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Abstract
The multi-covering rough sets (MCRSs) are a popular aspect of rough sets. It is easy to see that classical rough sets, covering 
rough sets (CRSs) and multi-granulation rough sets (MGRSs) are all the special cases of the MCRSs. Recently, the algebraic 
theory of these rough set models mentioned above have been researched in detail. However, the algebraic theory of MCRSs 
has not been studied until now. It is necessary for researchers to explore the algebraic theory of MCRSs. In this paper, we 
focus on the operation and algebraic theories of two types of MCRS models. First, the properties of the two types of multi-
covering set approximations are discussed. Especially, the properties of multi-covering approximation operators based on 
the unary coverings are deeply researched. Second, the operation properties with respect to intersection and union of MCRSs 
are researched. Meanwhile, to compute the intersection and union of MCRSs, several algorithms are constructed. Finally, 
on the basis of the operation properties of MCRSs, many meaningful algebraic properties of MCRSs are deeply studied.

Keywords  Rough sets · Covering · Unary · Operation properties · Algebraic properties

1  Introduction

According to an equivalence of the universe, the rough set 
theory was proposed by Pawlak (1982). At present, rough set 
is one of the most effective ways to deal with complicated 
and massive data. Meanwhile, this theory is a very excellent 
method to solve issues of granular computing (Pedrycz and 
Chen 2011, 2015a, b). Rough sets have been widely used in 
lots of fields such as uncertainty management, feature acqui-
sition, data processing. (Polkowski and Skowron 1998a, b, 

c; Pomkala 1988; Wu and Zhang 2006; Yao and Chen 2005; 
Zhang et al. 2003; Zhu and Wang 2006, 2011).

Based on the considerations of granular computing, schol-
ars usually regard an equivalence relation as a granularity. 
As we all know, the upper and lower approximations defined 
by an equivalence play a key role in rough sets. There is no 
doubt that the single granular structure of classical rough 
sets is a very fatal shortcoming. Clearly, the classical rough 
set theory is unable to solve many problems, which are 
related to multiple granular structures (Apolloni et al. 2016). 
Therefore, Qian et al. (2005, 2010) generated classical rough 
sets to the optimistic and pessimistic MGRSs, where the 
set approximations are constructed based on more than one 
equivalence relation. Now, lots of scholars are focusing on 
the developments of MGRS models (Kong and Wei 2017; 
Li et al. 2016; Lin et al. 2012; Xu and Guo 2016). For exam-
ple, based on the incomplete information system, Yang et al. 
(2012) discussed the incomplete MGRS model. Xu et al. 
(2012) studied the multi-granulation rough sets using of 
the tolerance relations. Meanwhile, Xu et al. (2013) also 
deeply studied the MGRSs according to the ordered rela-
tion. From the neighborhood point of view, Lin et al. (2012) 
investigated neighborhood MGRSs. Yao and She (2016) 
further studied MGRSs and suggested two types of rough 
set models using of equivalence relations depended on set 
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union and intersection, respectively. What is more, Li et al. 
(2017) investigated the three-way cognitive concept learning 
with respect to multiple granularity. In addition, according 
to MGRSs, many authors (Wang et al. 2017; Xu and Wang 
2016; Xu et al. 2017; Liang et al. 2018) researched how to 
select the optimal one from multiple granularities.

In addition, we know that classical rough sets are devel-
oped based on an equivalence relation. However, according 
to the attribute subset, there is no guarantee that we will get 
an equivalence relation every time. To improve the draw-
back, many meaningful relations have been proposed to gen-
eralize Pawlak rough set model, such as similarity relations, 
neighborhood relations, and tolerance relations (Skowron 
and Stepaniuk 1996; Slowinski and Vanderpooten 2000; Yao 
and Lin 1996; Yao 1998). Zakowski (1983) has proposed the 
notion of covering and established the CRS theory. It is very 
meaningful and necessary to research the covering-based 
rough sets (Dai et al. 2014; D’eer et al. 2016; Ge et al. 2017; 
Kong and Xu 2018b; Xu and Zhang 2007; Yang and Zhu 
2014). Yao (1998, 2003) first proposed two types of rough 
set approximation operators based on duality and studied the 
corresponding properties. Meanwhile, according to the tol-
erance relations, Pomy Kala and Pomy Kala (1988) further 
explored additional pairs of dual set approximations. In addi-
tion, Zhu (2007) also studied several types of approximation 
operators and discussed their interrelationships. At the same 
time, many researchers (Chen et al. 2017; Lang and Miao 
2016; Lang et al. 2015; Wang et al. 2015) investigated the 
attribute reduction of CRSs or covering decision informa-
tion systems.

According to the MGRSs and the CRSs, it is necessary 
for us to study multi-covering rough sets (MCRSs). At pre-
sent, lots of authors are doing research on MCRSs (Liu et al. 
2014). For example, Wang et al. (2013) developed five types 
of optimistic and pessimistic MCRS models, and further 
discussed the relationships among them. Meanwhile, based 
on the specific practical backgrounds, Lin et al. (2013) con-
structed several types of MCRS models using different lower 
and upper set approximations. Moreover, according to the 
minimal and maximal descriptions, Liu et al. (2014) con-
structed several types of MCRS models. In addition, Lang 
et al. (2017, 2018) studied the knowledge reducts of CRSs 
in dynamic contexts.

At the same time, we note that the algebraic theory of 
rough sets theory was first explored by Iwiński (1987). Since 
then, many scholars have been working on the operation 
theory and the corresponding algebraic theory of classi-
cal rough sets (Pagliani 1996; Yao 1998). For instance, Li 
(2002) investigated many meaningful algebraic theory of 
classical rough sets in detail. Then Kong and Xu (2018a, 
b) studied the algebraic properties of CRSs and MGRSs, 
respectively. However, until now, no one has been engaged 
in the exploration of algebraic theory of MCRSs. According 

to the above discussion, it is necessary and important for us 
to study the algebraic properties of MCRSs.

Here, we concentrates on the study of the operation and 
algebraic theory of MCRSs, and is organized as follows. In 
Sect. 2, many important concepts of MGRSs and CRSs are 
recalled. In Sect. 3, the properties of the first type of multi-
covering approximation operators are discussed. Especially, 
the intersection and union operations and the correspond-
ing operation properties with respect to minimally unary 
MCRSs are explored. In Sect. 4, the properties of the second 
type of multi-covering approximation operators are investi-
gated. Furthermore, based on maximally unary multi-cover-
ing, the intersection and union operations and corresponding 
operation theory of the second type of MCRSs are studied. 
In Sect. 5, according to the operation properties of MCRSs, 
the algebraic theory of MCRSs is deeply researched. Finally, 
in Sect. 6, we conclude this study.

2 � Preliminaries

In this section, many important notions of MCRSs and CRSs 
are recalled. More concepts can be found in references (Chen 
et al. 2007; Zakowski 1983; Zhu and Wang 2006).

2.1 � Multi‑granulation rough sets

Suppose that (U,ℝ) is an approximation space, where 
U = {a1, a2,… , an} is the universe; and ℝ={R1,R2,… ,Rm} 
is a set of the equivalence relations. Meanwhile, 
[a]R = {b|(a, b) ∈ R} is the equivalence class of a ∈ U.

Definition 2.1  (Qian et al. 2005) Suppose that (U,ℝ) is 
an approximation space, R1,R2,… ,Rm ⊆ ℝ , and A ⊆ U . 
Denote

we, respectively, call OM∑m

i=1
Ri
(A) and OM∑m

i=1
Ri
(A) the opti-

mistic lower and upper approximations of A with respect to 
(U,ℝ).

Definition 2.2  (Qian et al. 2010) Suppose that (U,ℝ) is 
an approximation space, R1,R2,… ,Rm ⊆ ℝ , and A ⊆ U . 
Denote

OM∑m

i=1
Ri
(A) =

�
a ∣ ∨m

i=1
([a]Ri

⊆ A)
�
;

OM∑m

i=1
Ri
(A) = ∼ OM∑m

i=1
Ri
(∼ A)

PM∑m

i=1
Ri
(A) =

�
x ∣ ∧m

i=1
([a]Ri

⊆ A)
�
;

PM∑m

i=1
Ri
(A) = ∼ PM∑m

i=1
Ri
(∼ A),

Author's personal copy



379Granular Computing (2019) 4:377–390	

1 3

we, respectively, call PM∑m

i=1
Ri
(A) and PM∑m

i=1
Ri
(A) the pes-

simistic lower and upper approximations of A with respect 
to (U,ℝ).

