
Knowledge-Based Systems 187 (2020) 104804

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Adaptiveweighted generalizedmulti-granulation interval-valued
decision-theoretic rough sets✩

Yanting Guo a, Eric C.C. Tsang a,∗, Weihua Xu b, Degang Chen c

a Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau, PR China
b School of Mathematics and Statistics, Southwest University, Chongqing, 400715, PR China
c Department of Mathematics and Physics, North China Electric Power University, Beijing, 102206, PR China

a r t i c l e i n f o

Article history:
Received 13 February 2019
Received in revised form 14 May 2019
Accepted 11 June 2019
Available online 13 June 2019

Keywords:
Interval-valued decision-theoretic rough
sets
Weighted generalized multi-granulation
Decision risk

a b s t r a c t

With the development of information technology, the sources of information are increasing. How
to make good use of information from different sources to make correct decisions is an important
problem in multi-source information systems. From the perspective of information granulations, each
source can be regarded as a granular structure and the importance of different granulations may
be different in multi-source systems. We provide a weighted generalized multi-granulation interval-
valued decision-theoretic rough set model (WGM-IVDTRS) for multi-source decision fusion. Firstly,
the basic form and important properties of the WGM-IVDTRS model are studied and a granulation
weighted method based on the classification accuracy of decision tree learning is proposed from the
machine learning point of view. Secondly, three types of the WGM-IVDTRS model are established based
on different determination methods of decision risk parameters. Finally, the WGM-IVDTRS models
are first compared with multi-granulation decision models and other weighted granulation methods.
Moreover, the performances of three WGM-IVDTRS models based on the classification accuracy
weighted method are also compared. The experimental comparisons show that the importance,
feasibility and effectiveness of the proposed WGM-IVDTRS models, and the third WGM-IVDTRS model
performs best when people can accept the range scalability and fault tolerance of intervals.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Granulation is one of the major concepts of human cognition,
which mainly decomposes the whole into parts in the cognitive
process [1]. Granulations characterized by different equivalence
relations can describe a target concept from different angles.
They provide an analytical tool for decision making of multi-
source information, multi-intelligence agents, distributed infor-
mation systems, high-dimensional feature data and so on [2,3].
Nowadays, the information sources of data collected for solving
the same problem are increasing, and multi-source data is in-
creasingly common. In this paper, we mainly study the decision-
making problem of multi-source decision systems with different
attribute sets from the perspective of multi-granulation, where
each information source is regarded as a granular structure.

Decision-theoretic rough sets (DTRS) [4,5] based on the
Bayesian minimum decision risk provide a cost-effective method
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for decision-making under single granulation. As a representative
decision generalization model of rough sets [2], DTRS has not
only made remarkable progress in theory [6–8], but also been
widely used in text classification [4], oil exploitation [9], policy
decisions [10], web-based medical decision support systems [11],
email filtering [12] and so on. When the probability distribution
of objects about a target concept in universe is determined, the
loss function of DTRS will play a decisive role in decision-making.
Some uncertainty factors including the uncertainty of decision-
making environment, the urgency of time, the incompleteness of
information acquisition and the limitations of the knowledge of
decision makers make the loss function more and more inaccu-
rate. Researchers usually express it by using fuzzy forms such as
interval number, the trapezoidal fuzzy number and fuzzy number
cut sets [13–15]. In particular, some researchers pay attention
to the study of DTRS under the interval-valued loss function. Liu
et al. [15] first proposed interval-valued decision-theoretic rough
sets (IVDTRS). Liang and Liu [16] proposed θ certain ranking
method, the degree of possibility ranking method and the opti-
mization method for obtaining three-way decisions in the IVDTRS
model. Considering that the minimum decision risk process of
IVDTRS is actually a process of sorting intervals, in this paper we
first introduce the geometry average interval sorting method [17]
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into the IVDTRS model. Then we provide a specific method to
construct decision model under the interval-valued loss function
and single granulation environments, which is the geometry av-
erage sorting interval-valued decision-theoretic rough set model
(IVDTRSG).

Fusion of decisions derived from different granulations is
a very important research topic in multi-source decision sys-
tems. Without considering the importance of granulations or
treating granulations equally, many researchers first proposed
multi-granulation decision-theoretic rough set models from op-
timistic, pessimistic and mean risk preferences. Qian et al. [18]
established optimistic, pessimistic and mean multi-granulation
decision-theoretic rough set models. Feng et al. [19] presented
two variable precision multi-granulation fuzzy decision-theoretic
rough sets based on maximal and minimal membership degrees.
Yu et al. [20] established three types of double-quantitative
decision-theoretic models in multi-granulation approximation
spaces. Sun et al. [21] studied multi-granulation fuzzy decision-
theoretic rough sets over two universes. Li et al. [22] and Liu
et al. [23] studied multi-granulation decision-theoretic rough sets
in dominance spaces and multi-covering spaces, respectively.
Lin et al. [24] and Li et al. [25] constructed multi-granulation
decision methods for multi-source fuzzy information systems and
distributed fc-decision information systems, respectively. Zhan
et al. [26] and Jiang et al. [27] studied covering based multi-
granulation (I, T )−fuzzy rough sets and covering based vari-
able precision (I, T )−fuzzy rough sets for multi-attribute group
decision-making with fuzzy information. In order to enhance the
practical application, Xu et al. [28] proposed generalized multi-
granulation double-quantitative decision-theoretic rough sets by
adopting the majority principle to fuse decisions from different
granulations.

The importance of granulations is usually different for
decision-making in real life. For example, the evaluations from
audiences, singing experts and record companies have differ-
ent degrees of support for the final performance of a singer.
Considering the importance of granulations, researchers pro-
posed weighted generalized multi-granulation rough sets and
some granulation weighted methods [29–31]. Nowadays, there
are few studies on the combination of weighted generalized
multi-granulation and DTRS. Ji et al. [30] investigated weighted
multi-granulation intuitionistic fuzzy rough sets for decision-
making. Guo et al. [29] proposed weighted generalized multi-
granulation decision-theoretic rough sets based on the double
weighted method for multi-source decision systems. The re-
search of combining weighted generalized multi-granulation with
interval-valued decision-theoretic rough sets for decision fusion
is even less. It is meaningful to weight different granulations and
then make decision fusion. Firstly, when the size of data sources
is too large and some of them have to be deleted, weighted
granulations can help to delete some data sources with smaller
weights according to specific requirements. Secondly, when peo-
ple do not want to lose any original information, weighted multi-
granulation decision models by using valuable information from
each source provide more reliable and comprehensive decision
fusion methods. Therefore, the combination of weighted gen-
eralized multi-granulation and IVDTRS is a promising research
direction. Such combined models are more flexible and adaptive
to multi-source decision fusion with different needs.

It must be noted that the objects and attributes of data that
need to be processed are increasing dramatically. In such data
sets, the computations of approximations about the above rough
set models are very time-consuming. Before making decision
fusion, people can choose attribute reduction methods corre-
sponding to actual data types to reduce the dimension of each
granulation. Chen et al. [32] proposed efficient reduction methods

based on sample pair selections for category data. Tsang et al. [33]
and Yang et al. [34] proposed efficient incremental reduction
algorithms based on fuzzy rough sets for real-valued data sets. Liu
et al. [35] provided an efficient attribute reduction method of dy-
namic data from the incremental perspective. Yang et al. [36,37]
proposed attribute reduction methods based on neighborhood
rough sets and dominance-based rough sets for incomplete data.
Wang et al. [38] and [39] studied attribute reductions of fuzzy
rough sets characterized by distance measures and defined two
novel measures used for attribute reductions of heterogeneous
data, respectively. Considering that the diversity among different
feature subsets helps to improve classification accuracy, Ślȩzak
et al. [40,41] studied feature subset ensembles based on attribute
reductions of rough sets. The main research of this paper is to
propose a weighted granulation method, and then make decision
fusion of multi-granulation.

The existing weighted granulation methods [29,31] are mainly
based on the upper and lower approximations of concepts. The
time complexity of these weighted methods is positively re-
lated to the size of objects and attributes. In large data sets,
these weighted methods are extremely time-consuming or even
infeasible. Therefore, we propose a new granulation weighted
method based on the machine learning method decision tree.
Notice that the class imbalance of data will affect the perfor-
mance of decision tree learning algorithm to some extent. For
the processing of this type of data, please see literatures [42–
45]. For multi-granulation fusion criteria, we choose the majority
decision principle. Based on the proposed weighted method and
the majority decision criteria, we propose weighted generalized
multi-granulation interval-valued decision-theoretic rough sets
(WGM-IVDTRS) for the decision fusion of multi-source decision
systems with different attribute sets.

The main contributions of this paper are as follows: (1) From
the perspective of machine learning, a granulation weighted
method is proposed based on the classification accuracy of de-
cision tree learning. (2) We propose three feasible and stable
multi-granulation decision fusion models for multi-source deci-
sion systems concerned. (3) By controlling the information level
parameter, we can solve the multi-source decision problems
which require different classification precisions. (4) When deci-
sion makers can accept the tolerance ability of intervals, it is fea-
sible to solve the minimum risk decision under multi-granulation
through information optimization theory.

The rest of the paper is organized as follows. In Section 2, the
preliminaries on interval-valued decision-theoretic rough sets,
the geometry average interval sorting method and weighted
generalized multi-granulation rough sets are briefly introduced.
In Section 3, we first propose geometry average sorting interval-
valued decision-theoretic rough sets (IVDTRSG) under single gran-
ulation. In Section 4, the basic form of the WGM-IVDTRS model,
a new granulation weighted method based on the classifica-
tion accuracy of decision tree learning and three types of the
WGM-IVDTRS model are proposed. In Section 5, the importance,
feasibility and effectiveness of the proposed weighted method are
verified by comparing it with other models, and the applicabil-
ity of three WGM-IVDTRS models is obtained by experimental
results and analyses. Finally, Section 6 concludes the paper and
elaborates on future studies.

2. Preliminaries

Basic concepts and notations of interval-valued
decision-theoretic rough sets, the geometry average interval sort-
ing method and weighted generalized multi-granulation rough
sets are briefly reviewed in this section.
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Table 1
An interval-valued loss function.

X (P) XC (N)

aP λ̃PP = [λ−

PP , λ
+

PP ] λ̃PN = [λ−

PN , λ+

PN ]

aB λ̃BP = [λ−

BP , λ
+

BP ] λ̃BN = [λ−

BN , λ+

BN ]

aN λ̃NP = [λ−

NP , λ
+

NP ] λ̃NN = [λ−

NN , λ+

NN ]

2.1. Interval-valued decision-theoretic rough sets (IVDTRS) and two
specific methods for determining parameters

In the interval-valued loss function, Liang et al. [16] pro-
posed interval-valued decision-theoretic rough sets based on the
Bayesian minimum risk decision. Firstly, we briefly introduce the
basic content of the IVDTRS model.

Let Ω = {X, XC
} be a finite set of states indicating that a

research object is in a concept X or not in X . A = {aP , aB, aN}

be a set of three actions with respect to a state, where P , B and N
represent the three actions in classifying objects, deciding posi-
tive region pos(X), deciding boundary region bnd(X) and deciding
negative region neg(X), respectively. When the values of a loss
function are intervals, we call it an interval-valued loss function.
Detailed descriptions are shown in Table 1.

In Table 1, λ̃PP , λ̃BP and λ̃NP denote the losses incurred for
taking actions aP , aN and aB, respectively, when an object belongs
to X; and λ̃PN , λ̃BN and λ̃NN denote the losses incurred for taking
the same actions when the object does not belong to X . It is true
that the loss of x ∈ pos(X) is smallest and the loss of x ∈ pos(X)
and x ∈ bnd(X) are strictly smaller than the loss of x ∈ neg(X)
when x ∈ X , the reverse of the order of losses is used for x ∈∼ X .
Usually, there are λ−

PP ≤ λ−

BP < λ−

NP , λ+

PP ≤ λ+

BP < λ+

NP , λ−

NN ≤

λ−

BN < λ−

PN , λ+

NN ≤ λ+

BN < λ+

PN . Note that x ∈ pos(X), x ∈ bnd(X)
and x ∈ neg(X) mean that x is classified into positive region,
boundary region and negative region, respectively.

For any object x ∈ U , the expected loss R ˜(ai|[x]R) (i = P, B,N)
associated with taking different actions can be expressed as

R ˜(aP |[x]R) = λ̃PPP(X |[x]R) + λ̃PNP(XC
|[x]R)

= [λ−

PPP(X |[x]R)+λ−

PNP(X
C
|[x]R), λ+

PPP(X |[x]R)+λ+

PNP(X
C
|[x]R)],

R ˜(aB|[x]R) = λ̃BPP(X |[x]R) + λ̃BNP(XC
|[x]R)

= [λ−

BPP(X |[x]R)+λ−

BNP(X
C
|[x]R), λ+

BPP(X |[x]R)+λ+

BNP(X
C
|[x]R)],

R ˜(aN |[x]R) = λ̃NPP(X |[x]R) + λ̃NNP(XC
|[x]R)

= [λ−

NPP(X |[x]R)+λ−

NNP(X
C
|[x]R), λ+

NPP(X |[x]R)+λ+

NNP(X
C
|[x]R)].

(1)

where R is an equivalence relation generated by condition at-
tributes, [x]R is the equivalence class containing x and P(X |[x]R) =

|X ∩ [x]R|/|[x]R|. Based on the Bayesian decision procedure, the
minimum-risk decision rules are

(P) If R ˜(aP |[x]R) ≤ R ˜(aB|[x]R) and R ˜(aP |[x]R) ≤ R ˜(aN |[x]R), decide
x ∈ pos(X);

(B) If R ˜(aB|[x]R) ≤ R ˜(aP |[x]R) and R ˜(aB|[x]R) ≤ R ˜(aN |[x]R), decide
x ∈ bnd(X);

(N) If R ˜(aN |[x]R) ≤ R ˜(aB|[x]R) and R ˜(aN |[x]R) ≤ R ˜(aP |[x]R),
decide x ∈ neg(X).

Obviously, the minimum Bayesian decision process of IVDTRS
is essentially a time-consuming interval comparison. Next, we
introduce two specific representative IVDTRS models, namely
interval-valued decision-theoretic rough sets with a certain rank-
ing method (IVDTRSC) and interval-valued decision-theoretic
rough sets with an optimization method (IVDTRSO). They pre-
sented two methods for determining threshold parameters. More
detailed instructions are found in literature [16].

In the IVDTRSC model, the minimum-risk decision rules by
using the inequality simplification are

(PC ) If P(X |[x]R) ≥ αC and P(X |[x]R) ≥ γC , decide x ∈ pos(X);
(BC ) If P(X |[x]R) ≤ αC and P(X |[x]R) ≥ βC , decide x ∈ bnd(X);
(NC ) If P(X |[x]R) ≤ βC and P(X |[x]R) ≤ γC , decide x ∈ neg(X);

where

αC =
mθ (̃λPN ) − mθ (̃λBN )

(mθ (̃λPN ) − mθ (̃λBN )) + (mθ (̃λBP ) − mθ (̃λPP ))
,

βC =
mθ (̃λBN ) − mθ (̃λNN )

(mθ (̃λBN ) − mθ (̃λNN )) + (mθ (̃λNP ) − mθ (̃λBP ))
,

γC =
mθ (̃λPN ) − mθ (̃λNN )

(mθ (̃λPN ) − mθ (̃λNN )) + (mθ (̃λNP ) − mθ (̃λPP ))
.

(2)

Symbol mθ (λ̃•) denotes the transformed formula of the inter-
val λ̃• = [λ−

•
, λ+

•
], which can be calculated by mθ (λ̃•) = (1 −

θ )λ−
•

+θλ+
•
. Parameter θ is determined by the risk preferences of

decision makers. The process of changing parameter θ from 0 to 1
reflects the risk preference attitude from optimism to pessimism.

When αC > βC , then we have the following three-way deci-
sion rules:

(PC1) If P(X |[x]R) ≥ αC , then decide x ∈ pos(X);
(BC1) If βC < P(X |[x]R) < αC , then decide x ∈ bnd(X);
(NC1) If P(X |[x]R) ≤ βC , then decide x ∈ neg(X).
Two-way decision determined by γC in the condition αC ≤ βC

is a special case of three-way decision. This paper mainly studies
the interval-valued decision-theoretic rough set model under the
general case, namely αC > βC .

