U .
If C(μ) = C(μ), then μ is called fuzzy definable, otherwise μ is a covering based rough

fuzzy set (briefly, CRFS).
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Theorem 3.3 Let (U , C) be a CAS and μ, ν ∈ F(U ), then

(1) C(μ ∩ ν) = C(μ) ∩ C(ν);
(2) C(μ ∪ ν) = C(μ) ∪ C(ν).

Proof We only prove that (1) holds and (2) is similar.
For any x ∈ U , then C(μ ∩ ν) = ∧{μ(y) ∧ ν(y)|y ∈ NC(x)}, which implies, C(μ ∩

ν) ≤ μ(y) ∩ ν(y) ≤ ν(y) for all y ∈ NC(x), that is, C(μ ∩ ν)(x) ≤ C(ν)(x). Similarly,
C(μ ∩ ν)(x) ≤ C(μ)(x). Hence, C(μ ∩ ν)(x) ≤ C(μ)(x) ∧ C(ν)(x), that is, C(μ ∩ ν) ⊆
C(μ) ∩ C(ν). (*)

Conversely, (C(μ) ∩ C(ν))(x) = C(μ)(x) ∧ C(ν)(x) ≤ C(μ)(x) ≤ μ(y) for all y ∈
NC(x). Similarly, (C(μ)∩ C(ν))(x) ≤ ν(y) for all y ∈ NC(x). Hence, (C(μ)∩ C(ν))(x) ≤
μ(y) ∧ ν(y) for all y ∈ NC(x). This means that (C(μ) ∩ C(ν))(x) ≤ ∧{μ(y) ∧ ν(y)|y ∈
NC(x)} = C(μ ∩ ν)(x), that is, C(μ) ∩ C(ν) ⊆ C(μ ∩ ν). (*)

By (*) and (**), we have C(μ ∩ ν) = C(μ) ∩ C(ν). ��

3.3 Multigranulation rough (fuzzy) sets

Definition 3.4 (Qian et al. 2010b) (1) Let I = (U , AT , f ) be an information system and
A1, A2, . . . , Am ⊆ AT , m ≤ 2|AT |. The optimistic lower and upper approximations of
X ⊆ U w.r.t. {Ai }i∈N+ are defined

Ro∑m
i=1 Ai

(X) =
{

x ∈ U |
m∨

i=1

[x]Ai ⊆ X

}

and

R
o∑m

i=1 Ai
(X) =

{

x ∈ U |
m∧

i=1

[x]Ai ∩ X �= ∅
}

.

If Ro∑m
i=1 Ai

(X) �= R
o∑m

i=1 Ai
(X), then X is called an optimistic multigranulation rough set

(briefly, OMGRS), otherwise it is optimistic definable.
(2) Let I = (U , AT , f ) be an information system and A1, A2, . . . , Am ⊆ AT ,m ≤ 2|AT |.

The pessimistic lower and upper approximations of X ⊆ U w.r.t. {Ai }i∈N+ are defined

Rp∑m
i=1 Ai

(X) =
{

x ∈ U |
m∧

i=1

[x]Ai ⊆ X

}

and

R
p∑m

i=1 Ai
(X) =

{

x ∈ U |
m∨

i=1

[x]Ai ∩ X �= ∅
}

.

If Rp∑m
i=1 Ai

(X) �= R
p∑m

i=1 Ai
(X), then X is called a pessimistic multigranulation rough set

(briefly, PMGRS), otherwise it is pessimistic definable.

Definition 3.5 (Xu et al. 2014) (1) Let I = (U , AT , f ) be an information system and
A1, A2, . . . , Am ⊆ AT , m ≤ 2|AT |. For any μ ∈ F(U ), denote

Ro∑m
i=1 Ai

(μ)(x) =
m∨

i=1

∧
{μ(y)|y ∈ [x]Ai }
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and

R
o∑m

i=1 Ai
(μ)(x) =

m∧

i=1

∨
{μ(y)|y ∈ [x]Ai },

for all x ∈ U .
Then Ro∑m

i=1 Ai
(μ) and R

o∑m
i=1 Ai

(μ) are respectively called the optimisticmultigranulation

lower approximation operator and optimistic multigranulation upper approximation operator
of μ w.r.t. {Ai }i∈N+ .

If Ro∑m
i=1 Ai

(μ) �= R
o∑m

i=1 Ai
(μ), then μ is called an optimistic multigranulation rough

fuzzy set (briefly, OMGRFS), otherwise it is optimistic fuzzy definable.
(2) Let I = (U , AT , f ) be an information system and A1, A2, . . . , Am ⊆ AT ,m ≤ 2|AT |.

For any μ ∈ F(U ), denote

Rp∑m
i=1 Ai

(μ)(x) =
m∧

i=1

∧
{μ(y)|y ∈ [x]Ai }

and

R
p∑m

i=1 Ai
(μ)(x) =

m∨

i=1

∨
{μ(y)|y ∈ [x]Ai },

for all x ∈ U .
Then Rp∑m

i=1 Ai
(μ) and R

p∑m
i=1 Ai

(μ) are respectively called the pessimistic multigranu-

lation lower approximation operator and pessimistic multigranulation upper approximation
operator of μ w.r.t. {Ai }i∈N+ .

If Rp∑m
i=1 Ai

(μ) �= R
p∑m

i=1 Ai
(μ), then μ is called a pessimistic multigranulation rough

fuzzy set (briefly, PMGRFS), otherwise it is pessimistic fuzzy definable.

4 Type-1 covering basedmultigranulation rough fuzzy sets

In this section, we divide into three parts. In Sect. 4.1, we investigate type-1 covering based
optimistic multigranulation rough fuzzy sets. In Sect. 4.2, we describe type-1 covering based
pessimistic multigranulation rough fuzzy sets. In Sect. 4.3, we discuss type-1 covering based
variable precision multigranulation rough fuzzy sets. And, type-1 covering based multigran-
ulation rough fuzzy sets are based on the block view.

4.1 Type-1 covering based optimistic multigranulation rough fuzzy sets

In this subsection, we introduce the concept of type-1 covering based optimistic multigran-
ulation rough fuzzy sets and investigate some related properties.

Definition 4.1 Let (U ,�) be a CAS andC1, C2, . . . Cm ∈ �. For anyμ ∈ F(U ), we denote

Ro∑m
i=1 Ci

(μ)(x) =
m∨

i=1

∧
{μ(y)|y ∈ NCi (x)} (4.1)

and

R
o∑m

i=1 Ci
(μ)(x) =

m∧

i=1

∨
{μ(y)|y ∈ NCi (x)}, (4.2)
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for all x ∈ U , where “
∨
” means “max” and “

∧
” means “min”.

Then Ro∑m
i=1 Ci

(μ) and R
o∑m

i=1 Ci
(μ) are respectively called the type-1 optimistic multi-

granulation lower approximation operator and type-1 optimistic multigranulation upper
approximation operator of μ.

If Ro∑m
i=1 Ci

(μ) �= R
o∑m

i=1 Ci
(μ), then μ is called a type-1 covering based optimistic multi-

granulation rough fuzzy set (briefly, 1-COMGRFS), otherwise it is optimistic fuzzy definable.
From the view of risk decision making, Ro∑m

i=1 Ci
(μ) can be regarded as “max–min” rule,

and R
o∑m

i=1 Ci
(μ) can be regarded as “min–max” rule.

Remark 4.2 (1) If C1 = C2 = · · · = Cm , then the above formulas become as follows:

Ro∑m
i=1 Ci

(μ)(x) =
∧

{μ(y)|y ∈ NC(x)} (4.3)

and

R
o∑m

i=1 Ci
(μ)(x) =

∨
{μ(y)|y ∈ NC(x)}. (4.4)

for all x ∈ U .
This means that (Ro∑m

i=1 Ci
(μ), R

o∑m
i=1 Ci

(μ)) degenerates into a covering based rough

fuzzy set.
In particular, if NC(x) = [x]R for all x ∈ U , then the above formulas (4.3) and (4.4)

become

Ro∑m
i=1 Ci

(μ)(x) =
∧

{μ(y)|y ∈ [x]R} (4.5)

and

R
o∑m

i=1 Ci
(μ)(x) =

∨
{μ(y)|y ∈ [x]R}. (4.6)

for all x ∈ U .
Hence, (Ro∑m

i=1 Ci
(μ), R

o∑m
i=1 Ci

(μ))degenerates into a rough fuzzy set proposedbyDubois

and Prade (1990).
(2) If μ is a crisp set of U , then μ(y) = 0 or μ(y) = 1 for all y ∈ U , and the formulas

(4.1) and (4.2) become as follows:

Ro∑m
i=1 Ci

(μ) =
{

x ∈ U |
m∨

i=1

NCi (x) ⊆ μ

}

(4.7)

and

R
o∑m

i=1 Ci
(μ) =

{

x ∈ U |
m∧

i=1

NCi (x) ∩ μ �= ∅
}

. (4.8)

This means that (Ro∑m
i=1 Ci

(μ), R
o∑m

i=1 Ci
(μ)) degenerates into the covering based opti-

mistic multigranulation rough set model proposed by Yang et al. (2012a).
Further, if C1 = C2 = · · · = Cm , then the above formulas (4.7) and (4.8) become as

follows:

Ro∑m
i=1 Ci

(μ) = {x ∈ U |NC(x) ⊆ μ} (4.9)

and

R
o∑m

i=1 Ci
(μ) = {x ∈ U |NC(x) ∩ μ �= ∅}. (4.10)
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Hence, (Ro∑m
i=1 Ci

(μ), R
o∑m

i=1 Ci
(μ)) degenerates into a CRS proposed by Zhu (2009a)

and Xu and Zhang (2007), respectively.
In particular, if NC(x) = [x]R , then the above formulas (4.9) and (4.10) become as

follows:

Ro∑m
i=1 Ci

(μ) = {x ∈ U |[x]R ⊆ μ} (4.11)

and

R
o∑m

i=1 Ci
(μ) = {x ∈ U |[x]R ∩ μ �= ∅}. (4.12)

Thus, (Ro∑m
i=1 Ci

(μ), R
o∑m

i=1 Ci
(μ)) degenerates into a rough set proposed by Pawlak

(1982).
(3) If μ is a crisp set of U and NCi (x) = [x]Ri , then the formulas (4.7) and (4.8) become

as follows:

Ro∑m
i=1 Ci

(μ) =
{

x ∈ U |
m∨

i=1

[x]Ri ⊆ μ

}

(4.13)

and

R
o∑m

i=1 Ci
(μ) =

{

x ∈ U |
m∧

i=1

[x]Ri ∩ μ �= ∅
}

. (4.14)

This means that (Ro∑m
i=1 Ci

(μ), R
o∑m

i=1 Ci
(μ)) degenerates into the optimistic multigranu-

lation rough set model proposed by Qian et al. (2010b).

