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This paper focuses on constructing uncertainty measures by the pure rough set approach in ordered information system.
Four types of definitions of lower and upper approximations and corresponding uncertainty measurement concepts including
accuracy, roughness, approximation quality, approximation accuracy, dependency degree, and importance degree are investigated.
Theoretical analysis indicates that all the four types can be used to evaluate the uncertainty in ordered information system, especially
that we find that the essence of the first type and the third type is the same. To interpret and help understand the approach,
experiments about real-life data sets have been conducted to test the four types of uncertainty measures. From the results obtained,
it can be shown that these uncertainty measures can surely measure the uncertainty in ordered information system.

1. Introduction

Rough set theory, originated by Pawlak in the early 1980s
[1, 2], is an extension of the classical set theory and can be
regarded as a soft computing tool to handle imprecision,
vagueness, and uncertainty in the data analysis. The theory
has been found successful applications in the field of pattern
recognition [3], medical diagnosis [4], data mining [5, 6],
conflict analysis [7], algebra [8, 9], and other fields [10–12].
Recently, the theory has generated a great deal of interest
among more and more researchers.

Until now, several extensions of the rough set model
have been proposed in terms of various requirements. For
example, by exploring the relationship between rough sets
and modal logics, Yao proposed and examined a number of
extended rough set models. Then with respect to graded and
probabilistic modal logics, graded and probabilistic rough set
models are also discussed in [13]. Also Yao summarized vari-
ous formulations of the standard rough set theory. It demon-
strated how those formulations can be adopted to develop
different generalized rough set theories. The relationships
between rough set theory and other theories are discussed
in [14]. In [15], Wu presented a general framework for the
study of mathematical structure of rough sets in infinite
universes of discourse. Lower and upper approximations of

a crisp set with respect to an infinite approximation space
are first defined. And the connections between rough sets
and Dempster-Shafer theory of evidence are also explored.
Also some other extensions have been introduced, such as the
variable precision rough set (VPRS) model [16], the rough
set model based on tolerance relation [17, 18], the Bayesian
rough set model [19], the fuzzy rough set model, and the
rough fuzzy set model [20, 21]. Andmany achievements have
beenmade in rough set theory. For example, Grzymala-Busse
[22] developed a system LERS for rule induction, which can
handle inconsistencies and induce both certain and possi-
ble rules. Polkowski [23] worked on using granular rough
mereological structures in classification of data. Skowron
et al. [24] worked on the relation and the combination of
rough set theory and granular computing [25]. Lin proposed
granular computing model based on binary relations [26].
Yao studied three-way decisions in probabilistic rough set
model [27, 28]. Equivalence relation is a basic notion in
Pawlak’s rough set model. However, the original rough set
theory approaches donot consider attributeswith preference-
ordered domains, that is, criteria. In many real situations,
we are often faced to the problems in which the ordering of
properties of the considered attribute values plays a crucial
role. One such type of problem is the ordering of objects.
For this reason, Yao considered the problem of mining
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ordering rules as finding association between orderings of
attribute values and the overall ordering of objects in [29].
For mining ordering rules, the notion of information tables
is generalized to ordered information tables by adding order
relations on attribute values. And Iwiński has also addressed
the problem from the ranking of objects in information
systems [30, 31].Moreover, Greco et al. proposed an extension
of rough set theory, called the dominance-based rough
set approach (DRSA) to take into account the ordering
properties of criteria [32–34].This innovation ismainly based
on substitution of the indiscernibility relation by a dominance
relation. Moreover, Greco et al. characterize the DRSA as
well as decision rules induced from rough approximations,
while the usefulness of the DRSA and its advantages over
the CRSA (classical rough set approach) are presented [32–
34]. In DRSA, condition attributes are criteria and classes
are preference ordered. Several studies have been made
about properties and algorithmic implementations of DRSA
[35–37].

Uncertainty measurement is an important issue in rough
set theory. Pure rough set approach and information theory
approach are two methodologies to deal with uncertainty
measure problem in rough set theory. In pure rough set
approach, the accuracy measure, the roughness measure, the
approximation quality measure, the approximation accuracy
measure, the dependency degree measure, and importance
degree measure are important numerical characterizations
that quantify the imprecision of a rough set caused by its
boundary region. Recently, Yao [38] studied two definitions
of approximations and associated measures based on equiva-
lence relations. In information theory approach, entropy and
its variants have been introduced into rough set theory [39–
42].

Classical rough setmodel is based on equivalence relation
or partition. Thus, the corresponding uncertainty measures
are not suitable for ordered information system. Several
authors have defined uncertainty measures in ordered infor-
mation system by information theory approach. Xu et al.
introduced the concepts of rough entropy and knowledge
granulation in ordered information system [43]. Also, Xu
et al. defined the knowledge granulation, knowledge entropy,
and knowledge uncertainty measure in ordered information
system and gave some of their properties [44]. However,
there are few studies on uncertainty measurement issue
based on pure rough set approach in ordered information
system. In this paper, we mainly focus on extending Pawlak’s
pure rough set uncertainty measures to ordered information
system.

The organization of the remainder of this paper is as
follows. In Section 2, some basic concepts in classical rough
set theory and ordered information system are reviewed.
Four types of lower and upper approximations and their
corresponding uncertainty measures are investigated in
Section 3, and some important properties are studied. Also
we find that the essence of the first type and the third type
is the same. In Section 4, four types of uncertainty measures
are tested on some real-life data. And in Section 5, we
conclude the paper with a summary and outlook for further
research.

2. Preliminaries

In this section, we review some basic notions in classical
rough set theory and ordered information system rough
set.

Throughout this paper, we assume that the universe𝑈 is a
nonempty finite set, and the class of all subsets of𝑈 is denoted
by P(𝑈), and the complement of 𝑋 in 𝑈 is denoted by
∼𝑋.

2.1. Rough Set Approximations in Classical Information Sys-
tem. A classical information system is an order triple 𝑆 =

(𝑈, 𝐴, 𝑓), where 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} is a nonempty finite

set of objects, 𝐴 = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
} is a nonempty finite set

of condition attributes, and, for any 𝑎
𝑖
∈ 𝐴, 𝑓

𝑎𝑖
: 𝑈 →

𝑉
𝑎𝑖
is a map, where 𝑉

𝑎𝑖
is the domain of the attribute 𝑎

𝑖
. In

particular, a classical target information system is given by
𝑆 = (𝑈, 𝐴, 𝑓,𝐷, 𝑔), where 𝐷 = {𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑝
} is a nonempty

finite set of decision attributes, and for any 𝑑
𝑗

∈ 𝐷, 𝑔
𝑑𝑗

:

𝑈 → 𝑉
𝑑𝑗
is a map, where 𝑉

𝑑𝑗
is the domain of the attribute

𝑑
𝑗
.
Suppose that 𝑆 = (𝑈, 𝐴, 𝑓) is a classical information

system, and 𝑅
𝐵
= {(𝑥, 𝑦) | 𝑓

𝑎𝑖
(𝑥) = 𝑓

𝑎𝑖
(𝑦), ∀𝑎

𝑖
∈ 𝐵}; let 𝑈/𝑅

𝐵

be a partition of𝑈 induced by the attribute subset 𝐵 ⊆ 𝐴. For
any 𝑥 ∈ 𝑈, [𝑥]

𝑅𝐵
= {𝑦 | (𝑥, 𝑦) ∈ 𝑅

𝐵
}; more information can

be found in [45–47].
Let 𝑋 be a subset of 𝑈; the lower and upper approxima-

tions are defined, respectively, as follows:

𝑅
𝐵
(𝑋) = {𝑥 ∈ 𝑈 | [𝑥]𝑅𝐵

⊆ 𝑋} = ∪ {[𝑥]𝑅𝐵
| [𝑥]𝑅𝐵

⊆ 𝑋} ,

𝑅
𝐵
(𝑋) = {𝑥 ∈ 𝑈 | [𝑥]𝑅𝐵

∩ 𝑋 ̸= 0}

= ∪ {[𝑥]𝑅𝐵
| [𝑥]𝑅𝐵

∩ 𝑋 ̸= 0} .

(1)
From the definition, we can see that two different

approaches have been employed for the constructing of lower
and upper approximations. The first one is element-based
approach, while the second one is class-based approach. The
lower approximation of a set𝑋with respect to 𝑅

𝐵
is the set of

all objects, which certainly belongs to 𝑋 with respect to 𝑅
𝐵
.

The upper approximation of a set 𝑋 with respect to 𝑅
𝐵
is the

set of all objects, which possibly belongs to𝑋 with respect to
𝑅
𝐵
.
Let 𝑆 = (𝑈, 𝐴, 𝑓,𝐷, 𝑔) be a classical target information

system and let 𝑈/𝐷 = {𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑟
} be the set of decision

classes of the information system 𝑆.

2.2. Uncertainty Measures in Rough Set Theory. Rough sets
can also be characterized numerically by accuracy measure,
roughness measure, and approximation quality, which can
be used for evaluating uncertainty of a set. And approx-
imation accuracy can be used to evaluate the uncertainty
of a rough classification [2]. Besides, dependency degree
and importance degree can be employed to evaluate condi-
tion attribute subset with respect to decision attribute [1].
The definitions of the uncertainty measures are shown as
follows.
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Definition 1 (see [2]). Let 𝑆 = (𝑈, 𝐴, 𝑓) be a classical
information system, 𝐵 ⊆ 𝐴, and 𝑋 ∈ P(𝑈). The accuracy
of set𝑋 according to 𝑅

𝐵
is

Accuracy
𝐵
(𝑋) =

󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨

. (2)

The roughness of set𝑋 with respect to 𝑅
𝐵
is

Roughness
𝐵
(𝑋) = 1 − Accuracy

𝐵
(𝑋) = 1 −

󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨

.

(3)

And the approximation quality of set𝑋 with respect to 𝑅
𝐵
is

AppQuality
𝐵
(𝑋) =

󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨

|𝑈|
. (4)

In fact, the roughness measure is the well-known
Marczewski-Steinhaus distance between the lower and upper
approximations according to Yao [48].