In the IVDTRSO model, the minimum-risk decision rules are
(PO) If P(X |[x]R) ≥ αO and P(X |[x]R) ≥ γO, decide x ∈ pos(X);
(BO) If P(X |[x]R) ≤ αO and P(X |[x]R) ≥ βO, decide x ∈ bnd(X);
(NO) If P(X |[x]R) ≤ βO and P(X |[x]R) ≤ γO, decide x ∈ neg(X);

where decision risk parameters αO, βO, γO are determined by
means of the overall uncertainty minimization process. In case
αO > βO, the IVDTRSO model has the following decision rules:

(PO) If P(X |[x]R) ≥ αO, then decide x ∈ pos(X);
(BO) If βO < P(X |[x]R) < αO, then decide x ∈ bnd(X);
(NO) If P(X |[x]R) ≤ βO, then decide x ∈ neg(X).
The process of finding optimal parameters to minimize overall

uncertainty is given as follows:
Let πDT = {C, ∼ C} denote the partition of the universe

U generated by the set DT of decision attributes, where DT
divides U into two states. For the state C , a pair of thresholds
(αO, βO) divides the universe into three regions corresponding to
acceptance, delay, and rejection decisions, namely pos(αO,βO)(C),
bnd(αO,βO)(C) and neg(αO,βO)(C). Let π(αO,βO) denote the partition
of the universe generated by (αO, βO). The overall uncertainty of
three regions is

H(πDT |π(αO,βO)) = P(pos(αO,βO)(C))H(πDT |pos(αO,βO)(C))
+ P(bnd(αO,βO)(C))H(πDT |bnd(αO,βO)(C))
+ P(neg(αO,βO)(C))H(πDT |neg(αO,βO)(C))

(3)

where P(△(αO,βO)(C)) =
|△(αO,βO)(C)|

|U |
and H(πDT |△(αO,βO)(C)) =

−P(C |△(αO,βO)(C))logP(C |△(αO,βO)(C))− P(∼ C |△(αO,βO)(C)) logP(∼
C |△(αO,βO)(C)), (△ = pos, bnd, neg). Conditional probability
P(C |△(αO,βO)(C)) (△ = pos, bnd, neg) can be calculated by
P(C |△(αO,βO)(C)) =

|△(αO,βO)(C)∩C |

|△(αO,βO)(C)|
. The pair of optimal parameters
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is
argmin
(αO,βO)

H(πDT |π(αO,βO))

s.t. =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ−

PP ≤ λPP ≤ λ+

PP ,

λ−

BP ≤ λBP ≤ λ+

BP ,

λ−

NP ≤ λNP ≤ λ+

NP ,

λ−

PN ≤ λPN ≤ λ+

PN ,

λ−

BN ≤ λBN ≤ λ+

BN ,

λ−

NN ≤ λNN ≤ λ+

NN ,

λPP ≤ λBP ≤ λNP ,

λNN ≤ λBN ≤ λPN ,

(4)

where αO =
λPN−λBN

(λPN−λBN )+(λBP−λPP )
and βO =

λBN−λNN
(λBN−λNN )+(λNP−λBP )

.

2.2. The geometry average interval sorting method

Let λ̃1, λ̃2, . . . , λ̃n be n intervals, where λ̃i = [λ−

i , λ+

i ] =

{x |λ−

i ≤ x ≤ λ+

i } and λ−

i , λ
+

i are real numbers. In the geometry
average interval sorting method [17], the process of sorting n
intervals is presented as follows:

Step 1 is to calculate the geometry average sorting function
of interval λ̃i, namely Gη(λ̃i) = (λ−

i )
1−η(λ+

i )
η , η ∈ [0, 1] (i =

1, 2, . . . , n).
Step 2 is to calculate the credibility of λ̃i ≥ λ̃j (i, j =

1, 2, . . . , n) and establish the credibility matrix P , namely

P =

⎛⎜⎝ 1 η12 · · · η1n
η21 1 · · · η2n
· · · · · · · · · · · ·

ηn1 ηn2 · · · 1

⎞⎟⎠
where ηij denotes the credibility of λ̃i ≥ λ̃j (i ̸= j) and its specific
expression is

ηij =

{
1 − inf {η|Gη(λ̃i) ≥ Gη(λ̃j)}, if inf {η|Gη(λ̃i) ≥ Gη(λ̃j)} > 0;
sup{η|Gη(λ̃i) ≥ Gη(λ̃j)}, if inf {η|Gη(λ̃i) ≥ Gη(λ̃j)} = 0.

(5)

Step 3 is to sort intervals according to the credibility matrix.
If there are n + 1 − q (q = 1, 2, . . . , n) elements greater than 0.5
in the ith row, then the ith interval was ranked qth.

For example, given two intervals λ̃1 = [0.1, 0.5], λ̃2 =

[0.2, 0.4], when 0.756 ≤ η ≤ 1, there is Gη(λ̃1) ≥ Gη(λ̃2).
Therefore, inf {η | Gη(λ̃1) ≥ Gη(λ̃2)} = 0.756 > 0. So η12 =

1 − inf {η | Gη(λ̃1) ≥ Gη(λ̃2)} = 0.244 < 0.5. Therefore, according
to geometry average sorting method, we have λ̃2 ≥ λ̃1.

2.3. Weighted generalized multi-granulation rough sets (WGMRS)

First, we briefly introduce the concept of information systems.
Let I = (U, AT ∪ DT , V , F ) be an information system, where
universe U is a nonempty finite set of objects; AT is a set of
condition attributes and DT is a set of decision attributes; V =

∪a∈AT∪DTVa is the domain of attribute values; F : U×{AT ∪DT } →

V is an information function, i.e., ∀a ∈ AT ∪ DT , x ∈ U , that
F (x, a) ∈ Va is the value of object x about attribute a. Usually,
we use U/DT = {D1,D2, . . . ,Dt} to denote the partition of U
under DT , where Di consists of objects with the same description
of decision attribute.

In information system I = (U, AT ∪ DT , V , F ), ∀Ai ⊆ AT ,
i = 1, 2, . . . , s, s ≤ 2AT , for any subset X of U , the weighted

generalized multi-granulation upper and lower approximations
of X with respect to

∑s
i=1 Ai in literature [31] are defined as

GM
w∑s

i=1 Ai (X) = {x ∈ U | (
s∑

i=1

ϖi(1 − SAi∽X (x))) > 1 − ϕ},

GMw∑s
i=1 Ai

(X) = {x ∈ U | (
s∑

i=1

ϖiS
Ai
X (x)) ≥ ϕ},

(6)

where the superscript w is usually used to distinguish the approx-
imations of the weighted generalized multi-granulation rough set
model and the generalized multi-granulation rough set model.
Parameter ϖi (i = 1, 2, . . . , s) denotes the weight of granulation
Ai, and

∑s
i=1 ϖi = 1. SAiX (x) denotes the support characteristic

function of x with respect to concept X under Ai. Let [x]Ai denote
the equivalence class of x under granulation Ai, which consists of
objects with the same description as x under Ai. If [x]Ai ⊆ X , then
SAiX (x) = 1; otherwise SAiX (x) = 0. Parameter ϕ ∈ (0.5, 1] denotes
the information level with respect to

∑s
i=1 Ai. In the WGMRS

model, positive, boundary and negative regions of X are defined
as
pos(X) = GMw∑s

i=1 Ai
(X);

bnd(X) = GM
w∑s

i=1 Ai (X) − GMw∑S
i=1 Ai

(X);

neg(X) =∼ GM
w∑s

i=1 Ai (X).

(7)

In addition, we briefly introduce three representative weighted
methods, namely approximation accuracy, approximation quality
and granulation entropy weighted methods. For more weighted
granulation methods, please refer to literature [31].

Let I = (U, AT ∪ DT , V , F ) be an information system, Ai ⊆

AT (i = 1, 2, . . . , s) and U/DT = {D1,D2, . . . ,Dt}. The approxi-
mation accuracy weight of granulation Ai is defined as

wi =

∑t
j=1 αi(Dj)∑s

i=1
∑t

j=1 αi(Dj)
, (8)

where αi(Dj) =
|Ai(Dj)|

|Ai(Dj)|
is the approximation accuracy of Ai about

DT . Ai(Dj) and Ai(Dj) represent the Pawlak upper and lower ap-
proximations of Dj (j = 1, 2, . . . , t) under Ai, respectively. The
approximation quality weight of granulation Ai is defined as

wi =
a(Ai)∑s
i=1 a(Ai)

, (9)

where a(Ai) =

∑t
j=1 |Ai(Dj)|∑t
j=1 |Ai(Dj)|

is the approximation quality of Ai about
DT . The granulation entropy weight of granulation Ai is defined
as

wi =

∑t
j=1 EAi (Dj)∑s

i=1
∑t

j=1 EAi (Dj)
, (10)

where EAi (Dj) is the rough entropy of Dj about Ai, which can be
calculated by EAi (Dj) = ρi(Dj)E(Ai) = (1− αi(Dj))(−

∑
|U |

k=1
|[xk]Ai |

|U |
∗

log2
|[xk]Ai |

|U |
), where |·| denotes the cardinality of a set.

3. Geometry average sorting interval-valued decision-theoretic
rough sets (IVDTRSG)

Decision-theoretic rough set (DTRS) theory based on Bayesian
minimum decision risk provides a reasonable semantic interpre-
tation for decision-making process. The determination of thresh-
old parameters mainly relies on the loss function. Considering
intervals can reflect a certain tolerant ability during the evalu-
ation and the Bayesian minimum decision is actually the pro-
cess of sorting intervals in the interval-valued decision-theoretic
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rough set (IVDRTS) method, we propose a new IVDTRS model
based on geometry average interval sorting method in this sec-
tion, namely geometry average sorting interval-valued decision-
theoretic rough sets (IVDTRSG).

Firstly, the basic framework of the IVDTRSG model is de-
scribed.

Let Ω = {C, ∼ C} be a state set and A = {aP , aB, aN} be
an action set, where two state sets are complementary decision
classes and aP , aB, aN denote accepting, delaying and rejecting de-
cisions, respectively. The loss function usually satisfies conditions
λ−

PP ≤ λ−

BP < λ−

NP , λ+

PP ≤ λ+

BP < λ+

NP , λ−

NN ≤ λ−

BN < λ−

PN ,
λ+

NN ≤ λ+

BN < λ+

PN . The expected loss of any object x (x ∈ U)
associated with three actions in IVDTRSG model are shown in
formula (1). For each object, by sorting intervals, we find the
action causing the smallest expected loss. Similar to the certain
ranking method and the optimization method, we use geometry
average method to sort the intervals.

According to conditions λ−

PP ≤ λ−

BP < λ−

NP , λ+

PP ≤ λ+

BP < λ+

NP ,
λ−

NN ≤ λ−

BN < λ−

PN , λ+

NN ≤ λ+

BN < λ+

PN and Gη(λ̃i) = (λ−

i )
1−η(λ+

i )
η ,

there are Gη (̃λPP ) ≤ Gη (̃λBP ) < Gη (̃λNP ) and Gη (̃λNN ) ≤ Gη (̃λBN ) <

Gη (̃λPN ). Then the minimum-risk decision rules are expressed
equivalently as follows:

(PG) If Gη(R ˜(aP |[x]R)) ≤ Gη(R ˜(aB|[x]R)) and Gη(R ˜(aP |[x]R)) ≤

Gη(R ˜(aN |[x]R)), then decide x ∈ pos(X);
(BG) If Gη(R ˜(aB|[x]R)) ≤ Gη(R ˜(aP |[x]R)) and Gη(R ˜(aB|[x]R)) ≤

Gη(R ˜(aN |[x]R)), then decide x ∈ bnd(X);
(NG) If Gη(R ˜(aN |[x]R)) ≤ Gη(R ˜(aP |[x]R)) and Gη(R ˜(aN |[x]R)) ≤

Gη(R ˜(aB|[x]R)), then decide x ∈ neg(X); where Gη(R ˜(a•|[x]R)) =

[λ−

•PP(X |[x]R) + λ−

•N (1 − P(X |[x]R))]1−η
[λ+

•PP(X |[x]R) + λ+

•N (1 −

P(X |[x]R))]η (• = P, B,N).
By simplification, we have the following decision rules:
(PG) If P(X |[x]R) ≥ αG and P(X |[x]R) ≥ γG, then decide x ∈

pos(X);
(BG) If P(X |[x]R) ≤ αG and P(X |[x]R) ≥ βG, then decide x ∈

bnd(X);
(NG) If P(X |[x]R) ≤ βG and P(X |[x]R) ≤ γG, then decide x ∈

neg(X); where

αG =
Gη (̃λPN ) − Gη (̃λBN )

Gη (̃λPN ) − Gη (̃λBN ) + Gη (̃λBP ) − Gη (̃λPP )
,

βG =
Gη (̃λBN ) − Gη (̃λNN )

Gη (̃λBN ) − Gη (̃λNN ) + Gη (̃λNP ) − Gη (̃λBP )
,

γG =
Gη (̃λPN ) − Gη (̃λNN )

Gη (̃λPN ) − Gη (̃λNN ) + Gη (̃λNP ) − Gη (̃λPP )
.

(11)

If a loss function further satisfies the condition: Gη (̃λBP )−Gη (̃λPP )
Gη (̃λPN )−Gη (̃λBN )

≤
Gη (̃λNP )−Gη (̃λBP )
Gη (̃λBN )−Gη (̃λNN ) then we can get αG ≥ γG ≥ βG. In this paper,

we mainly study the decision loss function satisfying this con-
dition. In this condition, the above decision rules can be further
simplified as

(PG) If P(X |[x]R) ≥ αG, then decide x ∈ pos(X);
(BG) If βG < P(X |[x]R) < αG, then decide x ∈ bnd(X);
(NG) If P(X |[x]R) ≤ βG, then decide x ∈ neg(X).
Then the upper and lower approximations of the IVDTRSG

model are expressed as

R(αG,βG)(X) = {x ∈ U |P(X |[x]R) > βG};

R(αG,βG)(X) = {x ∈ U |P(X |[x]R) ≥ αG}.
(12)

In the following, we illustrate the similarities and differences
between IVDTRSG and IVDTRS by an example. For the conve-
nience of comparison, data information and the interval-valued
loss function are derived from literature [46] and [16], respec-
tively.

Example 1. Let C be a concept and Ei (i ∈ {1, 2, . . . , 15})
denote equivalence class generated by conditional attributes in
universe. Detailed statistics of probability information [46] are
shown in Table 2. The values of loss function [16] are λ̃PP =

[1.5334, 3.1545], λ̃PN = [3.3798, 5.7363], λ̃BP = [2.4087, 3.3474],
λ̃BN = [2.4496, 3.3673], λ̃NP = [3.2707, 4.5747], λ̃NN =

[0.7668, 3.1200]. Assuming that parameter η determined by de-
cision makers is 0.6.

In the IVDTRS model, for each equivalence class, we first
calculate the expected losses about three actions. Detailed results
are shown in Table 3.

Then for each equivalence class, the action corresponding to
the minimum expected loss is found based on different interval
ranking methods such as θ ranking method and the optimization
method [16]. In these two methods, the threshold parameters
(α, β) are obtained as (0.7554, 0.4802) and (0.8211, 0.3833), re-
spectively. Furthermore, three rough regions and two approxima-
tions of concept C can be obtained.

In the IVDTRSG model, we first calculate the values of geome-
try average sorting function, namely Gη (̃λPP ) = 2.3639, Gη (̃λPN ) =

4.6423, Gη (̃λBP ) = 2.9345, Gη (̃λBN ) = 2.9649, Gη (̃λNP ) = 4.0001
and Gη (̃λNN ) = 1.7798. Then threshold parameters αG and βG
can be known as αG = 0.7462 and βG = 0.5265. According to
the probability information, we can directly get three regions as
follows: pos(X) = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6 ∪ E7, bnd(X) = E8 and
neg(X) = E9 ∪E10 ∪E11 ∪E12 ∪E13 ∪E14 ∪E15. The upper and lower
approximations of concept C in the IVDTRSG model can also be
obtained, namely R(αG,βG)(X) = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6 ∪ E7 and
R(αG,βG)(X) = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6 ∪ E7 ∪ E8.

Through comparative analysis, we get the similarities and
differences between IVDTRSG and IVDTRS. The similarities of
IVDTRSG and IVDTRS are as follows:

• The loss function and the probability information between
equivalence classes and concepts are two key factors of IVDTRSG
and IVDTRS in decision-making. Both IVDTRSG and IVDTRS con-
sider the interval-valued loss function.

• The decision criteria of IVDTRSG and IVDTRS are all Bayesian
minimum decision theory. These two models provide methods for
the three-way decisions under interval-valued loss environment.

• IVDTRSG and IVDTRS are generalizations of
decision-theoretic rough sets (DTRS). When the values of the
loss function become real numbers, both IVDTRSG and IVDTRS
degenerate into DTRS.

The differences of IVDTRSG and IVDTRS are as follows:
• The IVDTRS model needs to compare intervals while the

IVDTRSG model compares real numbers directly when searching
the action corresponding to the minimum expected loss for each
equivalence classes.

• The IVDTRS model provides a basic framework for decision-
making in interval-valued loss function. The IVDTRSG model is a
specific decision method by transforming intervals to precise val-
ues in the case of acceptable risk. According to different require-
ments, researchers introduce different interval ranking meth-
ods into IVDTRS, such as representative certain methods [47]
estimating a precise value for the interval, degree of possibil-
ity ranking methods [48] for comparing intervals and optimiza-
tion methods [49] based on different objective functions. Then
many specific IVDTRS models are obtained such as IVDTRSC and
IVDTRSO.