Example 4.3 Let (U ,�) be a CAS and C1, C2 ∈ �, where U = {x1, . . . , x4} and C1 =
{{x1, x2}, {x2, x3, x4}, {x3, x4}}, and C2 = {{x1, x3}, {x2, x4}, {x1, x2, x4}, {x4}}. Then

NC1(x1) = {x1, x2}, NC1(x2) = {x2}, NC1(x3) = {x3, x4}, NC1(x4) = {x3, x4}
and

NC2(x1) = {x1}, NC2(x2) = {x2, x4}, NC2(x3) = {x1, x3}, NC2(x4) = {x4}.
Define μ = 0.4

x1
+ 0.6

x2
+ 0.1

x3
+ 0.7

x4
. Some simple calculations show Ro∑m

i=1 Ci
(μ) =

0.4
x1

+ 0.6
x2

+ 0.1
x3

+ 0.7
x4

and R
o∑m

i=1 Ci
(μ) = 0.4

x1
+ 0.6

x2
+ 0.4

x3
+ 0.7

x4
. Thus, μ is a 1-COMGRFS.

From Definitions 4.1 and 3.2, we can obtain the following results.

Proposition 4.4 Let (U ,�) be a CAS and C1, C2, · · · , Cm ∈ �. For any μ ∈ F(U ), then

(1) Ro∑m
i=1 Ci

(μ) = ⋃m
i=1 Ci (μ);

(2) R
o∑m

i=1 Ci
(μ) = ⋂m

i=1 Ci (μ).

Theorem 4.5 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ), then

(1LH) Ro∑m
i=1 Ci

(μ) ⊆ μ ⊆ R
o∑m

i=1 Ci
(μ);

(2L) If μ ⊆ ν, then Ro∑m
i=1 Ci

(μ) ⊆ Ro∑m
i=1 Ci

(ν);

(2H) If μ ⊆ ν, then R
o∑m

i=1 Ci
(μ) ⊆ R

o∑m
i=1 Ci

(ν);
(3L) (1) Ro∑m

i=1 Ci
(μ ∩ ν) ⊆ Ro∑m

i=1 Ci
(μ) ∩ Ro∑m

i=1 Ci
(ν);

(2) Ro∑m
i=1 Ci

(μ ∪ ν) ⊇ Ro∑m
i=1 Ci

(μ) ∪ Ro∑m
i=1 Ci

(ν);
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(3H) (1) R
o∑m

i=1 Ci
(μ ∪ ν) ⊇ R

o∑m
i=1 Ci

(μ) ∪ R
o∑m

i=1 Ci
(ν);

(2) R
o∑m

i=1 Ci
(μ ∩ ν) ⊆ R

o∑m
i=1 Ci

(μ) ∩ R
o∑m

i=1 Ci
(ν);

(4LH) (1) Ro∑m
i=1 Ci

(∼ μ) =∼ R
o∑m

i=1 Ci
(∼ μ);

(2) R
o∑m

i=1 Ci
(∼ μ) = Ro∑m

i=1 Ci
(∼ μ);

(5L) Ro∑m
i=1 Ci

(μ) = Ro∑m
i=1 Ci

(Ro∑m
i=1 Ci

(μ));

(5H) R
o∑m

i=1 Ci
(μ) = R

o∑m
i=1 Ci

(R
o∑m

i=1 Ci
(μ)).

Proof (1LH) Obviously.
(2L) Let μ, ν ∈ F(U ) such that μ ⊆ ν and x ∈ U . Then Ro∑m

i=1 Ci
(μ)(x) =

∨m
i=1

∧{μ(y) | y ∈ NCi (x)} ≤ ∨m
i=1

∧{ν(y) | y ∈ NCi (x)} = Ro∑m
i=1 Ci

(ν)(x).

(2H) The proof is similar to (2L).
(3L) (1) By Proposition 4.4(1) and Theorem 3.3, we have

Ro∑m
i=1 Ci

(μ ∩ ν) =
m⋃

i=1

Ci (μ ∩ ν)

=
m⋃

i=1

(Ci (μ) ∩ Ci (ν))

⊆
m⋃

i=1

Ci (μ) ∩
m⋃

i=1

Ci (ν)

= Ro∑m
i=1 Ci

(μ) ∩ Ro∑m
i=1 Ci

(ν).

(2)By (2L), Ro∑m
i=1 Ci

(μ∪ν) ⊇ Ro∑m
i=1 Ci

(μ) sinceμ∪ν ⊇ μ. Similarly, Ro∑m
i=1 Ci

(μ∪ν) ⊇
Ro∑m

i=1 Ci
(ν). Hence, Ro∑m

i=1 Ci
(μ ∪ ν) ⊇ Ro∑m

i=1 Ci
(μ) ∪ Ro∑m

i=1 Ci
(ν).

(3H) (1) By Proposition 4.4(2) and Theorem 3.3, we have

R
o∑m

i=1 Ci
(μ ∪ ν) =

m⋂

i=1

Ci (μ ∪ ν)

=
m⋂

i=1

(Ci (μ) ∪ Ci (ν))

⊇
m⋂

i=1

Ci (μ) ∪
m⋂

i=1

Ci (ν)

= R
o∑m

i=1 Ci
(μ) ∪ R

o∑m
i=1 Ci

(ν).

(2) The proof is similar to (3L)(2).
(4LH) For any x ∈ U ,

Ro∑m
i=1 Ci

(∼ μ)(x) =
m∨

i=1

∧
{1 − μ(y)|y ∈ NCi (x)}

=
m∨

i=1

(1 −
∨

{μ(y)|y ∈ NCi (x)}

= 1 −
m∧

i=1

∨
{1 − μ(y)|y ∈ NCi (x)}
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= 1 − R
o∑m

i=1 Ci
(μ)(x)

= ∼ R
o∑m

i=1 Ci
(μ)(x).

Similarly, we can prove that R
o∑m

i=1 Ci
(∼ μ)(x) =∼ Ro∑m

i=1 Ci
(μ)(x) holds.

(5L) For any x ∈ U ,

Ro∑m
i=1 Ci

(
Ro∑m

i=1 Ci
μ

)
(x) =

m∨

i=1

∧ {
Ro∑m

i=1 Ci
(μ)(y)|y ∈ NCi (x)

}

=
m∨

i=1

∧
{

m∨

i=1

∧
{μ(z)|z ∈ NCi (y)}|y ∈ NCi (x)

}

=
m∨

i=1

∧
{μ(z)|z ∈ NCi (y) ∧ y ∈ NCi (x)}

=
m∨

i=1

∧
{μ(z)|z ∈ NCi (y) ⊆ NCi (x)}

=
m∨

i=1

∧
{μ(z)|z ∈ NCi (x)}

= Ro∑m
i=1 Ci

(μ)(x).

(5H) It is similar to (5L). ��
Remark 4.6 The inclusions of Theorem 4.5 are proper as proven by Example 4.7 as follows.

Example 4.7 Let (U ,�) be aCAS andC1, C2 ∈ �, whereU = {x1, . . . , x6}. Now,we define
C1 = {{x1, x2}, {x1, x2, x3}, {x2, x3, x4}, {x4, x5, x6}} and C2 = {{x1, x2, x3}, {x2, x4, x5},
{x3, x4, x5}, {x5, x6}}. Then

NC1(x1) = {x1, x2}, NC1(x2) = {x2}, NC1(x3) = {x2, x3}, NC1(x4) = {x4},
NC1(x5) = NC1(x6) = {x4, x5, x6}

and

NC2(x1) = {x1, x2, x3}, NC2(x2) = {x2}, NC2(x3) = {x3}, NC2(x4) = {x4, x5},
NC2(x5) = {x5}, NC2(x6) = {x5, x6}.

Define μ = 0.6
x1

+ 0.1
x2

+ 0.7
x3

+ 0.2
x4

+ 0.3
x5

+ 0.8
x6

and ν = 0.2
x1

+ 0.3
x2

+ 0.4
x3

+ 0.8
x4

+ 0.4
x5

+ 0.6
x6
.

Thenμ∪ν = 0.6
x1

+ 0.3
x2

+ 0.7
x3

+ 0.8
x4

+ 0.4
x5

+ 0.8
x6

andμ∩ν = 0.2
x1

+ 0.1
x2

+ 0.4
x3

+ 0.2
x4

+ 0.3
x5

+ 0.6
x6
.

