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Abstract: The absolute and relative quantifications between the equivalence class and the target concept are the two important
research endeavours in rough set theory. Double-quantitative decision-theoretic rough set (Dq-DTRS) models utilise both
absolute quantification and relative quantification in their upper and lower approximations to reflect the distinctive degrees of
quantitative information. Herein, the authors apply the information theory to Dq-DTRS model to characterise and measure these
two types of quantitative information. The expressions of the information entropy with regard to the two quantifications and their
corresponding information co-entropy are presented in DqI-DTRS model and DqII-DTRSmodel, respectively. This work makes a
further study of Dq-DTRS models by discussing the information measures with respect to absolute and relative quantification.

1 Introduction
In many real-life applications, Pawlakrough sets [1] do not cope
well with quantitative problems [2, 3]. Improving the Pawlak rough
set model by incorporating quantitative information is a promising
direction. The improved models are regarded as quantitative rough
set models, and they include probabilistic rough sets (PRS) [4–11],
graded rough sets (GRS) [12–14], and double-quantitative
decision-theoretic rough set (Dq-DTRS) [14–20] models.

As a special kind of PRS model, the DTRS model uses
conditional probability and Bayesian risk decision to establish
three-way decisions and threshold quantitative semantics. As a
result, DTRS has provided a platform for improving some basic
models and a quantitative exploration. DTRS model has become
increasingly popular in a variety of theoretical and practical areas,
producing many thorough results [4–11]. The GRS model [13]
primarily considers the absolute quantitative information between
the basic concept and knowledge granules, and is also a
generalisation of Pawlak rough set model. The two kinds of
relative and absolute quantitative information are two
quantification mythologies in certain applications. Three examples
introduced in references [16, 20] have highlighted the motivation
that leads to considering the relative quantification and absolute
quantification, and explained the importance of these two types of
quantitative information in different scenarios.

Some works related to the double quantification have been
explored [14–20]. Among these studies, Li and Xu proposed a
framework of Dq-DTRS model based on the Bayesian decision and
GRS, and two kinds of Dq-DTRS are confirmed, which essentially
indicate the relative and absolute quantification [16]. In the DqI-
DTRS model, the upper approximation quantifies relative
quantitative information and lower approximation quantifies
absolute quantitative information; and in the DqII-DTRS model,
the upper approximation quantifies absolute quantitative
information, and the lower approximation quantifies relative
quantitative information.

Information is an abstract concept. We often use terms such as
‘a lot of information’ or ‘less information’ to describe the quantity
of information, but it is difficult to measure how much information
is contained. In order to mathematically quantify the statistical
nature of information loss [21], Shannon developed a general
concept of information theory. Information entropy, proposed by

Shannon in information theory, has been an effective and powerful
mechanism for characterising the information content in diverse
models [22–30]. The concept of entropy was developed in response
to the observation that a certain amount of functional energy
released from combustion reactions was always lost to dissipation
or friction and thus not transformed into useful work. Shannon put
forward the notation of information entropy, which solved the
problem of a quantitative measure of information.

It is an important issue to characterise the degree of uncertainty
contained in rough set models [31–37], the same to Dq-DTRS
model. How to measure the absolute quantitative information and
relative quantitative information is a problem to be eagerly studied.
In this paper, we aim to propose a theoretical method to tackle the
above-presented problem. Some information-theoretic measures of
uncertainty and granularity have been investigated [26, 27, 29, 31–
34, 36–38]. A common feature of these researches on the
uncertainty of rough set is that they are dependent on the partitions
and the cardinality of a universe. In particular, Zhu et al. first
developed a pair of information-theoretic entropy and co-entropy
functions associated to partitions and approximations [38], and
then gave information-theoretic measures associated with a pair of
approximation operators [38].