Definition 2 (see [2]). Let 𝑆 = (𝑈, 𝐴, 𝑓,𝐷, 𝑔) be a classical
decision information system, 𝑈/𝐷 = {𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑟
} be the

classification of the universe 𝑈, and 𝐵 be the attribute subset
that 𝐵 ⊆ 𝐴. The approximation accuracy of 𝑈/𝐷 according
to 𝑅
𝐵
is

AppAccuracy
𝐵
(
𝑈

𝐷
) =

∑
𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨

∑
𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨

. (5)

The dependency degree and importance degree of 𝐵 with
respect to𝐷 are defined as [1]

DepDegree
𝐵
(𝐷) =

1

𝑟
∑

𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨
𝑅
𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨

|𝑈|
,

ImpDegree (𝐵) = DepDegree
𝐴
(𝐷) − DepDegree

𝐴−𝐵
(𝐷) .

(6)

According to the definitions of these measures, we know
that the accuracy measure is equal to the degree of the
completeness of knowledge about the given object set 𝑋 and
the approximation quality can also evaluate the completeness
degree of the set 𝑋, while the roughness measure repre-
sents the incompleteness of the knowledge. Meanwhile, the
approximation accuracy provides the percentage of possible
correct decisions when classifying objects by employing the
attribute set 𝑅. The dependency degree and importance
degree are used to measure the degree of the dependency and
the importance of 𝐵 with respect to𝐷.

Moreover, to investigate the uncertainty measures, a
partial relation is defined such that given two families of the
equivalence relations 𝑅

𝑃
and 𝑅

𝑄
are induced by the attribute

subsets 𝑃 and 𝑄, respectively. One can define 𝑃 ⪯ 𝑄 if and
only if, for each [𝑥]

𝑅𝑃
, there exist [𝑥]

𝑅𝑄
such that [𝑥]

𝑅𝑃
⊆

[𝑥]
𝑅𝑄
; then 𝑄 is said to be coarser than 𝑃 (or 𝑃 is finer than

𝑄). If 𝑃 ⪯ 𝑄 and 𝑃 ̸= 𝑄, then 𝑄 is said to be strictly coarser
than 𝑃 (or 𝑃 is strictly finer than 𝑄) and it can be denoted by
𝑃 ≺ 𝑄.

Since we have many uncertainty measurements to mea-
sure the uncertainty, not all the measures can be reasonable.
If the accuracy measure, roughness measure, approximation
quality measure, approximation accuracy measure, depe-
ndency degree measure, and importance degree measure are
reasonable, they should have the following properties.

Accuracy. Let 𝑆 = (𝑈, 𝐴, 𝑓) be a classical information system
and𝑃,𝑄 ⊆ 𝐴. If𝑃 ⪯ 𝑄, then Accuracy

𝑃
(𝑋) ⩾ Accuracy

𝑄
(𝑋).

Roughness. Let 𝑆 = (𝑈, 𝐴, 𝑓) be a classical information
system and 𝑃,𝑄 ⊆ 𝐴. If 𝑃 ⪯ 𝑄, then Roughness

𝑃
(𝑋) ⩽

Roughness
𝑄
(𝑋).

Approximation Quality. Let 𝑆 = (𝑈, 𝐴, 𝑓) be a classical
information system and 𝑃,𝑄 ⊆ 𝐴. If 𝑃 ⪯ 𝑄, then
AppQuality

𝑃
(𝑋) ⩾ AppQuality

𝑄
(𝑋).

Approximation Accuracy. Let 𝑆 = (𝑈, 𝐴, 𝑓,𝐷, 𝑔) be a classical
decision information system and 𝑃,𝑄 ⊆ 𝐴. If 𝑃 ⪯ 𝑄, then
AppAccuracy

𝑃
(𝑋) ⩾ AppAccuracy

𝑄
(𝑋).

Dependence Degree. Let 𝑆 = (𝑈, 𝐴, 𝑓,𝐷, 𝑔) be a classical
decision information system and 𝑃,𝑄 ⊆ 𝐴. If 𝑃 ⪯ 𝑄, then
DepDegree

𝑃
(𝐷) ⩾ DepDegree

𝑄
(𝐷).

Importance Degree. Let 𝑆 = (𝑈, 𝐴, 𝑓,𝐷, 𝑔) be a classical
decision information system and 𝑃,𝑄 ⊆ 𝐴. If 𝑃 ⪯ 𝑄, then
ImpDegree(𝑃) ⩾ ImpDegree(𝑄).

Obviously, these measures are reasonable to be used as
uncertainty measures in classical rough set theory.

2.3. Ordered Information Systems and Dominance Relation.
An ordered information system is an order triple 𝑆

≽
=

(𝑈, 𝐴, 𝑓), where 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} is a nonempty finite

set of objects, 𝐴 = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
} is a nonempty finite set

of condition attributes, and, for any 𝑎
𝑖
∈ 𝐴, 𝑓

𝑎𝑖
: 𝑈 →

𝑉
𝑎𝑖
is a map, where 𝑉

𝑎𝑖
is the domain of the attribute 𝑎

𝑖
. In

particular, an ordered decision information system is given
by 𝑆
≽

= (𝑈, 𝐴, 𝑓,𝐷, 𝑔), where 𝐷 = {𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑝
} is a

nonempty finite set of decision attributes, and, for any𝑑
𝑗
∈ 𝐷,

𝑔
𝑑𝑗

: 𝑈 → 𝑉
𝑑𝑗

is a map, where 𝑉
𝑑𝑗

is the domain of the
attribute 𝑑

𝑗
.

Definition 3 (see [34]). Let 𝑆
≽

= (𝑈,𝐴, 𝑓) be an ordered
information system, for 𝐵 ⊆ 𝐴; then 𝑅

≽

𝐵
is called the

dominance relation with respect to 𝐵:
𝑅
≽

𝐵
= {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 | 𝑓

𝑙
(𝑥) ⩽ 𝑓

𝑙
(𝑦) , ∀𝑎

𝑙
∈ 𝐵} . (7)

And the dominance class of an object 𝑥 with respect to an
attribute subset 𝐵 is

[𝑥]
≽

𝑅𝐵
= {𝑦 ∈ 𝑈 | (𝑥, 𝑦) ∈ 𝑅

≽

𝐵
}

= {𝑦 ∈ 𝑈 | 𝑓
𝑙
(𝑥) ⩽ 𝑓

𝑙
(𝑦) , ∀𝑎

𝑙
∈ 𝐵} .

(8)
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In ordered information system, just like it in classical
information system, assume that 𝑄 is coarser than 𝑃 (or 𝑃

is finer than 𝑄), denoted by 𝑃 ⪯ 𝑄, if, for any 𝑥 ∈ 𝑈,
[𝑥]
≽

𝑅𝑃
⊆ [𝑥]
≽

𝑅𝑄
. If 𝑃 ⪯ 𝑄 and 𝑃 ̸=𝑄, then𝑄 is said to be strictly

coarser than 𝑃 (or 𝑃 is strictly finer than 𝑄) and it can be
denoted by 𝑃 ≺ 𝑄.

Note that if 𝑃 ⊇ 𝑄, then 𝑃 ⪯ 𝑄.

Definition 4. Let 𝑆
≽

1
= (𝑈,𝐴, 𝑓

1
), 𝑆≽
2

= (𝑈, 𝐴, 𝑓
2
) be two

ordered information systems; they have the same object set,
attribute set, but they may have different attribute values on
some objects. If, for any 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑈, either 𝑓

1
(𝑎, 𝑥) =

𝑓
2
(𝑎, 𝑥) or if𝑓

1
(𝑎, 𝑥) ̸= 𝑓

2
(𝑎, 𝑥), we can get𝑓

1
(𝑎, 𝑥) ⩾ 𝑓

2
(𝑎, 𝑥),

and then we say 𝑆
≽

2
is coarser than 𝑆

≽

1
(or 𝑆≽
1
is finer than 𝑆

≽

2
),

which is denoted by 𝑆
≽

1
⪯
󸀠
𝑆
≽

2
.

Note that if 𝑆≽
1
⪯
󸀠
𝑆
≽

2
, then exist 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑈, such that

𝑓
1
(𝑎, 𝑥) ⩾ 𝑓

2
(𝑎, 𝑥).

Theorem 5. Let 𝑆
≽

1
= (𝑈,𝐴, 𝑓

1
), 𝑆≽
2

= (𝑈, 𝐴, 𝑓
2
) be two

ordered information systems and 𝐵 ⊆ 𝐴. If 𝑆≽
1
⪯
󸀠
𝑆
≽

2
, then, for

any 𝑥 ∈ 𝑈, [𝑥]≽
𝑅
𝐵,𝑆
≽

1

⊆ [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

.

Proof. (1) If, for any 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑈, 𝑓
1
(𝑎, 𝑥) = 𝑓

2
(𝑎, 𝑥), then,

for any 𝑥 ∈ 𝑈, we have [𝑥]≽
𝑅
𝐵,𝑆
≽

1

= [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

.

(2) If there exists 𝑎 ∈ 𝐴, 𝑦 ∈ 𝑈, such that 𝑓
1
(𝑎, 𝑥) ⩾

𝑓
2
(𝑎, 𝑥). So if 𝑦 ∈ [𝑥]

≽

𝑅
𝐵,𝑆
≽

1

, then 𝑦 ∈ [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

. Hence, [𝑥]≽
𝑅
𝐵,𝑆
≽

1

⊆

[𝑥]
≽

𝑅
𝐵,𝑆
≽

2

.
This completes the proof.