By calculations, we have

Ro
C1+C2

(μ) = 0.1

x1
+ 0.1

x2
+ 0.7

x3
+ 0.2

x4
+ 0.3

x5
+ 0.3

x6
,

R
o
C1+C2

(μ) = 0.6

x1
+ 0.1

x2
+ 0.7

x3
+ 0.2

x4
+ 0.3

x5
+ 0.8

x6
,

Ro
C1+C2

(ν) = 0.2

x1
+ 0.3

x2
+ 0.4

x3
+ 0.8

x4
+ 0.4

x5
+ 0.4

x6
,

R
o
C1+C2

(ν) = 0.3

x1
+ 0.3

x2
+ 0.4

x3
+ 0.8

x4
+ 0.4

x5
+ 0.6

x6
,
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Ro
C1+C2

(μ ∩ ν) = 0.1

x1
+ 0.1

x2
+ 0.4

x3
+ 0.2

x4
+ 0.3

x5
+ 0.3

x6
,

R
o
C1+C2

(μ ∩ ν) = 0.2

x1
+ 0.1

x2
+ 0.4

x3
+ 0.2

x4
+ 0.3

x5
+ 0.6

x6
,

Ro
C1+C2

(μ ∪ ν) = 0.3

x1
+ 0.3

x2
+ 0.7

x3
+ 0.8

x4
+ 0.4

x5
+ 0.4

x6
,

R
o
C1+C2

(μ ∪ ν) = 0.6

x1
+ 0.3

x2
+ 0.7

x3
+ 0.8

x4
+ 0.4

x5
+ 0.8

x6
.

From the above discussions, we know that

Ro
C1+C2

(μ ∪ ν) � Ro
C1+C2

(μ) ∪ Ro
C1+C2

(ν)

and R
o
C1+C2

(μ ∩ ν) � R
o
C1+C2

(μ) ∩ R
o
C1+C2

(ν).

Example 4.8 Let (U ,�) be a CAS and C1, C2 ∈ �, where U = {x1, . . . , x6}. Define C1 =
{{x1, x2}, {x3, x4}, {x5}, {x6}} and C2 = {{x1}, {x2, x3, x4}, {x5, x6}}. Then

NC1(x1) = NC1(x2) = {x1, x2}, NC1(x3) = {x3, x4},
NC1(x5) = {x5}, NC1(x6) = {x6}

and

NC2(x1) = {x1}, NC2(x2) = NC1(x3) = NC1(x4) = {x2, x3, x4},
NC2(x5) = NC2(x6) = {x5, x6}.

Define μ = 0.5
x1

+ 0.3
x2

+ 0.7
x3

+ 0.1
x4

+ 0.8
x5

+ 0.4
x6

and ν = 0.1
x1

+ 0.8
x2

+ 0.6
x3

+ 0.2
x4

+ 0.3
x5

+ 0.9
x6
.

Thenμ∩ν = 0.1
x1

+ 0.3
x2

+ 0.6
x3

+ 0.1
x4

+ 0.3
x5

+ 0.4
x6

andμ∪ν = 0.5
x1

+ 0.8
x2

+ 0.7
x3

+ 0.2
x4

+ 0.8
x5

+ 0.9
x6
.

By calculations, we have

Ro
C1+C2

(μ) = 0.5

x1
+ 0.3

x2
+ 0.1

x3
+ 0.1

x4
+ 0.8

x5
+ 0.4

x6
,

R
o
C1+C2

(μ) = 0.5

x1
+ 0.5

x2
+ 0.7

x3
+ 0.7

x4
+ 0.8

x5
+ 0.4

x6
,

Ro
C1+C2

(ν) = 0.1

x1
+ 0.2

x2
+ 0.2

x3
+ 0.2

x4
+ 0.3

x5
+ 0.9

x6
,

R
o
C1+C2

(ν) = 0.1

x1
+ 0.8

x2
+ 0.6

x3
+ 0.6

x4
+ 0.3

x5
+ 0.9

x6
,

Ro
C1+C2

(μ ∩ ν) = 0.1

x1
+ 0.1

x2
+ 0.1

x3
+ 0.1

x4
+ 0.3

x5
+ 0.4

x6
.

From the above discussions, we know that

Ro
C1+C2

(μ ∩ ν) � Ro
C1+C2

(μ) ∩ Ro
C1+C2

(ν).

Now, we introduce the level set of 1-COMGRFSs.

Definition 4.9 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ) and
0 < β ≤ α ≤ 1, the α-level set and β-level set of Ro∑m

i=1 Ci
(μ) and R

o∑m
i=1 Ci

(μ), respectively

are defined as follows:

Ro∑m
i=1 Ci

(μ)α =
{
x ∈ U |Ro∑m

i=1 Ci
(μ)(x) ≥ α

}
(4.15)
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and

R
o∑m

i=1 Ci
(μ)β =

{
x ∈ U |Ro∑m

i=1 Ci
(μ)(x) ≥ β

}
. (4.16)

The proofs of the following theorem are clear and we omit the proofs.

Theorem 4.10 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ, ν ∈ F(U ) and
0 < β ≤ α ≤ 1, then

(1) If μ ⊆ ν, then Ro∑m
i=1 Ci

(μ)α ⊆ Ro∑m
i=1 Ci

(ν)α;

(2) If μ ⊆ ν, then R
o∑m

i=1 Ci
(μ)β ⊆ R

o∑m
i=1 Ci

(ν)β ;
(3) Ro∑m

i=1 Ci
(μ ∩ ν)α ⊆ Ro∑m

i=1 Ci
(μ)α ∩ Ro∑m

i=1 Ci
(ν)α;

(4) R
o∑m

i=1 Ci
(μ ∪ ν)β ⊇ R

o∑m
i=1 Ci

(μ)β ∪ R
o∑m

i=1 Ci
(ν)β ;

(5) Ro∑m
i=1 Ci

(μ ∪ ν)α ⊇ Ro∑m
i=1 Ci

(μ)α ∪ Ro∑m
i=1 Ci

(ν)α;

(6) R
o∑m

i=1 Ci
(μ ∩ ν)β ⊆ R

o∑m
i=1 Ci

(μ)β ∩ R
o∑m

i=1 Ci
(ν)β .

Definition 4.11 Let (U ,�) be a CAS and C1, C2, . . . , Cm ∈ �. For any μ ∈ F(U ) and
0 < β ≤ α ≤ 1. Then the accuracy and roughness of μ are as follows:

Ro
μ(α, β) =

|Ro∑m
i=1 Ci

(μ)α|
|Ro∑m

i=1 Ci
(μ)β | .

and

σ o
μ(α, β) = 1 − Ro

μ(α, β).

Example 4.12 (Continued from Example 4.3) Let α = 0.6 and β = 0.4. Then
Ro

μ(α, β) = 1
2 and σ o

μ(α, β) = 1
2 .

4.2 Type-1 covering based pessimistic multigranulation rough fuzzy sets

In this subsection, we introduce the concept of type-1 covering based pessimistic multigran-
ulation rough fuzzy sets and investigate some related properties. Due to the same method,
we only give the concept. Some similar basic properties are omitted.

Definition 4.13 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ), we
denote

Rp∑m
i=1 Ci

(μ)(x) =
m∧

i=1

∧
{μ(y)|y ∈ NCi (x)} (4.17)

and

R
p∑m

i=1 Ci
(μ)(x) =

m∨

i=1

∨
{μ(y)|y ∈ NCi (x)}, (4.18)

for all x ∈ U .
Then Rp∑m

i=1 Ci
(μ) and R

p∑m
i=1 Ci

(μ) are respectively called the type-1 pessimistic multi-

granulation lower approximation operator and type-1 pessimistic multigranulation upper
approximation operator of μ.
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If Rp∑m
i=1 Ci

(μ) �= R
p∑m

i=1 Ci
(μ), then μ is called a type-1 covering based pessimistic

multigranulation rough fuzzy set (briefly, 1-CPMGRFS), otherwise it is pessimistic fuzzy
definable.

From the view of risk decision making, Rp∑m
i=1 Ci

(μ) can be regarded as “min-min” rule,

and R
p∑m

i=1 Ci
(μ) can be regarded as “max–max” rule.

Remark 4.14 (1) IfC1 = C2 = · · · = Cm , then the above formulas (4.17) and (4.18) become
(4.3) and (4.4). This means that (Rp∑m

i=1 Ci
(μ), R

p∑m
i=1 Ci

(μ)) degenerates into a covering

based rough fuzzy set.
(2) If μ is a crisp set of U , then the formulas (4.17) and (4.18) become as follows:

Rp∑m
i=1 Ci

(μ) =
{

x ∈ U |
m∧

i=1

NCi (x) ⊆ μ

}

(4.19)

and

R
p∑m

i=1 Ci
(μ) =

{

x ∈ U |
m∨

i=1

NCi (x) ∩ μ �= ∅
}

. (4.20)

This means that (Rp∑m
i=1 Ci

(μ), R
p∑m

i=1 Ci
(μ)) degenerates into the covering based pes-

simistic multigranulation rough set model proposed by Yang et al. (2012a).

4.3 Type-1 covering based variable precisionmultigranulation rough fuzzy sets

From Sects. 4.1 and 4.2, we can see that 1-COMGRFSs and 1-CPMGRFSs only consider
two extremely cases of a decisionmaking process: completely risk-preferring and completely
risk-averse. In fact, in real world, there are many uncertain complicated problems which we
can not deal with only by these two extremely cases. In view of this reason, in this subsection,
we introduce two kinds of type-1 covering based variable precision multigranulation rough
fuzzy sets and investigate some related properties.

First, we introduce the concept of type-1 covering based I-variable precision multigranu-
lation rough fuzzy sets.

Definition 4.15 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ) and
t ∈ [0, 1], we denote

I Rt∑m
i=1 Ci

(μ)(x) =
m∨

i=1

∧
{μ(y) ∨ t |y ∈ NCi (x)} (4.21)

and

I R
t∑m

i=1 Ci
(μ)(x) =

m∧

i=1

∨
{μ(y) ∧ (1 − t)|y ∈ NCi (x)}, (4.22)

for all x ∈ U .
Then I Rt∑m

i=1 Ci
(μ) and I R

t∑m
i=1 Ci

(μ) are respectively called the type-1 I-variable

precision multigranulation lower approximation operator and type-1 I-variable precision
multigranulation upper approximation operator of μ.
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If I Rt∑m
i=1 Ci

(μ) �= I R
t∑m

i=1 Ci
(μ), then μ is called a type-1 covering based I-variable pre-

cision multigranulation rough fuzzy set (briefly, 1-ICPMGRFC), otherwise it is 1-I-variable
precision fuzzy definable.