4. Weighted generalized multi-granulation interval-valued
decision-theoretic rough sets (WGM-IVDTRS)

Considering intervals can reflect a certain tolerant ability dur-
ing the evaluation and different granulations may not be equally
important in practical problems, we propose the general form of
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Table 2
Probabilistic information.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15
P(Ei) 0.0177 0.1285 0.0137 0.1352 0.0580 0.0069 0.0498 0.1070 0.1155 0.0792 0.0998 0.1299 0.0080 0.0441 0.0067
P(C |Ei) 1.0 1.0 1.0 1.0 0.9 0.8 0.8 0.6 0.5 0.4 0.4 0.2 0.1 0.0 0.0

Table 3
The expected losses.

E1 E2 E3 E4 E5 E6 E7 E8
RP [1.5334, 3.1545] [1.5334, 3.1545] [1.5334, 3.1545] [1.5334, 3.1545] [1.7180, 3.4127] [1.9027, 3.6709] [1.9027, 3.6709] [2.2720, 4.1872]
RB [2.4087, 3.3474] [2.4087, 3.3474] [2.4087, 3.3474] [2.4087, 3.3474] [2.4128, 3.3494] [2.4169, 3.3514] [2.4169, 3.3514] [2.4251, 3.3554]
RN [3.2707, 4.5747] [3.2707, 4.5747] [3.2707, 4.5747] [3.2707, 4.5747] [3.0203, 4.4292] [2.7699, 4.2838] [2.7699, 4.2838] [2.2691, 3.9928]

E9 E10 E11 E12 E13 E14 E15
RP [2.4566, 4.4454] [2.6412, 4.7036] [2.6412, 4.7036] [3.0105, 5.2199] [3.1952, 5.4781] [3.3798, 5.7363] [3.3798, 5.7363]
RB [2.4291, 3.3574] [2.4332, 3.3593] [2.4332, 3.3593] [2.4414, 3.3633] [2.4455, 3.3653] [2.4496, 3.3673] [2.4496, 3.3673]
RN [2.0188, 3.8474] [1.7684, 3.7019] [1.7684, 3.7019] [1.2676, 3.4109] [1.0172, 3.2655] [0.7668, 3.1200] [0.7668, 3.1200]

weighted generalized multi-granulation interval-valued decision-
theoretic rough sets (WGM-IVDTRS) based on the classification
accuracy of decision tree learning in this section. Based on dif-
ferent methods of determining threshold parameters under an
interval-valued loss function, three types of the WGM-IVDTRS
model are constructed. The first WGM-IVDTRS model is weighted
generalized multi-granulation certain ranking interval-valued
decision-theoretic rough sets (WGM-IVDTRSC), in which param-
eter θ in the transformation formula can reflect the risk prefer-
ences of different decision makers. The second model is weighted
generalized multi-granulation geometry average sorting interval-
valued decision-theoretic rough sets (WGM-IVDTRSG), which in
the process of converting intervals into real numbers, the geom-
etry average sorting function has good performance. The third
model is weighted generalized multi-granulation optimization
interval-valued decision-theoretic rough sets (WGM-IVDTRSO),
which can objectively reflect the uncertainty of information from
the perspective of machine learning.

4.1. The general form of WGM-IVDTRS

Definition 4.1. Let I = (U, AT ∪ DT , V , F ) be an information
system, Ai ⊆ AT , i = 1, 2, . . . , s (s ≤ 2AT ), ϕ ∈ (0.5, 1]. For
any X ⊆ U , the weighted generalized multi-granulation upper
and lower approximations of X with respect to

∑s
i=1 Ai in the

WGM-IVDTRS model are defined as

WGM∑s
i=1 Ai (X) = {x ∈ U |

s∑
i=1

WUSAiX (x) > 1 − ϕ},

WGM∑s
i=1 Ai

(X) = {x ∈ U |

s∑
i=1

WLSAiX (x) ≥ ϕ},

(13)

where ϖi is the weight of granulation Ai, and
∑s

i=1 ϖi = 1.
Parameter ϕ is the information level with respect to

∑s
i=1 Ai.

Symbols WUSAiX (x) and WLSAiX (x) denote the weighted upper and
lower support characteristic functions of x with respect to con-
cept X under granulation Ai, respectively. For any x (x ∈ U), if
and only if P(X |[x]Ai ) > βi, we have WUSAiX (x) = ϖi; otherwise
WUSAiX (x) = 0. Similarly, if and only if P(X |[x]Ai ) ≥ αi, we have
WLSAiX (x) = ϖi; otherwise WLSAiX (x) = 0. Information level ϕ re-
flects people’s risk preferences under multiple granulations. With
the increase of ϕ, the degree of optimism reflected decreases.

According to Definition 4.1, if the sum of weighted lower sup-
port characteristic functions of object x with respect to concept
X under all granulations is not smaller than ϕ, then object x
definitely belong to X , namely x ∈ WGM∑s

i=1 Ai
(X). If the sum of

weighted upper support characteristic functions of object x with

respect to X under all granulations is greater than 1 − ϕ, then x
probably belong to X , namely x ∈ WGM∑s

i=1 Ai
(X).

In the WGM-IVDTRS model, positive, negative and boundary
regions are defined as follows:

pos(X) = WGM∑s
i=1 Ai

(X),

neg(X) =∼ WGM∑s
i=1 Ai (X),

bnd(X) = WGM∑s
i=1 Ai (X) − WGM∑s

i=1 Ai
(X).

(14)

Considering two extreme cases of granulation requirements
namely optimism and pessimism, we study weighted optimistic
and pessimistic multi-granulation interval-valued
decision-theoretic rough sets (WOM-IVDTRS and WPM-IVDTRS).
Details are defined as follows.

Definition 4.2. Let I = (U, AT ∪ DT , V , F ) be an information
system, Ai ⊆ AT , i = 1, 2, . . . , s (s ≤ 2AT ), ϕ ∈ (0.5, 1]. For any
X ⊆ U , the weighted optimistic and pessimistic multi-granulation
upper and lower approximations of X with respect to

∑s
i=1 Ai in

the WOM-IVDTRS and WPM-IVDTRS models are defined as

WOM∑s
i=1 Ai (X) = {x ∈ U |

s∑
i=1

WUSAiX (x) ≥ 1}

= {x ∈ U |∧
s
i=1{P(X |[x]Ai ) > βi}},

WOM∑s
i=1 Ai

(X) = {x ∈ U |

s∑
i=1

WLSAiX (x) > 0}

= {x ∈ U |∨
s
i=1{P(X |[x]Ai ) ≥ αi}}.

(15)

WPM∑s
i=1 Ai (X) = {x ∈ U |

s∑
i=1

WUSAiX (x) > 0}

= {x ∈ U |∨
s
i=1{P(X |[x]Ai ) > βi}},

WPM∑s
i=1 Ai (X) = {x ∈ U |

s∑
i=1

WLSAiX (x) ≥ 1}

= {x ∈ U |∧
s
i=1{P(X |[x]Ai ) ≥ αi}}.

(16)

According to Definition 4.2, we give semantic explanations
from the perspectives of support characteristic functions. From
formula (15), if there is one granulation that makes the value
of the weighted lower support characteristic function of x with
respect to X greater than 0, then x definitely belong to X under
optimistic risk preference, namely x ∈ WOM∑s

i=1 Ai
(X); if the

values of weighted upper support characteristic functions of x
with respect to X under all granulations are all greater than 0,
then x probably belong to X under optimistic risk preference,
namely x ∈ WOM∑s

i=1 Ai
(X). From formula (16), if the values of
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weighted lower support characteristic functions of object x with
respect to X under all granulations are all greater than 0, then x
definitely belong to X under pessimistic risk preference, namely
x ∈ WPM∑s

i=1 Ai (X); if there is one granulation that makes the
value of the weighted upper support characteristic function of x
with respect to X greater than 0, then x probably belong to X
under pessimistic risk preference, namely x ∈ WPM∑s

i=1 Ai (X).

Definition 4.3. Let I = (U, AT ∪ DT , V , F ) be an information
system, and U/DT = {D1,D2, . . . ,Dt}, where Dj (j = 1, 2, . . . , t)
denotes a decision class. Then the approximation accuracy acc(Dj)
and classification error rate e of Dj in the WGM-IVDTRS model are
defined as

acc(Dj) =

|WGM∑s
i=1 Ai

(Dj)|

|WGM∑s
i=1 Ai (Dj)|

, (17)

e =
|Dj ∩ neg(Dj)| + |∼ Dj ∩ pos(Dj)|

|U |
. (18)

From Definition 4.3, the approximation accuracy of a decision
class Dj is equal to the ratio of the cardinality of the lower approx-
imation of this decision class to that of the upper approximation.
The classification error rate of Dj is the percentage of objects
in the universe, in which these objects mainly include objects
belonging to Dj that are classified into negative region neg(Dj) and
objects that do not belong to Dj are classified into positive region
pos(Dj).

Considering the relationships among weighted generalized,
optimistic and pessimistic multi-granulation and the relation-
ship between multiple granular structures and single granular
structure, we obtained the following conclusions.

Proposition 4.1. Let I = (U, AT ∪ DT , V , F ) be an information
system, Ai ⊆ AT , i = 1, 2, . . . , s (s ≤ 2AT ), ϕ ∈ (0.5, 1]. For any
X ⊆ U, the following conclusions hold:

(1) WPM∑s
i=1 Ai (X) ⊆ WGM∑s

i=1 Ai (X) ⊆ WOM∑s
i=1 Ai (X);

WOM∑s
i=1 Ai

(X) ⊆ WGM∑s
i=1 Ai

(X) ⊆ WPM∑s
i=1 Ai (X).

(2) WOM∑s
i=1 Ai (X) ⊆ Ai(αi,βi)(X),WOM∑s

i=1 Ai
(X) ⊇ Ai(αi,βi)

(X);
WPM∑s

i=1 Ai (X) ⊇ Ai(αi,βi)(X),WPM∑s
i=1 Ai (X) ⊆ Ai(αi,βi)

(X).

(3) WOM∑s
i=1 Ai (X) = ∩

s
i=1Ai(αi,βi)(X),WOM∑s

i=1 Ai
(X) = ∪

s
i=1

Ai(αi,βi)
(X);

WPM∑s
i=1 Ai (X) = ∪

s
i=1Ai(αi,βi)(X),WPM∑s

i=1 Ai (X) = ∩
s
i=1

Ai(αi,βi)
(X).

In Proposition 4.1, from conclusion (1), we find that both the
weighted pessimistic upper (optimistic lower) approximation of
a concept and its weighted generalized upper (generalized lower)
approximation are contained in its weighted optimistic upper
(pessimistic lower) approximation. Moveover, the weighted pes-
simistic upper (optimistic lower) approximation of this concept is
contained in its weighted generalized upper (generalized lower)
approximation. By conclusion (2), the weighted optimistic upper
(pessimistic lower) approximation of a concept is contained in
the upper (lower) approximation of this concept under arbi-
trary granulation, and the weighted optimistic lower (pessimistic
upper) approximation of a concept contains the lower (upper) ap-
proximation of this concept under arbitrary granulation. By con-
clusion (3), the weighted optimistic upper (pessimistic lower) ap-
proximation of a concept is the intersection of upper (lower) ap-
proximations of this concept under all granulations. The weighted
optimistic lower (pessimistic upper) approximation of a concept

is the union of lower (upper) approximations of this concept
under all granulations.

The relationship between the WGM-IVDTRS model and the
weighted generalized multi-granulation rough set (WGMRS)
model are explored in the following.

Proposition 4.2. Let I = (U, AT ∪ DT , V , F ) be an information
system, Ai ⊆ AT , i = 1, 2, . . . , s (s ≤ 2AT ), ϕ ∈ (0.5, 1]. For any
X ⊆ U, based on certain constraints, the following conclusions hold:

(1) When ϖ1 = ϖ2 = · · · = ϖs, there are
WGM∑s

i=1 Ai (X) = {x ∈ U |
∑s

i=1 US
Ai
X (x)/s > 1 − ϕ} ⊆

GM
w∑s

i=1 Ai (X);

WGM∑s
i=1 Ai

(X) = {x ∈ U |
∑s

i=1 LS
Ai
X (x)/s ≥ ϕ} ⊇

GMw∑s
i=1 Ai

(X).

(2) When ϖi = 1(i ∈ {1, 2, . . . , s}), there are
WGM∑s

i=1 Ai (X) = {x ∈ U |WUSAiX (x) = 1} = Ai(αi,βi)(X) ⊆

GM
w∑s

i=1 Ai (X);

WGM∑s
i=1 Ai

(X) = {x ∈ U |WLSAiX (x) = 1} = Ai(αi,βi)
(X) ⊇

GMw∑s
i=1 Ai

(X).

(3) When α1 = α2 = · · · = αs = 1, β1 = β2 = · · · = βs = 0,
there are
WGM∑s

i=1 Ai (X) = {x ∈ U |
∑s

i=1 ϖiS
Ai
X (x) > 1 − ϕ} =

GM
w∑s

i=1 Ai (X);

WGM∑s
i=1 Ai

= {x ∈ U |
∑s

i=1 ϖiS
Ai
X (x) ≥ ϕ} = GMw∑s

i=1 Ai
(X).

(4) For 0 ≤ βi < αi ≤ 1(i = 1, 2, . . . , s), there are
WGM∑s

i=1 Ai (X) ⊆ GM
w∑s

i=1 Ai (X); WGM∑s
i=1 Ai

⊇

GMw∑s
i=1 Ai

(X).

Functions USAiX (x) and LSAiX (x) are the upper and lower support
characteristic functions of x ∈ U with respect to concept X under
Ai. If P(X |[x]Ai ) > βi, then USAiX (x) = 1; otherwise, USAiX (x) = 0.
Similarly, if P(X |[x]Ai ) ≥ αi, then LSAiX (x) = 1; otherwise, LSAiX (x) =

0.
According to the conclusions (1–4) of Proposition 4.2, it does

not matter whether the importance of granulations is equal
or not, the WGM-IVDTRS model is a generalized model of the
WGMRS model. In particular, when α1 = α2 = · · · = αs =

1, β1 = β2 = · · · = βs = 0, the WGM-IVDTRS model and the
WGMRS model are equivalent. Moreover, it is obvious that the
approximation accuracy of decision class X in the WGM-IVDTRS
model is greater than or equal to the approximation accuracy of X
in the WGMRS model. When ϖi = 1 (i ∈ {1, 2, . . . , s}), the WGM-
IVDTRS model will degenerate into the classical IVDTRS model
under the single granular structure Ai.

Proposition 4.3. Let I = (U, AT ∪ DT , V , F ) be an information
system, U/DT = {D1,D2, . . . ,Dt}, Ai ⊆ AT , i = 1, 2, . . . , s (s ≤

2AT ) and ϕ1 ≤ ϕ2 ∈ (0.5, 1]. The approximation accuracy of decision
class Dj (j = 1, 2, . . . , t) with respect to

∑S
i=1 Ai under different

information levels in the WGM-IVDTRS model has the following
conclusions:

accϕ1 (Dj) ≥ accϕ2 (Dj).

Proof. When ϕ1 ≤ ϕ2, the lower approximation WGMϕ1∑s
i=1 Ai

(Dj)
under information level ϕ1 contains the lower approximation
WGMϕ2∑s

i=1 Ai
(Dj) under ϕ2, and the upper approximation

WGM
ϕ1∑s

i=1 Ai
(Dj) under ϕ1 is contained in the upper approximation

WGM
ϕ2∑s

i=1 Ai
(Dj) under ϕ2. Therefore, the conclusion is clearly

established.
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By analyzing the three-way decision regions, we obtained
weighted generalized, optimistic and pessimistic
multi-granulation decision rules.

Rule 4.1 In the WGM-IVDTRS model, for any X ⊆ U , weighted
generalized multi-granulation decision rules are listed as follows:

(PG) If
∑

{ϖi|P(X |[x]Ai ) ≥ αi} ≥ ϕ, then decide x ∈ pos(X);
(BG) If

∑
{ϖi|P(X |[x]Ai ) > βi} > 1 − ϕ and

∑
{ϖi|P(X |[x]Ai ) ≥

αi} < ϕ, then decide x ∈ bnd(X);
(NG) If

∑
{ϖi|P(X |[x]Ai ) > βi} ≤ 1−ϕ, then decide x ∈ neg(X).

According to rule 4.1, if the sum of the weights of granulations
satisfying P(X |[x]Ai ) ≥ αi is not smaller than ϕ, then decide
x ∈ pos(X); if the sum of the weights of granulations satisfying
P(X |[x]Ai ) ≥ αi is smaller than ϕ and the sum of the weights
of granulations satisfying P(X |[x]Ai ) > βi is greater than 1 − ϕ,
then decide x ∈ bnd(X); if the sum of the weights of granulations
satisfying P(X |[x]Ai ) > βi is not greater than 1 − ϕ, then decide
x ∈ neg(X).