2.2 � Covering 

In this part, some necessary concepts of CRSs are recalled.

Definition 2.3  (Zhu and Wang 2006) Suppose that U is 
a universe of discourse, and  is a family of subsets of U. 
We call  a covering of U, if no subset in  is empty and 
∪ = U . Meanwhile, we call (U,) a covering approxima-
tion space.

Definition 2.4  (Yao and Yao 2012) Suppose that  is a 
covering of U, we call ℂ(, a) a neighborhood system of 
a ∈ U , and ℂ(, a) is constructed as follows:

Definition 2.5   (Zhu 2007) Suppose that  is a covering of 
U and a ∈ U , then we call md(a) the minimal description of 
a, and md(a) is constructed as follows:

Definition 2.6    (Zhu 2007) Suppose that  is a covering of 
U. For each a ∈ U, |md(x)| = 1 , then we call  the minimally 
unary covering of U.

Definition 2.7   (Zhu and Wang 2006) Suppose that  is a 
covering of U and a ∈ U , then we call MD(a) the maximal 
description of a, and MD(a) is constructed as follows:

ℂ(, a) = {K ∈ |a ∈ K}.

md(a) = {K ∈ ℂ(, a)|(∀S ∈ ℂ(, a))(S ⊆ K ⇒ K = S)}.

Definition 2.8  Suppose that  is a covering of U. For each 
a ∈ U, |MD(a)| = 1 , then we call  the maximally unary 
covering of U.

2.3 � Multi‑covering

Let U be a nonempty finite set, � = {1,2,… ,m} a family 
of covering of U with i = {Ki1,Ki2,… ,Ki|i|} , ℭ is defined 
by  ℭ = {K

11

,K
12

,… ,K
1|

1

|,K21

,K
22

,… ,K
2|

2

|,… ,Km1,

Km2,… ,Km|m|}.

Definition 2.9  Suppose that U is a nonempty finite set, 
� = {1,2,… ,m} is a family of covering of U with 
i = {Ki1,Ki2,… ,Ki|i|} , we call (U,�) the multi-covering 
approximation space (MCAS). If ℭ is a minimally (maxi-
mally) unary covering of U, then we call (U,�) the mini-
mally (maximally) unary MCAS.

For each a ∈ U , we denote (�, a) = {Kij ∈ i|a ∈ Kij, i =

1, 2,… ,m, j = 1, 2,… , |i|} for simplicity. If ℭ is a mini-
mally unary covering of U, for each Kij ∈ (�, a) , there must 
exist Kmin

a
∈ (�, a) such that Kmin

a
⊆ Kij . For A ⊆ U , denote 

�
min

A
= {Kmin

a1
,Kmin

a2
,… ,Kmin

as
} , where �min

A
 satisfies two con-

ditions: (1) For ∀Kmin
ai

,Kmin
aj

∈ �
min

A
 , we have Kmin

ai
= Kmin

aj
 or 

Kmin
ai

∩ Kmin
aj

= � ; (2) 
⋃s

i=1
Kmin
ai

= A . If ℭ is a maximally 

unary covering of U, for each Kij ∈ (�, a) , there must exist 
Kmax
a

∈ (�, a) such that Kij ⊆ Kmax
a

.

Example 2.1  The universe U = {a1, a2,… , a6} stands 
for six persons. A covering of U about colors is given in 

MD(a) = {K ∈ ℂ(, a)|(∀S ∈ ℂ(, a))(K ⊆ S ⇒ K = S)}.

Table 1   A covering about 
colors

U Maroon Scarlet Dun Reddish

x
1

Yes No No No
x
2

Yes No Yes No
x
3

No Yes No Yes
x
4

Yes No Yes No
x
5

No No Yes No
x
6

No No No Yes

Table 2   A covering about auto 
brands

U Honda Peugeot Cadillac Buick

x
1

No Yes No No
x
2

Yes Yes Yes No
x
3

No No Yes No
x
4

Yes Yes Yes No
x
5

No No Yes No
x
6

No Yes No Yes
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Table 1.“Yes” means that the person likes this color.“No” 
means that the person does not like this color.

Denote KM = {a1, a2, a4} , KS = {a3} , KD = {a2, a4, a5} , 
KR = {a3, a6} . Clearly, 1 = {KM,KS,KD,KR} is a covering 
of U.

A covering of U about auto brands is given in Table 2.“Yes” 
means that the person likes this auto brand.“No” means that 
the person does not like this auto brand.

Denote KH = {a2, a4} , KP = {a1, a2, a4, a6} , KC

= {a
2

,

a
3

, a
4

, a
5

} , KB = {a6} . Clearly, 2 = {KH,KP,KC,KB} is a 
covering of U.

Let � = {1,2} , it can be found that ℭ = {K
M

,K
S

,K
D

,

K
R

,K
H

,K
P

,K
C

,K
B
} is a minimally unary covering of U. 

Then, (U,�) is a minimally unary MCAS. For a2 ∈ U , we 
have (�, a2) = {KM,KD,KH,KP,KC} , it is clear that 
Kmin
a2

= KH.

Example 2.2  Here, we will replace Tables 1 and 2 in Exam-
ple 2.1 with Tables 3 and 4 presented below, respectively.

Denote KM = {a1, a2, a3} , KS = {a1, a2} , KD = {a4, a5} , 
KR = {a4, a6} . Clearly, 1 = {KM,KS,KD,KR} is a covering 
of U.

Denote KH = {a2, a3} , KP = {a1} , KC = {a4, a5, a6} , 
KB = {a5, a6} . Clearly, 2 = {KH,KP,KC,KB} is a covering 
of U.

Let � = {1,2} , it can be found that ℭ = {K
M

,K
S

,K
D

,

K
R

,K
H

,K
P

,K
C

,K
B
} is a maximally unary covering of U. 

Then, (U,�) is a maximally unary MCAS. For a2 ∈ U , we 
have (�, a2) = {KM,KS,KH} , it is clear that Kmax

a2
= KM.

3 � The first type of MCRSs

In this part, we will investigate the first type of MCRSs, which 
was first proposed by Lin et al. (2013). Here, we further dis-
cuss the properties of the first type of MCRSs, and then present 
the definitions of intersection and union on the first type of 
MCRSs. Finally, we study the corresponding operation theory.

Definition 3.1  (Lin et al. 2013) Let (U,�) be a MCAS, 
and � = {1,2,… ,m} a family of coverings of U with 
i = {Ki1,Ki2,… ,Kiti

} , and A ⊆ U . Denote

we, respectively, call FM∑m

i=1
Ci
(A) and FM∑m

i=1
Ci
(A) the first 

type of multi-covering lower and upper approximations of 
A with respect to (U,�).

For A ⊆ U  , we call (FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A)) the  

first type of multi-covering rough set of A. Thus, 
ℂ

F = {(FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A))�A ⊆ U} is all of the first 

type of MCRSs with respect to (U,�).

3.1 � The first type of multi‑covering approximation 
operators

In this part, we will study the properties of the first type of 
multi-covering approximation operators in a MCAS.

FM∑m

i=1
Ci
(A) = ∪{Kij ∈ i� ∨ (Kij ⊆ A),

i ∈ {1, 2,… ,m}, j = 1, 2,… , �i�},

FM∑m

i=1
Ci
(A) =∼ FM∑m

i=1
Ci
(∼ A)

Table 3   A covering about 
colors

U Maroon Scarlet Dun Reddish

x
1

Yes Yes No No
x
2

Yes Yes No No
x
3

Yes No No No
x
4

No No Yes Yes
x
5

No No Yes No
x
6

No No No Yes

Table 4   A covering about auto 
brands

U Honda Peugeot Cadillac Buick

x
1

No Yes No No
x
2

Yes No No No
x
3

Yes No No No
x
4

No No Yes No
x
5

No No Yes Yes
x
6

No No Yes Yes
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Proposition 3.1  (Lin et al. 2013) Let (U,�) be a MCAS 
and A,B ⊆ U , then we have that

(1) FM∑m

i=1
Ci
(U) = FM

∑m

i=1
Ci
(U) = U, FM

∑m

i=1
Ci
(�) =

FM
∑m

i=1
Ci
(�) = �;

(2) FM∑m

i=1
Ci
(A) ⊆ A ⊆ FM∑m

i=1
Ci
(A);

(3) FM∑m

i=1
Ci
(FM∑m

i=1
Ci
(A)) = FM

∑m

i=1
Ci
(A), FM

∑m

i=1
Ci

(FM∑m

i=1
Ci
(A)) = FM

∑m

i=1
Ci
(A);

(4) FM∑m

i=1
Ci
(A) =∼ FM

∑m

i=1
Ci
(∼ A), FM

∑m

i=1
Ci
(A) =

∼ FM
∑m

i=1
Ci
(∼ A);

(5) FM∑m

i=1
Ci
(A ∩ B) ⊆ FM

∑m

i=1
Ci
(A) ∩ FM

∑m

i=1
Ci
(B),

FM∑m

i=1
Ci
(A ∪ B) ⊇ FM

∑m

i=1
Ci
(A) ∪ FM

∑m

i=1
Ci
(B);

(6)A ⊆ B ⇒ FM
∑m

i=1
Ci
(A) ⊆ FM

∑m

i=1
Ci
(B) and FM∑m

i=1
Ci
(A) ⊆

FM
∑m

i=1
Ci
(B).