Next, we introduce the concept of type-1 covering based II-variable precision multigran-
ulation rough fuzzy sets.

Definition 4.16 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ) and
t ∈ [0, 1], we denote

I I Rt∑m
i=1 Ci

(μ)(x) =
m∧

i=1

∧
{μ(y) ∨ t |y ∈ NCi (x)} (4.23)

and

I I R
t∑m

i=1 Ci
(μ)(x) =

m∨

i=1

∨
{μ(y) ∧ (1 − t)|y ∈ NCi (x)}, (4.24)

for all x ∈ U .
Then I I Rt∑m

i=1 Ci
(μ) and I I R

t∑m
i=1 Ci

(μ) are respectively called the type-1 II-variable

precision multigranulation lower approximation operator and type-1 II-variable precision
multigranulation upper approximation operator of μ.

If I I Rt∑m
i=1 Ci

(μ) �= I I R
t∑m

i=1 Ci
(μ), then μ is called a type-1 covering based II-variable

precision multigranulation rough fuzzy set (briefly, 1-IICPMGRFS), otherwise it is 1-II-
variable precision fuzzy definable.

Remark 4.17 If t = 0, then

(1)

I Rt∑m
i=1 Ci

(μ)(x) =
m∨

i=1

∧
{μ(y)|y ∈ NCi (x)} = Ro∑m

i=1 Ci
(μ)(x)

and

I Rt∑m
i=1 Ci

(μ)(x) =
m∧

i=1

∨
{μ(y)|y ∈ NCi (x)} = Ro∑m

i=1 Ci
(μ)(x).

(2)

I I Rt∑m
i=1 Ci

(μ)(x) =
m∧

i=1

∧
{μ(y)|y ∈ NCi (x)} = Rp∑m

i=1 Ci
(μ)(x)

and

I I Rt∑m
i=1 Ci

(μ)(x) =
m∨

i=1

∨
{μ(y)|y ∈ NCi (x)} = Rp∑m

i=1 Ci
(μ)(x).

This means that the 1-IVCPMGRFS and 1-IICVPMGRFS models will degenerate into
1-COMGRFS and 1-CPMGRFS models, respectively.
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Example 4.18 (Continued from Example 4.3) Let t = 0.5, then

(1) I R0.5
C1+C2

(μ) = 0.5
x1

+ 0.6
x2

+ 0.5
x3

+ 0.7
x4

and

I R
0.5
C1+C2

(μ) = 0.4
x1

+ 0.5
x2

+ 0.4
x3

+ 0.5
x4
.

(2) I I R0.5
C1+C2

(μ) = 0.5
x1

+ 0.6
x2

+ 0.5
x3

+ 0.5
x4

and

I I R
0.5
C1+C2

(μ) = 0.5
x1

+ 0.5
x2

+ 0.5
x3

+ 0.5
x4
.

From the above example, we can observe that I Rt∑m
i=1 Ci

(μ) � I R
t∑m

i=1 Ci
(μ) and

I I Rt∑m
i=1 Ci

(μ) � I I R
t∑m

i=1 Ci
(μ).

5 Type-2 covering basedmultigranulation rough fuzzy sets

In this section, we consider another type of covering basedmultigranulation rough fuzzy sets.
In Sect. 5.1, we investigate type-2 covering based optimistic multigranulation rough fuzzy
sets. In Sect. 5.2, we describe type-2 covering based pessimisticmultigranulation rough fuzzy
sets. In Sect. 5.3, we discuss type-2 covering based variable precision multigranulation rough
fuzzy sets. And, type-2 covering based multigranulation rough fuzzy sets are based on the
point view.

5.1 Type-2 covering based optimistic multigranulation rough fuzzy sets

In this subsection, we introduce the concept of type-2 covering based optimistic multigran-
ulation rough fuzzy sets and investigate some related properties.

Definition 5.1 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ), we denote

Co∑m
i=1 Ci

(μ)(x) =
∧

{

μ(y)|y ∈
m⋃

i=1

NCi (x)

}

(5.1)

and

C
o∑m

i=1 Ci
(μ)(x) =

∨
{

μ(y)|y ∈
m⋃

i=1

NCi (x)

}

, (5.2)

for all x ∈ U .
Then Co∑m

i=1 Ci
(μ) and C

o∑m
i=1 Ci

(μ) are respectively called the type-2 optimistic multi-

granulation lower approximation operator and type-2 optimistic multigranulation upper
approximation operator of μ.

If Co∑m
i=1 Ci

(μ) �= C
o∑m

i=1 Ci
(μ), then μ is called a type-2 covering based optimistic

multigranulation rough fuzzy set (briefly, 2-COMGRFS), otherwise it is 2-optimistic fuzzy
definable.

Remark 5.2 (1) If C1 = C2 = · · · = Cm , then the above formulas become (4.3) and (4.4).
This means that (Co∑m

i=1 Ci
(μ),C

o∑m
i=1 Ci

(μ)) degenerates into a covering based rough fuzzy
set.
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(2) If μ is a crisp set of U , then the formulas (5.1) and (5.2) become (4.7) and (4.8).
This means that (Co∑m

i=1 Ci
(μ),C

o∑m
i=1 Ci

(μ)) degenerates into the covering based optimistic

multigranulation rough set model proposed by Yang et al. (2012a).

Example 5.3 Let (U ,�) be a CAS and C1, C2 ∈ �, where U = {x1, . . . , x6}. Define C1 =
{{x1}, {x2, x3}, {x3, x4, x5}, {x4, x5, x6}} andC2 = {{x1, x2}, {x2, x3, x4}, {x4, x5}, {x5, x6}}.
Then

NC1(x1) = {x1}, NC1(x2) = {x2, x3}, NC1(x3) = {x3, x4, x5}, NC1(x4) = {x3, x4},
NC1(x5) = {x4, x5}, NC1(x6) = {x4, x5, x6}
and

NC1(x1) = {x1, x2}, NC1(x2) = {x2}, NC1(x3) = {x2, x3, x4}, NC1(x4) = {x4},
NC1(x5) = {x5}, NC1(x6) = {x5, x6}.

Defineμ = 0.6
x1

+ 0.3
x2

+ 0.1
x3

+ 0.7
x4

+ 0.4
x5

+ 0.8
x6
. Some simple calculations showCo∑m

i=1 Ci
(μ) =

0.3
x1

+ 0.1
x2

+ 0.1
x3

+ 0.4
x4

+ 0.4
x5

+ 0.4
x6

and C
o∑m

i=1 Ci
(μ) = 0.6

x1
+ 0.3

x2
+ 0.7

x3
+ 0.7

x4
+ 0.7

x5
+ 0.8

x6
. Thus,

μ is a 2-COMGRFS.

Proposition 5.4 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ) and
x ∈ U, then

(1) Co∑m
i=1 Ci

(μ)(x) ≤
m⋃

i=1
Ci (μ)(x);

(2) C
o∑m

i=1 Ci
(μ)(x) ≥

m⋃

i=1
Ci (μ)(x).

Proof (1) For any x ∈ U , then NCi (x) ⊆ ⋃m
i=1 NCi (x), and so, Ci (μ)(x) = ∧{μ(y)|y ∈

NCi (x)} ≥ ∧{μ(y)|y ∈ ⋃m
i=1 NCi (x)} = Co∑m

i=1 Ci
(μ)(x). Thus, Co∑m

i=1 Ci
(μ)(x) ≤

⋃m
i=1 Ci (μ)(x).

(2) For any x ∈ U , then NCi (x) ⊆ ⋃m
i=1 NCi (x), and so, Ci (μ)(x) = ∨{μ(y)|y ∈

NCi (x)} ≤ ∨{μ(y)|y ∈ ⋃m
i=1 NCi (x)} = C

o∑m
i=1 Ci

(μ)(x). Thus, C
o∑m

i=1 Ci
(μ)(x) ≥

⋃m
i=1 Ci (μ)(x). ��

Theorem 5.5 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ), then

(1LH) Co∑m
i=1 Ci

(μ) ⊆ μ ⊆ C
o∑m

i=1 Ci
(μ);

(2L) If μ ⊆ ν, then Co∑m
i=1 Ci

(μ) ⊆ Co∑m
i=1 Ci

(ν);

(2H) If μ ⊆ ν, then C
o∑m

i=1 Ci
(μ) ⊆ C

o∑m
i=1 Ci

(ν);
(3L) (1) Co∑m

i=1 Ci
(μ ∩ ν) = Co∑m

i=1 Ci
(μ) ∩ Co∑m

i=1 Ci
(ν);

(2) Co∑m
i=1 Ci

(μ ∪ ν) ⊇ Co∑m
i=1 Ci

(μ) ∪ Co∑m
i=1 Ci

(ν);

(3H) (1) C
o∑m

i=1 Ci
(μ ∪ ν) = C

o∑m
i=1 Ci

(μ) ∪ C
o∑m

i=1 Ci
(ν);

(2) C
o∑m

i=1 Ci
(μ ∩ ν) ⊆ C

o∑m
i=1 Ci

(μ) ∩ C
o∑m

i=1 Ci
(ν);

(4LH) (1) Co∑m
i=1 Ci

(∼ μ) =∼ C
o∑m

i=1 Ci
(∼ μ);

(2) C
o∑m

i=1 Ci
(∼ μ) = Co∑m

i=1 Ci
(∼ μ);

(5L) Co∑m
i=1 Ci

(μ) = Co∑m
i=1 Ci

(Co∑m
i=1 Ci

(μ));
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(5H) C
o∑m

i=1 Ci
(μ) = C

o∑m
i=1 Ci

(C
o∑m

i=1 Ci
(μ)).