In this paper, the information theory is applied to the Dq-DTRS
model to measure the two kinds of quantitative information. We
use the information entropy and information co-entropy, at the
same time, to describe the amount of information contained in the
relative quantitative information and the absolute quantitative
information of Dq-DTRS. It is shown that the proposed
information measures provide a novel approach to evaluate the
information of absolute quantification and relative quantification.
The paper is organised as follows. In Section 2, basic concepts and
definitions are reviewed briefly. In Section 3, we present the
information entropy and information co-entropy with respect to the
two kinds of quantification in both DqI-DTRS model and DqII-
DTRS model. Finally, we conclude with some concluding notes
and an outlook for future research in Section 4.

2 Related work and fundamentals
We review related basic concepts about Shannon entropy theory
and Dq-DTRS models. Throughout this paper, the class of all
subsets of the universe U is denoted by P(U). An information
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system is a triple (U, A, F), where U = {x1, x2, ⋯, xn} is a non-
empty and finite set of objects; A = {a1, a2, ⋯, am} is a non-empty
and finite set of attributes; F = { f l |U → Vl, l ≤ m}, f l is the value
of al on x ∈ U, Vl is the domain of al, al ∈ A. The equivalence
relation R partitions U into disjoint subsets, which is
π = {U1, U2, ⋯, Uk}. Such a partition of the universe is a quotient
set of U and is denoted by U /R = {[x]R | x ∈ U}, where
[x]R = {y ∈ U | (x, y) ∈ R} is the equivalence class containing x.

In [22–24, 33, 34], information-theoretic measures are
dependent on the size of equivalence classes and the cardinality of
a universe. Shannon entropy has been used as a measure of
information entropy for rough set theory.
 

Definition 1: Given an information system (U, A, F) and an
equivalence relation R. R partitions the universe U into disjoint
blocks (equivalence classes) Ui, 1 ≤ i ≤ k. The information
entropy H(π) of the partition π is defined in the form

H(π) = − ∑
i = 1

k |Ui|
|U| log |Ui|

|U| ,

where |U | = ∑i = 1
k |Ui|. If π = {U}, the entropy function H achieves

the minimum value 0; and if π = {{x} | x ∈ U}, it achieves the
maximum value log |U|.
 

Definition 2: Given an information system (U, A, F) and an
equivalence relation R. For an arbitrary set X ∈ P(U), a pair of
upper and lower approximations of X are characterised as

R(X) = {x ∈ U | [x]R ⊆ X};
R̄(X) = {x ∈ U | [x]R ∩ X ≠ ∅} .

For a target set (or concept) X ∈ P(U), if R(X) = R̄(X), X is called
definable set in rough approximation space; and if R(X) ≠ R̄(X),
then X is called Pawlak rough set.

The PRS (or DTRS) and the GRS are two quantitative models
that measure relative and absolute quantitative information
between the equivalence class and a basic concept, respectively. In
[16], authors proposed a framework of Dq-DTRS, and two kinds of
Dq-DTRS model are constructed, which indicate the relative and
absolute quantification. Let us review the Dq-DTRS model.
 

Definition 3: The following upper and lower approximation
operators are defined as [16]

R̄(α, β, k)
I (X) = {x ∈ U | |[x]R ∩ X|

|[x]R| > β};

R(α, β, k)
I (X) = {x ∈ U | | [x]R | − | [x]R ∩ X | ≤ k} .

From the above two operators, the DqI-DTRS model can be
established and denoted by (U, R̄(α, β, k)

I , R(α, β, k)
I ).

 
Definition 4: The model (U, R̄(α, β, k)

II , R(α, β, k)
II ) called DqII-DTRS

[16], is defined using the following two operators R̄(α, β, k)
II  and

R(α, β, k)
II :

R̄(α, β, k)
II (X) = {x ∈ U | | [x]R ∩ X | > k};

R(α, β, k)
II (X) = {x ∈ U | |[x]R ∩ X|

|[x]R| ≥ α} .

Inspired by the studies of Zhu et al. [38], we investigate the
information entropy and information co-entropy of absolute and
relative quantitative information in the next section, which is
different from the previous studies mentioned [22–24, 26, 27, 29,
31–34, 36–38]. In this paper, we consider not only the equivalence
classes of the universe of discourse but also the upper and lower
approximations of all power sets of the universe.