Proposition 3.2  Let (U,�) be a MCAS. For each K ∈ ℭ

,then, we have that

(1) FM∑m

i=1
Ci
(K) = K;

(2)FM∑m

i=1
Ci
(∼ K) =∼ K.

Proof  We can prove the proposition by Definition 3.1 and 
Proposition 3.1. 	�  □

Proposition 3.3  Let (U,�)be a minimally unary MCAS 
and A,B ⊆ U , then

(1) FM∑m

i=1
Ci
(A ∩ B) = FM∑m

i=1
Ci
(A) ∩ FM∑m

i=1
Ci
(B);

(2)FM∑m

i=1
Ci
(A ∪ B) = FM∑m

i=1
Ci
(A) ∪ FM∑m

i=1
Ci
(B).

Proof 

(1)	 (⇒ ): It is clear by Proposition 3.1. ( ⇐ ): For each 
a ∈ FM∑m

i=1
Ci
(A) , there is a K ∈ ℭ such that a ∈ K ⊆ A . 

Then we have that a ∈ Kmin
a

⊆ A . Similarly, for each 
a ∈ FM∑m

i=1
Ci
(B) , it can be found that a ∈ Kmin

a
⊆ B . 

Thus, a ∈ Kmin
a

⊆ A ∩ B . By Definition 3.1, we have 
that a ∈ FM∑m

i=1
Ci
(A ∩ B).

(2)	 It is immediate by Definition 3.1 and Proposition 3.1. 	
� □

Now, we provide an example to further explain Proposi-
tion 3.3.

Example 3.1  (Continued from Example 2.1) For A = {a
2

,

a
4

, a
6

} , B = {a1, a2, a4, a5} , we have that FM
C
1

+C
2

(A) =

{a
2

, a
4

, a
6

}, FMC
1

+C
2

(B) = {a
1

, a
2

, a
4

}  .  M e a n w h i l e , 

FMC
1

+C
2

(A ∩ B) = {a
2

, a
4

} . Then, FM
C
1

+C
2

(A ∩ B) = FM
C
1

+C
2

(A) ∩ FM
C
1

+C
2

(B).

At the same time, we have FMC
1

+C
2

(A) = {a
1

, a
2

, a
4

, a
5

,

a
6

}, FMC
1

+C
2

(B) = {a1, a2, a4, a5} . In addition, FMC
1

+C
2

(A ∪ B) = {a
1

,

a
2

, a
4

, a
5

, a
6

} .  Hence,  FM
C
1

+C
2

(A ∪ B) = FM
C
1

+C
2

(A)∪

FM
C
1

+C
2

(B).

Proposition 3.4  Let (U,�) be a minimally unary MCAS 
and a ∈ FM∑m

i=1
Ci
(A), then Kmin

a
⊆ FM∑m

i=1
Ci
(A).

Proof  For a ∈ FM∑m

i=1
Ci
(A) , there is a K ∈ ℭ such that 

a ∈ K ⊆ A . It follows that a ∈ Kmin
a

⊆ A . By Proposition 3.1 
and Proposition 3.2, we have that a ∈ Kmin

a
= FM∑m

i=1
Ci

(Kmin
a

) ⊆ FM∑m

i=1
Ci
(A) . i.e.,Kmin

a
⊆ FM∑m

i=1
Ci
(A) . 	�  □

Proposition 3.5  Let (U,�) be a minimally unary MCAS 
and A,B ⊆ U , then

(1) FM∑m

i=1
Ci
(FM∑m

i=1
Ci
(A) ∪ FM

∑m

i=1
Ci
(B)) = FM

∑m

i=1
Ci

(A) ∪ FM
∑m

i=1
Ci
(B);

(2) FM∑m

i=1
Ci
(FM∑m

i=1
Ci
(A) ∩ FM

∑m

i=1
Ci
(B)) = FM

∑m

i=1
Ci

(A) ∩ FM
∑m

i=1
Ci
(B);

(3)FM∑m

i=1
Ci
(FM∑m

i=1
Ci
(A) ∪ FM

∑m

i=1
Ci
(B)) = FM

∑m

i=1
Ci

(A) ∪ FM
∑m

i=1
Ci
(B);

(4)FM∑m

i=1
Ci
(FM∑m

i=1
Ci
(A) ∩ FM

∑m

i=1
Ci
(B)) = FM∑m

i=1
Ci

(A) ∩ FM
∑m

i=1
Ci
(B).

Proof  It is immediate from Definition 3.1, Propositions 3.1 
and 3.4. 	� □

Proposition 3.6  Let (U,�) be a minimally unary MCAS, 
a ∈ Uand A ⊆ U . If Kmin

a
= {a} and a ∈ FM∑m

i=1
Ci
(A) . Then 

we have that a ∈ FM∑m

i=1
Ci
(A).

Proof  Since a ∈ FM∑m

i=1
Ci
(A) , we can find that a ∈∼

FM
∑m

i=1
Ci
(∼ A) . Thus, a ∈ {a} = Kmin

a
⊈∼ A . Therefore, we 

have that a ∈ {a} = Kmin
a

⊆ A . i.e., a ∈ FM∑m

i=1
Ci
(A) . 	� □
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3.2 � Operation properties of the first type of MCRSs

In this part, we will research the operations of intersection 
and union on MCRSs. We first propose the concepts of inter-
section and union of MCRSs.

Definition 3.2  Let (U,�) be a MCAS. For any (FM∑m

i=1
Ci

(A), FM∑m

i=1
Ci
(A)), (FM∑m

i=1
Ci
(B), FM∑m

i=1
Ci
(B)) ∈ ℂ

F  ,  t he 

intersection and union of them are constructed as follows.

(1)  (FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A)) ∩ (FM∑m

i=1
Ci
(B), FM∑m

i=1
Ci

(B)) = (FM∑m

i=1
Ci
(A) ∩ FM

∑m

i=1
Ci
(B), FM∑m

i=1
Ci
(A) ∩ FM

∑m

i=1
Ci
(B));

(2)  (FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A)) ∪ (FM∑m

i=1
Ci
(B), FM∑m

i=1
Ci

(B)) = (FM∑m

i=1
Ci
(A) ∪ FM

∑m

i=1
Ci
(B),FM∑m

i=1
Ci
(A) ∪ FM

∑m

i=1
Ci
(B)).

Is the first type of MCRSs closed under set intersection 
and union? Now, we will provide an example to answer this 
question.

Example 3.2  Let U = {a
1

, a
2

,… , a
6

},
1

= {{a
1

, a
2

, a
4

},

{a
2

, a
3

, a
4

, a
5

}, {a
5

, a
6

}},
2

= {{a
2

, a
4

}, {a
1

, a
3

, a
4

, a
5

}, {a
4

,

a
6

}} . For A = {a2, a4, a6} , B = {a3, a5, a6} , we have that 
FMC1+C2

(A) = {a2, a4, a6}, FMC1+C2
(B) = {a5, a6} ,  a n d 

FMC1+C2
(A) ∩ FMC1+C2

(B) = {a6} . Clearly, there is no way 

to find a subset E ⊆ U such that FM
C
1

+C
2

(E) = FM
C
1

+C
2

(A) ∩ FM
C
1

+C
2

(B).

Example 3.2 shows that the first type of MCRSs is not 
closed under set intersection. Similarly, the first type of 
MCRSs is not closed under set union.

Proposition 3.7  Let (U,�) be a minimally unary MCAS, 
A,B ⊆ Uand for ∀a, b ∈ U , we have Kmin

a
= Kmin

b
or 

Kmin
a

∩ Kmin

b
= � . Then, the first type of MCRSs is closed 

under set intersection.