Proof (1LH) Clearly.
(2L) Letμ, ν ∈ F(U ) such thatμ ⊆ ν and x ∈ U . ThenCo∑m

i=1 Ci
(μ)(x) = ∧{μ(y) | y ∈

⋃m
i=1 NCi (x)} ≤ μ(y) ≤ ν(y) for all y ∈ ⋃m

i=1 NCi (x). Hence, C
o∑m

i=1 Ci
(μ)(x) ≤

∧{ν(y)|y ∈ ⋃m
i=1 NCi (x)} = Co∑m

i=1 Ci
(ν)(x).

(2H) The proof is similar to (2L).

(3L) (1) Co∑m
i=1 Ci

(μ ∩ ν)(x) = ∧{μ(y) ∧ ν(y) | y ∈ ⋃m
i=1 NCi (x)} ≤ μ(y) ∧ ν(y) ≤

ν(y) for all y ∈ ⋃m
i=1 NCi (x), that is, C

o∑m
i=1 Ci

(μ ∩ ν)(x) ≤ Co∑m
i=1 Ci

(ν)(x). Similarly,

Co∑m
i=1 Ci

(μ ∩ ν)(x) ≤ Co∑m
i=1 Ci

(μ)(x). Hence, Co∑m
i=1 Ci

(μ ∩ ν)(x) ≤ Co∑m
i=1 Ci

(μ)(x) ∧
Co∑m

i=1 Ci
(ν)(x) = (Co∑m

i=1 Ci
(μ) ∩ Co∑m

i=1 Ci
(ν))(x). This means that Co∑m

i=1 Ci
(μ ∩ ν) ⊆

Co∑m
i=1 Ci

(μ) ∩ Co∑m
i=1 Ci

(ν). (*)

On theother hand, (Co∑m
i=1 Ci

(μ)∩Co∑m
i=1 Ci

(ν))(x) = Co∑m
i=1 Ci

(μ)(x)∧Co∑m
i=1 Ci

(ν)(x) ≤
Co∑m

i=1 Ci
(ν)(x) ≤ μ(y) for all y ∈ ⋃m

i=1 NCi (x). Similarly, (Co∑m
i=1 Ci

(μ)∩Co∑m
i=1 Ci

(ν))(x)

≤ ν(y) for all y ∈ ⋃m
i=1 NCi (x). Hence, (C

o∑m
i=1 Ci

(μ)∩Co∑m
i=1 Ci

(ν))(x) ≤ μ(y)∧ν(y) for

all y ∈ ⋃m
i=1 NCi (x). Thismeans that (Co∑m

i=1 Ci
(μ)∩Co∑m

i=1 Ci
(ν))(x) ≤ ∧{μ(y)∧ν(y)|y ∈

⋃m
i=1 NCi (x)} = Co∑m

i=1 Ci
(μ∩ν)(x), that is,Co∑m

i=1 Ci
(μ)∩Co∑m

i=1 Ci
(ν) ⊆ Co∑m

i=1 Ci
(μ∩ν).

(**)
By (*) and (**), we have Co∑m

i=1 Ci
(μ) ∩ Co∑m

i=1 Ci
(ν) = Co∑m

i=1 Ci
(μ ∩ ν).

(2) Co∑m
i=1 Ci

(μ)(x) = ∧{μ(y) | y ∈ ⋃m
i=1 NCi (x)} ≤ μ(y) ≤ μ(y) ∨ ν(y) for all

y ∈ ⋃m
i=1 NCi (x). Hence, C

o∑m
i=1 Ci

(μ ∪ ν)(x) = ∧{μ(y) ∨ ν(y) | y ∈ ⋃m
i=1 NCi (x)} ≥

Co∑m
i=1 Ci

(μ)(x). Similarly, Co∑m
i=1 Ci

(μ ∪ ν)(x) ≥ Co∑m
i=1 Ci

(ν)(x). Hence, Co∑m
i=1 Ci

(μ ∪
ν)(x) ≥ Co∑m

i=1 Ci
(ν)(x)∨Co∑m

i=1 Ci
(ν)(x). Thismeans thatCo∑m

i=1 Ci
(μ∪ν) ⊇ Co∑m

i=1 Ci
(ν)∪

Co∑m
i=1 Ci

(ν).

(3H) It is similar to (3L).

(4LH) For any x ∈ U ,

Co∑m
i=1 Ci

(∼ μ)(x) =
∧

{

1 − μ(y)|y ∈
m⋃

i=1

NCi (x)

}

= 1 −
m∨

i=1

∨
{

μ(y)|y ∈
m⋃

i=1

NCi (x)

}

= 1 − C
o∑m

i=1 Ci
(μ)(x)

= ∼ C
o∑m

i=1 Ci
(μ)(x).

Similarly, we can prove that C
o∑m

i=1 Ci
(∼ μ)(x) =∼ Co∑m

i=1 Ci
(μ)(x) holds.

(5L) For any x ∈ U ,

Co∑m
i=1 Ci

(
Co∑m

i=1 Ci
μ

)
(x) =

m∧

i=1

{

Co∑m
i=1 Ci

(μ)(y)|y ∈
m⋃

i=1

NCi (x)

}

=
∧

{
∧

{

μ(z)|z ∈
m⋃

i=1

NCi (y)

}

|y ∈
m⋃

i=1

NCi (x)

}
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=
∧

{

μ(z)|z ∈
m⋃

i=1

NCi (y) ∧ y ∈
m⋃

i=1

NCi (x)

}

=
∧

{

μ(z)|z ∈
m⋃

i=1

NCi (y) ⊆
m⋃

i=1

NCi (x)

}

=
∧

{

μ(z)|z ∈
m⋃

i=1

NCi (x)

}

= Co∑m
i=1 Ci

(μ)(x).

(5H) It is similar to (5L). ��

Remark 5.6 The inclusions (3L)(2) and (3H)(1) of Theorem 5.5 are proper as proven by
Example 5.7 below.

Example 5.7 (Continued from Example 5.3)
Define μ = 0.6

x1
+ 0.3

x2
+ 0.1

x3
+ 0.7

x4
+ 0.4

x5
+ 0.8

x6
and ν = 0.7

x1
+ 0.2

x2
+ 0.6

x3
+ 0.5

x4
+ 0.8

x5
+ 0.6

x6
.

Thenμ∪ν = 0.7
x1

+ 0.3
x2

+ 0.6
x3

+ 0.7
x4

+ 0.8
x5

+ 0.8
x6

andμ∩ν = 0.6
x1

+ 0.2
x2

+ 0.1
x3

+ 0.5
x4

+ 0.4
x5

+ 0.6
x6
.

By calculations, we have

Co
C1+C2

(μ) = 0.3

x1
+ 0.1

x2
+ 0.1

x3
+ 0.4

x4
+ 0.4

x5
+ 0.4

x6
,

C
o
C1+C2

(μ) = 0.6

x1
+ 0.3

x2
+ 0.7

x3
+ 0.7

x4
+ 0.7

x5
+ 0.8

x6
,

Co
C1+C2

(ν) = 0.2

x1
+ 0.2

x2
+ 0.2

x3
+ 0.5

x4
+ 0.5

x5
+ 0.5

x6
,

C
o
C1+C2

(ν) = 0.7

x1
+ 0.6

x2
+ 0.8

x3
+ 0.8

x4
+ 0.8

x5
+ 0.8

x6
,

Co
C1+C2

(μ ∩ ν) = 0.2

x1
+ 0.1

x2
+ 0.1

x3
+ 0.4

x4
+ 0.4

x5
+ 0.4

x6
,

C
o
C1+C2

(μ ∩ ν) = 0.6

x1
+ 0.2

x2
+ 0.5

x3
+ 0.5

x4
+ 0.5

x5
+ 0.6

x6
,

Co
C1+C2

(μ ∪ ν) = 0.3

x1
+ 0.3

x2
+ 0.3

x3
+ 0.7

x4
+ 0.7

x5
+ 0.7

x6
,

C
o
C1+C2

(μ ∪ ν) = 0.7

x1
+ 0.6

x2
+ 0.8

x3
+ 0.8

x4
+ 0.8

x5
+ 0.8

x6
,

Co
C1+C2

(μ) ∩ Co
C1+C2

(ν) = 0.2

x1
+ 0.1

x2
+ 0.1

x3
+ 0.4

x4
+ 0.4

x5
+ 0.4

x6
,

Co
C1+C2

(μ) ∪ Co
C1+C2

(ν) = 0.2

x1
+ 0.1

x2
+ 0.1

x3
+ 0.4

x4
+ 0.4

x5
+ 0.4

x6
,

C
o
C1+C2

(μ) ∩ C
o
C1+C2

(ν) = 0.6

x1
+ 0.3

x2
+ 0.7

x3
+ 0.7

x4
+ 0.7

x5
+ 0.8

x6
,

C
o
C1+C2

(μ) ∪ C
o
C1+C2

(ν) = 0.7

x1
+ 0.6

x2
+ 0.8

x3
+ 0.8

x4
+ 0.8

x5
+ 0.8

x6
.
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From the above discussions, we know that

Co
C1+C2

(μ ∪ ν) � Co
C1+C2

(μ) ∪ Co
C1+C2

(ν)

and C
o
C1+C2

(μ ∩ ν) � C
o
C1+C2

(μ) ∩ C
o
C1+C2

(ν).

Now, we introduce the level set of 2-COMGRFSs.