For arbitrary X ∈ P(U), the upper and lower approximations
appear in pairs. We determine the count of all elements of P(U) by
every pair of double-quantitative upper and lower approximations.
Compared with other types of entropy for measuring the
uncertainty in rough set theory, the main feature of the entropy is
that the approximation operators are taken into account. In fact, the
entropies without involving approximation operators are
independent of rough set theory, which rely on partitions of the
universe of discourse.

3 Information measures with respect to absolute
and relative quantification
In this section, we present the information entropy, information co-
entropy with respect to two kinds of quantification in DqI-DTRS
and DqII-DTRS, respectively. It should be pointed out that the
logarithm is taken as base 2, in which case the information
entropies and information co-entropies are measured in ‘bits’.

3.1 Information entropy and information co-entropy in DqI-
DTRS model

In this subsection, the entropies of absolute and relative
quantitative information in DqI-DTRS model and their
corresponding properties are introduced.

In DqI-DTRS model, it is easy to see that every subset of U
appears with the same probability 1/2|U|. We denote the upper and
lower approximation operators of DqI-DTRS as R̄(α, β, k), > i

I = Ai and
R(α, β, k), > j

I = Bj. For any X ∈ P(U), we set

Ai = {X ∈ P(U) | R̄(α, β, k)
I (X) = Ai};

ℬ j = {X ∈ P(U) | R(α, β, k)
I (X) = Bj} .

Then the upper approximation operator Ai and the lower
approximation operator Bj appear with the accumulative
probability |Ai | /2|U| and |ℬ j | /2|U| since the amount of all subsets of
U is precisely 2|U|, respectively.

For each X ∈ P(U), |Ai| (i ∈ {1, 2, ⋯, m}) are the number of
subsets described by the relative quantification |[x]R ∩ X | / | [x]R|,
namely |A1 | , |A2 | , …, |Am| are the number of subsets described by
the upper approximation operators R̄(α, β, k), 1

I (X),
R̄(α, β, k), 2

I (X), …, R̄(α, β, k), m
I (X) respectively; and ℬ j( j ∈ {1, 2, …, n})

are the number of subsets described by the absolute quantification
|[x]R | − | [x]R ∩ X|, namely |ℬ1 | , |ℬ2 | , …, |ℬn| are the number of
subsets described by the lower approximation operators
R(α, β, k), 1

I (X), R(α, β, k), 2
I (X), …, R(α, β, k), n

I (X), respectively. Two
probability distributions are obtained in the form:

P(R̄(α, β, k)
I ) = |A1|

2|U| , |A2|
2|U| , …, |Am|

2|U| ;

P(R(α, β, k)
I ) = |ℬ1|

2|U| , |ℬ2|
2|U| , …, |ℬn|

2|U| .

It turns out that both {A1, A2, …, Am} and {ℬ1, ℬ2, …, ℬn} can
give rise to a partition of P(U), which means ⋃i = 1

m Ai = P(U) and
⋃ j = 1

n ℬ j = P(U). Therefore, we can obtain ∑i = 1
m |Ai | = 2|U| and

∑ j = 1
n |ℬ j | = 2|U|.

 
Definition 5: Given an information system (U, A, F) and an

equivalence relation R. For each X ∈ P(U), we get partitions of
P(U) induced by the double quantification, which are
{A1, A2, …, Am} and {ℬ1, ℬ2, …, ℬn}, respectively. Then the
information entropy of absolute and relative quantitative
information in DqI-DTRS model is defined as
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HR
I (Rel) = − ∑

i = 1

m |Ai|
2|U| log |Ai|

2|U| ,

HR
I (Abs) = − ∑

j = 1

n |ℬ j|
2|U| log |ℬ j|

2|U| .

 
Definition 6: Given an information system U, A, F  and an

equivalence relation R. For each X ∈ P(U), we get partitions of
P(U) induced by the double quantification, which are
{A1, A2, ⋯, Am} and {ℬ1, ℬ2, ⋯, ℬn}, respectively. Then the
information co-entropy of absolute and relative quantitative
information in DqI-DTRS model is defined as

GR
I (Rel) = ∑

i = 1

m |Ai|
2|U| log |Ai | ,

GR
I (Abs) = ∑

j = 1

n |ℬ j|
2|U| log |ℬ j | .

