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Abstract
In recent years, more and more methods and theories of multi-granulation information sys-
tems have been explored. However, there is very limited investigation on the attribute reducts
ofmulti-granulation rough sets. Therefore, themain objective of this paper is to draw attention
to the attribute reducts of multi-granulation information system. For any subset of informa-
tion system, we usually characterize it by its upper and lower approximations. In order to
calculate the upper and lower approximations faster, we must reduce the redundant informa-
tion of the information system. According to the preceding analysis, we first introduce three
types of attribute reduct, which are called arbitrary union reduct, neighborhood union reduct
and neighborhood intersection reduct, respectively. Then many basic and important results
of these reducts are deeply explored. In order to apply the theories of attribute reducts to
deal with practical issues, we develop three algorithms so as to compute multi-granulation
upper and lower approximations. Next, we further study the interrelationships among these
attribute reducts. Finally, we present a multi-granulation information system with respect to
thirty students’ exam scores and calculate the corresponding attribute reducts by using the
algorithms listed in the paper.
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1 Introduction

Rough set theory, proposed by Pawlak Pawlak (1982), provides a useful method for dealing
with incomplete and inconsistent knowledge. The theory is widely used in various fields,
such as knowledge recognition, data mining, image processing and so on.

We know that classical rough set theory is based on an equivalence relation. Objects in
the same equivalence class are indiscernible. Pawlak’s rough sets are usually used to deal
with data sets described with nominal features. However, in many practical situations, the
data sets are not suitable for being handled by Pawlak’s rough sets (Bonikowski et al. 1998;
Baszczyński et al. 2011; Cattaneo 1998; Chen et al. 2006, 2007, 2011; Diker and Ugur
2012). As a result, many generalized rough set models have been developed in terms of
different requirements. Then, the neighborhood-based rough sets (Wang et al. 2016, 2017;
Yao 2011), similarity relation rough sets (Slowinski and Vanderpooten 2000; Yao 1998),
tolerance relation rough sets (Skowron and Stepaniuk 1996; Xu et al. 2013), and binary
relation rough sets (Wang et al. 2017) were constructed, respectively. In particular, some
objets have multiple attribute values for a multi-valued attribute. So, we need a covering of
the universe instead of a partition. In 1983, Zakowski firstly proposed the covering rough set
model Zakowski (1983). After Zakowski, many authors studied the properties of covering
rough sets (Bonikowski et al. 1998; Chen et al. 2007; Ge and Li 2011; Kong and Xu 2018a, b;
Kong andWei 2015; Liu andWang 2011; Liu et al. 2014; Liu and Zhu 2008; Liu and Sai 2009;
Shi and Gong 2010). Especially, more and more scholars are working on the attribute reducts
of covering rough sets or covering information systems. For example, a pioneering work
related to the reducts of covering rough sets was constructed, where the concept of reducts
of covering was introduced and the procedure to find a reduct for a covering was shown Zhu
andWang (2003).Meanwhile, the approach to attribute reducts of consistent and inconsistent
covering decision systems are firstly introduced byChen et al. (2007). At the same time, Chen
et al. (2007) originally proposed the discernibility to design algorithms that compute all the
reducts of consistent and inconsistent covering decision systems. Comparedwith the attribute
reduct method presented in Chen et al. (2007), Wang et al. constructed a new discernibility
matrix, which greatly reduced the computational complexity (Wang et al. 2014). In Wang
et al. (2015), Wang et al. also provided a new method for constructing simpler discernibility
matrix with covering rough sets, and improved some characterizations of attribute reduct
provided by Tsang et al. (2008). Moreover, Tan et al. introduced matrix-based methods for
computing set approximations and reducts of a covering information system (Tan et al. 2015).

From the perspective of granular computing, an equivalence relation on the universe can
be regarded as a granularity, and the corresponding partition can be regarded as a granular
structure. Hence, Pawlak’s rough set theory is based on a single granularity. In Qian et al.
(2010), Qian and Liang firstly extended the single granulation rough sets to themultiple gran-
ulation rough sets, where the set approximations were defined by using multiple equivalence
relations on the universe. At present, more and more attention has been paid to extending the
multi-granulation rough set theory (Li et al. 2016, 2017; Lin et al. 2013; Liu andWang 2011;
Zhang and Kong 2016). Xu et al. developed the multi-granulation rough set model in ordered
information systems (Xu et al. 2012). At the same time, based on the multi-granulation rough
set theory and fuzzy set theory, Xu et al. proposed a multi-granulation fuzzy rough set model
and a multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space (Xu et al.
2014). Meanwhile, Yang also generalized the multi-granulation rough sets into fuzzy rough
sets, and discussed the corresponding properties in incomplete information systems Yang
et al. (2011). Kong et al. studied the operation and algebraic properties of multi-granulation
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Attribute reducts of multi-granulation information system 1355

rough sets and multi-granulation covering rough sets, respectively (Kong et al. 2018; Kong
and Wei 2017). She et al. explored the topological structures and obtained many excellent
conclusions (She and he 2003). Recently, Xu et al. proposed a generalized multi-granulation
rough set model by introducing a support characteristic function and an information level
(Xu et al. 2011). However, it is still an open problem regarding the attribute reducts of multi-
granulation information systems. Therefore, the main objective of this paper is to study the
attribute reduct theory of multi-granulation information system.

The rest of this paper is organized as follows. In Sect. 2, we briefly review some basic
concepts of Pawlak’s rough sets, multi-granulation rough sets and covering. In Sect. 3, we
firstly introduce the concept of the arbitrary union reduct, and discuss some basic properties
of this reduct. Furthermore, we develop an algorithm to compute the arbitrary union reduct in
an information system. In Sect. 4, we propose the concept of neighborhood union reduct, and
study some important properties of neighborhood union reduct. In order to deal with real-life
cases, we develop an algorithm to compute the neighborhood union reduct in an information
system. In Sect. 5, we define the neighborhood intersection reduct. Many meaningful results
of this reduct are explored. In Sect. 6, the interrelationships among the several types of
reducts are discussed in detail. In Sect. 7, an illustrate example is given to show how to select
the optimal reduct to compute the multi-granulation lower and upper approximations more
efficiently. Finally, Sect. 8 concludes this study.

2 Preliminaries

In this section, we review some basic concepts and notions of Pawlak’s rough sets, multi-
granulation rough sets and covering.More details can be seen in references Chen et al. (2007),
Qian et al. (2010), Qian and Liang (2006), Zhu and Wang (2003).

LetI = (U , A, V , f ) be an information system, whereU is a nonempty finite set, called a
universe; A is a nonempty attribute set; V = ∪a∈AVa , Va is a set of its values; f : U×A → V
is an information function with f (x, a) ∈ Va for each a ∈ A and x ∈ U . The family of
attribute subsets is denoted by A = {A1, A2, . . . , Am}, where Ai ⊆ A, i = 1, 2, . . . ,m.