Definition 5.8 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ) and
0 < β ≤ α ≤ 1, the α-level set and β-level set ofCo∑m

i=1 Ci
(μ) andC

o∑m
i=1 Ci

(μ), respectively

are defined as follows:

Co∑m
i=1 Ci

(μ)α =
{
x ∈ U |Co∑m

i=1 Ci
(μ)(x) ≥ α

}
(5.3)

and

C
o∑m

i=1 Ci
(μ)β =

{
x ∈ U |Co∑m

i=1 Ci
(μ)(x) ≥ β

}
. (5.4)

By using the above concept, we can define the approximate precise of 2-COMGRFSs.

Definition 5.9 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ) and
0 < β ≤ α ≤ 1. Then the accuracy and roughness of μ are as follows:

Co
μ(α, β) =

|Co∑m
i=1 Ci

(μ)α|
|Co∑m

i=1 Ci
(μ)β | .

and

τ oμ(α, β) = 1 − Co
μ(α, β).

Example 5.10 (Continued from Example 4.3) Let α = 0.6 and β = 0.4, it follows from
Example 4.3 that Co

μ(0.6, 0.4) = 1
2 and τ oμ(0.6, 0.4) = 1

2 .
By calculations, we have

Co∑m
i=1 Ci

(μ) = 0.4

x1
+ 0.6

x2
+ 0.1

x3
+ 0.1

x4
and C

o∑m
i=1 Ci

(μ) = 0.6

x1
+ 0.7

x2
+ 0.7

x3
+ 0.7

x4
.

Hence, Co∑m
i=1 Ci

(μ)0.6 = {x2} and C
o∑m

i=1 Ci
(μ)0.4 = {x1, x2, x3, x4}, and so,

Co
μ(0.6, 0.4) = 1

4 and τ oμ(0.6, 0.4) = 3
4 .

By comparing Definitions 4.11 and 5.9, we can obtain the following result.

Theorem 5.11 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ) and
0 < β ≤ α ≤ 1, then Co

μ(α, β) ≤ Ro
μ(α, β).

5.2 Type-2 covering based pessimistic multigranulation rough fuzzy sets

In this subsection, we introduce the concept of type-2 covering based pessimistic multigran-
ulation rough fuzzy sets and investigate some related properties. Due to the same method of
Sect. 5.1, we only give the basic concept and omit some similar basic properties.
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Definition 5.12 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ), we
denote

C p∑m
i=1 Ci

(μ)(x) =
∧

{

μ(y)|y ∈
m⋂

i=1

NCi (x)

}

(5.5)

and

C
p∑m

i=1 Ci
(μ)(x) =

∨
{

μ(y)|y ∈
m⋂

i=1

NCi (x)

}

, (5.6)

for all x ∈ U .
Then C p∑m

i=1 Ci
(μ) and C

p∑m
i=1 Ci

(μ) are respectively called the type-2 pessimistic multi-

granulation lower approximation operator and type-2 pessimistic multigranulation upper
approximation operator of μ.

If C p∑m
i=1 Ci

(μ) �= C
p∑m

i=1 Ci
(μ), then μ is called a type-2 covering based pessimistic

multigranulation rough fuzzy set (briefly, 2-CPMGRFS), otherwise it is 2-pessimistic fuzzy
definable.

Remark 5.13 (1) If C1 = C2 = · · · = Cm , then the above formulas become (4.3) and (4.4).
This means that (C p∑m

i=1 Ci
(μ),C

p∑m
i=1 Ci

(μ)) degenerates into a covering based rough fuzzy
set.

(2) If μ is a crisp set of U , then the formulas become (4.7) and (4.8). This means that
(C p∑m

i=1 Ci
(μ),C

p∑m
i=1 Ci

(μ)) degenerates into the covering based pessimistic multigranula-

tion rough set model proposed by Yang et al. (2012a).

5.3 Type-2 covering based variable precisionmultigranulation rough fuzzy sets

From Sects. 5.1 and 5.2, we can see that 2-COMGRFSs and 2-CPMGRFSs only consider two
extremely cases of the decision making process: completely risk-preferring and completely
risk-averse. In fact, in real world, there are many uncertain complicated problems which
we can deal with thee two extremely cases. In view of this reason, in this subsection, we
introduce 2-CVPMGRFSs and investigate some related properties.

Definition 5.14 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ) and
t ∈ [0, 1], we denote

Ct∑m
i=1 Ci

(μ)(x) =
∧

{

μ(y)|
∑m

i=1 χNCi (x)
(y)

m
≥ t

}

(5.7)

and

C
t∑m

i=1 Ci
(μ)(x) =

∨
{

μ(y)|
∑m

i=1 χNCi (x)
(y)

m
≥ t

}

, (5.8)

for all x ∈ U , where

χNCi (x)
(y) =

{
1 if y ∈ NCi (x),
0 otherwise.

Then Ct∑m
i=1 Ci

(μ) and C
t∑m

i=1 Ci
(μ) are respectively called the 2-VPMGLAO and 2-

VPMGUAO of μ.
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IfCt∑m
i=1 Ci

(μ) �= C
t∑m

i=1 Ci
(μ), thenμ is called a type-2 covering based variable precision

multigranulation rough fuzzy set (briefly, 2-CPMGRFS), otherwise it is 2-variable precision
fuzzy definable.

Remark 5.15 If t = 1
m , then for any x ∈ U ,

Ct∑m
i=1 Ci

(μ)(x) =
∧

{

μ(y)|
∑m

i=1 χNCi (x)
(y)

m
≥ 1

m

}

=
∧

{

μ(y)|
m∑

i=1

χNCi (x)
(y) ≥ 1

}

=
∧

{

μ(y)|y ∈
m⋃

i=1

NCi (x)

}

= Co∑m
i=1 Ci

(μ)(x)

and

C
t∑m

i=1 Ci
(μ)(x) =

∨
{

μ(y)|
∑m

i=1 χNCi (x)
(y)

m
≥ 1

m

}

=
∨

{

μ(y)|
m∑

i=1

χNCi (x)
(y) ≥ 1

}

=
∨

{

μ(y)|y ∈
m⋃

i=1

NCi (x)

}

= C
o∑m

i=1 Ci
(μ)(x)

Thismeans that 2-CVPMGRFSmodel degenerates into a 2-COMGRFSmodel.Moreover,
we know that Ct∑m

i=1 Ci
(μ) = Co∑m

i=1 Ci
(μ) and C

t∑m
i=1 Ci

(μ) = C
o∑m

i=1 Ci
(μ) for all t ∈

(0, 1
m ].

Remark 5.16 If t = 1, then for any x ∈ U ,

Ct∑m
i=1 Ci

(μ)(x) =
∧

{

μ(y)|
∑m

i=1 χNCi (x)
(y)

m
≥ 1

}

=
∧

{

μ(y)|
m∑

i=1

χNCi (x)
(y) ≥ m

}

=
∧

{

μ(y)|y ∈
m⋂

i=1

NCi (x)

}

= C p∑m
i=1 Ci

(μ)(x)
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and

C
t∑m

i=1 Ci
(μ)(x) =

∨
{

μ(y)|
∑m

i=1 χNCi (x)
(y)

m
≥ 1

}

=
∨

{

μ(y)|
m∑

i=1

χNCi (x)
(y) ≥ m

}

=
∨

{

μ(y)|y ∈
m⋂

i=1

NCi (x)

}

= C
p∑m

i=1 Ci
(μ)(x)

This means that 2-CVPMGRFS model degenerates into a 2-CPMGRFS model.

Remark 5.17 From the above discussions, we can see that 2-COMGRFS and 2-CPMGRFS
models are the special cases of 2-CVPMGRFSmodel.When the value of parameter t changes
from [ 1

m , 1], the 2-CVPMGRFS model describes the gradually changing process from 2-
COMGRFS to 2-CPMGRFS models. Hence, 2-CVPMGRFS models can solve any kind
of decision making problems with uncertainty in artificial intelligence and management
sciences.

Example 5.18 (Continued from Example 5.3) Let t = 0.6, then

C0.6
C1+C2

(μ) = 0.6

x1
+ 0.3

x2
+ 0.1

x3
+ 0.7

x4
+ 0.4

x5
+ 0.4

x6

and

C
0.6
C1+C2

(μ) = 0.6

x1
+ 0.3

x2
+ 0.7

x3
+ 0.7

x4
+ 0.4

x5
+ 0.8

x6
.

6 The relationships between two types of CMGRFSs

In this section, we investigate the relationships between two types of CMGRFSs.
By Propositions 4.4 and 5.4, we can obtain the relationships between 1-COMGRFSs and

2-COMGRFSs.

Theorem 6.1 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ), then

(1) Co∑m
i=1 Ci

(μ) ⊆ Ro∑m
i=1 Ci

(μ);

(2) R
o∑m

i=1 Ci
(μ) ⊆ C

o∑m
i=1 Ci

(μ).

Corollary 6.2 Co∑m
i=1 Ci

(μ) ⊆ Ro∑m
i=1 Ci

(μ) ⊆ μ ⊆ R
o∑m

i=1 Ci
(μ) ⊆ C

o∑m
i=1 Ci

(μ).

This means that 1-COMGRFS model is more accurate than 2-COMGRFS model.

Remark 6.3 The inclusions of Corollary 6.2 are proper as follows.

Example 6.4 (Continued from Example 5.3) By calculations, we have

Ro∑m
i=1 Ci

(μ) = 0.6

x1
+ 0.3

x2
+ 0.1

x3
+ 0.7

x4
+ 0.4

x5
+ 0.4

x6
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and

R
o∑m

i=1 Ci
(μ) = 0.6

x1
+ 0.3

x2
+ 0.7

x3
+ 0.7

x4
+ 0.4

x5
+ 0.8

x6
.

In Example 5.3, we know that

Co∑m
i=1 Ci

(μ) = 0.3

x1
+ 0.1

x2
+ 0.1

x3
+ 0.4

x4
+ 0.4

x5
+ 0.4

x6

and

C
o∑m

i=1 Ci
(μ) = 0.6

x1
+ 0.3

x2
+ 0.7

x3
+ 0.7

x4
+ 0.7

x5
+ 0.8

x6
.