Rule 4.2 In the WOM-IVDTRS and WPM-IVDTRS models, for
any X ⊆ U , weighted optimistic and pessimistic multi-granulation
decision rules are listed as follows:

(PO) If |Ai : P(X |[x]Ai ) ≥ αi| ≥ 1, then decide x ∈ pos(X);
(BO) If |Ai : P(X |[x]Ai ) > βi| = s and |Ai : P(X |[x]Ai ) ≥ αi| = 0,

then decide x ∈ bnd(X);
(NO) If |Ai : P(X |[x]Ai ) > βi| < s, then decide x ∈ neg(X);
(PP ) If |Ai : P(X |[x]Ai ) ≥ αi| = s, then decide x ∈ pos(X);
(BP ) If |Ai : P(X |[x]Ai ) > βi| ≥ 1 and |Ai : P(X |[x]Ai ) ≥ αi| < s,

then decide x ∈ bnd(X);
(NP ) If |Ai : P(X |[x]Ai ) > βi| = 0, then decide x ∈ neg(X).
Under the optimistic circumstance, if at least one granulation

satisfies P(X |[x]Ai ) ≥ αi, then decide x ∈ pos(X); if all granula-
tions satisfy P(X |[x]Ai ) > βi, and all granulations do not satisfy
P(X |[x]Ai ) ≥ αi, then decide x ∈ bnd(X); if not all granulations
satisfy P(X |[x]Ai ) > βi, then decide x ∈ neg(X). And under
the pessimistic circumstance, if all granular structures satisfy
P(X |[x]Ai ) ≥ αi, then decide x ∈ pos(X); if at least one granular
structure satisfies P(X |[x]Ai ) > βi and not all granular structures
satisfy P(X |[x]Ai ) ≥ αi, then decide x ∈ bnd(X); if all granular
structures do not satisfy P(X |[x]Ai ) > βi, then decide x ∈ neg(X).

In the following, the relationships among the proposed WGM-
IVDTRS model and other rough set models are explored.

• From the perspective of granulation importance, the WGM-
IVDTRS model is a generalization of generalized multi-granulation
rough sets (GMRS), optimistic multi-granulation rough sets (
OMRS) and pessimistic multi-granulation rough sets (PMRS).

• From the perspective of granulation selection, the WGM-
IVDTRS model is a generalization of the OMRS and PMRS models.

• From the perspective of multiple granulations, the WGM-
IVDTRS model is a generalization of the IVDTRS model.

• From the perspective of loss functions, the WGM-IVDTRS
model is a generalization of the decision-theoretic rough set
(DTRS) model.

4.2. The granulation weighted method based on classification accu-
racy

It is well known that all granulations are not equally important
in practical problems. The information gain produced by different
granulations is different. Certainly, the support degree of differ-
ent granulations about relevant decisions is also different. The
existing granulation weighted methods are mainly based on the
upper and lower approximations characterized by equivalence
classes under different granulations. In the approximation space
with the universe U and attribute set AT , their computational
complexities are all O(|AT | ∗ |U |

2), which limits their applications
in large data sets. Moreover, these methods consider all the
attributes contained in the granulation at the same time when

weighting each granulation, and they lack generalization ability
for small changed data. Rough set theory and decision tree are
all learning methods based on labeled data. Decision tree focuses
on finding the most useful attribute information to distinguish
objects of different classes, and the time complexity O(|AT |∗|U |) is
relatively low. After many cross validation, decision tree methods
can respond more objectively and flexibly to the importance of
different granulations. Therefore, a granulation weighted method
is proposed based on the classification accuracy of decision tree
learning. Considering the flexibility and objectivity of data anal-
ysis, in this paper we analyze and classify data by the improved
decision tree algorithm ID3 which selects the optimal partition
attribute by information gain ratio. In the classification process,
we use 70% of the data set as the training set S, and the rest as the
test set T . The decision tree of training set S and the classification
accuracy ρi of decision tree on test set T can be obtained under
granulation Ai (i = 1, 2, . . . , s).

Definition 4.4. Let I = (U, AT ∪ DT , V , F ) be an information
system, Ai ⊆ AT , i = 1, 2, . . . , s (s ≤ 2AT ), ρi is the classification
accuracy under granulation Ai (i = 1, 2, . . . , s). The weight ϖi of
granulation Ai (i = 1, 2, . . . , s) is defined as

ϖi = ρi/

s∑
i=1

ρi. (19)

where ρi is the classification accuracy obtained from decision
tree learning under granulation Ai.

In order to demonstrate the proposed granulation weighted
method more intuitively, we illustrate the calculation process of
this weighted method through a practical example.

Example 2. Let I = (U, AT ∪ DT , V , F ) be the watermelon
data set 2.0 derived from Zhou Zhihua’s machine learning [50],
detailed information is shown in Table 4. The universe is U =

{x1, x2, . . . , x17}, the conditional attribute set is AT = {a1, a2, a3,
a4, a5, a6} = {color, root, stroke, texture, navel, touch} and the
decision attribute set is DT = {d} = {good melon}.

First of all, we describe how to calculate information gain.
In an information system I = (U, AT ∪ DT , V , F ), let U/DT =

{D1,D2, . . . ,Dt}, U/ai = {Dai
1 ,Dai

2 , . . . ,Dai
h }, and Dk/ai = {Dai

k1,D
ai
k2,

. . . ,Dai
kn}, where h denotes the number of attribute values of all

objects in U under attribute ai ( i = 1, 2, . . . , |AT |), n denotes the
number of attribute values of all objects in Dk under attribute ai
(k = 1, 2, . . . , t). The information entropy of the universe U about
decision DT [50] is defined as Ent(U,DT ) = −

∑t
k=1

|Dk|
|U |

log2
|Dk|
|U |

.
The information gain obtained by the partition of U under at-
tribute ai (ai ∈ AT ) is defined as Gain(U, ai) = Ent(U,DT ) −∑h

j=1
|D

ai
j |

|U |
Ent(Dai

j ,DT ). The information gain ratio of attribute
ai is defined as Gain-ratio(U, ai) =

Gain(U,ai)
Iv(ai)

, where Iv(ai) =

−
∑h

j=1
|D

ai
j |

|U |
log2

|D
ai
j |

|U |
is the intrinsic value of attribute ai in the uni-

verse U . According to the information in Table 4, we have U/d =

{D1,D2} = {{x1, x2, x3, x4, x5, x6, x7, x8}, {x9, x10, x11, x12, x13,
x14, x15, x16, x17}}. Then the information entropy of the universe U
about decision d is Ent(U, d) = −( 8

17 log2
8
17 +

9
17 log2

9
17 ) = 0.9975.

According to U/a1 = {Da1
1 ,Da1

2 ,Da1
3 } = {{x1, x4, x6, x10, x13, x17},

{x2, x3, x7, x8, x9, x15}, {x5, x11, x12, x14, x16}}, D
a1
1 /d = {{x1, x4, x6},

{x10, x13, x17}}, D
a1
2 /d = {{x2, x3, x7, x8}, {x9, x15}} and Da1

3 /d =

{{x5}, {x11, x12, x14, x16}}, the information entropy of Da1
1 ,Da1

2 ,Da1
3

about decision d is Ent(Da1
1 , d) = −( 36 log2

3
6 +

3
6 log2

3
6 ) = 1,

Ent(Da1
2 , d) = −( 46 log2

4
6 +

2
6 log2

2
6 ) = 0.9183 and Ent(Da1

3 , d) =

−( 15 log2
1
5 +

4
5 log2

4
5 ) = 0.7219. Therefore, the information gain

of attribute a1 is Gain(U, a1) = 0.9975 − ( 6
17Ent(D

a1
1 , d) +
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Table 4
A decision system I .
U color root stroke texture navel touch good melon

x1 turquois a curled upa muffleda clear a concavea hard and smootha gooda
x2 dark a curled up dulla clear concave hard and smooth good
x3 dark curled up muffled clear concave hard and smooth good
x4 turquois curled up dull clear concave hard and smooth good
x5 palea curled up muffled clear concave hard and smooth good
x6 turquois slightly curled upa muffled clear slightly denteda soft and stickya good
x7 dark slightly curled up muffled slightly blurrya slightly dented soft and sticky good
x8 dark slightly curled up muffled clear slightly dented hard and smooth good
x9 dark slightly curled up dull slightly blurry slightly dented hard and smooth bada
x10 turquois stiff a crispa clear flata soft and sticky bad
x11 pale stiff crisp fuzzya flat hard and smooth bad
x12 pale curled up muffled fuzzy flat soft and sticky bad
x13 turquois slightly curled up muffled slightly blurry concave hard and smooth bad
x14 pale slightly curled up dull slightly blurry concave hard and smooth bad
x15 dark slightly curled up muffled clear slightly dented soft and sticky bad
x16 pale curled up muffled fuzzy flat hard and smooth bad
x17 turquois curledup dull slightly blurry slightly dented hard and smooth bad

aFacilitate the description, we abbreviate turquois, dark and pale describing color as TU , DA, PA; curled up, slightly curled up, stiff describing root as CU , SU , ST ;
muffled, dull, crisp describing stroke as MU , DU , CR; clear , slightly blurry, fuzzy describing texture as CL, SB, FU; concave, slightly dented, flat describing navel as CO,
SD, FL; hard and smooth, soft and sticky describing touch as HS, SS; good, bad as G and B.

6
17Ent(D

a1
2 , d) +

5
17Ent(D

a1
1 , d)) = 0.1081. The intrinsic value of

a1 is IV (a1) = −( 6
17 log2

6
17 +

6
17 log2

6
17 +

5
17 log2

5
17 ) = 1.5799. Then

the information gain ratio of attribute a1 is Gain-ratio(U, a1) =

0.0684. Similarly, information gain ratios of other attributes are
obtained, namely Gain-ratio(U, a2) = 0.1018, Gain-ratio(U, a3) =

0.1056, Gain-ratio(U, a4) = 0.2631, Gain-ratio(U, a5) = 0.1867
and Gain-ratio(U, a6) = 0.0069.

Secondly, we introduce how to calculate the weights of dif-
ferent granulations. Using the hold-out method, the universe is
randomly divided into two parts, where 70% of objects form
a training set Si, and the other objects as the corresponding
test set Ti. In order to make the estimated results stable and
reliable, we conducted many random partitions and experiments,
then take the average of multiple classification accuracy under
the same granulation as the weight of this granulation. Taking
into account the scale of the case data set, we carried out four
experiments. Four granulations are randomly selected, which are
A1 = {a1, a3, a4, a5}, A2 = {a1, a2, a4, a6}, A3 = {a1, a3, a6} and
A4 = {a2, a3, a4, a5, a6}. The training sets and test sets of these
four experiments are shown in Table 5.

Decision rules of different granulations may be different by
decision tree learning on the same training set. In the four ex-
periments, decision rules learned by the improved decision tree
algorithm are shown in Figs. 1–4, respectively. In Figs. 1–4, the
contents of yellow rectangles denote the attributes selected ac-
cording to the information gain ratio, the letters on the blue
flow line describe the characteristics of the attributes adjacent to
them, and the contents in the red circles denote the final deci-
sions. The red small circles are called the leaf nodes of decision
tree. Decision tree learning is a top-down learning process. By
observing, the total number of decision rules can be obtained
based on the number of leaf nodes in each decision tree and
specific decision rules can also be obtained by following the path
from the root attribute to the leaf node.

For easier understanding, we describe the decision tree in
Fig. 1. For example, in the subgraph (a) of Fig. 1, it is apparent that
the maximum information gain ratio under the granulation A1 is
navel. If the navel of the watermelon is concave, then the texture
of the watermelon needs further observation; if the navel of the
watermelon is slightly dented or flat, then this watermelon is
a bad melon. If the navel of the watermelon is concave and the
texture of the watermelon is clear or fuzzy, then this watermelon
is a good melon. If the navel of the watermelon is concave
and the texture of the watermelon is slightly blurry, then this
watermelon is a bad melon. There are 5 decision rules learned

under granulation A1. The total number of decision rules under
the remaining three granulations A2, A3, A4 is 11,6,9, respectively.

Finally, the results of four experiments on test sets are shown
in Table 5, where Gr, EO, CA are abbreviations for different gran-
ulations, classification error objects and classification accuracy.
According to the classification accuracy of the four tests, the av-
erage classification accuracy of each granulation can be obtained,
namely, ρA1 =

17
28 , ρA2 =

4
7 , ρA3 =

3
7 , ρA4 =

6
7 . Therefore,

according to Definition 4.4, the weights of four granulations are
ϖ1 =

17
69 , ϖ2 =

16
69 , ϖ3 =

12
69 , ϖ4 =

24
69 .

4.3. Three types of the WGM-IVDTRS model

Considering that the final goal of interval-valued decision-
theoretic rough sets is to find the minimum expected loss of
each object and it is very time-consuming to make intervals
comparison under multiple granulations, we propose three types
of the WGM-IVDTRS model based on different methods of deter-
mining threshold parameters. The first two methods transform
the interval-valued loss function into the real values by using dif-
ferent transformation functions, then obtain directly parameters;
the third approach is to find the optimal threshold parameters
that make the information uncertainty minimum. Details are
described in the following.

Firstly, considering that the certain ranking method can reflect
the risk preferences of different decision makers, we propose
weighted generalized multi-granulation certain ranking interval-
valued decision-theoretic rough sets (WGM-IVDTRSC). The upper
and lower approximations of concept X with respect to

∑s
i=1 Ai

in the WGM-IVDTRSC model are defined as

WGM∑s
i=1 Ai (X) = {x ∈ U |

s∑
i=1

WUSAiX (x) > 1 − ϕ},

WGM∑s
i=1 Ai

(X) = {x ∈ U |

s∑
i=1

WLSAiX (x) ≥ ϕ},

where WUSAiX (x) and WLSAiX (x) are the weighted upper and lower
support characteristic functions of x with respect to X under
granulation Ai, and αC , βC in the weighted support characteristic
functions are calculated by formula (2).

Secondly, considering the good performance of geometry av-
erage interval sorting method, we propose weighted general-
ized multi-granulation geometry average sorting interval-valued
decision-theoretic rough sets (WGM-IVDTRSG). For any subset X
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Table 5
The information about four experiments.

1st S1 x1, x2, x3, x4, x5, x9, x10, x11, x12, x13 2nd S2 x2, x3, x4, x5, x6, x10, x11, x12, x13, x14
T1 x6, x7, x8, x14, x15, x16, x17 T2 x1, x7, x8, x9, x15, x16, x17

Gr EO CA Gr EO CA
A1 x6, x7, x8 4/7 A1 x7, x15 5/7
A2 x7, x8, x14 4/7 A2 x7, x8, x9 4/7
A3 x6, x7, x14, x17 3/7 A3 x1, x7, x9, x17 3/7
A4 x14 6/7 A4 x9 6/7

3rd S3 x3, x4, x5, x6, x7, x12, x13, x14, x15, x16 4th S4 x4, x5, x6, x7, x8, x13, x14, x15, x16, x17
T3 x1, x2, x8, x9, x10, x11, x17 T4 x1, x2, x3, x9, x10, x11, x12

Gr EO CA Gr EO CA
A1 x8, x9, x10, x17 3/7 A1 x9, x10 5/7
A2 x2, x8, x9 4/7 A2 x2, x3, x9 4/7
A3 x1, x2, x9, x17 3/7 A3 x1, x2, x9, x12 3/7
A4 x9 6/7 A4 x9 6/7

Fig. 1. Decision rules learned from the first experiment.

of U , the upper and lower approximations of X with respect to∑s
i=1 Ai in the WGM-IVDTRSG model are defined as

WGM∑s
i=1 Ai (X) = {x ∈ U |

s∑
i=1

WUSAiX (x) > 1 − ϕ},

WGM∑s
i=1 Ai

(X) = {x ∈ U |

s∑
i=1

WLSAiX (x) ≥ ϕ},

where parameters αG, βG in the weighted upper and lower sup-
port characteristic functions are calculated by

αG =
Gη (̃λPN ) − Gη (̃λBN )

Gη (̃λPN ) − Gη (̃λBN ) + Gη (̃λBP ) − Gη (̃λPP )
,

βG =
Gη (̃λBN ) − Gη (̃λNN )

Gη (̃λBN ) − Gη (̃λNN ) + Gη (̃λNP ) − Gη (̃λBP )
.

(20)

Symbols Gη (̃λPP ), Gη (̃λPN ), Gη (̃λBP ), Gη (̃λBN ), Gη (̃λNP ) and
Gη (̃λNN ) are geometry average sorting functions of intervals λ̃PP ,
λ̃PN , λ̃BP , λ̃BN , λ̃NP and λ̃NN .

Finally, considering the objectivity of the data response infor-
mation, and from the machine learning point of view, we propose
weighted generalized multi-granulation optimization interval-
valued decision-theoretic rough sets (WGM-IVDTRSO). The upper
and lower approximations of X with respect to

∑s
i=1 Ai in the

WGM-IVDTRSO model are defined as

WGM∑s
i=1 Ai (X) = {x ∈ U |

s∑
i=1

WUSAiX (x) > 1 − ϕ},

WGM∑s
i=1 Ai

(X) = {x ∈ U |

s∑
i=1

WLSAiX (x) ≥ ϕ},

where parameters αO, βO in the weighted upper and lower sup-
port characteristic functions make the overall uncertainty of three
rough regions H(πDT |π(αO,βO)) minimum, which can be calculated
by formulas (3) and (4).