Proof  Denote M = M2∕M1 , where M
1

= FM
∑m

i=1
Ci
(A)∩

FM
∑m

i=1
Ci
(B) , and M2 = FM∑m

i=1
Ci
(A) ∩ FM∑m

i=1
Ci
(B) . Let 

 = {Kmin
a

|a ∈ M,Kmin
a

∩M1 = �} and �

= {Kmin
ai

|ai ∈

M, i = 1, 2,… , s} , where ′ must satisfy the following  
conditions: (a) ′

⊆  ; (b) For any two elements of ′ , 
the intersection of them is empty; (c) For each Kmin

a
∈  , 

we can find Kmin
ai

∈ 
� such that Kmin

ai
⊆ Kmin

a
 . Denote 

K = {ai|Kmin
ai

∈ 
�

, i = 1, 2,… , s} , E = M1 ∪ K.

First, we will prove that FM∑m

i=1
Ci
(E) = FM

∑m

i=1
Ci
(A)∩

FM
∑m

i=1
Ci
(B).

For each a ∈ FM∑m

i=1
Ci
(E) , by Definition 3.1, Proposition 

3.6 and construction of E, we have that a ∈ Kmin
a

⊆ FM∑m

i=1
Ci

(A) ∩ FM
∑m

i=1
Ci
(B) .  Thus,  FM

∑m

i=1
Ci
(E) ⊆ FM

∑m

i=1
Ci
(A)∩

FM
∑m

i=1
Ci
(B).

From the construction of E, we have FM∑m

i=1
Ci
(A)∩

FM
∑m

i=1
Ci
(B) ⊆ E . By Propositions 3.1 and 3.5, it is clear  

that FM∑m

i=1
Ci
(A) ∩ FM

∑m

i=1
Ci
(B) = FM

∑m

i=1
Ci
(FM∑m

i=1
Ci
(A)∩

FM
∑m

i=1
Ci
(B)) ⊆ FM

∑m

i=1
Ci
(E) . We have that FM∑m

i=1
Ci
(A)∩

FM
∑m

i=1
Ci
(B) ⊆ FM

∑m

i=1
Ci
(E) . Therefore, FM∑m

i=1
Ci
(E) =

FM∑m

i=1
Ci
(A) ∩ FM

∑m

i=1
Ci
(B).

Second, we will prove that FM∑m

i=1
Ci
(E) = FM∑m

i=1
Ci
(A)

∩FM∑m

i=1
Ci
(B).

According to the construction of E, we have that 
E ⊆ FM∑m

i=1
Ci
(A) ∩ FM∑m

i=1
Ci
(B) . By Propositions 3.1 and 

3.6, it is clear that FM∑m

i=1
Ci
(E) ⊆ FM

∑m

i=1
Ci
(FM∑m

i=1
Ci
(A)

∩FM∑m

i=1
Ci
(B)) = FM∑m

i=1
Ci
(A) ∩ FM

∑m

i=1
Ci
(B) . Thus, FM∑m

i=1
Ci

(E) ⊆ FM
∑m

i=1
Ci
(A) ∩ FM

∑m

i=1
Ci
(B).

Similarly, based on Definition 3.1 and the construction of 
E, FM∑m

i=1
Ci
(A) ∩ FM∑m

i=1
Ci
(B) ⊆ FM∑m

i=1
Ci
(E) holds. Thus, 

FM∑m

i=1
Ci
(E) = FM∑m

i=1
Ci
(A) ∩ FM∑m

i=1
Ci
(B) . 	� □

Proposition 3.8  Let (U,�) be a minimally unary MCAS, 
A,B ⊆ Uand for ∀a, b ∈ U,we have Kmin

a
= Kmin

b
or Kmin

a
∩

Kmin

b
= � . Then, the first type of MCRSs is closed under set 

union.

Proof  Denote N = N2∕N1 , where N
1

= FM
∑m

i=1
Ci
(A)∪

FM
∑m

i=1
Ci
(B),N

2

= FM
∑m

i=1
Ci
(A) ∪ FM

∑m

i=1
Ci
(B) . Let  =

{Kmin
a

|a ∈ N,Kmin
a

∩ N1 = �} and  �

= {Kmin
aj

|ai ∈ N, j =

1, 2,… , n} , where  ′ must satisfy the following conditions: 
(a)  ′

⊆   ; (b) For any two elements of  ′ , the intersec-
tion of them is empty; (c) For each Kmin

a
∈   , we can find 

Kmin
aj

∈ 
� such that Kmin

aj
⊆ Kmin

a
 . Denote L = {aj|Kmin

aj
∈


�

, j = 1, 2,… , n} and F = N1 ∪ L . Similarly, we can prove 
that (FM∑m

i=1
Ci
(F), FM∑m

i=1
Ci
(F)) = (FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci

(A)) ∪ (FM∑m

i=1
Ci
(B), FM∑m

i=1
Ci
(B)) . 	� □

Remark 3.1  Based on the constructions of E, F, the proofs 
of Theorems 3.7 and 3.8 can be completed. Meanwhile, 
we can find that the first type of MCRSs is closed under 
set union and intersection. In other words, for A,B ⊆ U , 
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there are two subsets E,F ⊆ U  such that (FM∑m

i=1
Ci
(E),

FM
∑m

i=1
Ci
(E)) = (FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A)) ∩ (FM∑m

i=1
Ci
(B),

FM
∑m

i=1
Ci
(B))  ;  (FM∑m

i=1
Ci
(F), FM∑m

i=1
Ci
(F)) = (FM∑m

i=1
Ci
(A),

FM
∑m

i=1
Ci
(A)) ∪ (FM∑m

i=1
Ci
(B), FM∑m

i=1
Ci
(B)) . In addition, 

according to the constructions of subsets E, F presented 
in Theorems 3.7 and 3.8, it is easy and important for us to 

develop two algorithms, which could effectively compute 
the subsets E, F.

Let (U,�) be a minimally unary MCAS and for 
∀a, b ∈ U , we have Kmin

a
= Kmin

b
 or Kmin

a
∩ Kmin

b
= � . Then, 

we will design two algorithms which may compute subsets 
E and F presented in Propositions 3.7 and 3.8.

Algorithm 1: Computing E

Input : A minimally unary MCAS (U,Ω) and A,B ⊆ U ;
Output : E.

1 begin
2 Compute

FM m
i=1 Ci

(A) ∩ FM m
i=1 Ci

(B), FM m
i=1 Ci

(A) ∩ FM m
i=1 Ci

(B));

3 Compute
Kmin
(FM m

i=1 Ci
(A)∩FM m

i=1 Ci
(B))/(FM m

i=1 Ci
(A)∩FM m

i=1 Ci
(B)) =

{Kmin
a1

,Kmin
a2

, · · · ,Kmin
as

};
4 ∅ ← K;
5 for i = 1 : s; i <= s; i++ do
6 for any bi ∈ Kmin

ai
do

7 K ← K ∪ {bi};
8 end
9 end

10 Compute (FM m
i=1 Ci

(A) ∩ FM m
i=1 Ci

(B)) ∪K;
// E = (FM m

i=1 Ci
(A) ∩ FM m

i=1 Ci
(B)) ∪K by the construction of E;

11 end

Algorithm 2: Computing subset F
Input : A minimally unary MCAS (U,Ω) and X,Y ⊆ U ;
Output : F .

1 begin
2 Compute

FM m
i=1 Ci

(X) ∪ FM m
i=1 Ci

(Y ), FM m
i=1 Ci

(X) ∪ FM m
i=1 Ci

(Y ));

3 Compute
Kmin
(FM m

i=1 Ci
(X)∪FM m

i=1 Ci
(Y ))/(FM m

i=1 Ci
(X)∪FM m

i=1 Ci
(Y )) =

{Kmin
x1

,Kmin
x2

, · · · ,Kmin
xt

};
4 ∅ ← L;
5 for j = 1 : t; j <= t; j ++ do
6 for any yj ∈ Kmin

xj
do

7 L ← L ∪ {yj};
8 end
9 end

10 Compute (FM m
i=1 Ci

(X) ∪ FM m
i=1 Ci

(Y )) ∪ L;
// F = (FM m

i=1 Ci
(X) ∪ FM m

i=1 Ci
(Y )) ∪ L by the construction of F ;

11 end
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Clearly, the computational complexities of Algorithms 1 
and 2 are o(s|U|3) and o(t|U|3) , respectively.