3. Approximations and Uncertainty Measures
in Ordered Information System

In this section, we investigate four types of definitions of
lower approximation and upper approximation in ordered
information system. We focus on the problem of whether
these definitions are appropriate for the uncertaintymeasures
(accuracy, roughness, approximation quality, approximation
accuracy, dependency degree, and importance degree). Actu-
ally, {[𝑥]≽

𝑅𝐵
| 𝑥 ∈ 𝑈} forms a covering on 𝑈 based on the

dominance relation discussed in the last section. Thus,
one can obtain four types definitions of lower and upper
approximations based on coverings. In fact, the first,
the third, and the fourth types of definitions of lower
approximations and upper approximations were studied by
Yao in [49]. Yao defined the three types of approxima-
tion operators based on an arbitrary relation, while in
this paper the relation is confined to the dominance rela-
tion defined in the last section. Essentially, we note that
dominance relation is only one special type of binary
relations. Most important of all, the granule [𝑥]

≽

𝐵
in

ordered information system is in fact a successor neigh-
borhood 𝑛(𝑥) as used in [49]. They are natural or direct
extensions of Pawlak rough set model just by replac-
ing the equivalence relation with the dominance relation,

while the second definition just changes the element-
based approach with the class-based approach, which can
be viewed as indirect extensions of Pawlak rough set
model.

3.1. The First Type of Approximations and Corresponding
Measures. In this subsection, we will consider the first type
of lower and upper approximations which are the element-
based type. It can be defined as follows.

Definition 6. Let 𝑆≽ = (𝑈,𝐴, 𝑓) be an ordered information
system, 𝐵 ⊆ 𝐴, and 𝑋 ∈ P(𝑈). The first type of lower
approximation and upper approximation of 𝑋 according to
𝐵 are defined as follows:

𝑅
≽1

𝐵
(𝑋) = {𝑥 ∈ 𝑈 | [𝑥]

≽

𝑅𝐵
⊆ 𝑋} ,

𝑅
≽1

𝐵
(𝑋) = {𝑥 ∈ 𝑈 | [𝑥]

≽

𝑅𝐵
∩ 𝑋 ̸= 0} .

(9)

Based on the above definition of lower and upper
approximations, one can define the accuracy, roughness, and
approximation quality based on the first type as

Accuracy≽1
𝐵

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

,

Roughness≽1
𝐵

(𝑋) = 1 − Accuracy≽1
𝐵

= 1 −

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

,

AppQuality≽1
𝐵

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|
.

(10)

For an ordered decision information system 𝑆
≽

=

(𝑈,𝐴, 𝑓,𝐷, 𝑔) and 𝐵 ⊆ 𝐴, let 𝑈/𝐷 = {𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑟
} is

the set of equivalence decision classes of the ordered decision
information system; then the approximation accuracy of
𝑈/𝐷 according to 𝐵 can be defined as

AppAccuracy≽1
𝐵

(
𝑈

𝐷
) =

∑
𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

. (11)

The dependency degree and importance degree of 𝐵 with
respect to𝐷 can also be defined as

DepDegree≽1
𝐵

(𝐷) =
1

𝑟
∑

𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|
,

ImpDegree≽1 (𝐵) = DepDegree≽1
𝐴

(𝐷)

− DepDegree≽1
𝐴−𝐵

(𝐷) .

(12)

We investigate some new properties which are important
when investigating whether the uncertainty measurement
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concepts including accuracy, roughness, approximation qual-
ity, approximation accuracy, dependency degree, and impor-
tance degree are appropriate for uncertainty measures or not.

Theorem 7. Let 𝑆≽ = (𝑈, 𝐴, 𝑓) be an ordered information
system and 𝐵, 𝑃, 𝑄 ⊆ 𝐴; for any𝑋 ∈ P(𝑈), one has

(1) 𝑃 ⊇ 𝑄 ⇒ 𝑅
≽1

𝑃
(𝑋) ⊇ 𝑅

≽1

𝑄
(𝑋),

(2) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝑅
≽1

𝐵,𝑆
≽

1

(𝑋) ⊇ 𝑅
≽1

𝐵,𝑆
≽

2

(𝑋),

(3) 𝑃 ⊇ 𝑄 ⇒ 𝑅
≽1

𝑃
(𝑋) ⊆ 𝑅

≽1

𝑄
(𝑋),

(4) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝑅
≽1

𝐵,𝑆
≽

1

(𝑋) ⊆ 𝑅
≽1

𝐵,𝑆
≽

2

(𝑋).

Proof. (1) Suppose 𝑃 ⊇ 𝑄; then 𝑃 ⪯ 𝑄; according to the
definition of ⪯, we have, for any 𝑥 ∈ 𝑈, [𝑥]≽

𝑅𝑃
⊆ [𝑥]

≽

𝑅𝑄
. For

any 𝑥 ∈ 𝑅
≽1

𝑄
(𝑋), [𝑥]≽

𝑅𝑄
⊆ 𝑋; then [𝑥]

≽

𝑅𝑃
⊆ 𝑋, so 𝑥 ∈ 𝑅

≽1

𝑃
(𝑋).

Thus, 𝑅≽1
𝑃
(𝑋) ⊇ 𝑅

≽1

𝑄
(𝑋).

(2) Suppose 𝑆
≽

1
⪯
󸀠
𝑆
≽

2
; according to the definition of ⪯

󸀠,
there exist 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑈, such that 𝑓

1
(𝑎, 𝑥) ⩾ 𝑓

2
(𝑎, 𝑥).

Then 𝑥 ∈ 𝑈 and [𝑥]
≽

𝑅
𝐵,𝑆
≽

1

⊆ [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

. For any 𝑥 ∈ 𝑅
≽1

𝐵,𝑆
≽

2

(𝑋),

[𝑥]
≽

𝑅
𝐵,𝑆
≽

2

⊆ 𝑋; then [𝑥]
≽

𝑅
𝐵,𝑆
≽

1

⊆ 𝑋, so 𝑥 ∈ 𝑅
≽1

𝐵,𝑆
≽

1

(𝑋). Thus,

𝑅
≽1

𝐵,𝑆
≽

1

(𝑋) ⊇ 𝑅
≽1

𝐵,𝑆
≽

2

(𝑋).

(3) Suppose 𝑃 ⊇ 𝑄; then 𝑃 ⪯ 𝑄 and according to the
definition of ⪯, we have for any 𝑥 ∈ 𝑈, [𝑥]≽

𝑅𝑃
⊆ [𝑥]
≽

𝑅𝑄
. For any

𝑥 ∈ 𝑅
≽1

𝑃
(𝑋), [𝑥]≽

𝑅𝑃
∩𝑋 ̸= 0; then [𝑥]

≽

𝑅𝑄
∩𝑋 ̸= 0, so 𝑥 ∈ 𝑅

≽1

𝑄
(𝑋).

Thus, 𝑅≽1
𝑃
(𝑋) ⊆ 𝑅

≽1

𝑄
(𝑋).

(4) Suppose 𝑆
≽

1
⪯
󸀠
𝑆
≽

2
; according to the definition of ⪯

󸀠,
there exist 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑈, such that 𝑓

1
(𝑎, 𝑥) ⩾ 𝑓

2
(𝑎, 𝑥).

Then 𝑥 ∈ 𝑈 and [𝑥]
≽

𝑅
𝐵,𝑆
≽

1

⊆ [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

. For any 𝑥 ∈ 𝑅
≽1

𝐵,𝑆
≽

1

(𝑋),

[𝑥]
≽

𝑅
𝐵,𝑆
≽

1

∩ 𝑋 ̸= 0; then [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

∩ 𝑋 ̸= 0, so 𝑥 ∈ 𝑅
≽1

𝐵,𝑆
≽

2

(𝑋). Thus,

𝑅
≽1

𝐵,𝑆
≽

1

(𝑋) ⊆ 𝑅
≽1

𝐵,𝑆
≽

2

(𝑋).
Thus, the theorem is proved.

From the theorem above, one can get the following
theorem easily.

Theorem 8. Let 𝑆≽ = (𝑈, 𝐴, 𝑓,𝐷, 𝑔) be an ordered decision
information system and 𝐵, 𝑃, 𝑄 ⊆ 𝐴; for any 𝑋 ∈ P(𝑈), the
following properties hold:

(1) 𝑃 ⊇ 𝑄 ⇒ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽1

𝑃
(𝑋) ⩾ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽1

𝑄
(𝑋),

(2) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽1

𝐵,𝑆
≽

1

(𝑋) ⩾ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽1

𝐵,𝑆
≽

2

(𝑋),

(3) 𝑃 ⊇ 𝑄 ⇒ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠
≽1

𝑃
(𝑋) ⩽ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠

≽1

𝑄
(𝑋),

(4) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠

≽1

𝐵,𝑆
≽

1

(𝑋) ⩽ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠
≽1

𝐵,𝑆
≽

2

(𝑋),

(5) 𝑃 ⊇ 𝑄 ⇒ 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦
≽1

𝑃
(𝑋) ⩾ 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦

≽1

𝑄
(𝑋),

(6) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦

≽1

𝐵,𝑆
≽

1

(𝑋) ⩾

𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦
≽1

𝐵,𝑆
≽

2

(𝑋),

(7) 𝑃 ⊇ 𝑄 ⇒ 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽1

𝑃
(𝑈/𝐷) ⩾ 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽1

𝑄

(𝑈/𝐷),
(8) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽1

𝐵,𝑆
≽

1

(𝑈/𝐷) ⩾

𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽1

𝐵,𝑆
≽

2

(𝑈/𝐷),

(9) 𝑃 ⊇ 𝑄 ⇒ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽1

𝑃
(𝐷) ⩾ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽1

𝑄
(𝐷),

(10) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽1

𝐵,𝑆
≽

1

(𝐷) ⩾ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽1

𝐵,𝑆
≽

2

(𝐷),

(11) 𝑃 ⊇ 𝑄 ⇒ 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽1
(𝑃) ⩾ 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽1
(𝑄),

(12) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽1
(𝐵, 𝑆
≽

1
) ⩾

𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽1
(𝐵, 𝑆
≽

2
).

Proof. (1) Suppose 𝑃 ⊇ 𝑄; then 𝑃 ⪯ 𝑄. From (1) and (3) in
Theorem 7, we have

Accuracy≽1
𝑃

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑃
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑃
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑄
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑃
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑄
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑄
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

= Accuracy≽1
𝑄

(𝑋) .

(13)

(2) Suppose 𝑆
≽

1
⪯
󸀠
𝑆
≽

2
; from (2) and (4) in Theorem 7, we

have

Accuracy≽1
𝐵,𝑆
≽

1

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅
≽1

𝐵,𝑆
≽

1

(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐵,𝑆
≽

1

(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅
≽1

𝐵,𝑆
≽

2

(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐵,𝑆
≽

1

(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅
≽1

𝐵,𝑆
≽

2

(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐵,𝑆
≽

2

(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= Accuracy≽1
𝐵,𝑆
≽

2

(𝑋) .

