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Abstract. Based on analysis of Pawlak’s rough set model in the view of single equivalence relation and the theory of fuzzy set,
associated with multi-granulation rough set models proposed by Qian, two types of new rough set models are constructed, which
are multi-granulation fuzzy rough sets. It follows the research on the properties of the lower and upper approximations of the
new multi-granulation fuzzy rough set models. Then it can be found that the Pawlak rough set model, fuzzy rough set model and
multi-granulation rough set models are special cases of the new one from the perspective of the considered concepts and granular
computing. The notion of rough measure and (α, β)-rough measure which are used to measure uncertainty in multi-granulation
fuzzy rough sets are introduced and some basic properties of the measures are examined. The construction of the multi-granulation
fuzzy rough set model is a meaningful contribution in the view of the generalization of the classical rough set model.

Keywords: Approximation operators, fuzzy rough set, multi-granulation, rough measure

1. Introduction

Rough set theory, proposed by Pawlak [15–17], has
become a well-established mechanism for uncertainty
management in a wide variety of applications related
to artificial intelligence [3, 4, 12]. The theory has been
applied successfully in the fields of pattern recogni-
tion, medical diagnosis, data mining, conflict analysis,
algebra [1, 18, 24], which are related to an amount of
imprecise, vague and uncertain information. In recent
years, the rough set theory has generated a great deal
of interest among more and more researchers. The gen-
eralization of the rough set model is one of the most
important research directions.

On the one hand, rough set theory is generalized by
combining with other theories that deal with uncertain
knowledge such as fuzzy set. It has been acknowledged
by different studies that fuzzy set theory and rough set
theory are complementary in terms of handling differ-
ent kinds of uncertainty. The fuzzy set theory deals with

∗Corresponding author. Weihua Xu, School of Mathematics and
Statistics, Chongqing University of Technology, Chongqing 400054,
P.R. China; School of Management, Xi’an Jiaotong University, Xi’an
700049, P.R. China. E-mail: chxuwh@gmail.com.

possibilistic uncertainty, connected with imprecision of
states, perceptions and preferences [5]. Rough sets, in
turn, deal with uncertainty following from ambiguity
of information [15, 16]. The two types of uncertainty
can be encountered together in real-life problems. For
this reason, many approaches have been proposed to
combine fuzzy set theory with rough set theory. Dubois
and Prade proposed concepts of rough fuzzy sets and
fuzzy rough sets based on approximations of fuzzy sets
by crisp approximations spaces, and crisp sets by fuzzy
approximation spaces, respectively [6]. A fuzzy rough
set is a pair of fuzzy sets resulting from the approxima-
tion of a fuzzy set in a crisp approximation space, and
a rough fuzzy set is a pair of fuzzy sets resulting from
the approximation of a crisp set in a fuzzy approxima-
tion space. Besides, some other researches about fuzzy
rough set and rough fuzzy set from other directions have
been discussed [2, 7–9, 13, 23, 25, 26, 32, 35, 36].

On the other hand, rough set theory was discussed
with the point view of granular computing. Informa-
tion granules refer to pieces, classes and groups divided
in accordance with characteristics and performances of
complex information in the process of human under-
standing, reasoning and decision-making. Zadeh firstly
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proposed the concept of granular computing and dis-
cussed issues of fuzzy information granulation in 1979
[39]. Then the basic idea of information granulation has
been applied to many fields including rough set [15, 16].
In 1985, Hobbs proposed the concept of granularity
[10]. And granular computing played a more and more
important role gradually in soft computing, knowledge
discovery, data mining and many excellent results were
achieved [14, 21, 22, 27–31, 33, 34, 37, 38]. In the point
view of granulation computing, the classical Pawlak
rough set is based on a single granulation induced from
an indiscernibility relation. And an equivalence rela-
tion on the universe can be regarded as a granulation.
For convenience, single granulation fuzzy rough set,
denoted by SGFRS. This approach to describing a con-
cept is mainly based on the following assumption:

If RA and RB are two relations induced by the
attributes subsets A and B and X ⊆ U is a target
concept, then the rough set of X is derived from the
quotient set U/(RA ∪ RB) = {[x]RA

∩ [x]RB |[x]RA
∈

U/RA, [x]RB ∈ U/RB, [x]RA
∩ [x]RB /= ∅}, which

suggests that we can perform an intersection operation
between [x]RA

and [x]RB and the target concept is
approximately described by using the quotient set
U/(RA ∪ RB). Then the target concept is described by
a finer granulation (partitions) formed through com-
bining two known granulations (partitions) induced
from two-attribute subsets. However, the combination
that generates a much finer granulation and more
knowledge destroys the original granulation structure.