In order to deeply understand the proposed WGM-IVDTRSC,
WGM-IVDTRSG, WGM-IVDTRSO theory, we introduce an example
to explain the process of solving the approximations of these
three models.
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Fig. 2. Decision rules learned from the second experiment.

Fig. 3. Decision rules learned from the third experiment.

Example 3. Following Example 2, we calculate the upper and
lower approximations of the proposed WGM-IVDTRSC, WGM-
IVDTRSG, WGM-IVDTRSO models. The values of parameters in
interval-valued loss function are the same as that in Example 1.
The randomly selected decision class X is {x1, x2, x3, x4, x5, x6, x7,
x8} and the information level ϕ is 0.8. It is important to point

out that the weights of four granulations are ϖ1 =
17
69 , ϖ2 =

16
69 , ϖ3 =

12
69 , ϖ4 =

24
69 .

In the WGM-IVDTRSC model, the risk preference parameter θ

is set to 0.6. According to formula (2), threshold parameters are
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Fig. 4. Decision rules learned from the fourth experiment.

αC = 0.7938, βC = 0.4316. The upper and lower approximations
of X with respect to Ai (i = 1, 2, 3, 4) are
A1(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x15},
A1(X) = {x1, x2, x3, x4, x5, x6, x7};
A2(X) = {x1, x2, x3, x4, x5, x6, x7, x8},
A2(X) = {x1, x2, x3, x4, x5, x6, x7};
A3(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x13, x15, x16, x17},
A3(X) = {x3, x6, x8};
A4(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x15},
A4(X) = {x1, x2, x3, x4, x5, x7}.

Therefore, the upper and lower approximations of X with
respect to

∑4
i=1 Ai in WGM-IVDTRSC are

WGM∑4
i=1 Ai

(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x15},
WGM∑4

i=1 Ai
(X) = {x1, x2, x3, x4, x5, x7}.

Then the classification error rate of X can by calculated by
formula (18), namely eC =

|X∩neg(X)|+|∼X∩pos(X)|
|U |

= 0.
In the WGM-IVDTRSG model, the credibility parameter η is set

to 0.6. By formula (20), we have αG = 0.7609, βG = 0.5055.
Then the upper and lower approximations of X with respect to
Ai (i = 1, 2, 3, 4) are
A1(X) = {x1, x2, x3, x4, x5, x6, x7},
A1(X) = {x1, x2, x3, x4, x5, x6, x7};
A2(X) = {x1, x2, x3, x4, x5, x6, x7, x8},
A2(X) = {x1, x2, x3, x4, x5, x6, x7, x8};
A3(X) = {x3, x6, x8},
A3(X) = {x3, x6, x8};
A4(X) = {x1, x2, x3, x4, x5, x7, x8},
A4(X) = {x1, x2, x3, x4, x5, x7, x8}.

Therefore, the upper and lower approximations of X with re-
spect to

∑4
i=1 Ai in WGM-IVDTRSG are WGM∑4

i=1 Ai
(X) = {x1, x2,

x3, x4, x5, x6, x7, x8}, WGM∑4
i=1 Ai

(X) = {x1, x2, x3, x4, x5, x7}. Its
classification error rate is eG = 0.

In the WGM-IVDTRSO model, the optimal threshold parame-
ters are found by particle swarm optimization algorithm (PSO).
The parameters of PSO are as follows: the learning factors c1, c2
are c1 = c2 = 2, the fitness function is H(πDT |παO,βO ), the number
of particles is Num = 20, the maximum number of generations as
a generation stopping criterion is Max = 200. The dimension of
every particle is t = 6, namely λPP , λPN , λBP , λBN , λNP , λNN . The
position of the particle is x(i, j) and its corresponding velocity
is υ(i, j) (i = 1, 2, . . . ,Num; j = 1, 2, . . . , t). The update of
the velocity is realized in the form of υ(i, j) = ω(p) ∗ υ(i, j) +

c1 ∗ rand ∗ (y(i, j) − x(i, j)) + c2 ∗ rand ∗ (pg(j) − x(i, j)), where
ω(p) = 0.9 − (0.9 − 0.4) ∗ p/Max is dynamic inertia weight,
p is iterations, y(i, j) is the position of local best solution and
pg(j) is the position of global best solution. The next position of
the particle is computed as x(i, j) = x(i, j) + υ(i, j). The optimal
result of H(πDT |παO, βO ) is 0.1176, in which λPP = 2.0215, λPN =

4.7642, λBP = 2.9568, λBN = 2.4672, λNP = 4.0254, λNN =

1.5475. The optimal thresholds are αopt = 0.7105 and βopt =

0.4625.
Then the upper and lower approximations of X with respect

to Ai (i = 1, 2, 3, 4) are
A1(X) = {x1, x2, x3, x4, x5, x6, x7x8, x15},
A1(X) = {x1, x2, x3, x4, x5, x6, x7};

A2(X) = {x1, x2, x3, x4, x5, x6, x7, x8},
A2(X) = {x1, x2, x3, x4, x5, x6, x7, x8};

A3(X) = {x1, x2, x3, x4, x5, x6, x7x8, x9, x13, x15, x16, x17},
A3(X) = {x3, x6, x8};

A4(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x15},
A4(X) = {x1, x2, x3, x4, x5, x7, x8}.

Therefore, the upper and lower approximations of X with re-
spect to

∑4
i=1 Ai in the WGM-IVDTRSO model are WGM∑4

i=1 Ai
(X)
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= {x1, x2, x3, x4, x5, x6, x7, x8, x15}, and WGM∑4
i=1 Ai

(X) = {x1, x2,
x3, x4, x5, x7}. The classification error rate of X in the WGM-
IVDTRSO model is eO = 0.

5. Experimental results and analyses

There are three different weighted generalized
multi-granulation interval-valued decision-theoretic rough set
models proposed, namely weighted generalized multi-granulation
certain ranking interval-valued decision-theoretic rough sets
(WGM-IVDTRSC), weighted generalized multi-granulation geom-
etry average sorting interval-valued decision-theoretic rough sets
(WGM-IVDTRSG) and weighted generalized multi-granulation op-
timization interval-valued decision-theoretic rough sets (WGM-
IVDTRSO). First, the necessity, feasibility and effectiveness of the
weighted method based on the classification accuracy of decision
tree learning are verified by comparing it with multi-granulation
decision-theoretic methods under the interval-valued loss func-
tion and WGM-IVDTRS models based on different granulation
weighted methods. Then the proposed models based on the
classification accuracy of decision tree learning (WGM-IVDTRSC,
WGM-IVDTRSG, WGM-IVDTRSO) are compared by experimen-
tal analyses and some criteria for choosing a suitable analysis
method in the interval-valued loss environment are obtained. The
classification error rate is introduced to evaluate performances of
these decision models. The smaller of the classification error rate
implies that the performance is better.

Nine data sets are downloaded from UCI Machine Learning
Repository (http://archive.ics.uci.edu/ml/datasets.html). Experi-
ments are performed on a computer with 2.6 GHz CPU, 8.0 GB
of memory and 64-bit Windows 10, and have been implemented
through MATLAB 2015B. Detailed data information is shown in
Table 6.

5.1. Pretreatment of the data sets and analyses of the WGM-IVDTRS
models

As the IVDTRS model focuses on the dichotomy problem, so
some decision classes need to be merged. In addition, different
probability distributions and inconsistencies of data information
will affect the performance of the WGM-IVDTRS models. In order
to exert the advantage of three-way decisions [6], we delete some
attributes of data sets similar to the preprocessing method in
literature [16]. The preprocessing method is: firstly, the condition
attributes are deleted randomly in the data sets; secondly, if the
decision classes are more than two in these data sets, then some
decision classes are merged and the concepts are defined. The
detailed results are shown in Table 7. And the distribution of data
after preprocessing is shown in Table 8.

There are three parameters affecting the performance of the
WGM-IVDTRS model, namely parameters α, β , information level
ϕ and granulation weight ω. (1) The parameters α, β mainly
depend on the interval-valued loss function. The certain ranking
and optimization methods proposed by Liang [16] and geometry
average sorting method can be used to determine the parame-
ters α, β . In the certain ranking and geometry average sorting
methods, the parameters α, β mainly depend on the risk atti-
tudes of decision makers, namely parameter θ, η. Moreover, as
the degree of optimism of risk attitude decreases (namely θ, η
increase), the parameters α increases and β decreases [16]. This
paper is mainly concerned with moderate risk attitude. So we
set θ = 0.5 and η = 0.6. Of course, other values can be
set according to different risk preferences. Based on the above
three parameter determination methods, three pairs of decision
risk parameters can be obtained. (2) For the information level
parameter ϕ, it is true that with the increase of information level,

the upper approximation of a concept becomes larger, and the
lower approximation becomes smaller according to proposition
4.3. That is to say, the positive and negative regions of the
concept become smaller. Therefore, the classification error rate
of the concept becomes smaller with the increase of information
level. In this section, we set ϕ to a value between 0.6 and 1 in
steps of 0.2. (3) For granulation weights, the importance, fea-
sibility and effectiveness of the weighted method based on the
classification accuracy of decision tree learning are explored by
comparing it with three non-weighted multi-granulation decision
making models and three granulation weighted methods. For
easy descriptions, under the interval-valued loss function, non-
weighted multi-granulation decision models [18] proposed by
Qian et al. have become corresponding mean, optimistic and
pessimistic multi-granulation interval-valued decision-theoretic
rough sets, which can be abbreviated as MM-IVDTRS, OM-IVDTRS
and PM-IVDTRS, respectively. In the absence of ambiguity, in
the following tables we abbreviate them as MM, OM and PM,
respectively. At the same time, the classification error rates of
the WGM-IVDTRS model under different weighted methods are
compared. In addition to the classification accuracy weighted
method mentioned in this paper, the other weighted methods
we choose are approximation accuracy weighted method, ap-
proximation quality weighted method and granulation entropy
weighted method [31], respectively. Similarly, approximation ac-
curacy weighted, approximation quality weighted and granula-
tion entropy weighted methods are abbreviated as AAW, AQW
and GEW, respectively.

In the following experiments, four granulations are selected in
each data set. In order to verify the validity of the WGM-IVDTRS
model, we sequentially select granulations with the almost same
number of condition attributes in each data set. Under the finest
partition (namely for each object, its equivalence class contains
only itself), the probability information of the concept is either 0
or 1. To be more general, we try to avoid this extreme situation
that the partitions under these granulations are the finest parti-
tion. The results of granulation selection are shown in Table 9.
For each data set, the loss values are generated randomly in
the interval [0, 1] according to the basic constraints of the loss
function. The generation method is similar to literature [16]. The
information of loss functions is shown in Table 10.

Then the decision risk parameters are calculated according
to certain ranking, geometry average sorting and optimization
methods. The certain ranking and geometry average sorting meth-
ods are mainly based on the transformation of interval function
to calculate the parameters. The optimization method is based on
particle swarm optimization to find the parameters that minimize
the overall uncertainty of the three regions. The specific results
are shown in Table 11.

5.2. Comparison of three WGM-IVDTRS models and other models

In order to evaluate performances of three WGM-IVDTRS mod-
els and find the criteria for selecting a suitable analysis method
under different practical environments, the classification error
rates of concepts are compared in the WGM-IVDTRS models, the
MM, OM, PM models and the AAW, AQW, GEW methods using
the above nine data sets.

Firstly, the weighted method based on the classification accu-
racy of decision tree learning is introduced in detail. The weights
of four granulations are calculated on each data set. Each data set
is randomly divided into four parts and four tests are performed
on each data set. In four tests, we take one out of four parts
as the test set in turn and the remaining three parts as the
training set. The average classification accuracy of the four tests
is then calculated as the classification accuracy of each granu-
lation. Finally, based on the classification accuracy, the weight

http://archive.ics.uci.edu/ml/datasets.html
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Table 6
Data descriptions.
Data sets Abbreviation Samples Condition attributes Decision classes

Tic-Tac-Toe Endgame Tic. 958 9 2
Contraceptive Method Choice Cmc. 1473 9 3
Car Evaluation Car. 1728 6 4
Chess(King-Rook vs. King-Pawn) Che. 3196 36 2
Mushroom Mus. 8124 22 2
Nursery Nur. 12960 8 5
Default of Credit Card Clients Def. 30000 23 2
Bank Marketing Ban. 45211 16 2
Connect-4 Con. 67557 42 3

Table 7
The pretreatment of nine data sets.
Data Deleted attributes Attributes Merged classes Final classes Concept C

Tic. Bottom-left-square, bottom-
middle-square, bottom-right-square

6 {positive},
{negative}

{positive}

Cmc. Wife’s age 8 Long-term,
Short-term

{No-use},
{Long-term, Short-term}

{No-use}

Car. Safety 5 acc, good, vgood {unacc},
{acc, good, vgood}

{unacc}

Che. wknck, wkovl, wkpos, wtoeg 32 {won},
{nowin}

{won}

Nur. Health 7 recommend,
very-recom,
priority, spec-prior

{not-recom},
{recommend, priority,
very-recom, spec-prior}

{not-recom}

Def. Amount paid in June, amount
paid in May, amount paid in April

20 {payment},
{nonpayment}

{payment}

Ban. Age, balance, day, duration,
campaign, pdays, previous

9 {non-subscription},
{subscription}

{non-subscription}

Con. e5, e6 , f1, f2, f3, f4, f5,
f6, g1, g2, g3, g4, g5, g6

28 {loss, draw} {win},
{loss, draw}

{win}

Table 8
Data distribution information after pretreatment.
Data Samples Condition attributes 1st class (C) 2nd class

Tic. 958 6 626 (65.34%) 332 (34.66%)
Cmc. 1473 8 629 (42.70%) 844 (57.30%)
Car. 1728 5 1210 (70.02%) 518 (29.98%)
Che. 3196 32 1669 (52.22%) 1527 (47.78%)
Mus. 8124 16 4208 (51.80%) 3916 (48.20%)
Nur. 12960 7 4320 (33.33%) 8640 (66.67%)
Def. 30000 20 23364 (77.88%) 6636 (22.12%)
Ban. 45211 9 39992 (88.30%) 5289 (11.70%)
Con. 67557 28 44473 (65.83%) 23084 (34.17%)

Table 9
The granulation selection of data sets.
Data A1 A2 A3 A4

Tic. {a1, a3 − a5} {a1, a2, a4, a6} {a1, a3, a6} {a2 − a6}
Cmc. {a1 − a5} {a2 − a6} {a3 − a7} {a4 − a8}
Car. {a1 − a4} {a2 − a5} {a1, a3 − a5} {a1, a2, a4, a5}
Che. {a1 − a8} {a9 − a16} {a17 − a24} {a25 − a32}
Mus. {a1 − a4} {a5 − a8} {a9 − a12} {a13 − a16}
Nur. {a1 − a4} {a2 − a5} {a3 − a6} {a4 − a7}
Def. {a1 − a5} {a6 − a10} {a11 − a15} {a16 − a20}
Ban. {a1 − a3, a8, a9} {a2 − a4, a7, a8} {a1, a2, a5 − a7} {a3, a4, a6 − a8}
Con. {a1 − a7} {a8 − a14} {a15 − a21} {a22 − a28}

of each granulation is obtained by normalizing in each data set.
Detailed results are shown in Table 12. The granulation weights
of the AAW, AQW, GEW methods are based on upper and lower
approximations as described in section 2.4.