 
Proposition 1: Let U be a universe with |U| elements. Then the

information entropy and information co-entropy in DqI-DTRS
model satisfy the following properties:

(i) HR
I (Abs) + GR

I (Abs) = |U|,
(ii) HR

I (Rel) + GR
I (Rel) = |U|.

 
Proof:

(i) From Definitions 5 and 6, one has (see equation below) Then
the proof of (i) is completed.
(ii) The proof of (ii) is similar to the one completed for (i). □

 
Example 1: Consider an example shown in Table 1, it is easy to

see that U = {x1, x2, x3, x4} and U /IND(R) = {{x1, x2, x3}, {x4}}. In
this case, U has 24 = 16 subsets. The parameters α = 0.7, β = 0.5
and grade k = 1. For each subset X of U, we compute the DqI-
DTRS upper approximation and lower approximation, which can
be shown in Table 2. 

We calculate that when X = ∅, {x1}, {x2} and {x3}, the upper
approximation R̄(α, β, k)

I (X) = ∅; when X = {x1, x2}, {x1, x3}, {x2, x3},
and {x1, x2, x3}, the upper approximation R̄(α, β, k)

I (X) = {x1, x2, x3};
when X = {x4}, {x1, x4}, {x2, x4}, and {x3, x4}, the upper
approximation R̄(α, β, k)

I (X) = {x4}; when X = {x1, x2, x4}, {x2, x3, x4},
{x1, x3, x4}, and U, the upper approximation R̄(α, β, k)

I (X) = U. In
addition, when X = {x1}, {x2}, {x3}, {x4}, {x1, x4}, {x2, x4}, and
{x3, x4}, the lower approximation R(α, β, k)

I (X) = {x4}; when
X = {x1, x2}, {x1, x3}, {x2, x3}, {x1, x2, x3}, {x1, x2, x4}, {x2, x3, x4},
{x1, x3, x4}, and U, the lower approximation R(α, β, k)

I (X) = U.
From the above calculations, we obtain that

{A1 = {∅, {x1}, {x2}, {x3}},
A2 = {{x1, x2}, {x1, x3}, {x2, x3}, {x1, x2, x3}}
A3 = {{x4}, {x1, x4}, {x2, x4}, {x3, x4}},
A4 = {{x1, x2, x4}, {x2, x3, x4}, {x1, x3, x4}, U}}

and

{ℬ1 = {∅, {x1}, {x2}, {x3}, {x4}, {x1, x4}, {x2, x4}{x3, x4}},
ℬ2 = {{x1, x2}, {x1, x3}, {x2, x3}, {x1, x2, x3}, {x1, x2, x4}, {x2, x3, x4},

{x1, x3, x4}, U}} .

Based on {A1, A2, A3, A4} and {ℬ1, ℬ2}, we can get the
information entropies of absolute and relative quantification in
DqI-DTRS model as follows:

HR
I (Rel) = − ∑

i = 1

4 |Ai|
2|U| log |Ai|

2|U| = − 4 × 4
16log 4

16 = 2,

HR
I (Abs) = − ∑

j = 1

2 |ℬ j|
2|U| log |ℬ j|

2|U| = − 2 × 8
16log 8

16 = 1.

The information co-entropy of absolute quantitative information
and relative quantitative information in DqI-DTRSmodel are
defined as

GR
I (Rel) = ∑

i = 1

4 |Ai|
2|U| log |Ai | = 2,

GR
I (Abs) = ∑

j = 1

2 |ℬ j|
2|U| log |ℬ j | = 3.