In fact, the above assumption cannot always be satis-
fied or required generally. In some data analysis issues,
for the same object, there is a contradiction or inconsis-
tent relationship between its values under one attribute
set A and those under another attribute set B. In other
words, we can not perform the intersection operations
between their quotient sets and the target concept cannot
be approximated by using U/(RA ∪ RB). For the solu-
tion of the above contradition, Qian, Xu and M. Khan
extended the Pawlak rough set to multi-granulation
rough set models in which the approximation opera-
tors were defined by multiple equivalence relations on
the universe [11, 19–21, 29, 30].

Associated fuzzy rough set with granulation com-
puting, we will propose two types of multi-granulation
fuzzy rough set models. The main objective of this paper
is to extend Pawlak’s rough set model determined by
single binary relation to multi-granulation fuzzy rough
sets in which set approximations are defined by mul-
tiple equivalence relations. The rest of this paper is
organized as follows. Some preliminary concepts of

Pawlak’s rough set theory and fuzzy rough sets the-
ory are proposed [5] in Section 2. In Section 3, based
on multiple ordinary equivalence relations, two types of
multi-granulation fuzzy rough approximation operators
of a fuzzy concept in a fuzzy target information system,
are constructed and a number of important properties of
them are discussed in detail. Then it follows the com-
parison and relations among the properties of the two
types of multi-granulation fuzzy rough sets and single-
granulation fuzzy rough set in Section 4. In Section
5, a notion of rough measure and rough measure with
respect to parameters α and β of the multi-granulation
fuzzy rough sets are defined and illustrative examples
are used to show its rationality and essence. And finally,
the paper is concluded by a summary and outlook for
further research in Section 6.

2. Preliminaries

In this section, we will first review some basic con-
cepts and notions in the theory of Pawlak rough set
and fuzzy rough set and the models of the multi-
granulation rough set. More details can be seen in
references [15, 40].

2.1. Pawlak rough set

The notion of information system provides a conve-
nient tool for the representation of objects in terms of
their attribute values.

An information system is an ordered triple I =
(U, AT, F ), where

U = {u1, u2, ..., un} is a non-empty finite set of
objects;

AT = {a1, a2, ..., am} is a non-empty finite set of
attributes;

F = {fj | j ≤ m} is a set of relationship between U

and AT , where fj : U → Vj(j ≤ m), Vj is the domain
of attribute aj and m is the number of the attributes.

Let I = (U, AT, F ) be an information system. For
A ⊆ AT , denote

RA = {(x, y) | fj(x) = fj(y), ∀aj ∈ A}
then RA is reflexive, symmetric and transitive. So it is
an equivalence relation on U.

Moreover, denote

[x]A = {x | (x, y) ∈ RA},
U/A = {[x]A|∀x ∈ U},
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then [x]A is called the equivalence class of x, and the
quotient set U/A is called the equivalence class set of
U.

For any subset X ⊆ U and A ⊆ AT in the informa-
tion system I = (U, AT, F ), the Pawlak’s lower and
upper approximations of X with respect to equivalence
relation RA could be defined as following.

RA(X) = {x | [x]A ⊆ X},
RA(X) = {x | [x]A ∩ X /= ∅},

The set BnA(X) = RA(X) − RA(X) is called the
boundary of X.

To measure the imprecision and roughness of a rough
set, Pawlak defined the rough measure of X /= ∅ as

ρA(X) = 1 − |RA(X)|
|RA(X)| .