Secondly, under the interval-valued loss function, we propose
the WGM-IVDTRSC, WGM-IVDTRSG and WGM-IVDTRSO models
based on the different decision risk parameter determination
methods. Next, we compare the classification error rates of these
three models with those of other non-weighted multi-granulation
decision models and other weighted models. In order to enhance

the reliability of data results, we conducted five experiments
on each data set by randomly selecting 20%, 40%, 60%, 80% and
100% of the data. In order to explain the advantage of the pro-
posed granulation weighted method more objectively under the
same decision risk parameters, we studied the classification error
rate of each model under different information levels (ϕ =

0.6, 0.8, 1.0). At the same time, in order to understand the fluc-
tuation of error rate with the increase of data size, the average
classification error rate of each model is calculated in different
data sets. The classification error rates of the WGM-IVDTRSC,
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Table 10
The loss functions of different data sets.
Data λ̃PP λ̃PN λ̃BP λ̃BN λ̃NP λ̃NN

Tic. [0.0510, 0.4701] [0.6470, 0.9183] [0.0837, 0.5880] [0.3735, 0.8984] [0.8259, 0.9830] [0.0406, 0.5555]
Cmc. [0.3074, 0.5015] [0.4005, 0.5241] [0.3944, 0.6047] [0.2740, 0.3706] [0.7369, 0.9248] [0.2432, 0.3260]
Car. [0.1896, 0.2533] [0.8033, 0.9244] [0.2176, 0.4168] [0.6143, 0.6992] [0.4391, 0.6352] [0.2744, 0.6073]
Che. [0.0871, 0.8280] [0.5915, 0.7023] [0.2329, 0.8875] [0.3025, 0.6514] [0.6520, 0.8945] [0.2728, 0.4266]
Mus. [0.1917, 0.3928] [0.7014, 0.8570] [0.2249, 0.5087] [0.5163, 0.7606] [0.4878, 0.9985] [0.2197, 0.4928]
Nur. [0.0560, 0.2931] [0.2559, 0.5399] [0.1184, 0.4097] [0.0594, 0.4589] [0.6117, 0.9810] [0.0427, 0.0730]
Def. [0.2484, 0.3523] [0.5065, 0.6440] [0.5249, 0.5407] [0.1398, 0.4325] [0.7370, 0.7491] [0.1114, 0.3799]
Ban. [0.0198, 0.2901] [0.7308, 0.9473] [0.2652, 0.4621] [0.0398, 0.7457] [0.5648, 0.7322] [0.0335, 0.5973]
Con. [0.0225, 0.2625] [0.5673, 0.7207] [0.0240, 0.4704] [0.1055, 0.7198] [0.0741, 0.7282] [0.0905, 0.4746]

Table 11
The decision risk parameters of three methods.
Data αC βC αG βG αO βO

Tic. 0.6608 0.3727 0.5299 0.4357 0.8358 0.3257
Cmc. 0.5955 0.1021 0.6100 0.1431 0.8504 0.1571
Car. 0.6838 0.4954 0.5692 0.4576 0.7973 0.3624
Che. 0.6235 0.3739 0.5078 0.4073 0.8397 0.2494
Mus. 0.6538 0.4285 0.5568 0.4391 0.7911 0.3608
Nur. 0.6079 0.2744 0.5967 0.3648 0.8861 0.2539
Def. 0.5543 0.1614 0.5685 0.2446 0.8568 0.1491
Ban. 0.6814 0.2136 0.5800 0.2318 0.7614 0.2832
Con. 0.6884 0.4580 0.6689 0.3921 0.7469 0.3598

Table 12
The granulation weights based on the classification accuracy.
Tests Tic. Cmc. Car.

accA1 accA2 accA3 accA4 accA1 accA2 accA3 accA4 accA1 accA2 accA3 accA4
1 0.6930 0.6763 0.5311 0.7718 0.6253 0.5758 0.6116 0.60885 0.6805 0.8138 0.6874 0.6736
2 0.5560 0.4730 0.3983 0.6473 0.6270 0.6297 0.6243 0.6108 0.4897 0.6552 0.6000 0.4713
3 0.5685 0.4357 0.4772 0.6017 0.6297 0.6027 0.5973 0.5324 0.4920 0.6989 0.6460 0.5402
4 0.6681 0.4730 0.6556 0.5519 0.6667 0.6198 0.6088 0.5840 0.6989 0.7770 0.6989 0.6989
ϖ 0.2708 0.2242 0.2247 0.2803 0.2613 0.2489 0.2503 0.2395 0.2287 0.2853 0.2550 0.2310

Tests Che. Mus. Nur.

accA1 accA2 accA3 accA4 accA1 accA2 accA3 accA4 accA1 accA2 accA3 accA4
1 0.4938 0.5723 0.7107 0.5262 0.5992 0.5810 0.7647 0.6219 0.5444 0.6222 0.6667 0.6667
2 0.3591 0.4140 0.2681 0.3117 0.7922 0.9365 0.8949 0.9848 0.4180 0.5722 0.6667 0.6667
3 0.6160 0.5237 0.7045 0.4501 0.6755 0.9104 0.8897 0.9729 0.5667 0.6556 0.6667 0.6667
4 0.4434 0.6446 0.2320 0.3342 0.5022 0.8213 0.7775 0.8552 0.5944 0.6111 0.6667 0.6667
ϖ 0.2515 0.2833 0.2518 0.2133 0.2051 0.2594 0.2612 0.2742 0.2141 0.2481 0.2689 0.2689

Tests Def. Ban. Con.

accA1 accA2 accA3 accA4 accA1 accA2 accA3 accA4 accA1 accA2 accA3 accA4
1 0.7788 0.8061 0.7821 0.7788 0.5266 0.2709 0.8598 0.2201 0.5995 0.6665 0.6337 0.6617
2 0.7788 0.8152 0.7849 0.7788 0.4834 0.3756 0.8825 0.3706 0.6472 0.5724 0.6819 0.6589
3 0.7787 0.8003 0.7784 0.7788 0.3957 0.3797 0.8829 0.3730 0.6851 0.6539 0.6514 0.6575
4 0.7788 0.7999 0.7812 0.7787 0.8831 0.8525 0.8830 0.8525 0.6851 0.6539 0.6514 0.6575
ϖ 0.2825 0.2826 0.2826 0.1523 0.2411 0.1979 0.3696 0.1913 0.2505 0.2401 0.2551 0.2543

WGM-IVDTRSG, WGM-IVDTRSO, MM, OM, PM, AAW, AQW and
GEW models in case ϕ = 0.6 are given in detail. The remaining
two cases mainly give the average classification error rates of the
above models.

When ϕ = 0.6, the classification error rates of the WGM-
IVDTRSC, MM, OM, PM, AAW, AQW and GEW models are shown
in Table 13, where the underlined symbol represents the lowest
classification error rate.

First, the relationships between the WGM-IVDTRSC model and
other non-weighted models are analyzed. From Table 13, we find
that the WGM-IVDTRSC model performs better than PM and OM
on all data sets. In particular, on Cmc., Che., Mus. and Con. data
sets, the WGM-IVDTRSC model performs far better than them.
Compared with the MM model, on Cmc., Mus., and Con. data
sets, the WGM-IVDTRSC model performs far better than MM.
And on Car., Def. and Ban. data sets, the WGM-IVDTRSC model
performs better than MM. On Che. and Nur. Data sets, the WGM-
IVDTRSC model performs better than MM in most cases. Only
on Tic data set, there are two experiments (20% and 80% of

the data) the WGM-IVDTRSC model performs worse than MM;
there is one experiment (60% of the data), the performances of
the WGM-IVDTRSC model and MM are the same; and there are
two experiments (40% and 100% of the data), the WGM-IVDTRSC
model performs better than MM. To sum up, the WGM-IVDTRSC
model based on the classification accuracy weighted method
performs better than the non-weighted models MM, OM, PM.
Therefore, different granulations are not equally important, and
granulation weighted is necessary. Meanwhile, the relationships
between the WGM-IVDTRSC model and other weighted models
are analyzed. On seven data sets namely Tic., Car., Che., Mus.,
Nur., Ban. and Con., the WGM-IVDTRSC model performs better
than AAW, AQW and GEW. On Cmc. data set, the WGM-IVDTRSC
model performs better than AAW and AQW in most cases except
the result of 60%, and the WGM-IVDTRSC model performs better
than GEW. And on Def. data set, the performances of the WGM-
IVDTRSC model, AAW and AQW are the same, and each of them
is better than the performance of the GEW model. Therefore,
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Table 13
The classification error rates under condition parameters (αC , βC ) and ϕ = 0.6.
Tic. WGM-IVDTRSC Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0157 0.0052 0.0419 0.0838 0.0209 0.0209 0.0419
40% 0.0236 0.0262 0.0785 0.0995 0.0471 0.0471 0.0759
60% 0.0279 0.0279 0.0836 0.0993 0.0453 0.0453 0.0627
80% 0.0405 0.0392 0.0941 0.0824 0.0471 0.0471 0.0444
100% 0.0282 0.0418 0.0981 0.0919 0.0407 0.0407 0.0564

Cmc. WGM-IVDTRSC Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0068 0.0137 0.0410 0.0068 0.0079 0.0079 0.0098
40% 0.0034 0.0204 0.0323 0.0153 0.0058 0.0058 0.0170
60% 0.0091 0.0249 0.0294 0.0102 0.0088 0.0088 0.0181
80% 0.0051 0.0272 0.0535 0.0068 0.0065 0.0065 0.0263
100% 0.0054 0.0265 0.0563 0.0136 0.0054 0.0054 0.0238

Car. WGM-IVDTRSC Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0087 0.0290 0.0638 0.1246 0.0098 0.0105 0.0209
40% 0.0362 0.0825 0.1085 0.1708 0.0662 0.0679 0.1324
60% 0.0676 0.0956 0.1245 0.1863 0.0782 0.0803 0.0876
80% 0.0709 0.1100 0.1375 0.1968 0.0963 0.1002 0.1028
100% 0.0799 0.1238 0.1319 0.1869 0.0944 0.1023 0.1236

Che. WGM-IVDTRSC Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0031 0.0000 0.0657 0.1581 0.0082 0.0082 0.0188
40% 0.0039 0.0039 0.0681 0.1635 0.0072 0.0072 0.0141
60% 0.0016 0.0057 0.0610 0.1659 0.0088 0.0088 0.0136
80% 0.0016 0.0067 0.0626 0.1651 0.0073 0.0073 0.0133
100% 0.0009 0.0056 0.0638 0.1683 0.0069 0.0069 0.0100

Mus. WGM-IVDTRSC Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0099 0.0074 0.0240 0.1435 0.0402 0.0402 0.1410
40% 0.0065 0.0105 0.0246 0.1391 0.0298 0.0298 0.1468
60% 0.0084 0.0113 0.0228 0.1399 0.0376 0.0376 0.1434
80% 0.0062 0.0109 0.0249 0.1647 0.0153 0.0153 0.1688
100% 0.0092 0.0137 0.0246 0.1620 0.0258 0.0258 0.1643

Nur. WGM-IVDTRSC Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0123 0.0197 0.0498 0.1578 0.0246 0.0246 0.0623
40% 0.0058 0.0089 0.0226 0.1175 0.0134 0.0134 0.0356
60% 0.0010 0.0019 0.0015 0.0631 0.0477 0.0477 0.0921
80% 0.0008 0.0008 0.0008 0.0122 0.0098 0.0098 0.0765
100% 0.0000 0.0000 0.0000 0.0000 0.0147 0.0147 0.0327

Def. WGM-IVDTRSC Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0007 0.0037 0.0030 0.0895 0.0007 0.0007 0.0025
40% 0.0012 0.0058 0.0048 0.0843 0.0012 0.0012 0.0047
60% 0.0011 0.0052 0.0034 0.0867 0.0011 0.0011 0.0047
80% 0.0011 0.0041 0.0055 0.0869 0.0011 0.0011 0.0040
100% 0.0011 0.0049 0.0027 0.0886 0.0011 0.0011 0.0038

Ban. WGM-IVDTRSC Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0466 0.0709 0.0857 0.0491 0.0742 0.0742 0.0847
40% 0.0490 0.0788 0.0866 0.0553 0.0781 0.0781 0.0872
60% 0.0503 0.0805 0.0880 0.0569 0.0791 0.0791 0.0878
80% 0.0520 0.0819 0.0888 0.0596 0.0816 0.0816 0.0883
100% 0.0522 0.0828 0.0889 0.0596 0.0819 0.0819 0.0886

Con. WGM-IVDTRSC Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0020 0.0210 0.0207 0.0774 0.0323 0.0323 0.0038
40% 0.0049 0.0233 0.0622 0.0787 0.0347 0.0347 0.0093
60% 0.0044 0.0233 0.0617 0.0806 0.0330 0.0330 0.0085
80% 0.0038 0.0233 0.0598 0.0834 0.0307 0.0307 0.0080
100% 0.0017 0.0237 0.0171 0.0844 0.0352 0.0352 0.0030

the WGM-IVDTRSC model based on the classification accuracy

weighted method is feasible and effective.

In addition, the average classification error rates of the WGM-

IVDTRSC, MM, OM, PM, AAW, AQW and GEW models under ϕ =
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Table 14
The average classification error rates under parameters (αC , βC ) and different ϕ.
Data ϕ = 0.6

WGM-IVDTRSC Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

Tic. 0.0281 ± 0.0124 0.0234 ± 0.0182 0.0700 ± 0.0281 0.0909 ± 0.0085 0.0340 ± 0.0131 0.0340 ± 0.0131 0.0588 ± 0.0169
Cmc. 0.0062 ± 0.0028 0.0204 ± 0.0067 0.0428 ± 0.0134 0.0110 ± 0.0042 0.0071 ± 0.0017 0.0071 ± 0.0017 0.0180 ± 0.0082
Car. 0.0443 ± 0.0356 0.0764 ± 0.0474 0.1006 ± 0.0368 0.1607 ± 0.0361 0.0530 ± 0.0432 0.0564 ± 0.0459 0.0766 ± 0.0557
Che. 0.0024 ± 0.0015 0.0033 ± 0.0033 0.0645 ± 0.0035 0.1632 ± 0.0051 0.0078 ± 0.0009 0.0078 ± 0.0009 0.0144 ± 0.0044
Mus. 0.0080 ± 0.0018 0.0105 ± 0.0031 0.0238 ± 0.0010 0.1519 ± 0.0128 0.0277 ± 0.0124 0.0277 ± 0.0124 0.1549 ± 0.0139
Nur. 0.0061 ± 0.0061 0.0098 ± 0.0098 0.0248 ± 0.0248 0.0789 ± 0.0789 0.0287 ± 0.0189 0.0287 ± 0.0189 0.0624 ± 0.0297
Def. 0.0009 ± 0.0002 0.0047 ± 0.0010 0.0040 ± 0.0013 0.0868 ± 0.0025 0.0009 ± 0.0002 0.0009 ± 0.0002 0.0036 ± 0.0011
Ban. 0.0494 ± 0.0028 0.0768 ± 0.0059 0.0873 ± 0.0016 0.0543 ± 0.0052 0.0780 ± 0.0038 0.0780 ± 0.0038 0.0866 ± 0.0019
Con. 0.0032 ± 0.0015 0.0223 ± 0.0013 0.0396 ± 0.0225 0.0809 ± 0.0035 0.0329 ± 0.0022 0.0329 ± 0.0022 0.0061 ± 0.0031

Data ϕ = 0.8

WGM-IVDTRSC Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

Tic. 0.0036 ± 0.0015 0.0234 ± 0.0182 0.0700 ± 0.0281 0.0909 ± 0.0085 0.0104 ± 0.0052 0.0104 ± 0.0052 0.0156 ± 0.0051
Cmc. 0.0017 ± 0.0017 0.0204 ± 0.0067 0.0428 ± 0.0134 0.0110 ± 0.0042 0.0034 ± 0.0019 0.0034 ± 0.0019 0.0068 ± 0.0034
Car. 0.0184 ± 0.0155 0.0764 ± 0.0474 0.1006 ± 0.0368 0.1607 ± 0.0361 0.0347 ± 0.0260 0.0184 ± 0.0155 0.0224 ± 0.0195
Che. 0.0000 ± 0.0000 0.0033 ± 0.0033 0.0645 ± 0.0035 0.1632 ± 0.0051 0.0015 ± 0.0006 0.0015 ± 0.0006 0.0048 ± 0.0023
Mus. 0.0000 ± 0.0000 0.0105 ± 0.0031 0.0238 ± 0.0010 0.1519 ± 0.0128 0.0035 ± 0.0031 0.0035 ± 0.0031 0.1549 ± 0.0139
Nur. 0.0015 ± 0.0015 0.0098 ± 0.0098 0.0248 ± 0.0248 0.0789 ± 0.0789 0.0051 ± 0.0051 0.0051 ± 0.0051 0.0134 ± 0.0061
Def. 0.0001 ± 0.0001 0.0047 ± 0.0010 0.004 ± 0.0013 0.0868 ± 0.0025 0.0001 ± 0.0001 0.0001 ± 0.0001 0.0003 ± 0.0001
Ban. 0.0331 ± 0.0032 0.0768 ± 0.0059 0.0873 ± 0.0016 0.0543 ± 0.0052 0.0540 ± 0.0051 0.0540 ± 0.0051 0.0743 ± 0.0041
Con. 0.0000 ± 0.0000 0.0223 ± 0.0013 0.0396 ± 0.0225 0.0809 ± 0.0035 0.0010 ± 0.0001 0.0010 ± 0.0001 0.0001 ± 0.0001

Data ϕ = 1.0

WGM-IVDTRSC Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

Tic. 0.0036 ± 0.0015 0.0234 ± 0.0182 0.0700 ± 0.0281 0.0909 ± 0.0085 0.0036 ± 0.0015 0.0036 ± 0.0015 0.0036 ± 0.0015
Cmc. 0.0000 ± 0.0000 0.0204 ± 0.0067 0.0428 ± 0.0134 0.0110 ± 0.0042 0.0017 ± 0.0017 0.0017 ± 0.0017 0.0017 ± 0.0017
Car. 0.0184 ± 0.0155 0.0764 ± 0.0474 0.1006 ± 0.0368 0.1607 ± 0.0361 0.0184 ± 0.0155 0.0184 ± 0.0155 0.0184 ± 0.0155
Che. 0.0000 ± 0.0000 0.0033 ± 0.0033 0.0645 ± 0.0035 0.1632 ± 0.0051 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
Mus. 0.0000 ± 0.0000 0.0105 ± 0.0031 0.0238 ± 0.0010 0.1519 ± 0.0128 0.0000 ± 0.0000 0.0000 ± 0.0000 0.1549 ± 0.0139
Nur. 0.0015 ± 0.0015 0.0098 ± 0.0098 0.0248 ± 0.0248 0.0789 ± 0.0789 0.0015 ± 0.0015 0.0015 ± 0.0015 0.0015 ± 0.0015
Def. 0.0001 ± 0.0001 0.0047 ± 0.0010 0.0040 ± 0.0013 0.0868 ± 0.0025 0.0001 ± 0.0001 0.0001 ± 0.0001 0.0001 ± 0.0001
Ban. 0.0000 ± 0.0000 0.0768 ± 0.0059 0.0873 ± 0.0016 0.0543 ± 0.0052 0.0540 ± 0.0051 0.0000 ± 0.0000 0.0540 ± 0.0051
Con. 0.0000 ± 0.0000 0.0223 ± 0.0013 0.0396 ± 0.0225 0.0809 ± 0.0035 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

0.6, 0.8, 1.0 are shown in Table 14, where the underlined symbol
represents the lowest average classification error rate. From Ta-
ble 14, when ϕ = 0.6, it is easy to find that the WGM-IVDTRSC
model performs better than other models. Only on the Tic. data
set, the performance of the WGM-IVDTRSC model is a little bit
worse than that of the MM model. When ϕ = 0.8 and ϕ = 1.0,
we find that the performance of the WGM-IVDTRSC model is the
best on all the data sets. At the same time, we note that the
average classification error rates of the four weighted models
namely WGM-IVDTRSC, AAW, AQW and GEW models decrease
with the increase of information levels. In particular, when the
information level is equal to 1.0, the performances of the AAW,
AQW and GEW models are greatly improved. Moreover, we find
that the performance of the WGM-IVDTRSC model based on the
classification accuracy weighted method is least affected by the
changes of information levels, and it performs exceptionally well.