−log |Ai | /2|U|  and −log |ℬ j | /2|U|  in information entropies are
related to the probabilities |Ai | /2|U|  and |ℬ j | /2|U|  of occurrence
of the ‘event’ Ai and ℬ j, respectively, can be interpreted as
measures of the uncertainty due to the knowledge of these
probabilities. Furthermore, the information entropies of probability
distributions {A1, A2, …, Am} and {ℬ1, ℬ2, …, ℬn} can be
considered as quantities which in a reasonable way measures the
average uncertainty associated with their distributions and
expressed as the mean values −∑i = 1

m |Ai | /2|U| log |Ai | /2|U|  and
−∑i = 1

n |ℬi | /2|U| log |ℬi | /2|U| . That is to say, HR
I (Rel) and

HR
I (Abs) measure the average uncertainty of relative quantitative

information and absolute quantitative information with respect to
the upper and lower approximation operators. As mentioned above,
each pair of upper approximation operator or lower approximation
operator related to absolute quantitative information and relative
quantitative information induced a classification of all subsets of
U, and an uncertainty measure of the classification is provided by
each information entropy including HR

I (Abs) and HR
I (Rel). The

higher the information entropy, the lower the degree of uncertainty.
The quantity log |Ai| and log |ℬ j| represent the measure of the

granularity associated with the knowledge supported by the
‘granule’ Ai and ℬ j. Therefore, the information co-entropies
GR

I (Abs) and GR
I (Rel) are basically average granularity with respect

to all equivalence classes in the classification carried by the

HR
I (Abs) + GR

I (Abs) = − ∑
j = 1

n |ℬ j|
2|U| log |ℬ j|

2|U| + ∑
j = 1

n |ℬ j|
2|U| log |ℬ j|

= − ∑
j = 1

n |ℬ j|
2 U log |ℬ j | − ∑

j = 1

n |ℬ j|
2|U| log 2|U| + ∑

j = 1

n |ℬ j|
2|U| log |ℬ j|

= ∑
j = 1

n |ℬ j|
2|U| log 2|U| = |U | .
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absolute quantitative information and relative quantitative
information. In contrast to information entropies HR

I (Abs) and
HR

I (Rel), the greater the information co-entropy, the coarser the
classifications and the higher the degree of uncertainty of
describing concepts.

3.2 Information entropy and information co-entropy in DqII-
DTRS model

The entropies of absolute and relative quantitative information in
DqII-DTRS model and their corresponding properties are
introduced.

Similar to DqI-DTRS, we denote the upper and lower
approximation operators of DqII-DTRS as R̄(α, β, k), i

II = Ci and
R(α, β, k), j

II = Dj, it is easy to see that every subset of U appears with
the same probability 1/2|U|. For any X ∈ P(U), we set

Ci = {X ∈ P(U) | R̄(α, β, k)
II (X) = Ci};

D j = {X ∈ P(U) | R(α, β, k)
II (X) = Dj} .

Then the upper approximation operator Ci and the lower
approximation operator Dj appear with the accumulative
probability |Ci | /2|U| and |D j | /2|U| since the amount of all subsets of
U is 2|U|, respectively. For each X ∈ P(U) in DqII-DTRS model,
|Ci | (i ∈ {1, 2, …, p}) are the number of subsets described by the
absolute quantification |[x]R ∩ X|, namely |C1 | , |C2 | , …, |Cp| are
the number of subsets described by the upper approximation
operators R̄(α, β, k), > 1

II (X), R̄(α, β, k), 2
II (X), …, R̄(α, β, k), p

II (X), respectively;
and |D j | ( j ∈ {1, 2, …, q}) are the number of subsets described by
the relative quantification |[x]R ∩ X | / | [x]R|, namely
|D1 | , |D2 | , …, |Dq| are the number of subsets described by the
lower approximation operators R(α, β, k), > 1

II (X),
R(α, β, k), 2

II (X), …, R(α, β, k), q
II (X), respectively. We form two probability

distributions:

P(R̄(α, β, k)
II ) = |C1|

2|U| ,
|C2|
2|U| , …, |Cp|

2|U| ;

P(R(α, β, k)
II ) = |D1|

2|U| , |D2|
2|U| , …, |Dq|

2|U| .