The equivalence class of an object x with respect to Ai ∈ A is defined by: [x]Ai = {y ∈
U | f (x, a) = f (y, a), a ∈ Ai }. Let U/Ai = {[x1i ]Ai , [x2i ]Ai , . . . , [xni ]Ai } is a parti-
tion of U and ∪(A) = {[x11 ]A1 , [x21 ]A1 , . . . , [xn1 ]A1 , [x12 ]A2 , [x22 ]A2 , . . . , [xn2 ]A2 , . . . ,

[x1m ]Am , [x2m ]Am , . . . , [xnm ]Am }. Then, for each X ⊆ U , the lower and upper approxima-
tions of X with respect to Ai are defined as follows:

Ai (X) = {x ∈ U |[x]Ai ⊆ X}, Ai (X) = {x ∈ U |[x]Ai ∩ X �= ∅}.
Definition 2.1 Qian et al. (2010) Let I = (U , A, V , f ) be an information system, X ⊆ U ,
and A = {A1, A2, . . . , Am}. The optimistic multi-granulation lower and upper approxima-
tions of X with respect to A are defined as follows:

OM∑m
i=1 Ai

(X) = {x | ∨m
i=1([x]Ai ⊆ X)}, OM∑m

i=1 Ai
(X) = {x | ∧m

i=1([x]Ai ∩ X �= ∅)}.

where “∨” means the logical operator “or”, which represents that the alternative conditions
are satisfied, and “∧” means the logical operator “and”, which represents that all of the
conditions are satisfied. Here, the word “optimistic” means that just one granular structure is
needed to satisfy with the inclusion between an equivalence class and a target concept when
multiple independent granular structures are available in problem processing.
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Definition 2.2 Qian and Liang (2006) Let I = (U , A, V , f ) be an information system,
X ⊆ U , and A = {A1, A2, . . . , Am}. The pessimistic multi-granulation lower and upper
approximations of X with respect toA are defined as follows:

PM∑m
i=1 Ai

(X) = {x | ∧m
i=1([x]Ai ⊆ X)}, PM∑m

i=1 Ai
(X) = {x | ∨m

i=1([x]Ai ∩ X �= ∅)}.

Here, the word “pessimistic” means that all granular structures are needed to satisfy with
the inclusion between an equivalence class and a target concept when multiple independent
granular structures are available.

Definition 2.3 Zakowski (1983) Let C be a family of nonempty subsets of U . C is called a
covering of U if ∪K∈CK = U . The ordered pair (U ,C) is called a covering approximation
space.

Definition 2.4 Zhu and Wang (2003) Let (U ,C) be a covering approximation space and
K ∈ C. If K is a union of some sets in C/{K }, we say that K is a union reducible element of
C; Otherwise, we say that K is a union irreducible element of C. Meanwhile, for a covering
C of U , the new union irreducible covering through above reduction is called a union reduct
of C, and denoted by reduct(C)U .

Notice that the union reduct of a covering can be computed by deleting all the union
reducible elements. Therefore, the union reduct is the minimum covering by deleting redun-
dancy. Meanwhile, for each subset of the universe, the union reduct of a covering can induce
the same lower and upper approximations (Zhu and Wang 2003). However, for the union
reduct of a covering, it may contain other redundant elements which are not the union
reducible elements. To address this issue, the intersection reduct of a covering is proposed
by Chen et al. (2015).

Definition 2.5 Chen et al. (2015) Let (U ,C) be a covering approximation space and K ∈ C. If
K is an intersection of some sets inC/{K }, we say that K is an intersection reducible element
of C; Otherwise, we say that K is an intersection irreducible element of C. Meanwhile, for a
covering C ofU , the new intersection irreducible covering through above reduction is called
an intersection reduct of C, and denoted by reduct(C)I .

In Chen et al. (2015), the properties of the intersect reduct of a covering are examined.
Particularly, the intersection reduct is investigated from the viewpoint of concept lattice
theory.

3 Attribute reduction with respect to arbitrary union

In this section, we will introduce the concept of the arbitrary union reduct, and then discuss
some interesting properties of this reduct. Meanwhile, we develop an algorithm to compute
the arbitrary union reduct.

Definition 3.1 Let I = (U , A, V , f ) be an information system, andA = {A1, A2, . . . , Am}
the family of attribute subsets. Ai ∈ A is called an arbitrary union reducible element of A,
if for each x ∈ U , there exist �x ⊆ {1, 2, . . . , i − 1, i + 1, . . . ,m} and Vx ⊆ U such that
[x]Ai = ∪ j∈�x ∪y∈Vx [y]A j ; Otherwise, Ai is called an arbitrary union irreducible element
of A. If every element in A is irreducible, we say that A is irreducible; Otherwise, A is
reducible.
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Definition 3.2 Let I = (U , A, V , f ) be an information system, andA = {A1, A2, . . . , Am}
the family of attribute subsets. The new family of attribute subsetsA′ ⊆ A through the above
reduct is called the arbitrary union reduct ofA, and denoted by reduct(A)AU .

Notice that the covering C of a universeU has only one reduct. i.e., reduct(C)U is unique
(Zhu and Wang 2003). Here, we raise a question: is reduct(A)AU unique? In the following,
we will employ an example to answer the question.

Example 3.1 Let I = (U , A, V , f ) be an information system, whereU = {x1, x2, . . . , x20},
A = {A1, A2, A3, A4}.

U/A1 = {{x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7, x8, x9}, {x10, x11, x12},
{x13, x14, x15, x16}, {x17, x18}, {x19, x20}};

U/A2 = {{x1, x2, x3}, {x4, x5, x6}, {x7}, {x8}, {x9}, {x10}, {x11}, {x12},
{x13, x14, x17}, {x15}, {x16, x19, x20}, {x18}};

U/A3 = {{x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}, {x9, x10, x11, x12},
{x13, x14, x15}, {x16, x17, x18}, {x19}, {x20}};

U/A4 = {{x1, x2, x3, x4}, {x5, x6, x7}, {x8, x9, x10}, {x11, x12},
{x13, x14, x15}, {x16, x17, x18}, {x19, x20}}.

It is clear that reduct(A)AU = {A1, A2, A3} or {A1, A2, A4}. Therefore, reduct(A)AU
is not unique.

If K ∈ C is a union reducible element of C and K1 ∈ C/{K }, then K1 is a union reducible
element of C if and only if K1 is a union reducible element of C/{K } Zhu and Wang (2003).
Similarly, we have the following result.

Proposition 3.1 LetI = (U , A, V , f )bean information system, andA = {A1, A2, . . . , Am}.
Suppose Ai ∈ A is an arbitrary union reducible element ofA, and A j ∈ A/{Ai }. If for each
x ∈ U, we have [x]Ai �= [x]A j , then A j is an arbitrary union reducible element ofA if and
only if A j is an arbitrary union reducible element ofA/{Ai }.