(14)

(3) It is straightforward by (1).
(4) It is straightforward by (2).
(5) Suppose 𝑃 ⊇ 𝑄; then 𝑃 ⪯ 𝑄. From (1) and (3) in

Theorem 7, we have

AppQuality≽1
𝑃

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑃
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|
⩾

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑄
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|

= AppQuality≽1
𝑄

(𝑋) .

(15)

(6) Suppose 𝑆
≽

1
⪯
󸀠
𝑆
≽

2
; from (2) and (4) in Theorem 7, we

have

AppQuality≽1
𝐵,𝑆
≽

1

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅
≽1

𝐵,𝑆
≽

1

(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|
⩾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅
≽1

𝐵,𝑆
≽

2

(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|

= AppQuality≽1
𝐵,𝑆
≽

2

(𝑋) .

(16)

(7) Suppose 𝑃 ⊇ 𝑄; then 𝑃 ⪯ 𝑄. From (1) and (3) in
Theorem 7, we have

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑃
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
⩾
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑄
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑃
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
⩽
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑄
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
.

(17)
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Then,

∑

𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑃
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨
⩾ ∑

𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑄
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨
,

∑

𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑃
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨
⩽ ∑

𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑄
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨
.

(18)

So,

AppAccuracy≽1
𝑃

(
𝑈

𝐷
) =

∑
𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑃
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑃
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

⩾

∑
𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑄
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑄
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

= AppAccuracy≽1
𝑄

(
𝑈

𝐷
) .

(19)

(8) It can be proved similar to (7) by (2) and (4) in
Theorem 7.

(9) Suppose 𝑃 ⊇ 𝑄; then 𝑃 ⪯ 𝑄. From (1) and (3) in
Theorem 7, we have

DepDegree≽1
𝑃

(𝐷) =
1

𝑟
∑

𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑃
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|

⩾
1

𝑟
∑

𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝑄
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|

= DepDegree≽1
𝑄

(𝐷) .

(20)

(10) It can be proved similar to (9) by (2) and (4) in
Theorem 7.

(11) From (9), we have

DepDegree≽1
𝑃

(𝐷) ⩾ DepDegree≽1
𝑄

(𝐷) . (21)

Then,

DepDegree≽1
𝐴−𝑃

(𝐷) ⩽ DepDegree≽1
𝐴−𝑄

(𝐷) . (22)

So,

ImpDegree≽1 (𝑃) = DepDegree≽1
𝐴

(𝐷) − DepDegree≽1
𝐴−𝑃

(𝐷)

⩾ DepDegree≽1
𝐴

(𝐷) − DepDegree≽1
𝐴−𝑄

(𝐷)

= ImpDegree≽1 (𝑄) .

(23)

(12) It can be proved similar to (11) by (2) and (4) in
Theorem 7.

The theorem above shows that the accuracy, roughness,
approximation quality, approximation accuracy, dependency
degree, and importance degree measures of Definition 6
are reasonable. Therefore, Accuracy≽1

𝐵
(𝑋), Roughness≽1

𝐵
(𝑋),

AppQuality≽1
𝐵
(𝑋), AppAccuracy≽1

𝐵
(𝑈/𝐷), DepDegree≽1

𝐵
(𝐷),

and ImpDegree≽1(𝐵) can be used as the uncertainty mea-
sures.

3.2. The Second Type of Approximations and Corresponding
Measures. In this subsection, we will consider the second
type of lower and upper approximations which are the class-
based type. It can be defined as follows.

Definition 9. Let 𝑆≽ = (𝑈, 𝐴, 𝑓) be an ordered information
system, 𝐵 ⊆ 𝐴, and 𝑋 ∈ P(𝑈). The second type of lower
approximation and upper approximation of𝑋 according to 𝐵

are defined as follows:

𝑅
≽2

𝐵
(𝑋) = ∪ {[𝑥]

≽

𝑅𝐵
| [𝑥]
≽

𝑅𝐵
⊆ 𝑋} ,

𝑅
≽2

𝐵
(𝑋) = ∪ {[𝑥]

≽

𝑅𝐵
| [𝑥]
≽

𝑅𝐵
∩ 𝑋 ̸= 0} .

(24)

Based on the above definition of lower and upper
approximations, one can define the accuracy, roughness, and
approximation quality based on the second type as

Accuracy≽2
𝐵

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

,

Roughness≽2
𝐵

(𝑋) = 1 − Accuracy≽2
𝐵

= 1 −

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

,

AppQuality≽2
𝐵

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|
.

(25)

For an ordered decision information system 𝑆
≽

=

(𝑈,𝐴, 𝑓,𝐷, 𝑔), 𝐵 ⊆ 𝐴, 𝑈/𝐷 = {𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑟
} is the set of

equivalence decision class of the ordered information system;
then the approximation accuracy of U/D according to B can
be defined as

AppAccuracy≽2
𝐵

(
𝑈

𝐷
) =

∑
𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

. (26)

The dependency degree and importance degree of 𝐵 with
respect to𝐷 can also be defined as

DepDegree≽2
𝐵

(𝐷) =
1

𝑟
∑

𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|
,

ImpDegree≽2 (𝐵) = DepDegree≽2
𝐴

(𝐷)

− DepDegree≽2
𝐴−𝐵

(𝐷) .

(27)

Similarly, we investigate some new properties which are
important when investigating whether the uncertainty mea-
surement concepts including accuracy, roughness, approxi-
mation quality, approximation accuracy, dependency degree,
and importance degree are appropriate for uncertainty mea-
sures or not.

Theorem 10. Let 𝑆≽ = (𝑈, 𝐴, 𝑓) be an ordered information
system and 𝐵, 𝑃, 𝑄 ⊆ 𝐴; for any 𝑋 ∈ P(𝑈), one has
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(1) 𝑃 ⊇ 𝑄 ⇒ 𝑅
≽2

𝑃
(𝑋) ⊇ 𝑅

≽2

𝑄
(𝑋),

(2) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝑅
≽2

𝐵,𝑆
≽

1

(𝑋) ⊇ 𝑅
≽2

𝐵,𝑆
≽

2

(𝑋),

(3) 𝑃 ⊇ 𝑄 ⇒ 𝑅
≽2

𝑃
(𝑋) ⊆ 𝑅

≽2

𝑄
(𝑋),

(4) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝑅
≽2

𝐵,𝑆
≽

1

(𝑋) ⊆ 𝑅
≽2

𝐵,𝑆
≽

2

(𝑋).

Proof. (1) Suppose 𝑃 ⊇ 𝑄; then 𝑃 ⪯ 𝑄 and according to the
definition of ⪯, we have, for any 𝑥 ∈ 𝑈, [𝑥]≽

𝑅𝑃
⊆ [𝑥]
≽

𝑅𝑄
.

For any 𝑥 ∈ 𝑈, we have [𝑥]≽
𝑅𝑄

= ∪[𝑦]
≽

𝑅𝑃
and 𝑦 ∈ [𝑥]

≽

𝑅𝑄
. It

is clear that [𝑥]≽
𝑅𝑄

⊆ ∪[𝑦]
≽

𝑅𝑃
and 𝑦 ∈ [𝑥]

≽

𝑅𝑄
.Thenwe only need

to prove [𝑥]≽
𝑅𝑄

⊇ ∪[𝑦]
≽

𝑅𝑃
and 𝑦 ∈ [𝑥]

≽

𝑅𝑄
. For any 𝑥

󸀠
∈ ∪[𝑦]

≽

𝑅𝑃
,

there exist 𝑧 ∈ [𝑥]
≽

𝑅𝑄
such that𝑥󸀠 ∈ [𝑧]

≽

𝑅𝑃
.Then, for any 𝑎

𝑙
∈ 𝑃,

𝑓
𝑙
(𝑧) ⩽ 𝑓

𝑙
(𝑥
󸀠
). While 𝑧 ∈ [𝑥]

≽

𝑅𝑄
, for any 𝑎

𝑙
∈ 𝑄, 𝑓

𝑙
(𝑥)⩽ 𝑓

𝑙
(𝑧)

and 𝑃 ⊇ 𝑄. So, for any 𝑎
𝑙
∈ 𝑄, 𝑓

𝑙
(𝑥) ⩽ 𝑓

𝑙
(𝑧)⩽ 𝑓

𝑙
(𝑥
󸀠
); hence

𝑥
󸀠
∈ [𝑥]
≽

𝑅𝑄
. Thus [𝑥]≽

𝑅𝑄
⊇ ∪[𝑦]

≽

𝑅𝑃
and 𝑦 ∈ [𝑥]

≽

𝑅𝑄
.

For any 𝑥 ∈ 𝑅
≽2

𝑄
(𝑋), there exist 𝑦 ∈ 𝑈 such that 𝑥 ∈

[𝑦]
≽

𝑅𝑄
⊆ 𝑋. Then 𝑥 ∈ [𝑦]

≽

𝑅𝑄
= ∪[𝑧]

≽

𝑅𝑃
⊆ 𝑋 and 𝑧 ∈ [𝑦]

≽

𝑅𝑄
, so

𝑥 ∈ 𝑅
≽2

𝑃
(𝑋). Thus, 𝑅≽2

𝑃
(𝑋) ⊇ 𝑅

≽2

𝑄
(𝑋).

(2) Suppose 𝑆
≽

1
⪯
󸀠
𝑆
≽

2
; according to the definition of ⪯

󸀠,
there exist 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑈, such that 𝑓

1
(𝑎, 𝑥) ⩾ 𝑓

2
(𝑎, 𝑥). Then

𝑥 ∈ 𝑈 and [𝑥]
≽

𝑅
𝐵,𝑆
≽

1

⊆ [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

.

For any 𝑥 ∈ 𝑈, we have [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

= ∪[𝑦]
≽

𝑅
𝐵,𝑆
≽

1

and 𝑦 ∈

[𝑥]
≽

𝑅
𝐵,𝑆
≽

2

. It is clear that [𝑥]≽
𝑅
𝐵,𝑆
≽

2

⊆ ∪[𝑦]
≽

𝑅
𝐵,𝑆
≽

1

and 𝑦 ∈ [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

.