2.2. Fuzzy rough set

Let U is still a finite and non-empty set called uni-
verse. A fuzzy set X is a mapping from U into the unit
interval [0, 1], µ : U → [0, 1], where each µ(x) is
the membership degree of x in X. The set of all the
fuzzy sets defined on U is denoted by F (U).

Let U be the universe, R be an equivalence relation.
For a fuzzy set X ∈ F (U), if denote

R(X)(x) = ∧{A(y)|y ∈ [x]R},
R(X)(x) = ∨{A(y)|y ∈ [x]R},

then R(X) and R(X) are called the lower and upper
approximation of the fuzzy set X with respect to the
relation R, where “ ∧ " means “min" and “ ∨ " means
“max".X is a fuzzy definable set if and only ifX satisfies
R(X) = R(X). Otherwise, X is called a fuzzy rough set.

Let I = (U, AT, F ) be an information system. F =
{fj | j ≤ n} is a set of relationship between U and AT .
Dj : U → [0, 1](j ≤ r), r is the number of the decision
attributes. If denote

D = {Dj | j ≤ r},
then (U, AT, F, D) is a fuzzy target information system.
In a fuzzy target information system, we can define the
approximation operators with respect to the decision
attribute D similarly.

Let U be the universe, R be an equivalence relation,
X, Y ∈ F (U). The fuzzy lower and upper approxi-
mation with respect to relation R have the following
properties.

(1) R(X) ⊆ X ⊆ R(X).
(2) R(X ∩ Y ) = R(X) ∩ R(Y ), R(X ∪ Y ) = R(X) ∪

R(Y ).
(3) R(X) =∼ R(∼ X), R(X) =∼ R(∼ X).
(4) R(X ∪ Y ) ⊇ R(X) ∪ R(Y ), R(X ∩ Y ) ⊆ R(X) ∩

R(Y ).
(5) R(R(X)) = R(R(X)) = R(X).
(6) R(R(X)) = R(R(X)) = R(X).
(7) R(U) = U, R(∅) = ∅.

(8) X ⊆ Y ⇒ R(X) ⊆ R(Y ) and R(X) ⊆ R(Y ).

To measure the imprecision and roughness of a fuzzy
rough set, the rough measure of X /= ∅ is defined as

ρA(X) = 1 − |RA(X)|
|RA(X)| .

where |RA(X)| = ∑
x∈U

RA(X)(x) and |RA(X)| = ∑
x∈U

RA(X)(x). If RA(X) = 0, we prescribe ρA(X) = 0.

What is more, for any 0 < β ≤ α ≤ 1, the α, β rough
measure of fuzzy set is defined as

ρA(X)α,β = 1 − |RA(X)α|
|RA(X)β| .

where |RA(X)α| is the cardinality of the α-cut set of
RA(X), and |RA(X)β| is the cardinality of the β-cut set
of RA(X).

More details about the properties of above measures
can be found in reference [40].

2.3. Multi-granulation rough sets

For simplicity, we just recall the models of multi-
granulation rough sets and details can be seen in
references [20, 21, 29].

Let I = (U, AT, F ) be an information system, Ai ⊆
AT, 1 ≤ i ≤ m, m is the number of the considered
attribute sets. The optimistic lower and upper approxi-
mations of the set X ∈ U with respect to Ai ⊆ AT, (1 ≤
i ≤ m) are

OR m∑
i=1

Ai

(X) = {x |
m∨

i=1

[x]Ai ⊆ X, 1 ≤ i ≤ m},

OR m∑
i=1

Ai

(X) = {x |
m∧

i=1

[x]Ai ∩ X /= ∅, 1 ≤ i ≤ m},

where [x]Ai = {y|(x, y) ∈ RAi}, and RAi is an equiva-
lent relation with respect to the attributes set Ai.
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Table 1

U Transportation Population density Consumption level

x1 Dood Big High
x2 Dood Big Midium
x3 Bad Small Low
x4 Bad Small High
x5 Dood Small High
x6 Common Big High

Moreover, OR m∑
i=1

Ai

(X) /= OR m∑
i=1

Ai

(X), we say that

X is the optimistic rough set with respect to multiple
equivalence relations or multiple granulations. Other-
wise, we say that X is the optimistic definable set with
respect to multiple equivalence relations or multiple
granulations.