Proof (⇐) It is immediate.
(⇒) Suppose A j is an arbitrary union reducible element ofA. For each x ∈ U , there exist

�x ⊆ {1, 2, . . . , j − 1, j + 1, . . . ,m} and Vx ⊆ U such that [x]A j = ∪t∈�x ∪y∈Vx [y]At .
Case1: If i ∈ �x , it is clear that A j is an arbitrary union reducible element of A/{Ai };
Case2: If i ∈ �x , without lost of generality, let [x]A j = [z]Ai ∪ (∪t∈�x /{i} ∪y∈Vx/{z} [y]At ),
where z ∈ Vx . On the one hand, if [z]Ai = [x]Ai , by the assumption in this proposition,
we have [z]Ai ⊂ [x]A j . Since Ai is an arbitrary union reducible element of A, there exist

�
′
x ⊆ {1, 2, . . . , i − 1, i + 1, . . . ,m} and V

′
x ⊆ U such that [z]Ai = ∪s∈�

′
x

∪
w∈V ′

x
[w]As .

Because U/Ai is a partition of U , then j ∈ �
′
x . Therefore, [x]A j = (∪s∈�

′
x
∪

w∈V ′
x
[w]As ) ∪

(∪t∈�x/{i} ∪y∈Vx/{z} [y]At ). Denote �̃x = (�
′
x ∪ �x )/{i}, Ṽx = (V

′
x ∪ Vx )/{z}, then [x]A j =

∪k∈�̃x
∪u∈Ṽx [u]Ak . So, A j is an arbitrary union reducible element of A/{Ai }. On the other

hand, if [z]Ai �= [x]Ai , then we have [z]Ai ⊂ [x]A j . According to the above discussion, A j

is an arbitrary union reducible element ofA/{Ai }. ��
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In the following, we can develop an algorithm to compute the arbitrary union reduct
reduct(A)AU .

Algorithm 1: An algorithm for computing reduct(A)AU

Input : An information system I = (U , A, V , f ), and A = {A1, A2, · · · , Am};
Output : reduct(A)AU .

1 begin
2 A ← reduct(A)AU ;
3 for i = 1 : m; i <= m; i + + do
4 U ← U ;
5 for each x ∈ U do
6 ∅ ← V ;
7 for j = 1 : m; j <= m; j �= i; j + + do
8 U ← Ũ ;
9 for each y ∈ Ũ do

10 if [y]A j ⊆ [x]Ai then
11 V ← V ∪ [y]A j ;
12 if [x]Ai �= V then
13 Ũ ← Ũ/[y]A j ;
14 end
15 end
16 end
17 end
18 U ← U/[x]Ai ;
19 end
20 reduct(A)AU ← reduct(A)AU/Ai ;
21 end
22 end

In Zhu and Wang (2003), Zhu and Wang indicated that if K is a union reducible element
of C and X ⊆ U , then the covering lower approximations of X with respect to C and
C/{K }, respectively, are same. Here, we also raise a similar question: if Ai ∈ A is an
arbitrary union reducible element of A, and X ⊆ U , are the optimistic multi-granulation
lower approximations of X with respect to A and A/Ai , respectively, same? To solve this
problem, we have the following result.

Proposition 3.2 Let I = (U , A, V , f ) be an information system, A = {A1, A2, . . . , Am},
and X ⊆ U. If A j ∈ A is an arbitrary union reducible element of A, then the optimistic
multi-granulation lower approximations of X with respect toA andA/A j , respectively, are
same.

Proof By Definition 2.1, it is obvious that OM∑m
i=1,i �= j Ai

(X) ⊆ OM∑m
i=1 Ai

(X). Then, for

each x ∈ OM∑m
i=1 Ai

(X), there exists Ak ∈ A such that [x]Ak ⊆ X . If Ak �= A j , then

x ∈ OM∑m
i=1,i �= j Ai

(X). If Ak = A j , since A j is a reducible element ofA, there exists As ∈ A
such that [x]As ⊆ [x]Ak ⊆ X . According to Definition 2.1, we have x ∈ OM∑m

i=1,i �= j Ai
(X).

So, OM∑m
i=1 Ai

(X) ⊆ OM∑m
i=1,i �= j Ai

(X). Therefore, OM∑m
i=1,i �= j Ai

(X) = OM∑m
i=1 Ai

(X).

��
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Similarly, the result with respect to the optimistic multi-granulation upper approximation
is shown as follows.

Proposition 3.3 Let I = (U , A, V , f ) be an information system, A = {A1, A2, . . . , Am},
and X ⊆ U. If A j ∈ A is an arbitrary union reducible element of A, then the optimistic
multi-granulation upper approximations of X with respect toA andA/A j , respectively, are
same.

According to Propositions 3.2 and 3.3, we have the following result.

Theorem 3.1 Let I = (U , A, V , f ) be an information system,A = {A1, A2, . . . , Am}, and
X ⊆ U. Then the optimistic multi-granulation lower and upper approximations of X with
respect to A and reduct(A)AU , respectively, are same.

If Ai ∈ A is an arbitrary union reducible element of A, and X ⊆ U , then, are the
pessimisticmulti-granulation lower approximations of X with respect toA andA/Ai , respec-
tively, same? In order to answer the question, a counterexample is given as follows:

Example 3.2 Let I = (U , A, V , f ) be an information system, where U = {x1, x2, . . . , x9},
A = {A1, A2, A3}.

U/A1 = {{x1, x2}, {x3, x4, x5}, {x6}, {x7, x8}, {x9}};
U/A2 = {{x1}, {x2, x3, x4, x5, x6}, {x7}, {x8, x9}};
U/A3 = {{x1, x2, x3, x4, x5}, {x6, x7}, {x8, x9}};

Clearly, A3 is an arbitrary union reducible element of A. For X = {x7, x8, x9}, we
have PM∑3

i=1 Ai
(X) = {x8, x9}. However, PM∑2

i=1 Ai
(X) = {x7, x8, x9}. Therefore,

PM∑3
i=1 Ai

(X) �= PM∑2
i=1 Ai

(X).

Similarly, it is not difficult to find that the pessimistic multi-granulation upper approxi-
mations of X with respect to A andA/Ai , respectively, are different.

Proposition 3.4 LetI = (U , A, V , f ) be an information system, andA1,A2 two families of
attribute subsets. If for each X ⊆ U, the optimistic multi-granulation lower approximations
of X with respect to reduct(A1)AU and reduct(A2)AU , respectively, are same. Then we
have that ∪(reduct(A1)AU ) = ∪(reduct(A2)AU ).