Example 3.3  Let U = {a
0

, a
1

,… , a
9

},
1

= {{a
0

, a
1

}, {a
0

,

a
1

, a
2

, a
3

, a
4

, a
5

}, {a
2

, a
3

, a
4

, a
5

, a
6

, a
7

, a
8

, a
9

}}, and 
2

= {{a
0

,

a
1

, a
2

, a
3

, a
4

, a
5

}, {a
2

, a
3

, a
4

, a
5

}, {a
6

, a
7

, a
8

, a
9

}} . For A =

{a
0

, a
1

, a
2

, a
6

, a
7

},B = {a
0

, a
3

, a
4

, a
7

, a
8

} , we have that 
FMC

1

+C
2

(A) = {a
0

, a
1

}, FMC
1

+C
2

(B) = �, FMC
1

+C
2

(A) = U  , and 

FMC1+C2
(B) = U.

Let E = {a0, a2, a6},F = {a0, a1, a2, a6} , then we have

Clearly, all the subsets E,F ⊆ U satisfying Eqs. (3.1) and 
(3.2) are not unique. For A = {a

0

, a
1

, a
2

, a
6

, a
7

},B = {a
0

,

a
3

, a
4

, a
7

, a
8

} , all the subsets E,F ⊆ U computed from Algo-
rithms 1 and 2 are given in Table 5.

For C = {a0, a3, a6, a7, a8, a9} . Let G = {a
0

, a
2

},H =

{a
0

, a
2

, a
6

} , then

(3.1)

(
FMC1+C2

(E),FMC1+C2
(E)

)
=

(
FMC1+C2

(A),FMC1+C2
(A)

)
∩
(
FMC1+C2

(B),FMC1+C2
(B)

)
⋯⋯

(3.2)

(
FM

C
1

+C
2

(F),FM
C
1

+C
2

(F)
)
=
(
FM

C
1

+C
2

(A), FM
C
1

+C
2

(A)
)

∪
(
FM

C
1

+C
2

(B), FM
C
1

+C
2

(B)
)

⋯⋯

F o r  A = {a
0

, a
1

, a
2

, a
6

, a
7

},B = {a
0

, a
3

, a
4

, a
7

, a
8

},C =

{a
0

, a
3

, a
6

, a
7

, a
8

, a
9

} , all the subsets G,H ⊆ U , which sat-
isfy Eqs. (3.3) and (3.4), computed from Algorithms 1 and 
2 are given in Table 6.

4 � The second type of MCRSs

Similar to first type of MCRSs, first, we propose the multi-
covering upper approximation. Then, using the duality, 
the multi-covering lower approximation will be presented. 
Therefore, the second type of MCRSs can be constructed 
as follows:

Definition 4.1  Let (U,�) be a MCAS, and � = {
1

,


2

,… ,m} a family of coverings of U with i = {Ki1,

Ki2,… ,Kiti
} , and A ⊆ U . Denote

(3.3)

(
FMC1+C2

(G),FMC1+C2
(G)

)

=
(
(FMC1+C2

(A), FMC1+C2
(A)

)
∩
(
FMC1+C2

(B),FMC1+C2
(B))

)

∪
(
FMC1+C2

(C), FMC1+C2
(C)

)
⋯

(3.4)

(
FMC1+C2

(H),FMC1+C2
(H)

)

=
(
(FMC1+C2

(A), FMC1+C2
(A)

)
∪
(
FMC1+C2

(B), FMC1+C2
(B))

)

∩
(
FMC1+C2

(C), FMC1+C2
(C)

)
⋯

Table 5   Subsets E, F 

A, B E F

{a
0

, a
1

, a
2

, a
6

, a
7

} {a
0

, a
2

, a
6

}, {a
1

, a
2

, a
6

} {a
0

, a
1

, a
2

, a
6

}

{a
0

, a
3

, a
4

, a
7

, a
8

} {a
0

, a
2

, a
7

}, {a
1

, a
2

, a
7

} {a
0

, a
1

, a
2

, a
7

}

{a
0

, a
2

, a
8

}, {a
1

, a
2

, a
8

} {a
0

, a
1

, a
2

, a
8

}

{a
0

, a
2

, a
9

}, {a
1

, a
2

, a
9

} {a
0

, a
1

, a
2

, a
9

}

{a
0

, a
3

, a
6

}, {a
1

, a
3

, a
6

} {a
0

, a
1

, a
3

, a
6

}

{a
0

, a
3

, a
7

}, {a
1

, a
3

, a
7

} {a
0

, a
1

, a
3

, a
7

}

{a
0

, a
3

, a
8

}, {a
1

, a
3

, a
8

} {a
0

, a
1

, a
3

, a
8

}

{a
0

, a
3

, a
9

}, {a
1

, a
3

, a
9

} {a
0

, a
1

, a
3

, a
9

}

{a
0

, a
4

, a
6

}, {a
1

, a
4

, a
6

} {a
0

, a
1

, a
4

, a
6

}

{a
0

, a
4

, a
7

}, {a
1

, a
4

, a
7

} {a
0

, a
1

, a
4

, a
7

}

{a
0

, a
4

, a
8

}, {a
1

, a
4

, a
8

} {a
0

, a
1

, a
4

, a
8

}

{a
0

, a
4

, a
9

}, {a
1

, a
4

, a
9

} {a
0

, a
1

, a
4

, a
9

}

{a
0

, a
5

, a
6

}, {a
1

, a
5

, a
6

} {a
0

, a
1

, a
5

, a
6

}

{a
0

, a
5

, a
7

}, {a
1

, a
5

, a
7

} {a
0

, a
1

, a
5

, a
7

}

{a
0

, a
5

, a
8

}, {a
1

, a
5

, a
8

} {a
0

, a
1

, a
5

, a
8

}

{a
0

, a
5

, a
9

}, {a
1

, a
5

, a
9

} {a
0

, a
1

, a
5

, a
9

}

Table 6   Subsets G, H 

A, B, C G H

{a
0

, a
1

, a
2

, a
6

, a
7

} {a
0

, a
2

} {a
0

, a
2

, a
6

}, {a
1

, a
2

, a
6

}

{a
0

, a
3

, a
4

, a
7

, a
8

} {a
1

, a
2

} {a
0

, a
2

, a
7

}, {a
1

, a
2

, a
7

}

{a
0

, a
3

, a
6

, a
7

, a
8

, a
9

} {a
0

, a
3

} {a
0

, a
2

, a
8

}, {a
1

, a
2

, a
8

}

{a
1

, a
3

} {a
0

, a
2

, a
9

}, {a
1

, a
2

, a
9

}

{a
0

, a
4

} {a
0

, a
3

, a
6

}, {a
1

, a
3

, a
6

}

{a
1

, a
4

} {a
0

, a
3

, a
7

}, {a
1

, a
3

, a
7

}

{a
0

, a
5

} {a
0

, a
3

, a
8

}, {a
1

, a
3

, a
8

}

{a
1

, a
5

} {a
0

, a
3

, a
9

}, {a
1

, a
3

, a
9

}

{a
0

, a
4

, a
6

}, {a
1

, a
4

, a
6

}

{a
0

, a
4

, a
7

}, {a
1

, a
4

, a
7

}

{a
0

, a
4

, a
8

}, {a
1

, a
4

, a
8

}

{a
0

, a
4

, a
9

}, {a
1

, a
4

, a
9

}

{a
0

, a
5

, a
6

}, {a
1

, a
5

, a
6

}

{a
0

, a
5

, a
7

}, {a
1

, a
5

, a
7

}

{a
0

, a
5

, a
8

}, {a
1

, a
5

, a
8

}

{a
0

, a
5

, a
9

}, {a
1

, a
5

, a
9

}
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we, respectively, call SM∑m

i=1
Ci
(A) and SM∑m

i=1
Ci
(A) the sec-

ond type of multi-covering upper and lower approximations 
of A with respect to (U,�).

Example 4.1  Let  U = {a
1

, a
2

,⋯ , a
6

},
1

= {{a
1

, a
2

}, {a
2

,

a
3

, a
4

}, {a
4

, a
5

}, {a
6

}},   and 
2

= {{a
1

, a
2

, a
4

}, {a
1

, a
3

, a
5

},

{a
5

, a
6

}} . For A = {a5} , then we have that SM
C
1

+C
2

(A) =

{a
4

, a
5

} ∪ {a
1

, a
3

, a
5

} ∪ {a
5

, a
6

} = {a
1

, a
3

, a
4

, a
5

, a
6

},

SM
C
1

+C
2

(A) = �.