Then we only need to prove [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

⊇ ∪[𝑦]
≽

𝑅
𝐵,𝑆
≽

1

and 𝑦 ∈

[𝑥]
≽

𝑅
𝐵,𝑆
≽

2

. For any 𝑥
󸀠
∈ ∪[𝑦]

≽

𝑅
𝐵,𝑆
≽

1

, there exist 𝑧 ∈ [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

such

that 𝑥󸀠 ∈ [𝑧]
≽

𝑅
𝐵,𝑆
≽

1

. Then for any 𝑎
𝑙
∈ 𝐵, 𝑓

𝑙
(𝑧) ⩽ 𝑓

𝑙
(𝑥
󸀠
). While

𝑧 ∈ [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

, then, for any 𝑎
𝑙
∈ 𝐵, 𝑓

𝑙
(𝑥) ⩽ 𝑓

𝑙
(𝑧). So for any

𝑎
𝑙
∈ 𝐵, 𝑓

𝑙
(𝑥) ⩽ 𝑓

𝑙
(𝑧) ⩽ 𝑓

𝑙
(𝑥
󸀠
)); hence 𝑥

󸀠
∈ [𝑥]

≽

𝑅
𝐵,𝑆
≽

2

. Thus

[𝑥]
≽

𝑅
𝐵,𝑆
≽

2

⊇ ∪[𝑦]
≽

𝑅
𝐵,𝑆
≽

1

and 𝑦 ∈ [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

.

For any 𝑥 ∈ 𝑅
≽2

𝐵,𝑆
≽

2

(𝑋), there exist 𝑦 ∈ 𝑈 such that 𝑥 ∈

[𝑦]
≽

𝑅
𝐵,𝑆
≽

2

⊆ 𝑋. Then 𝑥 ∈ ∪[𝑧]
≽

𝑅
𝐵,𝑆
≽

1

= [𝑦]
≽

𝑅
𝐵,𝑆
≽

2

⊆ 𝑋 and 𝑧 ∈

[𝑦]
≽

𝑅
𝐵,𝑆
≽

2

, so 𝑥 ∈ 𝑅
≽1

𝐵,𝑆
≽

1

(𝑋). Thus, 𝑅≽1
𝐵,𝑆
≽

1

(𝑋) ⊇ 𝑅
≽1

𝐵,𝑆
≽

2

(𝑋).

(3) Suppose 𝑃 ⊇ 𝑄; then 𝑃 ⪯ 𝑄. According to the
definition of ⪯, we have, for any 𝑥 ∈ 𝑈, [𝑥]≽

𝑅𝑃
⊆ [𝑥]

≽

𝑅𝑄
. For

any 𝑥 ∈ 𝑅
≽2

𝑃
(𝑋), [𝑥]≽

𝑅𝑃
∩ 𝑋 ̸= 0 ̸= 0; then [𝑥]

≽

𝑅𝑄
∩ 𝑋 ̸= 0, so

𝑥 ∈ 𝑅
≽2

𝑄
(𝑋). Thus, 𝑅≽2

𝑃
(𝑋) ⊆ 𝑅

≽2

𝑄
(𝑋).

(4) Suppose 𝑆
≽

1
⪯
󸀠
𝑆
≽

2
, according to the definition of ⪯

󸀠,
there exist 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑈, such that 𝑓

1
(𝑎, 𝑥) ⩾ 𝑓

2
(𝑎, 𝑥).

Then 𝑥 ∈ 𝑈 and [𝑥]
≽

𝑅
𝐵,𝑆
≽

1

⊆ [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

. For any 𝑥 ∈ 𝑅
≽2

𝐵,𝑆
≽

1

(𝑋),

[𝑥]
≽

𝑅
𝐵,𝑆
≽

1

∩ 𝑋 ̸= 0; then [𝑥]
≽

𝑅
𝐵,𝑆
≽

2

∩ 𝑋 ̸= 0, so 𝑥 ∈ 𝑅
≽2

𝐵,𝑆
≽

2

(𝑋). Thus,

𝑅
≽2

𝐵,𝑆
≽

1

(𝑋) ⊆ 𝑅
≽2

𝐵,𝑆
≽

2

(𝑋).
Thus, the theorem is proved.

From the theorem above, one can get the following
theorem easily.

Theorem 11. Let 𝑆≽ = (𝑈,𝐴, 𝑓,𝐷, 𝑔) be an ordered decision
information system and 𝐵, 𝑃, 𝑄 ⊆ 𝐴; for any 𝑋 ∈ P(𝑈), the
following properties hold:

(1) 𝑃 ⊇ 𝑄 ⇒ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽2

𝑃
(𝑋) ⩾ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽2

𝑄
(𝑋),

(2) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽2

𝐵,𝑆
≽

1

(𝑋) ⩾ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽2

𝐵,𝑆
≽

2

(𝑋),

(3) 𝑃 ⊇ 𝑄 ⇒ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠
≽2

𝑃
(𝑋) ⩽ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠

≽2

𝑄
(𝑋),

(4) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠

≽2

𝐵,𝑆
≽

1

(𝑋) ⩽ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠
≽2

𝐵,𝑆
≽

2

(𝑋),

(5) 𝑃 ⊇ 𝑄 ⇒ 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦
≽2

𝑃
(𝑋) ⩾ 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦

≽2

𝑄
(𝑋),

(6) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦

≽2

𝐵,𝑆
≽

1

(𝑋) ⩾

𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦
≽2

𝐵,𝑆
≽

2

(𝑋),

(7) 𝑃 ⊇ 𝑄 ⇒ 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽2

𝑃
(𝑈/𝐷) ⩾ 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽2

𝑄

(𝑈/𝐷),
(8) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽2

𝐵,𝑆
≽

1

(𝑈/𝐷) ⩾

𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽2

𝐵,𝑆
≽

2

(𝑈/𝐷),

(9) 𝑃 ⊇ 𝑄 ⇒ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽2

𝑃
(𝐷) ⩾ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽2

𝑄
(𝐷),

(10) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽2

𝐵,𝑆
≽

1

(𝐷) ⩾ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽2

𝐵,𝑆
≽

2

(𝐷),

(11) 𝑃 ⊇ 𝑄 ⇒ 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽2
(𝑃) ⩾ 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽2
(𝑄),

(12) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽2
(𝐵, 𝑆
≽

1
) ⩾

𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽2
(𝐵, 𝑆
≽

2
).

Proof. The proof is similar to Theorem 8.

The theorem above shows that the accuracy, roughness,
approximation quality, approximation accuracy, dependency
degree, and importance degree measures of Definition 9
are reasonable. Therefore, Accuracy≽2

𝐵
(𝑋), Roughness≽2

𝐵
(𝑋),

AppQuality≽2
𝐵
(𝑋), AppAccuracy≽2

𝐵
(𝑈/𝐷), DepDegree≽2

𝐵
(𝐷),

and ImpDegree≽2(𝐵) can also be used as the uncertainty
measures.

3.3. The Third Type of Approximations and Corresponding
Measures. In this subsection, we will consider the third
type of lower and upper approximations which the lower
approximation is class-based lower approximation, and the
upper approximation is defined by the duality. They can be
defined as follows.

Definition 12. Let 𝑆≽ = (𝑈, 𝐴, 𝑓) be an ordered information
system, 𝐵 ⊆ 𝐴, and 𝑋 ∈ P(𝑈). The third type of lower
approximation and upper approximation of 𝑋 according to
𝐵 are defined as follows:

𝑅
≽3

𝐵
(𝑋) = ∪ {[𝑥]

≽

𝑅𝐵
| [𝑥]
≽

𝑅𝐵
⊆ 𝑋} ,

𝑅
≽3

𝐵
(𝑋) = ∼ [𝑅

≽3

𝐵
(∼ 𝑋)] .

(28)
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Based on the above definition of lower and upper
approximations, one can define the accuracy, roughness, and
approximation quality based on the third type as

Accuracy≽3
𝐵

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

,

Roughness≽3
𝐵

(𝑋) = 1 − Accuracy≽3
𝐵

= 1 −

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

,

AppQuality≽3
𝐵

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|
.

(29)

For an ordered decision information system 𝑆
≽

=

(𝑈,𝐴, 𝑓,𝐷, 𝑔), 𝐵 ⊆ 𝐴. 𝑈/𝐷 = {𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑟
} be the

set of equivalence decision classes of the ordered decision
information system; then the approximation accuracy of𝑈/𝐷

according to 𝐵 can be defined as

AppAccuracy≽3
𝐵

(
𝑈

𝐷
) =

∑
𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

. (30)

The dependency degree and importance degree of 𝐵 with
respect to𝐷 can also be defined as

DepDegree≽3
𝐵

(𝐷) =
1

𝑟
∑

𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|
,

ImpDegree≽3 (𝐵) = DepDegree≽3
𝐴

(𝐷)

− DepDegree≽3
𝐴−𝐵

(𝐷) .

(31)

Similarly, we investigate some new properties which are
important when investigating whether the uncertainty mea-
surement concepts including accuracy, roughness, approxi-
mation quality, approximation accuracy, dependency degree,
and importance degree are appropriate for uncertainty mea-
sures or not.

Theorem 13. Let 𝑆≽ = (𝑈, 𝐴, 𝑓) be an ordered information
system and 𝐵, 𝑃, 𝑄 ⊆ 𝐴; for any𝑋 ∈ P(𝑈), one has

(1) 𝑃 ⊇ 𝑄 ⇒ 𝑅
≽3

𝑃
(𝑋) ⊇ 𝑅

≽3

𝑄
(𝑋),

(2) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝑅
≽3

𝐵,𝑆
≽

1

(𝑋) ⊇ 𝑅
≽3

𝐵,𝑆
≽

2

(𝑋),

(3) 𝑃 ⊇ 𝑄 ⇒ 𝑅
≽3

𝑃
(𝑋) ⊆ 𝑅

≽3

𝑄
(𝑋),

(4) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝑅
≽3

𝐵,𝑆
≽

1

(𝑋) ⊆ 𝑅
≽3

𝐵,𝑆
≽

2

(𝑋).