Hence,

Co∑m
i=1 Ci

(μ) � Ro∑m
i=1 Ci

(μ) � μ � R
o∑m

i=1 Ci
(μ) � C

o∑m
i=1 Ci

(μ).

Next, we investigate the relationships between 1-CPMGRFS models and 2-CPMGRFS
models.

Lemma 6.5 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ), then

(1) R p∑m
i=1 Ci

(μ) =
m⋂

i=1
Ci (μ);

(2) R
p∑m

i=1 Ci
(μ) =

m⋃

i=1
Ci (μ).

Proof It is easily obtained from Definitions 3.2 and 4.13. ��
Lemma 6.6 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ) and x ∈ U,
then

(1) C p∑m
i=1 Ci

(μ) ≥
m⋂

i=1
Ci (μ)(x);

(2) C
p∑m

i=1 Ci
(μ) ≤

m⋂

i=1
Ci (μ)(x).

Proof (1) For any x ∈ U , then
⋂m

i=1 NCi (x) ⊆ NCi (x), and so, Ci (μ)(x) = ∧{μ(y)|y ∈
NCi (x)} ≤ ∧{μ(y)|y ∈ ⋂m

i=1 NCi (x)} = C p∑m
i=1 Ci

(μ)(x). Hence, C p∑m
i=1 Ci

(μ) ≥
⋂m

i=1 Ci (μ)(x).

(2) For any x ∈ U , then
⋂m

i=1 NCi (x) ⊆ NCi (x), and so, Ci (μ)(x) = ∨{μ(y)|y ∈
NCi (x)} ≥ ∨{μ(y)|y ∈ ⋂m

i=1 NCi (x)} = C p∑m
i=1 Ci

(μ)(x). Hence, C
p∑m

i=1 Ci
(μ) ≤

⋃m
i=1 Ci (μ)(x). ��
By Lemmas 6.5 and 6.6, we have

Theorem 6.7 Let (U ,�) be a CAS and C1, C2, . . . Cm ∈ �. For any μ ∈ F(U ), then

(1) R p∑m
i=1 Ci

(μ) ⊆ C p∑m
i=1 Ci

(μ);

(2) C
p∑m

i=1 Ci
(μ) ⊆ R

p∑m
i=1 Ci

(μ);

Corollary 6.8 Rp∑m
i=1 Ci

(μ) ⊆ C p∑m
i=1 Ci

(μ) ⊆ μ ⊆ C
p∑m

i=1 Ci
(μ) ⊆ R

p∑m
i=1 Ci

(μ).
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This means that 2-CPMGRFS model is more accurate than 1-CPMGRFS model.

Remark 6.9 The inclusions of Corollary 6.8 are proper as follows.

Example 6.10 (Continued from Example 5.3) By calculations, we have

Rp∑m
i=1 Ci

(μ) = 0.3

x1
+ 0.1

x2
+ 0.1

x3
+ 0.4

x4
+ 0.4

x5
+ 0.4

x6
,

R
p∑m

i=1 Ci
(μ) = 0.6

x1
+ 0.3

x2
+ 0.7

x3
+ 0.7

x4
+ 0.7

x5
+ 0.8

x6
,

C p∑m
i=1 Ci

(μ) = 0.6

x1
+ 0.3

x2
+ 0.1

x3
+ 0.7

x4
+ 0.4

x5
+ 0.4

x6
,

C
p∑m

i=1 Ci
(μ) = 0.6

x1
+ 0.3

x2
+ 0.7

x3
+ 0.7

x4
+ 0.4

x5
+ 0.8

x6
.

Hence,

Rp∑m
i=1 Ci

(μ) � C p∑m
i=1 Ci

(μ) � μ � C
p∑m

i=1 Ci
(μ) � R

p∑m
i=1 Ci

(μ).

7 An approach toMCGDMmethod based on CMGRFSmodels

In this section, we give an application of MCGDM method based on CMGRFS models. For
the sake of simplicity, we use 1-COMNGRFS models and 2-COMNGRFS models to present
the MCGDM method, respectively. In fact, all methods of CMRGRFS models also can be
used to discuss the MCGDM problems. By means of different methods, the obtained results
are also different. In order to achieve the most accurate results, further diagnosis is necessary
in combination with other hybrid methods in our real world. In this paper, the data originate
in opinions from experts. In order to improve the reliability, we depend on CMGRFS models
to analyze the opinions of the experts.

7.1 An application of MCGDMmethod based on 1-COMGRFSmodels

In this subsection, we use 1-COMGRFS models to present the MCGDM method in order to
determine whether a person is ill or not.

7.1.1 Decision making methodology based on 1-COMGRFSmodels

Firstly, in order to determine whether a person is ill or not, we establish the multigranulation
fuzzy decision information systems based on the considered MCGDM problems.

Secondly,we construct the covering approximation space and compute the neighborhoods.
Thirdly, we calculate the Ro∑m

i=1 Ci
(μ) and R

o∑m
i=1 Ci

(μ) for the given fuzzy set μ. Then

we can obtain the ranking of the given degree of sicken by experts as their judgements for
every patients. Denote by

m∑

i=1

Ri (μ) = λRo∑m
i=1 Ci

(μ) + (1 − λ)R
o∑m

i=1 Ci
(μ), where λ ∈ [0, 1].

Finally, based on the value of
m∑

i=1
Ri (μ), we give the ranking for the given degree of sicken

by using the principle of maximum membership in Zadeh’s fuzzy set theory.

123



Two types of coverings based multigranulation rough fuzzy… 191

Remark 7.1 (1) If λ = 1, then
∑m

i=1 Ri (μ) = Ro∑m
i=1 Ci

(μ).

(2) If λ = 0, then
∑m

i=1 Ri (μ) = R
o∑m

i=1 Ci
(μ).

From the point of view of risk decision making with uncertainty,
∑m

i=1 Ri (μ) can be
regarded as the compromise rule with a right weight λ. In general, λ reflects the preference
of decision maker for the risk of decision making problems. The larger the value of λ when
decision maker is risk-preferring. The smaller the value of λ when decision maker is risk-
averse. Hence the decision maker can adjust λ according to the goal in real life.

7.1.2 Algorithm for the proposed MCGDMmethod based on 1-COMGRFSmodels

Now, we put forth an algorithm for the proposed MCGDM method.
Algorithm I (Based on 1-COMGRFS models):

Step 1 Input the objectU = {x1, . . . , xn}, the condition attributes C = {C1, C2, . . . , Cm}
and a fuzzy set μ of U .

Step 2 Compute the neighborhood NCi (x), for all x ∈ U , i = 1, 2, . . . ,m.

Step 3 Compute Ro∑m
i=1 Ci

(μ) and R
o∑m

i=1 Ci
(μ) according to Definition 4.1.

Step 4 Determine the right weight value of λ, where λ ∈ [0, 1].

Step 5 Compute
m∑

i=1
Ri (μ) = λRo∑m

i=1 Ci
(μ) + (1 − λ)R

o∑m
i=1 Ci

(μ).

Step 6 Obtain the ranking according to the decision principle.

7.1.3 An applied example

Assume that u = {x1, . . . , x6} is a set of patients. According to the patients’ symp-
toms, the doctors will construct the covering set C = {C1, C2} which consists of two
condition attributes, where C1 = {{x1}, {x2, x3}, {x3, x4, x5}, {x4, x5, x6}} and C2 =
{{x1, x2}, {x2, x3, x4}, {x4, x5}, {x5, x6}} are two kinds of symptoms of sicken.

Let μ and ν denote the degree of sicken by two doctors A and B as their judgements for
every patients, respectively, as follows:

μ = 0.6

x1
+ 0.3

x2
+ 0.1

x3
+ 0.7

x4
+ 0.4

x5
+ 0.8

x6

and

ν = 0.7

x1
+ 0.2

x2
+ 0.3

x3
+ 0.5

x4
+ 0.6

x5
+ 0.9

x6
.

By calculation,

Ro
C1+C2

(μ) = 0.6

x1
+ 0.3

x2
+ 0.1

x3
+ 0.7

x4
+ 0.4

x5
+ 0.4

x6

and

R
o
C1+C2

(μ) = 0.6

x1
+ 0.3

x2
+ 0.7

x3
+ 0.7

x4
+ 0.4

x5
+ 0.8

x6
.
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Let λ = 0.2, then the MCGDM of μ can be obtained as follows:

2∑

i=1

Ri (μ) = 0.2Ro
C1+C2

(μ) + (1 − 0.2)R
o
C1+C2

(μ)

= 0.6

x1
+ 0.3

x2
+ 0.58

x3
+ 0.7

x4
+ 0.4

x5
+ 0.72

x6
.

According to the principle of maximummembership in Zadeh’s fuzzy set theory, the order
of the degree of sicken as follows: x6 � x4 � x1 � x3 � x5 � x2. Hence, doctor A thinks
the patient x6 is more likely to be sicken.

Similarly, we can calculate

Ro
C1+C2

(ν) = 0.7

x1
+ 0.2

x2
+ 0.3

x3
+ 0.5

x4
+ 0.6

x5
+ 0.6

x6

and

R
o
C1+C2

(ν) = 0.7

x1
+ 0.2

x2
+ 0.5

x3
+ 0.5

x4
+ 0.6

x5
+ 0.9

x6
.

Hence, then the MCGDM of ν can be obtained as follows:

2∑

i=1

Ri (ν) = 0.2Ro
C1+C2

(ν) + (1 − 0.2)R
o
C1+C2

(ν)

= 0.7

x1
+ 0.2

x2
+ 0.46

x3
+ 0.5

x4
+ 0.6

x5
+ 0.84

x6
.

According to the principle of maximummembership in Zadeh’s fuzzy set theory, the order
of the degree of sicken as follows: x6 � x1 � x5 � x4 � x3 � x2. Hence doctor B also
thinks the patient x6 is more likely to be sicken.