For A ⊆ U , we call (SM∑m

i=1
Ci
(A), SM∑m

i=1
Ci
(A)) the second 

type of MCRSs of A. Therefore, ℂS = {(SM∑m

i=1
Ci
(A),

SM
∑m

i=1
Ci
(A))�A ⊆ U} is all of the second type of MCRSs 

with respect to (U,�).

4.1 � The second type of multi‑covering 
approximation operators

In this part, we will discuss the properties of the second 
type of multi-covering approximation operators in a MCAS.

Proposition 4.1  Let (U,�) be a MCAS and A,B ⊆ U,then

(1) SM∑m

i=1
Ci
(U) = SM

∑m

i=1
Ci
(U) = U, SM

∑m

i=1
Ci
(�) =

SM
∑m

i=1
Ci
(�) = �;

(2) SM∑m

i=1
Ci
(A) ⊆ A ⊆ SM∑m

i=1
Ci
(A);

(3) SM∑m

i=1
Ci
(A) =∼ SM

∑m

i=1
Ci
(∼ A), SM

∑m

i=1
Ci
(A) =∼

SM
∑m

i=1
Ci
(∼ A);

(4) SM∑m

i=1
Ci
(A ∩ B) = SM

∑m

i=1
Ci
(A) ∩ SM

∑m

i=1
Ci
(B),

SM
∑m

i=1
Ci
(A ∪ B) = SM

∑m

i=1
Ci
(A) ∪ SM

∑m

i=1
Ci
(B);

(5)A ⊆ B ⇒ SM∑m

i=1
Ci
(A) ⊆ SM∑m

i=1
Ci
(B) and SM∑m

i=1
Ci

(A) ⊆ SM∑m

i=1
Ci
(B).

Proof  It is clear by Definition 4.1.

Example 4.2  (Continued from Example 4.1) By Example 
4.1, then we have C1 + C2(A) = {a1, a3, a4, a5, a6} . However, 
SMC1+C2

(SMC1+C2
(A)) = U . Hence, SM

C
1

+C
2

(SM
C
1

+C
2

(A)) ≠

SM
C
1

+C
2

(A) . At the same time, we have that SM
C
1

+C
2

(SM
C
1

+C
2

(A)) ≠ SM
C
1

+C
2

(A).

SM
∑m

i=1
Ci
(A) = ∪ {Kij ∈ i� ∨ (Kij ∩ A ≠ �),

i ∈ {1, 2,… ,m}, j = 1, 2,… ,

�i�}, SM∑m

i=1
Ci
(A) =∼ SM

∑m

i=1
Ci
(∼ A)

Lemma 4.1  Let (U,�) be a maximally unary MCAS and 
a ∈ U.For each b ∈ Kmax

a
 ,we have that Kmax

b
= Kmax

a
.

Proof  According to b ∈ Kmax
a

 , we have that Kmax
a

⊆ Kmax

b
 . 

Suppose that there is c ∈ U such that c ∈ Kmax

b
∕Kmax

a
 , then 

Kmax
a

⊂ Kmax

b
 . It contradicts with the definition of Kmax

a
 . 

Therefore, Kmax

b
= Kmax

a
 . 	�  □

Lemma 4.2  Let (U,�) be a maximally unary MCAS and 
A ⊆ U , then  SM∑m

i=1
Ci
(A) = ∪a∈AK

max
a

.

Proof  (⇒ ): For each b ∈ SM∑m

i=1
Ci
(A) , there is Kij ∈ ℭ such 

that b ∈ Kij and Kij ∩ A ≠ � . So, Kmax

b
∩ A ≠ � . Then, there 

must exist a ∈ A such that a ∈ Kmax

b
 . By Lemma 4.1 , we 

have that Kmax

b
= Kmax

a
 .  Therefore, b ∈ Kmax

a
 ,  i.e., 

b ∈ ∪a∈AK
max
a

.
(⇐ ): For each a ∈ A , we can find Kmax

a
∩ A ≠ � . By the 

Definition 4.1, it is obvious that Kmax
a

⊆ SM∑m

i=1
Ci
(A) . Hence, 

∪a∈AK
max
a

⊆ SM∑m

i=1
Ci
(A).

Proposition 4.2  Let (U,�) be a maximally unary MCAS 
and A ⊆ U,then

(1)SM∑m

i=1
Ci
(SM∑m

i=1
Ci
(A)) = SM∑m

i=1
Ci
(A);

(2)SM∑m

i=1
Ci
(SM∑m

i=1
Ci
(A)) = SM∑m

i=1
Ci
(A).

Proof 

(1)	 (⇐ ): It is obvious by Proposition 4.1. ( ⇒ ): For each 
b ∈ SM∑m

i=1
Ci
(SM∑m

i=1
Ci
(A)) , there exists Kij ∈ ℭ such 

that b ∈ Kij and Kij ∩ SM∑m

i=1
Ci
(A) ≠ � . Then, we have 

that Kmax

b
∩ SM∑m

i=1
Ci
(A) ≠ � . By Lemma 4.2, there 

exists a ∈ A such that Kmax

b
∩ Kmax

a
≠ � . Thus, we can 

choose c ∈ Kmax

b
∩ Kmax

a
 . By Lemma 4.1, we have that 

Kmax
c

= Kmax

b
 and Kmax

c
= Kmax

a
 . It can be obtained that 

Kmax

b
= Kmax

a
 . Hence, we have that b ∈ Kmax

b
= Kmax

a
⊆

SM
∑m

i=1
Ci
(A) . That is, SM∑m

i=1
Ci
(SM∑m

i=1
Ci
(A)) ⊆ SM

∑m

i=1
Ci

(A).
(2)	 We can prove the item by Proposition 4.1 and item (1).

	�  □

Now, we provide an example to further explain the Propo-
sition 4.2.

Example 4.3  (Continued from Example 2.2) For A = {a
5

},

B = {a
1

, a
2

, a
3

, a
4

} , then SMC1+C2
(A) = {a4, a5, a6} , SMC

1

+C
2

(SMC
1

+C
2

(A)) = {a
4

, a
5

, a
6

} . Thus, SM
C
1

+C
2

(SM
C
1

+C
2

(A)) =

SM
C
1

+C
2

(A) .  In addition, SMC1+C2
(B) = {a1, a2, a3} , 
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SMC1+C2
(SMC1+C2

(B)) = {a1, a2, a3} . Hence, we can find 

that SMC1+C2
(SMC1+C2

(B)) = SMC1+C2
(B).

Proposition 4.3  Let (U,�)be a maximally unary MCAS 
and a ∈ SM∑m

i=1
Ci
(A), then Kmax

a
⊆ SM∑m

i=1
Ci
(A).

Proof  For each a ∈ SM∑m

i=1
Ci
(A) , there is K ∈ ℭ such that 

a ∈ K and K ∩ A ≠ � . We can find that Kmax
a

∩ A ≠ � . By 
Definition 4.1, Kmax

a
⊆ SM∑m

i=1
Ci
(A).

Proposition 4.4  Let (U,�) be a maximally unary MCAS 
and A,B ⊆ U , then

(1)SM∑m

i=1
Ci
(SM∑m

i=1
Ci
(A) ∪ SM

∑m

i=1
Ci
(B)) = SM

∑m

i=1
Ci

(A) ∪ SM
∑m

i=1
Ci
(B);

(2)SM∑m

i=1
Ci
(SM∑m

i=1
Ci
(A) ∩ SM

∑m

i=1
Ci
(B)) = SM

∑m

i=1
Ci

(A) ∩ SM
∑m

i=1
Ci
(B);

(3) SM∑m

i=1
Ci
(SM∑m

i=1
Ci
(A) ∪ SM

∑m

i=1
Ci
(B)) = SM

∑m

i=1
Ci

(A) ∪ SM
∑m

i=1
Ci
(B);

(4) SM∑m

i=1
Ci
(SM∑m

i=1
Ci
(A) ∩ SM

∑m

i=1
Ci
(B)) = SM

∑m

i=1
Ci

(A) ∩ SM
∑m

i=1
Ci
(B).

Proof  It is immediate through Propositions 4.1 and 4.2.

Proposition 4.5  Let (U,�) be a maximally unary MCAS, 
a ∈ U and A ⊆ U .If Kmax

a
= {a} and a ∈ SM∑m

i=1
Ci
(A).Then 

a ∈ SM∑m

i=1
Ci
(A).