Proof Suppose that A1 = {A11, A12, . . . , A1m1},A2 = {A21, A22, . . . , A2m2}. For each
K ∈ ∪(reduct(A1)AU ), we have OM∑m1

k=1 A1k
(K ) = K . Since the optimistic multi-

granulation lower or upper approximations of K with respect to reduct(A1)AU and
reduct(A2)AU , respectively, are same. Then we have OM∑m2

l=1 A2l
(K ) = K . Therefore,

there exist K1, K2, . . . , Ks ∈ ∪(reduct(A2)AU ) such that K = ∪s
i=1Ki . Similar to the

above proof, there exist Ki1, Ki2, . . . , Kini ∈ ∪(reduct(A1)AU ) such that Ki = ∪ni
j=1Ki j .

So, K = ∪s
i=1 ∪ni

j=1 Ki j . By the definition of the arbitrary union reduct, we have Ki j = K
for all i, j . Therefore, for all i , Ki = K . Hence, K is an element of ∪(reduct(A2)AU ).

On the other hand, we can similarly prove that any element of∪(reduct(A2)AU ) is an ele-
ment of ∪(reduct(A1)AU ). Therefore, we have ∪(reduct(A1)AU ) = ∪(reduct(A2)AU ).

��
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Theorem 3.2 Let I = (U , A, V , f ) be an information system, and A1, A2 two families of
attribute subsets. For each X ⊆ U, the optimistic multi-granulation lower approximations
of X with respect to A1 and A2, respectively, are same if and only if ∪(reduct(A1)AU ) =
∪(reduct(A2)AU ).

Proof (⇒) It is immediate by Proposition 3.4.
(⇐) Since ∪(reduct(A1)AU ) = ∪(reduct(A2)AU ). For each X ⊆ U , we have that the

optimistic multi-granulation lower approximations of X with respect to reduct(A1)AU and
reduct(A2)AU , respectively, are same. By Theorem 3.1, we have that the optimistic multi-
granulation lower approximations of X with respect to A1 and A2, respectively, are same.

��
Similar to Proposition 3.4 and Theorem 3.2, we have the following results.

Proposition 3.5 Let I = (U , A, V , f ) be an information system, and A1, A2 two families
of attribute subsets. For each X ⊆ U, the optimistic multi-granulation upper approximations
of X with respect to reduct(A1)AU and reduct(A2)AU , respectively, are same. Then we
have that ∪(reduct(A1)AU ) = ∪(reduct(A2)AU ).

Theorem 3.3 Let I = (U , A, V , f ) be an information system, and A1, A2 two families of
attribute subsets. For each X ⊆ U, the optimistic multi-granulation upper approximations
of X with respect to A1 and A2, respectively, are same if and only if ∪(reduct(A1)AU ) =
∪(reduct(A2)AU ).

4 Attribute reduction with respect to neighborhood union

In this section, we firstly propose the concept of neighborhood union reduct. Then we study
some important properties of neighborhood union reduct. Finally, we develop an algorithm
to compute the neighborhood union reduct in an information system.

Definition 4.1 Let I = (U , A, V , f ) be an information system, andA = {A1, A2, . . . , Am}
the family of attribute subsets. Ai ∈ A is called a neighborhood union reducible element ofA,
if each x ∈ U , there exists�x ⊆ {1, 2, . . . , i−1, i+1, . . . ,m} such that [x]Ai = ∪ j∈�x [x]A j ;
Otherwise, Ai is called a neighborhood union irreducible element of A. If every element in
A is irreducible, we say thatA is irreducible; Otherwise, A is reducible.

Definition 4.2 Let I = (U , A, V , f ) be an information system, andA = {A1, A2, . . . , Am}
the family of attribute subsets. The new family of attribute subsetsA′ ⊆ A through the above
reduction is called the neighborhood union reduct ofA, and denoted by reduct(A)NU .

Example 3.1 shows that the arbitrary union reduct reduct(A)AU is not unique. Now,
we investigate that whether the neighborhood union reduct reduct(A)NU is unique. In the
following, an example is employed to answer the question.

Example 4.1 Let I = (U , A, V , f ) be an information system, where U = {x1, x2, . . . , x9},
A = {A1, A2, A3, A4, A5}.

U/A1 = {{x1, x2, x3}, {x4, x5}, {x6, x7}, {x8, x9}};
U/A2 = {{x1, x2, x4, x5}, {x3}, {x6, x7, x9}, {x8}};
U/A3 = {{x1, x2, x3, x4, x5}, {x6, x7, x8}, {x9}};
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U/A4 = {{x1, x2}, {x3, x4, x5}, {x6, x7, x8, x9}};
U/A5 = {{x1, x2, x4, x5}, {x3}, {x6, x7, x8}, {x9}}.

Then, we can find that reduct(A)NU = {A1, A2, A3, A4} or {A1, A2, A4, A5}. So
reduct(A)NU is not unique.

Compared with Proposition 3.1, the similar result with respect to the neighborhood union
reduct is shown as follows:

Proposition 4.1 LetI = (U , A, V , f )bean information system, andA = {A1, A2, . . . , Am}.
Suppose Ai ∈ A is a neighborhood union reducible element ofA, and A j ∈ A/{Ai }. If for
each x ∈ U, we have [x]Ai �= [x]A j , then A j is a neighborhood union reducible element of
A if and only if A j is a neighborhood union reducible element ofA/{Ai }.

In the following, we give an algorithm to find the neighborhood union reduct
reduct(A)NU .

Algorithm 2: An algorithm for computing reduct(A)NU

Input : An information system I = (U , A, V , f ), and A = {A1, A2, · · · , Am};
Output : reduct(A)NU .

1 begin
2 A ← reduct(A)NU ;
3 for i = 1 : m; i <= m; i + + do
4 U ← U ;
5 for each x ∈ U do
6 ∅ ← V ;
7 for j = 1 : m; j <= m; j �= i; j + + do
8 if [x]A j ⊆ [x]Ai then
9 V ← V ∪ [y]A j ;

10 if [x]Ai = V then
11 U ← U/[y]A j ;
12 end
13 end
14 end
15 end
16 reduct(A)NU ← reduct(A)NU/Ai ;
17 end
18 end

Similarly, we have the following results.

Proposition 4.2 Let I = (U , A, V , f ) be an information system, A = {A1, A2, . . . , Am},
and X ⊆ U. If A j ∈ A is a neighborhood union reducible element ofA, then the optimistic
multi-granulation lower approximations of X with respect toA andA/A j , respectively, are
same.

Proof The proof is similar to that of Proposition 3.2. ��
Proposition 4.3 Let I = (U , A, V , f ) be an information system, A = {A1, A2, . . . , Am},
and X ⊆ U. If A j ∈ A is a neighborhood union reducible element ofA, then the optimistic
multi-granulation upper approximations of X with respect toA andA/A j , respectively, are
same.
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Proof The proof is similar to that of Proposition 3.3. ��
According to Propositions 4.2 and 4.3, we have the following result.