Remark 7.2 (1) In the above MCGDM method, we use 1-COMGRFS models.
(2) From the point of view of risk decision making with uncertainty, in general, λ reflects

the preference of decision maker for the risk of decision making problems. The larger
the value of λ when decision maker is risk-preferring. The smaller the value of λ when
decision maker is risk-averse. Hence the decision maker can adjust λ according to the
goal in our real life.

7.2 An application of MCGDMmethod based on 2-COMGRFSmodels

In this subsection, we use 2-COMGRFS models to present the MCGDM method in order to
determine whether a person is ill or not.

7.2.1 Decision making methodology based on 2-COMGRFSmodels

Firstly, in order to determine whether a person is ill or not we establish the multigranulation
fuzzy decision information systems based on the considered MCGDM problems.

Secondly,we construct the covering approximation space and compute the neighborhoods.
Thirdly, we calculate the Co∑m

i=1 Ci
(μ) and C

o∑m
i=1 Ci

(μ) for the given fuzzy set μ. Then

we can obtain the ranking of the given degree of sicken by experts as their judgements for
every patients. Denote by
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m∑

i=1

Ci (μ) = λCo∑m
i=1 Ci

(μ) + (1 − λ)C
o∑m

i=1 Ci
(μ), where λ ∈ [0, 1].

Finally, based on the value of
∑m

i=1 Ci (μ), we give the ranking for the given degree of
sicken by using the principle of maximum membership in Zadeh’s fuzzy set theory.

Remark 7.3 (1) If λ = 1, then
∑m

i=1 Ci (μ) = Co∑m
i=1 Ci

(μ).

(2) If λ = 0, then
∑m

i=1 Ci (μ) = C
o∑m

i=1 Ci
(μ).

From the point of view of risk decision making with uncertainty,
∑m

i=1 Ci (μ) can be
regarded as the compromise rule with a right weight λ. In general, λ reflects the preference
of decision maker for the risk of decision making problems. The larger the value of λ when
decision maker is risk-preferring. The smaller the value of λ when decision maker is risk-
averse. Hence the decision maker can adjust λ according to the goal in our real world.

7.2.2 Algorithm for the proposed MCGDMmethod based on 2-COMGRFSmodels

Now, we put forth an algorithm for the proposed MCGDM method.
Algorithm II (Based on 2-COMGRFS models):

Step 1 Input the objectU = {x1, . . . , xn}, the condition attributes C = {C1, C2, . . . , Cm}
and a fuzzy set μ of U .

Step 2 Compute the neighborhood NCi (x), for all x ∈ U , i = 1, 2, . . . ,m.

Step 3 Compute Co∑m
i=1 Ci

(μ) and C
o∑m

i=1 Ci
(μ) according to Definition 5.1.

Step 4 Determine the right weight value of λ, where λ ∈ [0, 1].

Step 5 Compute
∑m

i=1 Ci (μ) = λCo∑m
i=1 Ci

(μ) + (1 − λ)C
o∑m

i=1 Ci
(μ).

Step 6 Obtain the ranking according to the decision principle.

7.2.3 An applied example

Consider the examples as in Sect. 7.1. By calculation, we have

Co
C1+C2

(μ) = 0.3

x1
+ 0.1

x2
+ 0.1

x3
+ 0.4

x4
+ 0.4

x5
+ 0.4

x6

and

C
o
C1+C2

(μ) = 0.6

x1
+ 0.3

x2
+ 0.7

x3
+ 0.7

x4
+ 0.7

x5
+ 0.8

x6
.

Let λ = 0.2, then the MCGDM of μ can be obtained as follows:

2∑

i=1

Ci (μ) = 0.2Co
C1+C2

(μ) + (1 − 0.2)C
o
C1+C2

(μ)

= 0.54

x1
+ 0.26

x2
+ 0.58

x3
+ 0.64

x4
+ 0.64

x5
+ 0.72

x6
.
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According to the principle of maximummembership in Zadeh’s fuzzy set theory, the order
of the degree of sicken as follows: x6 � x4 = x5 � x3 � x1 � x2. Hence, doctor A thinks
the patient x6 is more likely to be sicken.

Similarly, we can calculate

Co
C1+C2

(ν) = 0.2

x1
+ 0.2

x2
+ 0.2

x3
+ 0.5

x4
+ 0.5

x5
+ 0.5

x6

and

C
o
C1+C2

(ν) = 0.7

x1
+ 0.3

x2
+ 0.6

x3
+ 0.6

x4
+ 0.6

x5
+ 0.9

x6
.

Hence, then the MCGDM of ν can be obtained as follows:

2∑

i=1

Ci (ν) = 0.2Co
C1+C2

(ν) + (1 − 0.2)C
o
C1+C2

(ν)

= 0.6

x1
+ 0.28

x2
+ 0.52

x3
+ 0.58

x4
+ 0.58

x5
+ 0.82

x6
.

According to the principle of maximummembership in Zadeh’s fuzzy set theory, the order
of the degree of sicken as follows: x6 � x1 � x4 = x5 � x3 � x2. Hence doctor B also
thinks the patient x6 is more likely to be sicken.

Remark 7.4 (1) In the above MCGDMmethod, we use 2-COMGRFS models. Certainly, we
also can use other CMGRFS models to discuss this topic.

(2) By means of different methods, the obtained results are also different. In order to achieve
the most accurate results, further diagnosis is necessary in combination with other hybrid
methods.

Remark 7.5 (1) In Algorithms I and II, we know that the time complexities of computing
Ci partitions are both O(nm|Ci |). Thus, the time complexities are both

O(nm|C1| + nm|C2| + · · · + nm|Cm |) = O(nm(|C1| + |C2| + · · · + |Cm |))

= O

(

nm
m∑

i=1

|Ci |
)

.

(2) In Algorithms I and II, shortcomings of the algorithms: (a) its calculating quantity is
large, (b) The value of λ has a great impact on the decision result, which requires the
decision maker to choose λ. If the value of λ is misvalued, the decision result will be
affected.

Any external comparative analysis suffers from the limitation that traditional MAGDM
problems with fuzzy information are mainly focused on using fuzzy aggregation operators
w.r.t. a fuzzy binary relation. That is, the preference evaluations of different decision-makers
are melded together by using the selected fuzzy aggregation operator, and then the key issue
of traditional MAGDM problems arises as to how to define effective fuzzy aggregation
operators. But especially complicated real-world problems cannot rely on a (fuzzy) binary
relation alone. Covering based rough (fuzzy) set models go beyond that point because they do
not depend on a (fuzzy) binary relation, but on generalizations of that concept. In particular,
covering based multigranulation rough fuzzy rough sets, which generalize both covering
based rough fuzzy sets and multigranulation rough sets, are better suited to deal with more
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Fig. 1 The representations of the rankings of all alternatives based four types of cases

subtle problems as described in this section. We have made a preliminary attempt to explore
the methods and models that apply to MAGDM problems based on CMGRFS theory, which
are comparatively little studied in the broad field of MAGDM problems.

7.3 Comparative analysis

From the above analysis, we observe that the ranking results obtained the decision making
methods based two different models have a high degree of consensus. To put forth a better
perspective of the comparison results, we give the results of the rankings of the alternatives
obtained by above four types of cases, see Fig. 1.

It can be easily seen from the Fig. 1 that the ranking of the six candidate alternatives
from the above four cases are quite similar. The optimal results are the same. As there exist
some minor different places on other alternatives, the reason is that we choose two different
models. In real-world decision making process, any preference between the results may be a
surjective choice by the decision-maker.

8 Discussion and the future work

It is well known that covering rough set model is a vital research topic of generalized rough
set theory. Covering rough set model is a very powerful tool that enables the researcher to
study data mining in a more general manner. Many researchers proposed many generalized
fuzzy rough setmodels. At the same time, some scholars generalized covering based rough set
models to covering based fuzzy rough setmodels by combining fuzzy sets and covering based
rough set models. MGRS model is an important topic as a generalization of rough sets and
granular computing which is a tool for AI and management sciences. Mardani et al. (2015)
reviewed MCGDMMs based on fuzzy set theory from 1994 to 2014. Regarding decision
making methods based on rough set theory, many researchers put forward new procedures
and techniques too (the reader is addressed to Sun and Ma 2015b, 2017 for examples). By
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Fig. 2 The relationships of generalized covering based rough set models. In the Fig. 2, A → B means that A
is a particular case of B and A − B means that A includes B

viewing existing studies, it appears that there is a lack of investigation on the applications
in MCGDM method by CMGRFS models. This motivates the present paper on CMGRFS
models, as well as their applications in multiple criteria group decision making. In view of
this reason, in the present paper, we investigate two types of CMGRFS models by means of
the neighborhoods.

The main contributions and the future work in this paper are listed as follows:

(1) Two types of CMGRFS models are investigated.
(2) The relationships between two types of CMGRFS models are established. These studies

have aroused interest in covering based rough set theory, which has quickly become an
important and useful research topic in uncertainty theory.

(3) Based on the theoretical discussion for the combination of CMGRFS models, we have
presented two new approaches to MCGDM problem. The basic model and the procedure
of decision making as well as the algorithm for the new approach are given.

(4) The relationships among these kinds of generalized covering based rough set models are
investigated, see the following Fig. 2.

(5) There are some issues in this topic deserving further investigation. For instances, the study
of parameter reductions of multigranulation rough fuzzy covering models; topological
properties andmatroidal structures of CMGRFSmodels; the other decisionmaking appli-
cations ofCMGRFSmodels; the research of covering basedmultigranulation fuzzy rough
set models; the design of other hybrid uncertain models and the analysis of their inter-
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actions with existing models; the relationships between CMGRFS models and covering
based multigranulation fuzzy rough set models.
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