In order to be more intuitive, the relationships between the
WGM-IVDTRSC method and other methods under different infor-
mation levels are shown in Figs. 5–6. From Fig. 5, it is obvious
that the WGM-IVDTRSC model performs very well when com-
pared it with MM, OM, PM models. As can be seen from Fig. 6,
the four weighted methods perform essentially the same when
the information level is very high namely ϕ = 1.0. However,
with the reduction of requirements, the performances of different
weighted models are gradually reflected. With the decrease of
information levels, the classification error rate is increasing. At
the low information level, the WGM-IVDTRSC model performs
well when compared it with the AAW, AQW and GEW weighted
models.

Similarly, when ϕ = 0.6, the classification error rates of the
WGM-IVDTRSG, MM, OM, PM, AAW, AQW and GEW models are
shown in Table 15. And the average classification error rates of
the WGM-IVDTRSG, MM, OM, PM, AAW, AQW and GEW models
under different information levels are shown in Table 16. Accord-
ing to Tables 15–16, we find that the WGM-IVDTRSG model based
on classification accuracy weighted method performs well when
compared it with non-weighted models and weighted models un-
der different information levels. For more intuitive information,
see Figs. 7–8.

In the same way, the classification error rates of the WGM-
IVDTRSO, MM, OM, PM, AAW, AQW and GEW models under ϕ =

0.6 are shown in Table 17. And the average classification error
rates of the WGM-IVDTRSO, MM, OM, PM, AAW, AQW and GEW
models under different information levels are shown in Table 18.
According to the information in Tables 17–18, we know that
the WGM-IVDTRSO performs well when compared it with other
models under different information levels. Visual representation
is shown in Figs. 9–10.

By comparing the proposed three WGM-IVDTRS models with
the three non-weighted models MM, OM, PM, it is obvious that
the weighted generalized multi-granulation interval-valued
decision-theoretic rough set model based on the classification
accuracy of decision tree learning is an important and feasible
decision model for decision fusion. Moreover, by comparing the
three WGM-IVDTRS model with the three weighted methods
AAW, AQW, GEW, the feasibility and effectiveness of the WGM-
IVDTRS model based on the classification accuracy of decision
tree learning are verified.
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Fig. 5. Comparisons among WGM-IVDTRSC and three non-weighted models.

Fig. 6. Comparisons among WGM-IVDTRSC and three weighted models.

5.3. Comparison of three WGM-IVDTRS models

In order to evaluate the performances of the WGM-IVDTRSC,
WGM-IVDTRSG and WGM-IVDTRSO models and find the criteria
for selecting a suitable decision method under different envi-
ronments, the classification error rates of decision classes are
compared in the three models using the above nine data sets.

First, the average classification error rates of the three WGM-
IVDTRS models under different information levels are shown
in Table 19, where the underline and the wavy line represent
the smallest and the second smallest average classification error
rates, respectively.

From Table 19, when ϕ = 0.6, the WGM-IVDTRSO model
performs better than the WGM-IVDTRSC and WGM-IVDTRSG
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Table 15
The classification error rates under condition parameters (αG, βG) and ϕ = 0.6.
Tic. WGM-IVDTRSG Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0262 0.0524 0.0419 0.1152 0.0457 0.0457 0.1100
40% 0.0524 0.0838 0.1021 0.1728 0.0822 0.0822 0.1545
60% 0.1010 0.1272 0.1167 0.1882 0.1573 0.1573 0.1882
80% 0.0954 0.1294 0.1294 0.1621 0.1348 0.1348 0.1843
100% 0.0908 0.1326 0.1430 0.1649 0.0908 0.0908 0.1952

Cmc. WGM-IVDTRSG Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0034 0.0000 0.0137 0.0068 0.0057 0.0057 0.0068
40% 0.0051 0.0051 0.0221 0.0119 0.0071 0.0071 0.0085
60% 0.0091 0.0045 0.0136 0.0091 0.0103 0.0103 0.0057
80% 0.0025 0.0068 0.0221 0.0034 0.0048 0.0048 0.0102
100% 0.0048 0.0061 0.0353 0.0115 0.0083 0.0083 0.0095

Car. WGM-IVDTRSG Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0145 0.0377 0.0841 0.1304 0.0145 0.0145 0.0290
40% 0.0478 0.0825 0.1375 0.1751 0.0478 0.0478 0.0709
60% 0.0772 0.1043 0.1448 0.1873 0.0772 0.0772 0.0792
80% 0.0839 0.1201 0.1570 0.1975 0.0839 0.0839 0.0810
100% 0.0845 0.1395 0.1505 0.1869 0.0845 0.0845 0.0856

Che. WGM-IVDTRSG Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0579 0.0876 0.0657 0.2034 0.0626 0.0626 0.0360
40% 0.0837 0.1009 0.1894 0.2113 0.1643 0.1643 0.1424
60% 0.0613 0.1127 0.4069 0.1894 0.1466 0.1466 0.2739
80% 0.0767 0.1080 0.1811 0.2140 0.1424 0.1424 0.1213
100% 0.0610 0.1105 0.1827 0.2566 0.1314 0.1314 0.1227

Mus. WGM-IVDTRSG Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0197 0.0339 0.0240 0.1435 0.0213 0.0213 0.1410
40% 0.0098 0.0345 0.0400 0.1391 0.0147 0.0147 0.1468
60% 0.0218 0.0312 0.0382 0.1399 0.0352 0.0352 0.1434
80% 0.0089 0.0323 0.0405 0.1647 0.0112 0.0112 0.1688
100% 0.0220 0.0324 0.0414 0.1620 0.0378 0.0378 0.1643

Nur. WGM-IVDTRSG Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.1316 0.1694 0.2010 0.3094 0.2467 0.2467 0.3346
40% 0.1931 0.2340 0.2593 0.3223 0.3442 0.3442 0.5874
60% 0.2469 0.2786 0.2967 0.3299 0.5614 0.5614 0.6037
80% 0.3040 0.3237 0.3232 0.3333 0.4589 0.4589 0.5573
100% 0.3333 0.3333 0.3333 0.3333 0.6777 0.6777 0.8814

Def. WGM-IVDTRSG Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.1214 0.1235 0.2209 0.2212 0.1214 0.1214 0.1387
40% 0.1167 0.1239 0.2211 0.2212 0.1167 0.1167 0.1356
60% 0.1173 0.1244 0.2211 0.2212 0.1173 0.1173 0.1347
80% 0.1244 0.1260 0.2211 0.2212 0.1244 0.1244 0.1360
100% 0.1255 0.1267 0.2212 0.2212 0.1255 0.1255 0.1369

Ban. WGM-IVDTRSG Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0561 0.0897 0.0960 0.0614 0.0919 0.0919 0.0958
40% 0.0577 0.0931 0.0967 0.0667 0.0927 0.0927 0.0971
60% 0.0578 0.0961 0.0923 0.0680 0.0915 0.0915 0.0942
80% 0.0584 0.0982 0.0954 0.0710 0.0925 0.0925 0.0958
100% 0.0590 0.0989 0.0931 0.0705 0.0926 0.0926 0.0949

Con. WGM-IVDTRSG Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0392 0.0793 0.0702 0.0502 0.0885 0.0650 0.0412
40% 0.0370 0.0778 0.0684 0.0592 0.0852 0.0614 0.0389
60% 0.0390 0.0779 0.0684 0.0735 0.0865 0.0647 0.0396
80% 0.0388 0.0778 0.0688 0.0592 0.0865 0.0643 0.0394
100% 0.0383 0.0779 0.0683 0.0556 0.0862 0.0637 0.0390

models on all the data sets, and the WGM-IVDTRSC model per-

forms better than the WGM-IVDTRSG model except the Cmc.

data set. With the increase of parameter ϕ, the performances

of the WGM-IVDTRSC and WGM-IVDTRSG models have been
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Table 16
The average classification error rates under parameters (αG, βG) and different ϕ.
Data ϕ = 0.6

WGM-IVDTRSG Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

Tic. 0.0636 ± 0.0374 0.0924 ± 0.0400 0.0924 ± 0.0505 0.1517 ± 0.0365 0.1015 ± 0.0558 0.1015 ± 0.0558 0.1526 ± 0.0426
Cmc. 0.0058 ± 0.0033 0.0034 ± 0.0034 0.0244 ± 0.0108 0.0076 ± 0.0042 0.0075 ± 0.0027 0.0075 ± 0.0027 0.0079 ± 0.0022
Car. 0.0495 ± 0.0350 0.0886 ± 0.0509 0.1205 ± 0.0364 0.1639 ± 0.0335 0.0495 ± 0.0350 0.0495 ± 0.0350 0.0573 ± 0.0283
Che. 0.0707 ± 0.0128 0.1001 ± 0.0125 0.2363 ± 0.1706 0.2229 ± 0.0335 0.1134 ± 0.0508 0.1134 ± 0.0508 0.1549 ± 0.1189
Mus. 0.0154 ± 0.0065 0.0328 ± 0.0016 0.0327 ± 0.0087 0.1519 ± 0.0128 0.0245 ± 0.0133 0.0245 ± 0.0133 0.1549 ± 0.0139
Nur. 0.2324 ± 0.1008 0.2513 ± 0.0819 0.2671 ± 0.0661 0.3213 ± 0.0119 0.4621 ± 0.2154 0.4621 ± 0.2154 0.6079 ± 0.2733
Def. 0.1211 ± 0.0044 0.1251 ± 0.0016 0.2210 ± 0.0001 0.2212 ± 0.0000 0.1211 ± 0.0044 0.1211 ± 0.0044 0.1367 ± 0.0020
Ban. 0.0575 ± 0.0014 0.0943 ± 0.0046 0.0945 ± 0.0022 0.0661 ± 0.0047 0.0921 ± 0.0006 0.0921 ± 0.0006 0.0956 ± 0.0014
Con. 0.0381 ± 0.0011 0.0785 ± 0.0007 0.0692 ± 0.0009 0.0618 ± 0.0116 0.0868 ± 0.0016 0.0631 ± 0.0017 0.0400 ± 0.0011

Data ϕ = 0.8

WGM-IVDTRSG Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

Tic. 0.0218 ± 0.0061 0.0924 ± 0.0400 0.0924 ± 0.0505 0.1517 ± 0.0365 0.0269 ± 0.0060 0.0218 ± 0.0061 0.0618 ± 0.0409
Cmc. 0.0000 ± 0.0000 0.0034 ± 0.0034 0.0244 ± 0.0108 0.0076 ± 0.0042 0.0013 ± 0.0013 0.0013 ± 0.0013 0.0029 ± 0.0021
Car. 0.0217 ± 0.0130 0.0886 ± 0.0509 0.1205 ± 0.0364 0.1639 ± 0.0335 0.0217 ± 0.0130 0.0217 ± 0.0130 0.0239 ± 0.0152
Che. 0.0086 ± 0.0086 0.1001 ± 0.0125 0.2363 ± 0.1706 0.2229 ± 0.0335 0.0211 ± 0.0133 0.0211 ± 0.0133 0.0160 ± 0.0144
Mus. 0.0000 ± 0.0000 0.0328 ± 0.0016 0.0327 ± 0.0087 0.1519 ± 0.0128 0.0000 ± 0.0000 0.0000 ± 0.0000 0.1549 ± 0.0139
Nur. 0.1853 ± 0.1479 0.2513 ± 0.0819 0.2671 ± 0.0661 0.3213 ± 0.0119 0.1853 ± 0.1479 0.1853 ± 0.1479 0.3015 ± 0.2563
Def. 0.0494 ± 0.0032 0.1251 ± 0.0016 0.2210 ± 0.0001 0.2212 ± 0.0000 0.0494 ± 0.0032 0.0494 ± 0.0032 0.0757 ± 0.0021
Ban. 0.0405 ± 0.0030 0.0943 ± 0.0046 0.0945 ± 0.0022 0.0661 ± 0.0047 0.0655 ± 0.0043 0.0655 ± 0.0043 0.0887 ± 0.0011
Con. 0.0029 ± 0.0006 0.0785 ± 0.0007 0.0692 ± 0.0009 0.0618 ± 0.0116 0.0175 ± 0.0007 0.0175 ± 0.0007 0.0168 ± 0.0003

Data ϕ = 1.0

WGM-IVDTRSG Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

Tic. 0.0218 ± 0.0061 0.0924 ± 0.0400 0.0924 ± 0.0505 0.1517 ± 0.0365 0.0218 ± 0.0061 0.0218 ± 0.0061 0.0218 ± 0.0061
Cmc. 0.0000 ± 0.0000 0.0034 ± 0.0034 0.0244 ± 0.0108 0.0076 ± 0.0042 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
Car. 0.0217 ± 0.0130 0.0886 ± 0.0509 0.1205 ± 0.0364 0.1639 ± 0.0335 0.0217 ± 0.0130 0.0217 ± 0.0130 0.0217 ± 0.0130
Che. 0.0000 ± 0.0000 0.1001 ± 0.0125 0.2363 ± 0.1706 0.2229 ± 0.0335 0.0086 ± 0.0086 0.0000 ± 0.0000 0.0086 ± 0.0086
Mus. 0.0000 ± 0.0000 0.0328 ± 0.0016 0.0327 ± 0.0087 0.1519 ± 0.0128 0.0000 ± 0.0000 0.0000 ± 0.0000 0.1549 ± 0.0139
Nur. 0.1853 ± 0.1479 0.2513 ± 0.0819 0.2671 ± 0.0661 0.3213 ± 0.0119 0.1853 ± 0.1479 0.1853 ± 0.1479 0.1853 ± 0.1479
Def. 0.0494 ± 0.0032 0.1251 ± 0.0016 0.2210 ± 0.0001 0.2212 ± 0.0000 0.0494 ± 0.0032 0.0494 ± 0.0032 0.0494 ± 0.0032
Ban. 0.0000 ± 0.0000 0.0943 ± 0.0046 0.0945 ± 0.0022 0.0661 ± 0.0047 0.0655 ± 0.0043 0.0655 ± 0.0043 0.0655 ± 0.0043
Con. 0.0029 ± 0.0006 0.0785 ± 0.0007 0.0692 ± 0.0009 0.0618 ± 0.0116 0.0029 ± 0.0006 0.0029 ± 0.0006 0.0029 ± 0.0006

Fig. 7. Comparisons among WGM-IVDTRSG and three non-weighted models.
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Fig. 8. Comparisons among WGM-IVDTRSG and three weighted models.

Fig. 9. Comparisons among WGM-IVDTRSO and three non-weighted models.

greatly improved. The WGM-IVDTRSO model performs better
than the WGM-IVDTRSC and WGM-IVDTRSG models or is as good
as them on all the data sets. What is more, the performance
of the WGM-IVDTRSO model is least affected by the changes of
information levels when compared it with the WGM-IVDTRSC
and WGM-IVDTRSG models.