Theorem 4.1 Let I = (U , A, V , f ) be an information system,A = {A1, A2, . . . , Am}, and
X ⊆ U. Then the optimistic multi-granulation lower and upper approximations of X with
respect to A and reduct(A)NU , respectively, are same.

If Ai ∈ A is a neighborhood union reducible element of A, and X ⊆ U , then, are
the pessimistic multi-granulation lower approximations of X with respect to A and A/Ai ,
respectively, same?

Proposition 4.4 Let I = (U , A, V , f ) be an information system, A = {A1, A2, . . . , Am},
and X ⊆ U. If A j ∈ A is a neighborhood union reducible element ofA, then the pessimistic
multi-granulation lower approximations of X with respect toA andA/A j , respectively, are
same.

Proof Based on Definition 2.2, it is obvious that PM∑m
i=1 Ai

(X) ⊆ PM∑m
i=1,i �= j Ai

(X). On

the other hand, for each x ∈ PM∑m
i=1,i �= j Ai

(X), we have that x ∈ [x]Ai , i = 1, 2, . . . , j −
1, j+1, . . . ,m.Because A j ∈ A is a neighborhood union reducible element ofA, then there
exists �x ⊆ {1, 2, . . . , j − 1, j + 1, . . . ,m} such that [x]A j = ∪t∈�x [x]At . So x ∈ [x]A j .
i.e., x ∈ [x]Ai , i = 1, 2, . . . ,m. Therefore, PM∑m

i=1,i �= j Ai
(X) ⊆ PM∑m

i=1 Ai
(X). In a word,

we have that PM∑m
i=1 Ai

(X) = PM∑m
i=1,i �= j Ai

(X). ��

If Ai ∈ A is a neighborhood union reducible element of A, and X ⊆ U , then, are
the pessimistic multi-granulation upper approximations of X with respect to A and A/Ai ,
respectively, still same?

Proposition 4.5 Let I = (U , A, V , f ) be an information system, A = {A1, A2, . . . , Am},
and X ⊆ U. If A j ∈ A is a neighborhood union reducible element ofA, then the pessimistic
multi-granulation upper approximations of X with respect toA andA/A j , respectively, are
same.

Proof The proof is similar to that of Proposition 4.4. ��
From Propositions 4.4 and 4.5, we have the following result.

Theorem 4.2 Let I = (U , A, V , f ) be an information system,A = {A1, A2, . . . , Am}, and
X ⊆ U. Then the pessimistic multi-granulation lower and upper approximations of X with
respect to A and reduct(A)NU , respectively, are same.

5 Attribute reduction with respect to neighborhood intersection

In this section, inspired by the concept of intersection reduct proposed by Chen et al. (2015),
the concept of neighborhood intersection reduct are introduced.Meanwhile, somemeaningful
properties of neighborhood intersection reduct are studied.

Definition 5.1 Let I = (U , A, V , f ) be an information system, andA = {A1, A2, . . . , Am}
the family of attribute subsets. Ai ∈ A is called a neighborhood intersection reducible
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element of A, if for each x ∈ U , there exists �x ⊆ {1, 2, . . . , i − 1, i + 1, . . . ,m} such
that [x]Ai = ∩ j∈�x [x]A j ; Otherwise, Ai is called a neighborhood intersection irreducible
element ofA. If every element in A is irreducible, we say thatA is irreducible; Otherwise,
A is reducible.

Definition 5.2 Let I = (U , A, V , f ) be an information system, andA = {A1, A2, . . . , Am}
the family of attribute subsets. The new family of attribute subsetsA′ ⊆ A through the above
reduction is called the neighborhood intersection reduct ofA, and denoted by reduct(A)N I .

Examples 3.1 and 4.1 show that the arbitrary union reduct reduct(A)AU and the neighbor-
hood union reduct reduct(A)NU are both not unique. Next, we wonder if the neighborhood
intersection reduct reduct(A)N I is unique. To address this issue, an example is shown as
follows.

Example 5.1 Let I = (U , A, V , f ) be an information system, where U = {x1, x2, . . . , x9},
A = {A1, A2, A3, A4, A5}.

U/A1 = {{x1, x2, x4}, {x3, x5, x6}, {x7, x8}, {x9}};
U/A2 = {{x1, x2}, {x3}, {x4}, {x5, x6}, {x7, x8, x9}};
U/A3 = {{x1, x2, x3}, {x4, x5, x6}, {x7, x8}, {x9}};
U/A4 = {{x1}, {x2, x3, x4}, {x5, x6}, {x7}, {x8, x9}};
U/A5 = {{x1}, {x2}, {x3}, {x4}, {x5, x6}, {x7, x8, x9}}.

Then, we can find that reduct(A)N I = {A1, A2, A3, A4} or {A1, A3, A4, A5}. Therefore,
reduct(A)N I is not unique.

In the following, we will construct an algorithm for finding the neighborhood intersection
reduct reduct(A)N I .

Algorithm 3: An algorithm for computing reduct(A)N I

Input : An information system I = (U , A, V , f ), and A = {A1, A2, · · · , Am};
Output : reduct(A)N I .

1 begin
2 A ← reduct(A)N I ;
3 for i = 1 : m; i <= m; i + + do
4 U ← U ;
5 for each x ∈ U do
6 U ← V ;
7 for j = 1 : m; j <= m; j �= i; j + + do
8 if [x]Ai ⊆ [x]A j then
9 V ← V ∩ [y]A j ;

10 if [x]Ai = V then
11 U ← U/[y]A j ;
12 end
13 end
14 end
15 end
16 reduct(A)N I ← reduct(A)N I /Ai ;
17 end
18 end
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Proposition 5.1 Let I = (U , A, V , f ) be an information system, A = {A1, A2, . . . , Am},
and X ⊆ U. If A j ∈ A is a neighborhood intersection reducible element of A, then the
pessimistic multi-granulation lower approximations of X with respect to A and A/A j ,
respectively, are same.

Proof It is clear that PM∑m
i=1 Ai

(X) ⊆ PM∑m
i=1,i �= j Ai

(X). Meanwhile, for each x ∈
PM∑m

i=1,i �= j Ai
(X), we have [x]As ⊆ X , s ∈ {1, 2, . . . , j − 1, j + 1, . . . ,m}. Because A j is

a reducible element of A, then there exists �x ⊆ {1, 2, . . . , j − 1, j + 1, . . . ,m} such that
[x]A j = ∩t∈�x [x]At . Then, [x]A j ⊆ [x]At , t ∈ �x . i.e., [x]A j ⊆ X . So, x ∈ PM∑m

i=1 Ai
(X).

Therefore, PM∑m
i=1 Ai

(X) = PM∑m
i=1,i �= j Ai

(X). ��

Proposition 5.2 Let I = (U , A, V , f ) be an information system, A = {A1, A2, . . . , Am},
and X ⊆ U. If A j ∈ A is a neighborhood intersection reducible element of A, then the
pessimistic multi-granulation upper approximations of X with respect to A and A/A j ,
respectively, are same.