Proof. (1) The proof is the same with (1) in Theorem 10.
(2) The proof is the same with (2) in Theorem 10.

(3) From (1) and Definition 12, we have 𝑅
≽3

𝑃
(𝑋) =∼

[𝑅
≽3

𝑃
(∼ 𝑋)] ⊆∼ [𝑅

≽3

𝑄
(∼ 𝑋)] = 𝑅

≽3

𝑄
(𝑋).

(4) From (2) and Definition 12, we have 𝑅
≽3

𝐵,𝑆
≽

1

(𝑋) =∼

[𝑅
≽3

𝐵,𝑆
≽

1

(∼ 𝑋)] ⊆∼ [𝑅
≽3

𝐵,𝑆
≽

2

(∼ 𝑋)] = 𝑅
≽3

𝐵,𝑆
≽

2

(𝑋).

Thus, the theorem is proved.

From the theorem above, one can get the following
theorem easily.

Theorem 14. Let 𝑆≽ = (𝑈, 𝐴, 𝑓,𝐷, 𝑔) be an ordered decision
information system and 𝐵, 𝑃, 𝑄 ⊆ 𝐴; for any 𝑋 ∈ P(𝑈), the
following properties hold:

(1) 𝑃 ⊇ 𝑄 ⇒ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽3

𝑃
(𝑋) ⩾ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽3

𝑄
(𝑋),

(2) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽3

𝐵,𝑆
≽

1

(𝑋) ⩾ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽3

𝐵,𝑆
≽

2

(𝑋),

(3) 𝑃 ⊇ 𝑄 ⇒ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠
≽3

𝑃
(𝑋) ⩽ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠

≽3

𝑄
(𝑋),

(4) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠

≽3

𝐵,𝑆
≽

1

(𝑋) ⩽ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠
≽3

𝐵,𝑆
≽

2

(𝑋),

(5) 𝑃 ⊇ 𝑄 ⇒ 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦
≽3

𝑃
(𝑋) ⩾ 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦

≽3

𝑄
(𝑋),

(6) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦

≽3

𝐵,𝑆
≽

1

(𝑋) ⩾

𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦
≽3

𝐵,𝑆
≽

2

(𝑋),

(7) 𝑃 ⊇ 𝑄 ⇒ 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽3

𝑃
(𝑈/𝐷) ⩾ 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽3

𝑄

(𝑈/𝐷),

(8) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽3

𝐵,𝑆
≽

1

(𝑈/𝐷) ⩾

𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽3

𝐵,𝑆
≽

2

(𝑈/𝐷),

(9) 𝑃 ⊇ 𝑄 ⇒ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽3

𝑃
(𝐷) ⩾ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽3

𝑄
(𝐷),

(10) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽3

𝐵,𝑆
≽

1

(𝐷) ⩾ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽3

𝐵,𝑆
≽

2

(𝐷),

(11) 𝑃 ⊇ 𝑄 ⇒ 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽3
(𝑃) ⩾ 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽3
(𝑄),

(12) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽3
(𝐵, 𝑆
≽

1
) ⩾

𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽3
(𝐵, 𝑆
≽

2
).

Proof. The proof is similar to Theorem 8.

The theorem above shows that the accuracy, roughness,
approximation quality, approximation accuracy, dependency
degree, and importance degree measures of Definition 9
are reasonable. Therefore, Accuracy≽3

𝐵
(𝑋), Roughness≽3

𝐵
(𝑋),

AppQuality≽3
𝐵
(𝑋), AppAccuracy≽3

𝐵
(𝑈/𝐷), DepDegree≽3

𝐵
(𝐷),

and ImpDegree≽3(𝐵) can also be used as the uncertainty
measures.

3.4. The Fourth Type of Approximations and Corresponding
Measures. In this subsection, we will consider the fourth
type of lower and upper approximations which the upper
approximation is class-based upper approximation, and the
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lower approximation is defined by the duality. They can be
defined as follows.

Definition 15. Let 𝑆≽ = (𝑈, 𝐴, 𝑓) be an ordered information
system, 𝐵 ⊆ 𝐴, and 𝑋 ∈ P(𝑈). The fourth type of lower
approximation and upper approximation of𝑋 according to 𝐵

are defined as follows:

𝑅
≽4

𝐵
(𝑋) = ∼ [𝑅

≽4

𝐵
(∼ 𝑋)] ,

𝑅
≽4

𝐵
(𝑋) = ∪ {[𝑥]

≽

𝑅𝐵
| [𝑥]
≽

𝑅𝐵
∩ 𝑋 ̸= 0} .

(32)

Based on the above definition of lower and upper
approximations, one can define the accuracy, roughness, and
approximation quality based on the fourth type as

Accuracy≽4
𝐵

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

,

Roughness≽4
𝐵

(𝑋) = 1 − Accuracy≽4
𝐵

= 1 −

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

,

AppQuality≽4
𝐵

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|
.

(33)

For an ordered decision information system 𝑆
≽

=

(𝑈,𝐴, 𝑓,𝐷, 𝑔), 𝐵 ⊆ 𝐴. Let 𝑈/𝐷 = {𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑟
} is the

set of equivalence decision classes of the ordered decision
information system; then the approximation accuracy of𝑈/𝐷

according to 𝐵 can be defined as

AppAccuracy≽4
𝐵

(
𝑈

𝐷
) =

∑
𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

. (34)

The dependency degree and importance degree of 𝐵 with
respect to𝐷 can also be defined as

DepDegree≽4
𝐵

(𝐷) =
1

𝑟
∑

𝐷𝑗∈𝑈/𝐷

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐵
(𝐷
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|
,

ImpDegree≽4 (𝐵) = DepDegree≽4
𝐴

(𝐷)

− DepDegree≽4
𝐴−𝐵

(𝐷) .

(35)

Similarly, we investigate some new properties which are
important when investigating whether the uncertainty mea-
surement concepts including accuracy, roughness, approxi-
mation quality, approximation accuracy, dependency degree,
and importance degree are appropriate for uncertainty mea-
sures or not.

Theorem 16. Let 𝑆≽ = (𝑈, 𝐴, 𝑓) be an ordered information
system and 𝐵, 𝑃, 𝑄 ⊆ 𝐴; for any 𝑋 ∈ P(𝑈), one has

(1) 𝑃 ⊇ 𝑄 ⇒ 𝑅
≽4

𝑃
(𝑋) ⊇ 𝑅

≽4

𝑄
(𝑋),

(2) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝑅
≽4

𝐵,𝑆
≽

1

(𝑋) ⊇ 𝑅
≽4

𝐵,𝑆
≽

2

(𝑋),

(3) 𝑃 ⊇ 𝑄 ⇒ 𝑅
≽4

𝑃
(𝑋) ⊆ 𝑅

≽4

𝑄
(𝑋),

(4) 𝑆≽
1
⪯
󸀠

𝑆
≽

2
⇒ 𝑅
≽4

𝐵,𝑆
≽

1

(𝑋) ⊆ 𝑅
≽4

𝐵,𝑆
≽

2

(𝑋).

Proof. (3) Suppose 𝑃 ⊇ 𝑄; then 𝑃 ⪯ 𝑄. According to the
definition of ⪯, we have, for any 𝑥 ∈ 𝑈, [𝑥]≽

𝑅𝑃
⊆ [𝑥]
≽

𝑅𝑄
. For any

𝑥 ∈ 𝑅
≽4

𝑃
(𝑋), [𝑥]≽

𝑅𝑃
∩𝑋 ̸= 0; then [𝑥]

≽

𝑅𝑄
∩𝑋 ̸= 0, so 𝑥 ∈ 𝑅

≽4

𝑄
(𝑋).

Thus, 𝑅≽4
𝑃
(𝑋) ⊆ 𝑅

≽4

𝑄
(𝑋).

(1) According to (3), we have 𝑅
≽4

𝑃
(𝑋) ⊆ 𝑅

≽4

𝑄
(𝑋));

therefore, 𝑅≽4
𝑃
(𝑋) =∼ [𝑅

≽4

𝑃
(∼ 𝑋)] ⊇∼ [𝑅

≽4

𝑄
(∼ 𝑋)] = 𝑅

≽4

𝑄
(𝑋).

(4) It can be proved similar to (3).
(2) It can be proved similar to (1).
Thus, the theorem is proved.

From the theorem above, one can get the following
theorem easily.

Theorem 17. Let 𝑆≽ = (𝑈,𝐴, 𝑓,𝐷, 𝑔) be an ordered decision
information system and 𝐵, 𝑃, 𝑄 ⊆ 𝐴; for any 𝑋 ∈ P(𝑈), the
following properties hold:

(1) 𝑃 ⊇ 𝑄 ⇒ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽4

𝑃
(𝑋) ⩾ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽4

𝑄
(𝑋),

(2) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽4

𝐵,𝑆
≽

1

(𝑋) ⩾ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽4

𝐵,𝑆
≽

2

(𝑋),

(3) 𝑃 ⊇ 𝑄 ⇒ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠
≽4

𝑃
(𝑋) ⩽ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠

≽4

𝑄
(𝑋),

(4) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠

≽4

𝐵,𝑆
≽

1

(𝑋) ⩽ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠
≽4

𝐵,𝑆
≽

2

(𝑋),

(5) 𝑃 ⊇ 𝑄 ⇒ 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦
≽4

𝑃
(𝑋) ⩾ 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦

≽4

𝑄
(𝑋),

(6) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦

≽4

𝐵,𝑆
≽

1

(𝑋) ⩾

𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦
≽4

𝐵,𝑆
≽

2

(𝑋),

(7) 𝑃 ⊇ 𝑄 ⇒ 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽4

𝑃
(𝑈/𝐷) ⩾ 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽4

𝑄

(𝑈/𝐷),

(8) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽4

𝐵,𝑆
≽

1

(𝑈/𝐷) ⩾

𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽4

𝐵,𝑆
≽

2

(𝑈/𝐷),

(9) 𝑃 ⊇ 𝑄 ⇒ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽4

𝑃
(𝐷) ⩾ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽4

𝑄
(𝐷),

(10) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽4

𝐵,𝑆
≽

1

(𝐷) ⩾ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽4

𝐵,𝑆
≽

2

(𝐷),
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(11) 𝑃 ⊇ 𝑄 ⇒ 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽4
(𝑃) ⩾ 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽4
(𝑄),

(12) 𝑆≽
1
⪯
󸀠
𝑆
≽

2
⇒ 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽4
(𝐵, 𝑆
≽

1
) ⩾

𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽4
(𝐵, 𝑆
≽

2
).