Proof  Suppose that {a} ∩ SM∑m

i=1
Ci
(A) = � , we have that 

a ∈ SM∑m

i=1
Ci
(∼ A) . It can be obtained that {a} ∩ (∼ A) ≠ � . 

By the assumption in this proposition, it follows that 
Kmax
a

∩ A = � .  Thus,  {a} ∩ SM∑m

i=1
Ci
(A) = � .  Hence, 

a ∈ SM∑m

i=1
Ci
(A) . 	�  □

4.2 � Operation properties of the second type 
of MCRSs

In this section, we research the operations of intersection and 
union on the second type of MCRSs.

Example 4.4  Let U = {a
1

, a
2

,… , a
6

},
1

= {{a
1

, a
2

}, {a
2

,

a
3

}, {a
1

, a
4

}, {a
5

, a
6

}},
2

= {{a
1

, a
2

, a
3

}, {a
4

}, {a
3

, a
5

},

{a
6

}} . For A = {a1, a2, a3} , B = {a3, a5, a6} , we have 
SMC

1

+C
2

(A) = {a
2

}, SMC
1

+C
2

(B) = {a
5

, a
6

}, SMC
1

+C
2

(A) =

{a
1

, a
2

, a
3

, a
4

, a
5

} , and SMC1+C2
(B) = {a1, a2, a3, a5, a6} . 

Obviously, we cannot find a subset F ⊆ U  such that    
(SM

C
1

+C
2

(F), SM
C
1

+C
2

(F)) = (SM
C
1

+C
2

(A), SM
C
1

+C
2

(A))∪

(SM
C
1

+C
2

(B), SM
C
1

+C
2

(B)).

Example 4.4 shows us that the second type of MCRSs is 
not closed under set union and intersection.

Proposition 4.6  Let (U,�) be a maximally unary MCAS 
and A,B ⊆ U . Then the second type of MCRSs is closed 
under set intersection.

Proof  Denote M = M2∕M1 , where M
1

= SM
∑m

i=1
Ci
(A)∩

SM
∑m

i=1
Ci
(B),M

2

= SM
∑m

i=1
Ci
(A) ∩ SM

∑m

i=1
Ci
(B) . Let  =

{Kmax
a

|a ∈ M,Kmax
a

∩M1 = �} and �

= {Kmax
ai

|ai ∈ M,

i = 1, 2,… , l} , where ′ must satisfy the following condi-
tions: (a) ′

⊆  ; (b) For any two elements of ′ , the 
intersection of them is empty; (c) For each Kmax

a
∈  , there 

exists Kmax
ai

∈ 
� such that Kmax

ai
= Kmax

a
 .  Denote 

K = {ai|Kmax
ai

∈ 
�

, i = 1, 2,… , l} and E = M1 ∪ K . Simi-

larly, we have that (SM∑m

i=1
Ci
(E), SM∑m

i=1
Ci
(E)) = (SM∑m

i=1
Ci

(A), SM∑m

i=1
Ci
(A)) ∩ (SM∑m

i=1
Ci
(B), SM∑m

i=1
Ci
(B)) . 	�  □

Proposition 4.7  Let (U,�)be a maximally unary MCAS 
and A,B ⊆ U.Then the second type of MCRSs is closed 
under set union.

Proof  Denote N = N2∕N1 , where N
1

= SM
∑m

i=1
Ci
(A)∪

SM
∑m

i=1
Ci
(B),N

2

= SM
∑m

i=1
Ci
(A) ∪ SM

∑m

i=1
Ci
(B) . Let  =

{Kmax
a

|a ∈ N,Kmax
a

∩ N1 = �} and  �

= {Kmax
aj

|aj ∈ N, j =

1, 2,… , k} , where  ′ must satisfy the following conditions: 
(a)  ′

⊆   ; (b) For any two elements of  ′ , the intersec-
tion of them is empty; (c) For each Kmax

a
∈   , there exists 

Kmin
aj

∈ 
� such that Kmax

aj
= Kmax

a
 . Denote L = {aj|Kmax

aj
∈


�

, j = 1, 2,… , k} and F = N1 ∪ L . Similarly, we can prove 
that (SM∑m

i=1
Ci
(F), SM∑m

i=1
Ci
(F)) = (SM∑m

i=1
Ci
(A), SM∑m

i=1
Ci

(A)) ∪ (SM∑m

i=1
Ci
(B), SM∑m

i=1
Ci
(B)).

Remark 4.1  On the one hand, based on the constructions of 
E and F, the proofs of Theorems 4.6 and 4.7 can be com-
pleted. According to the constructions of E, F, it can be 
obtained that the second type of MCRSs is closed under 
set intersection and union. In other words, for any subsets 
A,B ⊆ U , there are two subsets E, F such that the following 
two equations hold:
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On the other hand, according to the constructions of sub-
sets E, F presented in Theorems 4.6 and 4.7, it is easy and 
important for us to develop two algorithms, which could 
effectively compute the subsets E, F.

Similarly, we can also design the corresponding algo-
rithms to compute subsets E, F shown in Propositions 4.6 
and 4.7, respectively. We will not repeat them here.

Example 4.5  Let U = {a
0

, a
1

,… , a
9

},
1

= {{a
0

, a
1

}, {a
2

,

a
7

, a
8

, a
9

}, {a
3

}, {a
4

, a
6

}, {a
3

, a
4

, a
5

, a
6

}}, and 
2

= {{a
0

},

{a
0

, a
1

}, {a
2

, a
7

},  {a3, a4, a5}, {a6}, {a7, a8, a9}} .  F o r 
A = {a0, a2, a6},B = {a0, a1, a6, a7} , then, we have that 
SMC

1

+C
2

(A) = �, SMC
1

+C
2

(B) = {a
0

, a
1

}, SMC
1

+C
2

(A) =

U, SM
C
1

+C
2

(B) = U.

Let E = {a0, a2, a3},F = {a0, a1, a2, a3} , then we have

�
SM∑m

i=1
Ci
(E), SM∑m

i=1
Ci
(E)

�

=

�
SM∑m

i=1
Ci
(A), SM∑m

i=1
Ci
(A)

�
∩

�
SM∑m

i=1
Ci
(B), SM∑m

i=1
Ci
(B)

�
,

�
SM∑m

i=1
Ci
(F), SM∑m

i=1
Ci
(F)

�

=

�
SM∑m

i=1
Ci
(A), SM∑m

i=1
Ci
(A)

�
∪

�
SM∑m

i=1
Ci
(B), SM∑m

i=1
Ci
(B)

�

.

(4.1)

(
SMC1+C2

(E), SMC1+C2
(E)

)

=
(
SMC1+C2

(A), SMC1+C2
(A)

)
∩
(
SMC1+C2

(B), SMC1+C2
(B)

)
⋯⋯

Table 7   Subsets E, F 

A, B E F

{a
0

, a
2

, a
6

} {a
0

, a
2

, a
3

}, {a
1

, a
2

, a
3

} {a
0

, a
1

, a
2

, a
3

}

{a
0

, a
1

, a
6

, a
7

} {a
0

, a
2

, a
4

}, {a
1

, a
2

, a
4

} {a
0

, a
1

, a
2

, a
4

}

{a
0

, a
2

, a
5

}, {a
1

, a
2

, a
5

} {a
0

, a
1

, a
2

, a
5

}

{a
0

, a
2

, a
6

}, {a
1

, a
2

, a
6

} {a
0

, a
1

, a
2

, a
6

}

{a
0

, a
3

, a
7

}, {a
1

, a
3

, a
7

} {a
0

, a
1

, a
3

, a
7

}

{a
0

, a
4

, a
7

}, {a
1

, a
4

, a
7

} {a
0

, a
1

, a
4

, a
7

}

{a
0

, a
5

, a
7

}, {a
1

, a
5

, a
7

} {a
0

, a
1

, a
5

, a
7

}

{a
0

, a
6

, a
7

}, {a
1

, a
6

, a
7

} {a
0

, a
1

, a
6

, a
7

}

{a
0

, a
3

, a
8

}, {a
1

, a
3

, a
8

} {a
0

, a
1

, a
3

, a
8

}

{a
0

, a
4

, a
8

}, {a
1

, a
4

, a
8

} {a
0

, a
1

, a
4

, a
8

}

{a
0

, a
5

, a
8

}, {a
1

, a
5

, a
8

} {a
0

, a
1

, a
5

, a
8

}

{a
0

, a
6

, a
8

}, {a
1

, a
6

, a
8

} {a
0

, a
1

, a
6

, a
8

}

{a
0

, a
3

, a
9

}, {a
1

, a
3

, a
9

} {a
0

, a
1

, a
3

, a
9

}

{a
0

, a
4

, a
9

}, {a
1

, a
4

, a
9

} {a
0

, a
1

, a
4

, a
9

}

{a
0

, a
5

, a
9

}, {a
1

, a
5

, a
9

} {a
0

, a
1

, a
5

, a
9

}

{a
0

, a
6

, a
9

}, {a
1

, a
6

, a
9

} {a
0

, a
1

, a
6

, a
9

}

For A = {a0, a2, a6},B = {a0, a1, a6, a7} , all the subsets 
E,F ⊆ U satisfying Eqs. (4.1) and (4.2) are presented in 
Table 7.