According to Propositions 5.1 and 5.2, the following result holds.

Theorem 5.1 Let I = (U , A, V , f ) be an information system,A = {A1, A2, . . . , Am}, and
X ⊆ U. Then the pessimistic multi-granulation lower and upper approximations of X with
respect to A and reduct(A)N I , respectively, are same.

If Ai ∈ A is a neighborhood intersection reducible element of A, and X ⊆ U , are
the optimistic multi-granulation lower approximations of X with respect to A and A/Ai ,
respectively, same? Then, a counterexample is given as follows:

Example 5.2 (Continued from Example 5.1) According to Example 5.1, we know that A5 is
a neighborhood intersection reducible element of A. For X = {x2, x4, x6, x7}, we have that
OM∑5

i=1 Ai
(X) = {x2, x4, x7}, OM∑4

i=1 Ai
(X) = {x4, x7}. Therefore, OM∑5

i=1 Ai
(X) �=

OM∑4
i=1 Ai

(X).

Similarly, if Ai is a neighborhood intersection reducible element ofA, then the optimistic
multi-granulation upper approximations of X with respect toA andA/Ai , respectively, are
different.

6 Interrelationships among the three types of attribute reductions

In this section, we will deeply explore the interrelationships among several types of attribute
reducts.

Proposition 6.1 LetI = (U , A, V , f )bean information system, andA = {A1, A2, . . . , Am}.
If A j ∈ A is a neighborhood union reducible element of A, then A j is an arbitrary union
reducible element ofA.

Proof It is clear by Definitions 3.1 and 4.1.
Conversely, if A j ∈ A is an arbitrary union reducible element ofA, is A j a neighborhood

union reducible element ofA? A counterexample is given as follows: ��
Example 6.1 (Continued from Example 3.2) It can be found that A3 is an arbitrary union
reducible element ofA. However, A3 is not a neighborhood union reducible element of A.
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Proposition 6.2 Let I = (U , A, V , f ) be an information system, A = {A1, A2, . . . , Am},
then reduct(reduct(A)AU )NU and reduct(reduct(A)NU )AU are both the arbitrary union
reducts ofA.

Proof It is clear by Definitions 3.1 and 4.1. ��
Theorem 6.1 Let I = (U , A, V , f ) be an information system,A = {A1, A2, . . . , Am}, and
X ⊆ U, then the optimistic multi-granulation lower and upper approximations of X with
respect to A, reduct(reduct(A)AU )NU and reduct(reduct(A)NU )AU , respectively, are
same.

Theorem 6.2 Let I = (U , A, V , f ) be an information system, A = {A1, A2, . . . , Am},
and X ⊆ U, then the pessimistic multi-granulation lower and upper approximations of X
with respect to A, reduct(reduct(A)NU )N I and reduct(reduct(A)N I )NU , respectively,
are same.

Example 6.2 Let I = (U , A, V , f ) be an information system, whereU = {x1, x2, . . . , x10},
A = {A1, A2, A3, A4, A5, A6}. Let

U/A1 = {{x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}, {x9, x10}};
U/A2 = {{x1, x2, x3, x4}, {x5, x6}, {x7}, {x8}, {x9, x10}};
U/A3 = {{x1, x2, x3, x4, x5, x6}, {x7}, {x8}, {x9, x10}};
U/A4 = {{x1, x2, x7, x8, x9, x10}, {x3, x4, x5, x6}};
U/A5 = {{x1, x2, x5, x6}, {x3, x4, x7}, {x8, x9, x10}};
U/A6 = {{x1, x2, x3, x4, x5, x6}, {x7}, {x8, x9, x10}}.

Then, It can be found that reduct(A)AU = {A1, A2} or {A1, A3}, reduct(A)NU =
{A1, A2, A4, A5}. Furthermore, we have that reduct(reduct(A)AU )NU = reduct(A)AU .

Proposition 6.3 LetI = (U , A, V , f )bean information system, andA = {A1, A2, . . . , Am}.
Then we have that reduct(reduct(A)AU )NU = reduct(A)AU .

Proof It is clear by Definitions 3.1 and 4.1. ��
According to Proposition 6.3, we have that reduct(reduct(A)AU )NU = reduct(A)AU .

Then, does the equation reduct(reduct(A)NU )AU = reduct(A)AU hold? A counterexam-
ple is given as follows:

Example 6.3 (Continued from Example 6.2) Let reduct(A)AU = {A1, A3}. However,
reduct(reduct(A)NU )AU = {A1, A2} �= {A1, A3}. Therefore, reduct(reduct(A)NU )AU
�= reduct(A)AU . Furthermore, by Proposition 6.4, it can be easily found that
reduct(reduct(A)NU )AU �= reduct(reduct(A)AU )NU .

Example 6.4 Let I = (U , A, V , f ) be an information system, whereU = {x1, x2, . . . , x10},
A = {A1, A2, A3, A4, A5, A6}. Let

U/A1 = {{x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}, {x9, x10}};
U/A2 = {{x1, x2, x3, x4, x5}, {x6, x7, x8, x9, x10}};
U/A3 = {{x1, x2, x3, x4}, {x5, x6, x7, x8}, {x9, x10}};
U/A4 = {{x1, x2, x5, x6}, {x3, x4}, {x7, x8, x9, x10}};
U/A5 = {{x1, x2}, {x3, x4, x5}, {x6, x7, x8, x9, x10}};
U/A6 = {{x1, x2, x4, x5}, {x3}, {x6, x7, x8, x9, x10}}.

123



1366 Q. Kong et al.

It canbe found that reduct(A)NU = {A1, A3, A4, A5, A6}, reduct(A)N I = {A2, A3, A4,

A5, A6}, reduct(reduct(A)NU )N I = {A3, A4, A5, A6}, and reduct(reduct(A)N I )NU =
{A3, A4, A5, A6}.

Then,wehave reduct(reduct(A)N I )NU �= reduct(A)NU , and reduct(reduct(A)N I )NU

�= reduct(A)N I . Similarly, it canbe found that reduct(reduct(A)NU )N I �= reduct(A)NU ,
and reduct(reduct(A)NU )N I �= reduct(A)N I .

Here, we will raise a question: does the equation reduct(reduct(A)NU )N I =
reduct(reduct(A)N I )NU hold? In the following, a counterexample is employed to answer
the question.