It turns out that both {C1, C2, …, Cp} and {D1, D2, …, Dq} can
give rise to a partition of P(U), which means ⋃i = 1

p Ci = P(U) and
⋃ j = 1

q D j = P(U). Therefore, we can obtain ∑i = 1
p |Ci | = 2|U| and

∑ j = 1
q |D j | = 2|U|.

 
Definition 7: Given an information system (U, A, F) and an

equivalence relation R. For each X ∈ P(U), we get two partitions
of P(U) induced by the double quantification, which are
{C1, C2, …, Cp} and {D1, D2, …, Dq}, respectively. Then the
information entropy of absolute and relative quantitative
information in DqII-DTRS model is defined as

HR
II(Abs) = − ∑

i = 1

p |Ci|
2|U| log |Ci|

2|U| ,

HR
II(Rel) = − ∑

j = 1

q |D j|
2|U| log |D j|

2|U| .

 
Definition 8: Given an information system (U, A, F) and an

equivalence relation R. For each X ∈ P(U), we produce two
partitions of P(U) induced by double quantification, which are
{C1, C2, …, Cp} and {D1, D2, …, Dq}, respectively. Then the
information co-entropy of absolute and relative quantitative
information in DqII-DTRS model is defined as

GR
II(Abs) = ∑

i = 1

p |Ci|
2|U| log |Ci | ,

GR
II(Rel) = ∑

j = 1

q |D j|
2|U| log |D j | .

 
Proposition 2: Let U be a universe with |U| elements. Then the

information entropy and information co-entropy in DqII-DTRS
model satisfy the following properties.

HR
II(Abs) + GR

II(Abs) = |U | ,

HR
II(Rel) + GR

II(Rel) = |U | .
 

Proof: It is similar to the proof of Proposition 1. □
 

Example 2: (Continuation see Table 1): We compute the DqII-
DTRS upper approximation and lower approximation, which is
shown in Table 3. 

When X = ∅, {x1}, {x2}, {x3}, {x4}, {x1, x4}, {x2, x4} and {x3, x4},
the upper approximation R̄(α, β, k)

II (X) = ∅; when X = {x1, x2},
{x1, x3}, {x2, x3}, {x1, x2, x3}, {x1, x2, x4}, {x2, x3, x4}, {x1, x3, x4} and U,
the upper approximation R̄(α, β, k)

II (X) = {x1, x2, x3}. Also, when
X = ∅, the lower approximation R(α, β, k)

II (X) = ∅; when X = {x4},
the lower approximation R(α, β, k)

I (X) = {x4}; when {x1}, {x2}, {x3},
{x1, x2}, {x1, x3}, {x2, x3} and {x1, x2, x3}, the lower approximation
R(α, β, k)

II (X) = {x1, x2, x3}; when X = {x1, x4}, {x2, x4}, {x3, x4},
{x1, x2, x4}, {x2, x3, x4}, {x1, x3, x4} and U, the lower approximation
R(α, β, k)

II (X) = U.
Based on the above results, we obtain {C1 = {∅, {x1}, {x2},

{x3}, {x4}, {x1, x4}, {x2, x4}, {x3, x4}}, C2 = {{x1, x2}, {x1, x3},
{x2, x3}, {x1, x2, x3}, {x1, x2, x4}, {x2, x3, x4}, {x1, x3, x4}, U} and
{D1 = {∅}, D2 = {{x4}}, D3 = {{x1}, {x2}, {x3}, {x1, x2}, {x1, x3},
{x2, x3}, {x1, x2, x3}}, D4 = {{x1, x4}, {x2, x4}, {x3, x4}, {x1, x2, x4},
{x2, x3, x4}, {x1, x3, x4}, U}. Based on {C1, C2, C3, C4} and {D1, D2},
the absolute and relative quantification is as follows:

Table 1 Information table
U a b c
x1 1 2 1
x2 1 2 1
x3 1 2 1
x4 2 1 2

 

Table 2 Upper and lower approximations in DqI-DTRS
model
X R̄(α, β, k)

I (X) R(α, β, k)
I (X)