For C = {a0, a1, a2, a3} . Let G = {a
0

, a
1

, a
2

, a
3

},H = {a
0

,

a
1

, a
2

, a
3

} , then

For A = {a0, a2, a6},B = {a0, a1, a6, a7},C = {a0, a1, a2, a3} , 
all the subsets G,H ⊆ U satisfying Eqs. (4.3) and (4.4) are 
given in Table 8.

5 � Algebraic theory of MCRSs

In this part, according to the operation results of MCRSs, the 
algebraic theory of MCRSs will be researched in detail. The 
relevant concepts of algebra can be consulted in reference 
(Kong and Xu 2018a).

5.1 � Algebraic properties of the first type of MCRSs

In this subsection, according to the operation properties of 
MCRSs, many basic and important algebraic properties of 
the first type of MCRSs will be further discussed. Let (U,�) 
be a minimally unary MCAS, and for ∀a, b ∈ U , we have 
Kmin
a

= Kmin

b
 or Kmin

a
∩ Kmin

b
= � . Then, the following results 

hold.

Theorem 5.1  (ℂF,∪,∩) is a lattice.

Theorem 5.2  (ℂF,∪,∩)is a distributive lattice.

P r o o f   F o r  (FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A)))), (FM∑m

i=1
Ci
(B),

FM∑m

i=1
Ci
(B)) , and (FM∑m

i=1
Ci
(C), FM∑m

i=1
Ci
(C)) ∈ ℂ

F , then

(4.2)

(
SMC1+C2

(F), SMC1+C2
(F)

)

=
(
SMC1+C2

(A), SMC1+C2
(A)

)
∪
(
SMC1+C2

(B), SMC1+C2
(B)

)
⋯⋯

(4.3)

(
SMC1+C2

(G), SMC1+C2
(G)

)

=
(
(SMC1+C2

(A), SMC1+C2
(A)

)
∩
(
SMC1+C2

(B), SMC1+C2
(B))

)

∪
(
SMC1+C2

(C), SMC1+C2
(C)

)
⋯

(4.4)

(
SMC1+C2

(H), SMC1+C2
(H)

)

=
(
(SMC1+C2

(A), SMC1+C2
(A)

)
∪
(
SMC1+C2

(B), SMC1+C2
(B))

)

∩
(
SMC1+C2

(C), SMC1+C2
(C)

)
⋯
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Thus, the proposition holds. □

Theorem 5.3  (ℂF,∪,∩,∼)is a soft algebra.

Proof  It is immediate by the definition of soft algebra. 	
� □

For each (FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A)) ∈ ℂ

F , suppose that

then the following conclusion holds.

Theorem 5.4  (ℂF,∪,∩,∼, (�, �))is a pseudo-complement 
lattice.

(FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A))

∩ ((FM∑m

i=1
Ci
(B), FM∑m

i=1
Ci
(B)) ∪ (FM∑m

i=1
Ci
(C), FM∑m

i=1
Ci
(C)))

= ((FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A)) ∩ (FM∑m

i=1
Ci
(B), FM∑m

i=1
Ci
(B)))

∪ ((FM∑m

i=1
Ci
(A),FM∑m

i=1
Ci
(A)) ∩ (FM∑m

i=1
Ci
(C),FM∑m

i=1
Ci
(C)));

(FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A))

∪ ((FM∑m

i=1
Ci
(B), FM∑m

i=1
Ci
(B)) ∩ (

m�

i=1

Ci(C),

m�

i=1

Ci(C)))

= ((FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A)) ∪ (FM∑m

i=1
Ci
(B), FM∑m

i=1
Ci
(B)))

∩ ((FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A)) ∪ (FM∑m

i=1
Ci
(C),FM∑m

i=1
Ci
(C))).

(FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A))∗ = (∼ FM∑m

i=1
Ci
(A),∼ FM∑m

i=1
Ci
(A)),

Proof  For (FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A)) ∈ ℂ

F , then

(1)	 (FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A)) ∩ (FM∑m

i=1
Ci
(A),FM∑m

i=1
Ci

(A))∗ = (FM∑m

i=1
Ci
(A) ∩ (∼ FM

∑m

i=1
Ci
(A)),FM∑m

i=1
Ci
(A)

∩(∼ FM
∑m

i=1
Ci
(A))) = (�, �).

(2)	 For (FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A)), (FM∑m

i=1
Ci
(B),FM∑m

i=1
Ci

(B)) ∈ ℂ
F . Let (FM∑m

i=1
Ci
(A), FM∑m

i=1
Ci
(A)) ∩ (FM∑m

i=1
Ci

(B), FM∑m

i=1
Ci
(B)) = (�, �). Then (FM∑m

i=1
Ci
(A) ∩ FM

∑m

i=1
Ci

(A) ∩ FM∑m

i=1
Ci
(B)) = (�, �). We have that FM∑m

i=1
Ci
(A)

∩FM∑m

i=1
Ci
(B) = �. In other words, FM∑m

i=1
Ci
(B) ⊆∼

FM
∑m

i=1
Ci
(A). Since FM∑m

i=1
Ci
(A) ⊆ FM∑m

i=1
Ci
(A) , so, 

FM∑m

i=1
Ci
(B) ⊆∼ FM∑m

i=1
Ci
(A). Then (FM∑m

i=1
Ci
(B),

FM∑m

i=1
Ci
(B)) ⊆ (FM∑m

i=1
Ci
(A)), FM∑m

i=1
Ci
(A))∗. Thus, the 

proposition holds.

	�  □

Remark 5.1  In this section, some basic algebraic properties 
of MCRSs are explored. In fact, there are many other alge-
braic properties that need to be further studied. For example, 
is (ℂF,∪,∩,∼, 0) a group? For each element of ℂF , what is 
the inverse? Unfortunately, we are not able to answer these 
questions.

5.2 � Algebraic properties of the second type 
of MCRSs

In this part, according to the operation results of MCRSs, 
lots of useful algebraic conclusions of the second type of 
MCRSs can be investigated. Let (U,�) be a maximally 
unary MCAS. It is easy to see that algebraic theory of the 
second type of MCRSs is similar to those of the first type of 
MCRSs. Therefore, algebraic theory of the second type of 
MCRSs will no longer be repeated here.

6 � Conclusion

In this part, we first introduce the main conclusions obtained 
in our paper. Then, we make further prospects for future 
research work. 

1.	 Main conclusions of our paper The MCRS theory is 
the meaningful development of classical rough sets. Up 
to now, many excellent results of MCRSs have been 
presented. The main conclusions of this paper are to 
develop the operation theory of MCRSs and then further 
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explore the algebraic properties of MCRSs. First, to find 
more excellent results, we researched the properties of 
the two types of covering-based approximation operators 
with respect to the minimally (maximally) unary MCAS 
and got many good properties. In addition, the concepts 
of intersection and union of MCRSs were initiated. Fur-
thermore, we proved that the two types of MCRSs with 
respect to minimally and maximally unary coverings are 
closed under set intersection and union, respectively. At 
the same time, we also develop two algorithms to com-
pute the intersection and union of MCRSs for its further 
application. Finally, lots of basic and meaningful alge-
braic properties of MCRSs are further studied.

2.	 Further research work Clearly, on the basis of algebraic 
theory of MCRSs, new achievements in further research 
are needed. For example, only a part of algebraic proper-
ties of MCRSs is investigated in this paper. More alge-
braic properties should be studied. Meanwhile, accord-
ing to the algebraic properties of MCRSs, we can solve 
lots of practical problems, such as network security, and 
neural network. Therefore, these problems need to be 
solved in the future.
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