Example 6.5 Let I = (U , A, V , f ) be an information system, whereU = {x1, x2, . . . , x12},
and A = {A1, A2, A3, A4, A5, A6, A7}. Let

U/A1 = {{x1, x2, x3}, {x4, x5, x6}, {x7, x8, x9}, {x10, x11, x12}};
U/A2 = {{x1, x2, x3, x4, x5, x6}, {x7, x8, x9, x10, x11, x12}};
U/A3 = {{x1, x2, x3, x7, x8, x9}, {x4, x5, x6, x10, x11, x12}};
U/A4 = {{x1, x2, x7, x9}, {x3, x6, x8, x11}, {x4, x5, x10, x12}};
U/A5 = {{x1, x3, x7, x9}, {x2, x5, x9, x12}, {x4, x6, x10, x11}};
U/A6 = {{x1, x3, x8, x9}, {x2, x5, x7, x10}, {x4, x6, x11, x12}};
U/A7 = {{x1, x4, x7, x10}, {x2, x3, x8, x9}, {x5, x6, x11, x12}}.

Then we have reduct(reduct(A)NU )N I = {A1, A2, A4, A5, A6, A7}, and
reduct(reduct(A)N I )NU ={A2, A4, A5, A6, A7}. Therefore, reduct(reduct(A)NU )N I �=
reduct(reduct(A)N I )NU .

Next, the main results of this paper are shown in the following tables.

The main results with respect to optimistic multi-granulation lower and upper approximations

Number Optimistic multi-granulation lower
approximations

Optimistic multi-granulation upper
approximations

1 OM∑A(X) = OM∑AAU
(X) OM∑A(X) = OM∑AAU

(X)

2 OM∑A(X) = OM∑ANU
(X) OM∑A(X) = OM∑ANU

(X)

3 OM∑A(X) �= OM∑AN I
(X) OM∑A(X) �= OM∑AN I

(X)

4 OM∑A(X) = OM∑AAUNU
(X) =

OM∑ANU AU
(X)

OM∑A(X) = OM∑AAUNU
(X) =

OM∑ANU AU
(X)

The main results with respect to pessimistic multi-granulation lower and upper approximations

Number Pessimistic multi-granulation lower
approximations

Pessimistic multi-granulation upper
approximations

1 PM∑A(X) �= PM∑AAU
(X) PM∑A(X) �= PM∑AAU

(X)

2 PM∑A(X) = PM∑ANU
(X) PM∑A(X) = PM∑ANU

(X)

3 PM∑A(X) = PM∑AN I
(X) PM∑A(X) = PM∑AN I

(X)

4 PM∑A(X) = PM∑ANUN I
(X) =

PM∑AN I NU
(X)

PM∑A(X) = PM∑ANUN I
(X) =

PM∑AN I NU
(X)
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Remark In the above two tables, symbols OM∑A(X), OM∑AAU (X), PM∑ANUN I (X)

mean the optimistic multi-granulation lower approximations of X ⊆ U with respect to
A, reduct(A)AU , reduct(reduct(A)NU )N I , respectively. Other symbols in tables indicate
similar meanings.

7 An example

As an application of several types of attribute reducts proposed in the paper, a real-world
example of a multi-granulation information system with respect to exam scores is employed.
Then, as many researchers are working on various optimization theories Xu et al. (2017)
and algorithms (Abualigah et al. 2018a, b, c, d, 2017a, b, c; Abualigah and Khader 2017d;
Abualigah et al. 2017e; Abualigah and Hanandeh 2015; Al-Betar and Abualigah 2017), we
will explain how to choose the optimal attribute reduct so as to compute themulti-granulation
lower and upper approximations more efficiently.

Example 7.1 The following table indicates a multi-granulation information system I =
(U , A, V , f ) with respect to exam scores, U = {x1, x2, . . . , x30} is a universe includ-
ing thirty students of mechanical engineering in Jimei University, A = {A1, A2, . . . , A7}
is a family of attribute sets, where A1 = {a11, a12, a13}, and a11, a

1
2, a

1
3 stands for three

courses: Advanced Mathematics, Linear Algebra, Probability and Statistics, respectively;
A2 = {a21 , a22}, and a21 , a

2
2 stands for two courses: College English 1, College English

2, respectively; A3 = {a31, a32, a33}, and a31, a
3
2, a

3
3 stands for three courses: Engineering

Drawing, Engineering Mechanics, Feedback Control of Dynamic Systems, respectively;
A4 = {a41, a42}, and a41, a

4
2 stands for two courses: Programming in C, Computer Prac-

tice, respectively; A5 = {a51}, and a51 stands for College Physics; A6 = {a61, a62}, and a61, a
6
2

stands for two courses: College PE 1, College PE 2, respectively; A7 = {a71, a72}, and a71, a72
stands for two courses: Experiment 1, Experiment 2, respectively. At the same time, the exam
scores are divided into four grades: Good, Medium, Pass and Fail, denoted by 1, 2, 3 and 4,
respectively.
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An information system with respect to exam scores

U a11 a12 a13 a21 a22 a31 a32 a33 a41 a42 a51 a61 a62 a71 a72

x1 2 2 2 2 2 2 1 2 2 1 1 1 2 2 2
x2 2 2 3 2 2 2 2 3 2 2 1 2 3 2 2
x3 3 2 2 2 3 2 2 3 2 2 2 3 3 2 1
x4 3 3 3 3 3 3 3 3 3 2 4 3 4 3 2
x5 1 1 2 1 1 1 1 2 1 1 1 2 2 1 1
x6 2 1 2 1 2 2 1 2 1 2 1 1 2 1 2
x7 4 3 4 3 2 3 2 3 3 3 3 3 3 3 3
x8 3 3 3 3 3 3 3 3 3 2 4 3 4 3 2
x9 2 2 3 2 2 2 2 3 2 2 1 3 3 2 2
x10 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
x11 2 2 3 2 2 2 2 3 2 2 1 2 3 2 2
x12 2 3 3 2 3 3 2 3 2 3 2 3 3 2 3
x13 2 1 1 2 2 1 1 1 1 2 1 2 3 2 2
x14 2 3 4 3 2 3 3 4 3 3 3 2 2 3 3
x15 2 3 3 2 3 3 2 3 2 3 2 3 4 2 3
x16 2 3 2 3 3 2 3 3 2 3 3 3 3 2 3
x17 1 1 2 1 2 1 1 2 1 1 1 2 2 1 1
x18 2 1 2 1 2 2 1 2 1 2 1 1 2 1 2
x19 3 2 2 2 3 2 2 3 2 2 2 3 3 2 1
x20 2 2 2 2 2 2 1 2 2 1 1 2 3 2 2
x21 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
x22 2 3 2 3 3 2 3 3 2 3 3 3 4 2 3
x23 1 1 2 1 2 1 1 2 1 1 1 2 2 1 1
x24 2 2 3 2 2 2 2 3 2 2 1 2 3 2 2
x25 2 3 4 3 2 3 3 4 3 3 3 1 2 3 3
x26 3 2 2 2 3 2 2 3 2 2 2 3 3 2 1
x27 2 1 2 1 2 2 1 2 1 2 1 2 3 1 2
x28 2 3 3 2 3 3 2 3 2 3 2 3 4 2 3
x29 2 2 2 2 2 2 1 2 2 1 1 1 2 2 2
x30 2 2 2 2 2 2 1 2 2 1 1 2 3 2 2

From the above information system,wehave thatU/A1 ={{x1, x20, x29, x30}, {x2, x9, x11,
x24}, {x3, x19, x26}, {x4, x8}, {x5, x17, x23}, {x6, x18, x27}, {x7}, {x10, x21}, {x12, x15, x28},
{x13}, {x14, x25}, {x16, x22}}. Similarly, U/Ai , i = 2, 3, 4, 5, 6, 7 can be easily presented.