Proof. The proof is similar to Theorem 8.

And similar to the above three types of approxi-
mations and corresponding measures, the Accuracy≽4

𝐵
(𝑋),

Roughness≽4
𝐵
(𝑋), AppQuality≽4

𝐵
(𝑋), AppAccuracy≽4

𝐵
(𝑈/𝐷),

DepDegree≽4
𝐵
(𝐷), and ImpDegree≽4(𝐵) can be employed to

evaluate the uncertainty.

3.5. Relationships amongThese Four Types of Approximations.
We first discuss the relationships among the four types of
approximation operators, that is to say, the relationships
among the four types of lower and upper approximation
operators.

Theorem 18. Let 𝑆≽ = (𝑈, 𝐴, 𝑓,𝐷, 𝑔) be an ordered decision
information system and 𝐵 ⊆ 𝐴; for any 𝑋 ∈ P(𝑈), the four
approximations have the following property:

𝑅
≽4

𝐵
(𝑋) ⊆ 𝑅

≽1

𝐵
(𝑋) = 𝑅

≽3

𝐵
(𝑋) = 𝑅

≽2

𝐵
(𝑋) ⊆ 𝑋 ⊆ 𝑅

≽3

𝐵
(𝑋)

= 𝑅
≽1

𝐵
(𝑋) ⊆ 𝑅

≽4

𝐵
(𝑋) = 𝑅

≽2

𝐵
(𝑋) .

(36)

Proof. (1) If 𝑥 ∈ 𝑅
≽4

𝐵
(𝑋) =∼ 𝑅

≽4

𝐵
(∼ 𝑋), then 𝑥 ∉ 𝑅

≽4

𝐵
(∼ 𝑋);

that is to say, [𝑥]≽
𝑅𝐵
∩ ∼ 𝑋 = 0.Then [𝑥]

≽

𝑅𝐵
⊆ 𝑋, so𝑥 ∈ 𝑅

≽1

𝐵
(𝑋);

(2) If 𝑥 ∈ 𝑅
≽1

𝐵
(𝑋), then [𝑥]

≽

𝑅𝐵
⊆ 𝑋; according to

Definition 6, we have [𝑥]
≽

𝑅𝐵
⊆ 𝑅
≽3

𝐵
(𝑋). Then 𝑥 ∈ 𝑅

≽3

𝐵
(𝑋),

so 𝑅
≽1

𝐵
(𝑋) ⊆ 𝑅

≽3

𝐵
(𝑋). And, for any 𝑥 ∈ 𝑅

≽3

𝐵
(𝑋), there exist

𝑦 ∈ 𝑈 such that 𝑥 ∈ [𝑦]
≽

𝑅𝐵
⊆ 𝑅
≽3

𝐵
(𝑋); then for any 𝑎

𝑙
∈ 𝐵,

𝑓
𝑙
(𝑦) ⩽ 𝑓

𝑙
(𝑥)); that is to say, [𝑥]≽

𝑅𝐵
⊆ 𝑋, so 𝑥 ∈ 𝑅

≽1

𝐵
(𝑋). Thus,

𝑅
≽1

𝐵
(𝑋) = 𝑅

≽3

𝐵
(𝑋).

(3) It is straightforward that 𝑅≽3
𝐵
(𝑋) = 𝑅

≽2

𝐵
(𝑋) ⊆ 𝑋 ⊆

𝑅
≽3

𝐵
(𝑋).
(4) The first type lower and upper approximations are

defined based on the element, while the third type lower
approximations are the class-based lower approximation, and
the upper approximation is defined by the duality. From (2)
we have their lower approximations which are the same, and
both the upper approximations have the duality, so their
upper approximations are also the same.

(5) If 𝑥 ∈ 𝑅
≽1

𝐵
(𝑋), then [𝑥]

≽

𝑅𝐵
∩ ∼ 𝑋 ̸= 0; according to

Definition 15, we have [𝑥]≽
𝑅𝐵

⊆ 𝑅
≽4

𝐵
(𝑋), so 𝑥 ∈ 𝑅

≽4

𝐵
(𝑋).

(6) It is straightforward that 𝑅≽4
𝐵
(𝑋) = 𝑅

≽2

𝐵
(𝑋).

From the proof of the theorem above, one can find that
the first type and the third type are the same actually, so
the corresponding uncertainty measurements are the same,
respectively.

Since all the four types of definitions of accuracy, rough-
ness, approximation quality, approximation accuracy, depen-
dency degree, and importance degree can be used to measure
the uncertainty of knowledge in ordered information system,
here we study the relationships between the four types of
measures.

Theorem 19. Let 𝑆≽ = (𝑈, 𝐴, 𝑓,𝐷, 𝑔) be an ordered decision
information system and 𝐵 ⊆ 𝐴; for any 𝑋 ∈ P(𝑈), the four
types of uncertainty measures have the following properties:

(1) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽4

𝐵
(𝑋) ⩽ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽2

𝐵
(𝑋) ⩽

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽1

𝐵
(𝑋) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽3

𝐵
(𝑋),

(2) 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠≽4
𝐵
(𝑋) ⩾ 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠

≽2

𝐵
(𝑋) ⩾

𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠
≽1

𝐵
(𝑋) = 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠

≽3

𝐵
(𝑋),

(3) 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦
≽4

𝐵
(𝑋) ⩽ 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦

≽1

𝐵
(𝑋) =

𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦
≽3

𝐵
(𝑋) = 𝐴𝑝𝑝𝑄𝑢𝑎𝑙𝑖𝑡𝑦

≽2

𝐵
(𝑋),

(4) 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽4

𝐵
(𝑈/𝐷) ⩽ 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽2

𝐵
(𝑈/𝐷) ⩽

𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
≽1

𝐵
(𝑈/𝐷) = 𝐴𝑝𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

≽3

𝐵
(𝑈/𝐷),

(5) 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽4

𝐵
(𝐷) ⩽ 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽1

𝐵
(𝐷) =

𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽3

𝐵
(𝐷) = 𝐷𝑒𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽2

𝐵
(𝐷),

(6) 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽4
(𝐵) ⩽ 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽1
(𝐵) =

𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒
≽3
(𝐵) = 𝐼𝑚𝑝𝐷𝑒𝑔𝑟𝑒𝑒

≽2
(𝐵).

Proof. (1) FromTheorem 18, we have

𝑅
≽4

𝐵
(𝑋) ⊆ 𝑅

≽1

𝐵
(𝑋) = 𝑅

≽3

𝐵
(𝑋) = 𝑅

≽2

𝐵
(𝑋) ⊆ 𝑋 ⊆ 𝑅

≽3

𝐵
(𝑋)

= 𝑅
≽1

𝐵
(𝑋) ⊆ 𝑅

≽4

𝐵
(𝑋) = 𝑅

≽2

𝐵
(𝑋) .

(37)

So
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

⩽

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

⩽

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐵
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

. (38)

That is to say,

Accuracy≽4
𝐵

(𝑋) ⩽ Accuracy≽2
𝐵

(𝑋) ⩽ Accuracy≽1
𝐵

(𝑋)

= Accuracy≽3
𝐵

(𝑋) .

(39)

(2) From (1), we have

Roughness≽4
𝐵

(𝑋) ⩾ Roughness≽2
𝐵

(𝑋) ⩾ Roughness≽1
𝐵

(𝑋)

= Roughness≽3
𝐵

(𝑋) .

(40)

Similarly, we can prove the following.
(3) AppQuality≽4

𝐵
(𝑋) ⩽ AppQuality≽1

𝐵
(𝑋) =

AppQuality≽3
𝐵
(𝑋) = AppQuality≽2

𝐵
(𝑋),
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Table 1: An ordered decision information system.

𝑈 𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑑

𝑥
1

1 0 1 0 0
𝑥
2

2 1 1 1 1
𝑥
3

1 2 2 1 0
𝑥
4

0 1 0 1 1
𝑥
5

0 2 0 2 0
𝑥
6

2 0 2 2 1
𝑥
7

1 0 1 1 1

(4) AppAccuracy≽4
𝐵
(𝑈/𝐷) ⩽ AppAccuracy≽2

𝐵
(𝑈/𝐷) ⩽

AppAccuracy≽1
𝐵
(𝑈/𝐷) = AppAccuracy≽3

𝐵
(𝑈/𝐷),

(5) DepDegree≽4
𝐵
(𝐷) ⩽ DepDegree≽1

𝐵
(𝐷) =

DepDegree≽3
𝐵
(𝐷) = DepDegree≽2

𝐵
(𝐷),

(6) ImpDegree≽4(𝐵) ⩽ ImpDegree≽1(𝐵) =

ImpDegree≽3(𝐵) = ImpDegree≽2(𝐵).

Example 20. Table 1 shows an ordered decision
information system 𝑆

≽
= (𝑈, 𝐴, 𝑓,𝐷, 𝑔), where 𝑈 =

{𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
} is the universe, 𝐴 = {𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
}

is the conditional attribute set, and 𝐷 = {𝑑} is the decision
attribute set.

We first calculate the dominance class of each object with
respect to attribute set 𝐴:

[𝑥
1
]
≽

𝑅𝐴
= {𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
6
, 𝑥
7
} ,

[𝑥
2
]
≽

𝑅𝐴
= {𝑥
2
} ,

[𝑥
3
]
≽

𝑅𝐴
= {𝑥
3
} ,

[𝑥
4
]
≽

𝑅𝐴
= {𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
} ,

[𝑥
5
]
≽

𝑅𝐴
= {𝑥
5
} ,

[𝑥
6
]
≽

𝑅𝐴
= {𝑥
6
} ,

[𝑥
7
]
≽

𝑅𝐴
= {𝑥
2
, 𝑥
3
, 𝑥
6
, 𝑥
7
} .