Let I = (U, AT, F ) be an information system, Ai ⊆
AT, 1 ≤ i ≤ m, m is the number of the considered
attribute sets. The pessimistic lower and upper approxi-
mations of the set X ∈ U with respect to Ai ⊆ AT, 1 ≤
i ≤ m are

PR m∑
i=1

Ai

(X) = {x |
m∧

i=1

[x]Ai ⊆ X, 1 ≤ i ≤ m},

PR m∑
i=1

Ai

(X) = {x |
m∨

i=1

[x]Ai ∩ X /= ∅, 1 ≤ i ≤ m},

Moreover, PR m∑
i=1

Ai

(X) /= PR m∑
i=1

Ai

(X), we say that X is

the pessimistic rough set with respect to multiple equiv-
alence relations or multiple granulations. Otherwise, we
say that X is pessimistic definable set with respect to
multiple equivalence relations or multiple granulations.

Example 2.1. An information system about
six cities’ condition are given in table 1. The
universe U = {x1, x2, x3, x4, x5, x6} stands for
six cities, the set of condition attributes AT =
{Transportation, Population density, Consumption

level}. Now, denote A1 =
{Transportation, Population density, } and
A2 = {Population density, Consumption level}. Let
X = {x2, x4, x5, x6}.

By computing, we have that

U/A1 = {{x1, x2}, {x3, x4}, {x5}, {x6}}
U/A2 = {{x1, x6}, {x2}, {x3}, {x4, x5}}

According to the above equivalence class, we can
obtain the lower and upper approximation of X based
on optimistic multi-granulation rough sets model as
follows:

ORA1+A2 (X) = {x2, x4, x5, x6}
ORA1+A2 (X) = {x1, x2, x4, x5, x6}

If we compute the lower and upper approximation of X

based on the pessimistic multi-granulation rough sets
model, the result can been seen as follows:

PRA1+A2 (X) = {x5}
PRA1+A2 (X) = U

Form the two types of rough sets models, we can see
that the optimistic boundary region is more small and
the pessmistic boundary region is more big compared
the classical rough sets model. In some cases, it can
deal with uncertain problems easily.

3. Optimistic and pessimistic multi-granulation
fuzzy rough sets

In this section, we will research about multi-
granulation fuzzy rough sets which are the problems
of the rough approximations of a fuzzy set based on
multiple classical equivalence relations.

3.1. The optimistic multi-granulation fuzzy rough
set

First, the optimistic two-granulation fuzzy rough set
(in brief OTGFRS) of a fuzzy set is defined.

Definition 3.1. Let I = (U, AT, F ) be an informa-
tion system, A, B ⊆ AT . For the fuzzy set X ∈ F (U),
denote

ORA+B(X)(x) ={∧{X(y) | y ∈ [x]A}}∨
{∧{X(y) | y ∈ [x]B}},

ORA+B(X)(x) ={∨{X(y) | y ∈ [x]A}}∧
{∨{X(y) | y ∈ [x]B}},

where “ ∨ " means “max” and “ ∧ " means “min”, then
ORA+B(X) and ORA+B(X) are respectively called the
optimistic two-granulation lower approximation and
upper approximation of X with respect to the subsets
of attributes A and B. X is a two-granulation fuzzy
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rough set if and only if ORA+B(X) /= ORA+B(X). Oth-
erwise, X is a two-granulation fuzzy definable set. The
boundary of the fuzzy rough set X is defined as

BndO
RA+B

(X) = ORA+B(X) ∩ (∼ ORA+B(X)).

From the above definition, it can be seen that the approx-
imations in the OTGFRS are defined through using
the equivalence classes induced by multiple indepen-
dent equivalence relations, whereas the standard fuzzy
rough approximations are represented via those derived
by only one equivalence relation. In fact, the OTGFRS
will be degenerated into a fuzzy rough set when A = B.
That is to say, the fuzzy rough set model is a special
instance of the OTGFRS. What’s more, the OTGFRS
will be degenerated into Pawlak rough set if A = B and
the considered concept X is a crisp set.