According to Algorithms 1, 2 and 3, we have reduct(A)AU = {A1, A2, A6},
reduct(A)NU = {A1, A2, A3, A4, A5, A6}, reduct(A)N I = {A2, A3, A4, A5, A6, A7}.
Meanwhile, it is clear that reduct(reduct(A)AU )NU = reduct(reduct(A)NU )AU =
{A1, A2, A6}, reduct(reduct(A)N I )NU = {A2, A3, A4, A5, A6, A7}, and reduct(reduct
(A)NU )N I = {A2, A3, A4, A5, A6}. Therefore, we have seven attribute reducts with
respect to A = {A1, A2, . . . , A7}. i.e., reduct(A)AU , reduct(A)NU , reduct(A)N I ,
reduct(reduct(A)AU )NU , reduct(reduct(A)NU )AU , reduct(reduct(A)N I )NU , and
reduct(reduct(A)NU )N I .

From the view of granular computing, we will raise a question: which reduct is the
best selection to compute the multi-granulation lower and upper approximations? On the
one hand, because the optimistic multi-granulation lower and upper approximations with
respect to A, reduct(A)AU , reduct(reduct(A)AU )NU , and reduct(reduct(A)NU )AU ,
respectively, are same, and from above discussion, it can be found that
reduct(A)AU = reduct(reduct(A)AU )NU = reduct(reduct(A)NU )AU . Therefore,
reduct(A)AU , reduct(reduct(A)AU )NU , and reduct(reduct(A)NU )AU are all the opti-
mal selections to compute the optimistic multi-granulation lower and upper approximations.
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On the other hand, we can obtain the following relations: reduct(reduct(A)NU )N I ⊂
reduct(reduct(A)N I )NU and reduct(reduct(A)NU )N I ⊂ reduct(A)N I , although
the pessimistic multi-granulation lower and upper approximations with respect to A,
reduct(A)N I , reduct(reduct(A)NU )N I and reduct(reduct(A)N I )NU , respectively, are
same. Thus reduct(reduct(A)NU )N I is the optimal attribute reduct to compute the pes-
simistic multi-granulation lower and upper approximations.

8 Conclusion

In this part, we first introduce the main conclusions obtained in the paper. Then, we make
further prospects for future research work.

(i) Main conclusions of our paper It is clear that reduct theory plays an important role
in pattern recognition and machine learning. Although multi-granulation rough set theory
has been widely studied, attribute reduct of multi-granulation rough sets has not yet been
explored. Therefore, the main content of this paper is to investigate the attribute reduct the-
ory of multi-granulation information system. Specifically, the following problems are solved
in this paper. Based on the definitions of multi-granulation upper and lower approxima-
tions, three types of attribute reducts are proposed, which are called arbitrary union reduct,
neighborhood union reduct and neighborhood intersection reduct, respectively. Then, many
important and interesting properties of these attribute reducts are researched. In order to solve
practical problems, three effective algorithms are designed. At the same time, the relation-
ships among these three attribute reducts are deeply explored. At last, a real-world example of
multi-granulation information system is employed. The multi-granulation information sys-
tem consists of exam scores of thirty students of mechanical engineering in Jimei University.
According to the given algorithms, all the reducts in the information system are calculated
one by one. Meanwhile, how to select the optimal reduct is also discussed in detail.

(ii) Future research work The theoretical results in this paper establish a basis for studying
attribute reducts of the multi-granulation information systems. On this basis, it is possible to
further study the attribute reductswith respect to consistent and inconsistentmulti-granulation
information systems. Furthermore, we need to develop better algorithms to deal with practical
issues in the future.

Acknowledgements The authors are very grateful to the reviewers and editors for their valuable suggestions.
This work is partially supported by National Natural Science Foundation of China (Nos.61472463, 61772002,
61402064), Fundamental Research Funds for the Central Universities (XDJK2019B029), Natural Science
Foundation of Fujian Province (Nos. 2017J01763, 2017J01468, 2016J01310, 2016J01735, 2018J01538) and
Research Startup Foundation of Jimei University (NO. ZQ2017004), Foundation of Education Department of
Fujian Province, China (No. JAT160369).

References

Abualigah L, Khader A, Hanandeh E (2018) Hybrid clustering analysis using improved krill herd algorithm.
Appl Intell 48(11):4047–4071

Abualigah L, Khader A, Hanandeh E (2018) A combination of objective functions and hybrid krill herd
algorithm for text document clustering analysis. Eng Appl Artif Intell 73:111–125

Abualigah L, Khader A, Hanandeh E (2018) A novel weighting scheme applied to improve the text document
clustering techniques. Innovative computing, optimization and its applications. Springer, Cham, pp 305–
320

123



1370 Q. Kong et al.

Abualigah L, Khader A, Hanandeh E (2018) A hybrid strategy for krill herd algorithm with harmony search
algorithm to improve the data clustering. intelligent decision technologies, preprint

AbualigahL,KhaderA,HanandehE (2017)Anew feature selectionmethod to improve the document clustering
using particle swarm optimization algorithm. J Comput Sci 25:456–466

Abualigah L,KhaderA,HanandehE,GandomiA (2017)A novel hybridization strategy for krill herd algorithm
applied to clustering techniques. Appl Soft Comput 60:423–435

Abualigah L, Khader A, Al-Betar M, Hanandeh E (2017) A new hybridization strategy for krill herd algorithm
and harmony search algorithm applied to improve the data clustering. Management 9:11

Abualigah L, Khader A (2017) Unsupervised text feature selection technique based on hybrid particle swarm
optimization algorithm with genetic operators for the text clustering. J Supercomput 73(11):4773–4795

Abualigah L, Khader A, Al-Betar M, Alomari O (2017) Text feature selection with a robust weight scheme
and dynamic dimension reduction to text document clustering. Expert Syst Appl 84:24–36

Abualigah L, Hanandeh E (2015) Applying genetic algorithms to information retrieval using vector space
model. Int J Comput Sci Eng Appl 5(1):19

Al-Betar M, Abualigah L (2017) Big data and E-government: a review. In: The 8th IEEE international con-
ference on information technology (ICIT). Amman, Jordan

Bonikowski Z, Bryniarski E, Wybraniec U (1998) Extensions and intentions in the rough set theory. Inf Sci
107:149–167
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