(41)

Let 𝑋 = {𝑥
2
, 𝑥
4
, 𝑥
6
, 𝑥
7
}; then ∼ 𝑋 = {𝑥

1
, 𝑥
3
, 𝑥
5
}. The

four types of lower and upper approximations are calculated
as follows:

(1) 𝑅≽1
𝐴
(𝑋) = {𝑥

2
, 𝑥
6
}, 𝑅
≽1

𝐴
(𝑋) = {𝑥

1
, 𝑥
2
, 𝑥
4
, 𝑥
6
, 𝑥
7
},

(2) 𝑅≽2
𝐴
(𝑋) = {𝑥

2
, 𝑥
6
}, 𝑅
≽2

𝐴
(𝑋) =

{𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
} = 𝑈,

(3) 𝑅≽3
𝐴
(𝑋) = {𝑥

2
, 𝑥
6
}, 𝑅
≽3

𝐴
(𝑋) = {𝑥

1
, 𝑥
2
, 𝑥
4
, 𝑥
6
, 𝑥
7
},

(4) 𝑅≽4
𝐴
(𝑋) =∼ [𝑅

≽4

𝐴
(∼ 𝑋)] =∼ (𝑈) = 0, 𝑅

≽4

𝐴
(𝑋) =

{𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
} = 𝑈.

From the results above, we can find that 𝑅
≽4

𝐴
(𝑋) ⊆

𝑅
≽1

𝐴
(𝑋) = 𝑅

≽3

𝐴
(𝑋) = 𝑅

≽2

𝐴
(𝑋) ⊆ 𝑋 ⊆ 𝑅

≽3

𝐴
(𝑋) = 𝑅

≽1

𝐴
(𝑋) ⊆

𝑅
≽4

𝐴
(𝑋) = 𝑅

≽2

𝐴
(𝑋). After obtaining the lower and upper

approximations, we can calculate the accuracy, roughness,
and approximation quality as follows:

Accuracy≽1
𝐴

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐴
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐴
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

=
2

5
= 0.4,

Roughness≽1
𝐴

(𝑋) = 1 − Accuracy≽1
𝐴

= 0.6,

AppQuality≽1
𝐴

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐴
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|
=

2

7
= 0.2857,

Accuracy≽2
𝐴

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐴
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐴
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

=
2

7
= 0.2857,

Roughness≽2
𝐴

(𝑋) = 1 − Accuracy≽2
𝐴

= 0.7143,

AppQuality≽2
𝐴

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐴
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|
=

2

7
= 0.2857,

Accuracy≽3
𝐴

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐴
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐴
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

=
2

5
= 0.4,

Roughness≽3
𝐴

(𝑋) = 1 − Accuracy≽3
𝐴

= 0.6,

AppQuality≽3
𝐴

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐴
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|
=

2

7
= 0.2857,

Accuracy≽4
𝐴

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐴
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐴
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

=
0

7
= 0,

Roughness≽4
𝐴

(𝑋) = 1 − Accuracy≽4
𝐴

= 1,

AppQuality≽4
𝐴

(𝑋) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐴
(𝑋)

󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|
=

0

7
= 0.

(42)

Consider 𝑈/𝐷 = {{𝑥
1
, 𝑥
3
, 𝑥
5
}, {𝑥
2
, 𝑥
4
, 𝑥
6
, 𝑥
7
}}. In order

to calculate the approximation accuracy, we also need to
calculate the four types of lower and upper approximations
of sets 𝐷

1
= {𝑥
1
, 𝑥
3
, 𝑥
5
} and 𝐷

2
= {𝑥
2
, 𝑥
4
, 𝑥
6
, 𝑥
7
}. The four
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Table 2: Characteristics of testing data set.

Date set Objects Attributes Decision classes
SAS—date 60 8 2
Wine quality—white 4898 12 7
Wine quality—red 1599 12 6

types of lower and upper approximations of 𝐷
1
with respect

to 𝐴 are:

(1) 𝑅≽1
𝐴
(𝐷
1
) = {𝑥

3
, 𝑥
5
}, 𝑅
≽1

𝐴
(𝐷
1
) = {𝑥

1
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
7
},

(2) 𝑅≽2
𝐴
(𝐷
1
) = {𝑥

3
, 𝑥
5
}, 𝑅
≽2

𝐴
(𝐷
1
) =

{𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
} = 𝑈,

(3) 𝑅≽3
𝐴
(𝐷
1
) = {𝑥

3
, 𝑥
5
}, 𝑅
≽3

𝐴
(𝐷
1
) = {𝑥

1
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
7
},

(4) 𝑅
≽4

𝐴
(𝐷
1
) =∼ [𝑅

≽4

𝐴
(∼ 𝑋)] =∼ (𝑈) = 0, 𝑅

≽4

𝐴
(𝐷
1
) =

{𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
} = 𝑈.

Thus the approximation accuracy is

AppAccuracy≽1
𝐴

(
𝑈

𝐷
) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐴
(𝐷
1
)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐴
(𝐷
2
)
󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐴
(𝐷
1
)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐴
(𝐷
2
)
󵄨󵄨󵄨󵄨󵄨󵄨

=
2 + 2

5 + 5
= 0.4,

AppAccuracy≽2
𝐴

(
𝑈

𝐷
) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐴
(𝐷
1
)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐴
(𝐷
2
)
󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐴
(𝐷
1
)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐴
(𝐷
2
)
󵄨󵄨󵄨󵄨󵄨󵄨

=
2 + 2

7 + 7
= 0.2857,

AppAccuracy≽3
𝐴

(
𝑈

𝐷
) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐴
(𝐷
1
)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐴
(𝐷
2
)
󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐴
(𝐷
1
)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐴
(𝐷
2
)
󵄨󵄨󵄨󵄨󵄨󵄨

=
2 + 2

5 + 5
= 0.4,

AppAccuracy≽4
𝐴

(
𝑈

𝐷
) =

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐴
(𝐷
1
)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐴
(𝐷
2
)
󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐴
(𝐷
1
)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐴
(𝐷
2
)
󵄨󵄨󵄨󵄨󵄨󵄨

=
0 + 0

7 + 7
= 0.

(43)

And the dependency degree of 𝐴 with respect to 𝐷 can
also be calculated as

DepDegree≽1
𝐴

(𝐷) =
1

2

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐴
(𝐷
1
)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽1

𝐴
(𝐷
2
)
󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|

=
1

2

2 + 2

7 + 7
= 0.1429,

DepDegree≽2
𝐴

(𝐷) =
1

2

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐴
(𝐷
1
)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽2

𝐴
(𝐷
2
)
󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|

=
1

2

2 + 2

7 + 7
= 0.1429,

DepDegree≽3
𝐴

(𝐷) =
1

2

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐴
(𝐷
1
)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽3

𝐴
(𝐷
2
)
󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|

=
1

2

2 + 2

7 + 7
= 0.1429,

DepDegree≽4
𝐴

(𝐷) =
1

2

󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐴
(𝐷
1
)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑅
≽4

𝐴
(𝐷
2
)
󵄨󵄨󵄨󵄨󵄨󵄨

|𝑈|

=
1

2

0 + 0

7 + 7
= 0.

(44)

4. Empirical Experiments

In Section 3, we find that all the four types can be used to
evaluate the uncertainty of knowledge in ordered information
system from the theoretical view, especially the first type and
the third type which are the same. In this section, we will test
the first type, the second type, and the fourth type ofmeasures
(the essence of the first type and the third type is the same) on
some real-life data sets. And three real-life data sets available
from the UCI are used.The characteristics of the data sets are
summarized in Table 2.

Figure 1 shows the accuracy values of the first 70 percent
of whole objects with respect to different sizes of attribute
sets in ordered information system. Figure 2 shows the
values of roughness measure of the first 70 percent of whole
objects with respect to different sizes of attribute sets in
ordered information system. Figure 3 shows the values of
approximation quality measure of the first 70 percent of
whole objects with respect to different sizes of attribute sets
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Figure 1: The values of accuracy measures of the first 70 percent of
all objects with respect to different attribute sets.
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Figure 2: The values of roughness measures of the first 70 percent
of all objects with respect to different attribute sets.
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Figure 3: The values of approximation quality measures of the first 70 percent of all objects with respect to different attribute sets.

in ordered information system. The 𝑥-axis represents the
size of attribute set, from one attribute to all attributes. The
𝑦-axis represents the value of the measures. The values of
approximation accuracy of 𝑈/𝐷 are described in Figure 4.
The dependency degree of different attribute sets with respect
to𝐷 is represented in Figure 5. Each figure has three lines.

From the figures, we can find that the accuracy, the
approximation quality, the approximation accuracy, and the
dependency degree measures of all types get larger, and the
roughness measure gets smaller when the attribute set gets
bigger. Moreover, the accuracy and approximation accuracy
measures of the first type are larger than those of the second
type, and the second type is larger than the fourth type.While
the roughness measure of the first type is smaller than that of
the second type, the second type is smaller than the fourth
type. And the approximation quality and the dependency
degree of the first type are equal to those of the second type,

and they are larger than those of the fourth type.These results
verify the properties of Theorems 8, 11, and 17.

5. Conclusions

Uncertainty measurement is an important issue in rough set
theory. In this paper, we investigated four types of lower
and upper approximations and the corresponding accuracy,
roughness, approximation quality, approximation accuracy,
dependency degree, and importance degree in ordered infor-
mation system. Moreover, we found that all the uncertainty
measures of four types have the property of monotonicity
and they can be used to evaluate the uncertainty in ordered
information system. Furthermore, the relationships among
the four types of lower and upper approximation operators
and the corresponding uncertainty measures were got in the
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Figure 4:Thevalues of approximation accuracymeasures of the first
70 percent of all objects with respect to different attribute sets.
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Figure 5:The values of dependency degree of the first 70 percent of
all objects with respect to different attribute sets.
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system. Finally, the four types of measures were tested on
some real-life data sets. From results obtained, it can be
shown that these uncertainty measures can surely measure
the uncertainty in ordered information system. In the future,
we will consider the application of the presented uncertainty
measures, especially in attribute reduction or rule generation
in ordered information system.
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