In order to be more intuitive, the experimental comparison
results are shown in Figs. 11–12. It is important to note that some

classification error rates are too small to be represented on the
figures. Without affecting the logical size of the data, we add
preprocessing to those too small data.

According to the experimental results, from the perspective of
classification error rate, the WGM-IVDTRSO model has the best
performance, the WGM-IVDTRSC model has better performance,
and the performance of WGM-IVDTRSG model is worse than the
other two models.
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Table 17
The classification error rates under condition parameters (αO, βO) and ϕ = 0.6.
Tic. WGM-IVDTRSO Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0000 0.0000 0.0000 0.0314 0.0142 0.0142 0.0105
40% 0.0026 0.0026 0.0105 0.0419 0.0135 0.0135 0.0137
60% 0.0017 0.0017 0.0157 0.0645 0.0189 0.0189 0.0000
80% 0.0000 0.0000 0.0275 0.0562 0.0147 0.0147 0.0098
100% 0.0000 0.0000 0.0355 0.0553 0.0279 0.0279 0.0000

Cmc. WGM-IVDTRSO Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0000 0.0000 0.0068 0.0068 0.0134 0.0134 0.0114
40% 0.0000 0.0000 0.0000 0.0119 0.0117 0.0117 0.0085
60% 0.0000 0.0000 0.0000 0.0091 0.0211 0.0211 0.0000
80% 0.0008 0.0008 0.0000 0.0034 0.0039 0.0039 0.0019
100% 0.0007 0.0007 0.0014 0.0115 0.0050 0.0050 0.0026

Car. WGM-IVDTRSO Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0058 0.0058 0.0406 0.1073 0.0173 0.0173 0.0058
40% 0.0130 0.0130 0.0680 0.1288 0.0389 0.0389 0.0130
60% 0.0068 0.0203 0.0782 0.1178 0.0129 0.0129 0.0068
80% 0.0101 0.0224 0.0644 0.0948 0.0243 0.0243 0.0101
100% 0.0370 0.0278 0.1088 0.1238 0.0567 0.0567 0.0370

Che. WGM-IVDTRSO Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0000 0.0000 0.0063 0.0532 0.0000 0.0000 0.0031
40% 0.0008 0.0008 0.0070 0.0383 0.0156 0.0156 0.0078
60% 0.0005 0.0005 0.0052 0.0438 0.0313 0.0313 0.0016
80% 0.0004 0.0004 0.0043 0.0262 0.0078 0.0078 0.0016
100% 0.0000 0.0000 0.0041 0.0263 0.0063 0.0063 0.0013

Mus. WGM-IVDTRSO Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0062 0.0062 0.0240 0.0640 0.0199 0.0199 0.0089
40% 0.0034 0.0034 0.0246 0.0616 0.0211 0.0211 0.0149
60% 0.0031 0.0031 0.0228 0.0624 0.0199 0.0199 0.0057
80% 0.0031 0.0031 0.0249 0.0659 0.0219 0.0219 0.0077
100% 0.0030 0.0030 0.0246 0.0645 0.0218 0.0218 0.0064

Nur. WGM-IVDTRSO Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0039 0.0093 0.0324 0.1227 0.0189 0.0189 0.0089
40% 0.0004 0.0015 0.0071 0.0810 0.0057 0.0057 0.0027
60% 0.0000 0.0000 0.0000 0.0291 0.0135 0.0135 0.0000
80% 0.0000 0.0000 0.0000 0.0029 0.0097 0.0097 0.0017
100% 0.0000 0.0000 0.0000 0.0000 0.0048 0.0048 0.0000

Def. WGM-IVDTRSO Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0005 0.0007 0.0025 0.0730 0.0495 0.0495 0.0013
40% 0.0008 0.0013 0.0030 0.0810 0.0645 0.0645 0.0033
60% 0.0009 0.0013 0.0034 0.0805 0.0638 0.0638 0.0034
80% 0.0007 0.0011 0.0025 0.0823 0.0647 0.0647 0.0028
100% 0.0008 0.0013 0.0027 0.0765 0.0628 0.0628 0.0027

Ban. WGM-IVDTRSO Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0414 0.0586 0.0769 0.0432 0.0655 0.0655 0.0767
40% 0.0428 0.0641 0.0766 0.0448 0.0675 0.0675 0.0775
60% 0.0429 0.0653 0.0776 0.0465 0.0672 0.0672 0.0775
80% 0.0441 0.0664 0.0786 0.0477 0.0695 0.0695 0.0803
100% 0.0440 0.0670 0.0790 0.0473 0.0684 0.0684 0.0796

Con. WGM-IVDTRSO Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

20% 0.0002 0.0007 0.0132 0.0322 0.0019 0.0019 0.0015
40% 0.0007 0.0010 0.0126 0.0328 0.0059 0.0059 0.0018
60% 0.0006 0.0009 0.0128 0.0402 0.0057 0.0057 0.0015
80% 0.0005 0.0009 0.0119 0.0374 0.0062 0.0062 0.0014
100% 0.0005 0.0009 0.0121 0.0407 0.0064 0.0064 0.0012
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Table 18
The average classification error rates under parameters (αO, βO) and different ϕ.
Data ϕ = 0.6

WGM-IVDTRSO Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

Tic. 0.0013 ± 0.0013 0.0013 ± 0.0013 0.0177 ± 0.0177 0.0479 ± 0.0165 0.0207 ± 0.0072 0.0207 ± 0.0072 0.0068 ± 0.0068
Cmc. 0.0004 ± 0.0004 0.0004 ± 0.0004 0.0034 ± 0.0034 0.0076 ± 0.0042 0.0125 ± 0.0086 0.0125 ± 0.0086 0.0057 ± 0.0057
Car. 0.0214 ± 0.0156 0.0168 ± 0.0110 0.0747 ± 0.0341 0.1118 ± 0.0170 0.0348 ± 0.0219 0.0348 ± 0.0219 0.0214 ± 0.0156
Che. 0.0004 ± 0.0004 0.0004 ± 0.0004 0.0055 ± 0.0014 0.0396 ± 0.0134 0.0156 ± 0.0156 0.0156 ± 0.0156 0.0045 ± 0.0032
Mus. 0.0045 ± 0.0015 0.0045 ± 0.0015 0.0238 ± 0.0010 0.0637 ± 0.0021 0.0208 ± 0.0009 0.0208 ± 0.0009 0.0103 ± 0.0046
Nur. 0.0019 ± 0.0019 0.0046 ± 0.0046 0.0162 ± 0.0162 0.0613 ± 0.0613 0.0118 ± 0.0070 0.0118 ± 0.0070 0.0044 ± 0.0044
Def. 0.0006 ± 0.0001 0.0009 ± 0.0002 0.0029 ± 0.0004 0.0776 ± 0.0046 0.0570 ± 0.0075 0.0570 ± 0.0075 0.0023 ± 0.0010
Ban. 0.0427 ± 0.0013 0.0628 ± 0.0042 0.0777 ± 0.0011 0.0454 ± 0.0022 0.0675 ± 0.0020 0.0675 ± 0.002 0.0784 ± 0.0017
Con. 0.0004 ± 0.0002 0.0008 ± 0.0001 0.0125 ± 0.0006 0.0364 ± 0.0042 0.0041 ± 0.0022 0.0041 ± 0.0022 0.0015 ± 0.0003

Data ϕ = 0.8

WGM-IVDTRSO Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

Tic. 0.0000 ± 0.0000 0.0013 ± 0.0013 0.0177 ± 0.0177 0.0479 ± 0.0165 0.0013 ± 0.0013 0.0177 ± 0.0177 0.0479 ± 0.0165
Cmc. 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0034 ± 0.0034 0.0076 ± 0.0042 0.0066 ± 0.0066 0.0066 ± 0.0066 0.0000 ± 0.0000
Car. 0.0139 ± 0.0139 0.0168 ± 0.0110 0.0747 ± 0.0341 0.1118 ± 0.0170 0.0265 ± 0.0265 0.0265 ± 0.0265 0.0139 ± 0.0139
Che. 0.0000 ± 0.0000 0.0004 ± 0.0004 0.0055 ± 0.0014 0.0396 ± 0.0134 0.0004 ± 0.0004 0.0004 ± 0.0004 0.0004 ± 0.0004
Mus. 0.0000 ± 0.0000 0.0045 ± 0.0015 0.0238 ± 0.0010 0.0637 ± 0.0021 0.0024 ± 0.0010 0.0024 ± 0.0010 0.0057 ± 0.0006
Nur. 0.0000 ± 0.0000 0.0046 ± 0.0046 0.0162 ± 0.0162 0.0613 ± 0.0613 0.0011 ± 0.0011 0.0011 ± 0.0011 0.0020 ± 0.0020
Def. 0.0001 ± 0.0001 0.0009 ± 0.0002 0.0029 ± 0.0004 0.0776 ± 0.0046 0.0068 ± 0.0016 0.0083 ± 0.0021 0.0004 ± 0.0001
Ban. 0.0277 ± 0.0014 0.0628 ± 0.0042 0.0777 ± 0.0011 0.0454 ± 0.0022 0.0438 ± 0.0021 0.0438 ± 0.0021 0.0591 ± 0.0006
Con. 0.0000 ± 0.0000 0.0008 ± 0.0001 0.0125 ± 0.0006 0.0364 ± 0.0042 0.0002 ± 0.0001 0.0002 ± 0.0001 0.0000 ± 0.0000

Data ϕ = 1.0

WGM-IVDTRSO Non-weighted models Other weighted models

MM OM PM AAW AQW GEW

Tic. 0.0000 ± 0.0000 0.0013 ± 0.0013 0.0177 ± 0.0177 0.0479 ± 0.0165 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
Cmc. 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0034 ± 0.0034 0.0076 ± 0.0042 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
Car. 0.0139 ± 0.0139 0.0168 ± 0.0110 0.0747 ± 0.0341 0.1118 ± 0.0170 0.0139 ± 0.0139 0.0139 ± 0.0139 0.0139 ± 0.0139
Che. 0.0000 ± 0.0000 0.0004 ± 0.0004 0.0055 ± 0.0014 0.0396 ± 0.0134 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
Mus. 0.0000 ± 0.0000 0.0045 ± 0.0015 0.0238 ± 0.0010 0.0637 ± 0.0021 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
Nur. 0.0000 ± 0.0000 0.0046 ± 0.0046 0.0162 ± 0.0162 0.0613 ± 0.0613 0.0005 ± 0.0005 0.0005 ± 0.0005 0.0005 ± 0.0005
Def. 0.0001 ± 0.0001 0.0009 ± 0.0002 0.0029 ± 0.0004 0.0776 ± 0.0046 0.0001 ± 0.0001 0.0001 ± 0.0001 0.0001 ± 0.0001
Ban. 0.0000 ± 0.0000 0.0628 ± 0.0042 0.0777 ± 0.0011 0.0454 ± 0.0022 0.0000 ± 0.0000 0.0438 ± 0.0021 0.0438 ± 0.0021
Con. 0.0000 ± 0.0000 0.0008 ± 0.0001 0.0125 ± 0.0006 0.0364 ± 0.0042 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

Fig. 10. Comparisons among WGM-IVDTRSO and three weighted models.
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Table 19
The average error rates of three WGM-IVDTRS.
Data ϕ = 0.6

WGM-IVDTRSC WGM-IVDTRSG WGM-IVDTRSO

Tic.
⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0281 ± 0.0124 0.0636 ± 0.0374 0.0013 ± 0.0013

Cmc. 0.0062 ± 0.0028 0.0058 ± 0.0033 0.0004 ± 0.0004
Car.

⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0443 ± 0.0356 0.0495 ± 0.0350 0.0214 ± 0.0156

Che.
⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0024 ± 0.0015 0.0707 ± 0.0128 0.0004 ± 0.0004

Mus.
⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0080 ± 0.0018 0.0154 ± 0.0065 0.0045 ± 0.0015

Nur.
⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0061 ± 0.0061 0.2324 ± 0.1008 0.0019 ± 0.0019

Def.
⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0009 ± 0.0002 0.1211 ± 0.0044 0.0006 ± 0.0001

Ban.
⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0494 ± 0.0028 0.0575 ± 0.0014 0.0427 ± 0.0013

Con.
⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0032 ± 0.0015 0.0381 ± 0.0011 0.0004 ± 0.0002

Data ϕ = 0.8

WGM-IVDTRSC WGM-IVDTRSG WGM-IVDTRSO

Tic.
⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0036 ± 0.0015 0.0218 ± 0.0061 0.0000 ± 0.0000

Cmc. 0.0017 ± 0.0017 0.0000 ± 0.0000 0.0000 ± 0.0000
Car.

⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0184 ± 0.0155 0.0217 ± 0.0130 0.0139 ± 0.0139

Che. 0.0000 ± 0.0000 0.0086 ± 0.0086 0.0000 ± 0.0000
Mus. 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
Nur.

⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0015 ± 0.0015 0.1853 ± 0.1479 0.0000 ± 0.0000

Def. 0.0001 ± 0.0001 0.0494 ± 0.0032 0.0001 ± 0.0001
Ban.

⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0331 ± 0.0032 0.0405 ± 0.003 0.0277 ± 0.0014

Con. 0.0000 ± 0.0000 0.0029 ± 0.0006 0.0000 ± 0.0000

Data ϕ = 1.0

WGM-IVDTRSC WGM-IVDTRSG WGM-IVDTRSO

Tic.
⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0036 ± 0.0015 0.0218 ± 0.0061 0.0000 ± 0.0000

Cmc. 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
Car.

⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0184 ± 0.0155 0.0217 ± 0.0130 0.0139 ± 0.0139

Che. 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
Mus. 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
Nur.

⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓
0.0015 ± 0.0015 0.1853 ± 0.1479 0.0000 ± 0.0000

Def. 0.0001 ± 0.0001 0.0494 ± 0.0032 0.0001 ± 0.0001
Ban. 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
Con. 0.0000 ± 0.0000 0.0029 ± 0.0006 0.0000 ± 0.0000

Fig. 11. Comparisons among WGM-IVDTRSC, WGM-IVDTRSG and WGM-IVDTRSO under ϕ = 0.6.
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Fig. 12. Comparisons among three WGM-IVDTRS models under different information levels ϕ.

5.4. Experimental summary

The classification accuracy weighted method is a feasible and
effective granulation weighted method from the point of view of
classification error rate by comparing it with different weighted
methods. And the weighted generalized multi-granulation
interval-valued decision-theoretic rough set models based on the
classification accuracy weighted method are important decision
models. They provide methods for multi-granulation fusion and
decision making. According to the comparison results of three
WGM-IVDTRS models, we can choose different models in differ-
ent circumstances. When decision makers can accept any value
of an interval that can be used to represent the interval, the
WGM-IVDTRSO model based on optimization method has the
lowest classification error rate. This means that when people
accept interval numbers as the extensibility and fault tolerance
of information granulation, the WGM-IVDTRSO model is our
best choice. Then for the moderate risk preference, the WGM-
IVDTRSC model and WGM-IVDTRSG can meet our needs. And the
WGM-IVDTRSC model is a relatively good choice. Of course, the
WGM-IVDTRSG model can also be used as a decision analysis
method in situations where certain error rate can be accepted.

The WGM-IVDTRS models in this paper mainly focus on the
determination of decision risk parameters α, β and the granu-
lation weighted method. The influence of information levels on
model classification performance can be further studied. How to
choose the information level, i.e. the number of granulations, is
also an important research topic under certain model classifi-
cation requirements. The influences of decision risk parameters,
information levels and granulation weights on the performance
of the model need further systematic study.

6. Conclusions

Weighted multi-granulation rough set theory as a multi-view
data analysis method can effectively mine knowledge from data.

Therefore, this paper introduces weighted generalized multi-
granulation rough sets into the decision-theoretic rough set model
to explore decision making problems of multi-source decision
systems with different attribute sets. Considering the limitation
of the actual conditions and the imprecision of expert evalua-
tions, in this paper we express the loss function with intervals.
The main work of this paper is to propose a new granulation
weighted method based on the classification accuracy of deci-
sion tree learning from the point of view of machine learning,
and construct the basic form of weighted generalized multi-
granulation interval-valued decision-theoretic rough sets (WGM-
IVDTRS). Meanwhile, three types of the WGM-IVDTRS model
are proposed based on three different parameter determination
methods. Finally, three WGM-IVDTRS models are proved to be an
important, feasible and effective decision models by comparing
them with other multi-granulation decision models. And the third
type of the WGM-IVDTRS model (WGM-IVDTRSO) is found to
perform best in terms of classification error rate by numerical
experimental analysis when people accept the range scalability
and fault tolerance of intervals. Therefore, it is meaningful to
combine human cognitive ability with machine learning ability.
In the future, based on multi-granulation theory and machine
learning methods (fuzzy decision tree, recurrent neural network
and deep neural network), we will study information fusion
and decision-making of multi-source fuzzy data, multi-source
dynamic data and multi-modal data. By combining the respective
advantages of machine learning methods and multi-granulation
theory, new models can be developed to accommodate more
complex data environment of contemporary times, which can
help people mine data and discover knowledge.
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