∅ ∅ {x4}
{x1} ∅ {x4}
{x2} ∅ {x4}
{x3} ∅ {x4}
{x4} {x4} {x4}
{x1, x2} {x1, x2, x3} U
{x1, x3} {x1, x2, x3} U
{x1, x4} {x4} {x4}
{x2, x3} {x1, x2, x3} U
{x2, x4} {x4} {x4}
{x3, x4} {x4} {x4}
{x1, x2, x3} {x1, x2, x3} U
{x1, x2, x4} U U
{x2, x3, x4} U U
{x1, x3, x4} U U
U U U
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HR
II(Abs) = − ∑

i = 1

2 |Ci|
2|U| log |Ci|

2|U| = − 2 × 8
16log 8

16 = 1,

HR
II(Rel) = − ∑

j = 1

4 |D j|
2|U| log |D j|

2|U| = − 2 × 1
16log 1

16

−2 × 1
16log 1

16 = 1.5436.

The information co-entropy of absolute quantitative information
and relative quantitative information in DqII-DTRS model are as
follows:

GR
II(Abs) = ∑

i = 1

2 |Ci|
2|U| log |Ci | = 3,

GR
II(Rel) = ∑

j = 1

4 |D j|
2|U| log |D j | = 2.4564.

For the proposed information measures in DqII-DTRS,
−log |Ci | /2|U|  and −log |D j | /2|U|  in information entropies are
related to the probabilities |Ci | /2|U|  and |D j | /2|U|  of occurrence
of the ‘event’ Ci and D j, respectively, can be interpreted as
measures of the uncertainty due to the knowledge of these
probabilities. Furthermore, the information entropies of probability
distributions {C1, C2, …, Cp} and {D1, D2, …, Dq} can be
considered as quantities which in a reasonable way measures the
average uncertainty associated with their distributions and
expressed as the mean values −∑i = 1

p |Ci | /2|U| log |Ci | /2|U|  and
−∑ j = 1

q |Di | /2|U| log |D j | /2|U| . That is to say, HR
II(Rel) and

HR
II(Abs) measure the average uncertainty of relative quantitative

information and absolute quantitative information with respect to
the upper and lower approximation operators. As mentioned above,
each pair of upper approximation operator or lower approximation
operator related to absolute quantitative information and relative
quantitative information induced a classification of all subsets of
U, and each information entropy including HR

II(Abs) and HR
II(Rel)

provides an uncertainty measure of the classification. The greater
the information entropy, the lower the degree of uncertainty.

The quantity log |Ci| and log |D j| represent the measure of the
granularity associated with the knowledge supported by the
‘granule’ Ci and D j. Therefore, the information co-entropies
GR

II(Abs) and GR
II(Rel) are basically average granularity with

respect to all equivalence classes in the classification carried by the
absolute quantitative information and relative quantitative
information. In contrast to information entropies HR

II(Abs) and
HR

II(Rel), the greater the information co-entropy, the coarser the
classifications and the higher the degree of uncertainty of
describing vague concepts.

4 Conclusions
In the establishment of the double-quantitative rough set model,
how to measure the two kinds of quantitative information is an
urgent issue to be investigated. In this study, we mainly focus on
the theoretical analysis of the information contained in the two
kinds of quantitative information of the Dq-DTRS model. We
develop the information measures of absolute quantitative
information and relative quantitative information in Dq-DTRS
model and further present the methods of attribute reduction based
on the proposed double quantification. The proposed measures,
information entropies, and information co-entropies with regard to
absolute and relative quantifications perform a new direction for
the study of the theory of information theory and Dq-DTRS model.
This paper introduces the information theory into Dq-DTRS model,
and the notations of absolute quantitative information entropy,
information co-entropy, and relative quantitative information
entropy, information co-entropy are discussed, respectively.

The presented information measures are based on the amount
number of the power set of the universe of discourse, and it cannot
get a good application in practice due to the limitations of
Computer Memory. Therefore, how to develop a special algorithm
for improving the Computer Memory consumption to calculate the
information entropy and information co-entropy in Dq-DTRS
models, and more applicable formula of the information entropy or
information co-entropy is desirable. We will investigate these
issues in the future work.
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