In the following, we employ an example to illustrate
the above concepts.

Example 3.1. A fuzzy target information system about
ten colledge students’ performance are given in Table 1.
The universe U = {x1, x2, · · · , x10} which consists of
ten students in a colledge; the set of condition attributes
AT = {CP, RP, MP} , in which CP means “Course
Performance”, RP means “Research Performance”, and
MP means “Morality Performance”, and the bigger
the value of the condition attribute is, the better the
students’ performance is; the set of decision attribute
D = {CA} in which CA represents a fuzzy concept and
means “Student’s Comprehensive Accomplishment is
good”, and the value of the decision attribute is the
membership degree of “good”. We evaluate the stu-
dents’ comprehensive performance by the following
cases:

Case 1: we evaluate the student by “Course Perfor-
mance” and “Research Performance”, that is,
the first granulation is A = {CP, RP};

Case 2: we evaluate the student by “Course Perfor-
mance” and “Morality Performance”, that is,
the second granulation is B = {CP, MP}.

And the equivalence relation is defined as RA(RB) =
{(xi, xj) | fl(xi) = fl(xj), al ∈ A(B)} which means the
students’ comprehensive accomplishments is definitely
indiscernible. Then under the equivalence relation
RA(RB), the students whose performance are the same
belong to the same classification. We consider the opti-
mistic two-granulation lower and upper approximation
of D with respect to A and B. The optimistic two-
granulation lower approximation here represents that
the students’ comprehensive performance is good at

Table 2

U CP RP MP CA

x1 2 1 3 0.6
x2 3 2 1 0.7
x3 2 1 3 0.7
x4 2 2 3 0.9
x5 1 1 4 0.5
x6 1 1 2 0.4
x7 3 2 1 0.7
x8 1 1 4 0.7
x9 2 1 3 0.8
x10 3 2 1 0.7

least at some degree if we consider either case, while
the optimistic two-granulation upper approximation
here represents that the students’ comprehensive per-
formance is good at most at another bigger degree if we
consider both two cases.From the table, we can easily
obtain

U/A = {{x1, x3, x9}, {x2, x7, x10}, {x4},
{x5, x6, x8}},

U/B = {{x1, x3, x4, x9}, {x2, x7, x10},
{x5, x6, x8}, {x6}},

U/(A ∪ B) = {{x1, x3, x9}, {x2, x7, x10}, {x4},
{x5, x8}, {x6}}.

Then the single granulation lower and upper approxi-
mation of D are

RA(D) = (0.6, 0.7, 0.6, 0.9, 0.4, 0.4, 0.7,

0.4, 0.6, 0.7),

RA(D) = (0.8, 0.7, 0.8, 0.9, 0.7, 0.7, 0.7,

0.7, 0.6, 0.7);

RB(D) = (0.6, 0.7, 0.6, 0.6, 0.5, 0.4, 0.7,

0.5, 0.6, 0.7),

RB(D) = (0.9, 0.7, 0.9, 0.9, 0.7, 0.4, 0.7,

0.8, 0.9, 0.7);

RA∪B(D) = (0.6, 0.7, 0.6, 0.9, 0.5, 0.4, 0.7,

0.5, 0.6, 0.7),

RA∪B(D) = (0.8, 0.7, 0.8, 0.9, 0.7, 0.4, 0.7,

0.7, 0.8, 0.7);

RA(D) ∪ RB(D) = (0.6, 0.7, 0.6, 0.9, 0.5, 0.4, 0.7,

0.5, 0.6, 0.7),

RA(D) ∩ RB(D) = (0.8, 0.7, 0.8, 0.9, 0.7, 0.4,

0.7, 0.7, 0.8, 0.7).
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From the Definition 3.1, we can compute optimistic
two-granulation lower and upper approximation of D is

ORA+B(D) = (0.6, 0.7, 0.6, 0.9, 0.5, 0.4, 0.7,

0.5, 0.6, 0.7),

ORA+B(D) = (0.8, 0.7, 0.8, 0.9, 0.7, 0.4, 0.7,

0.7, 0.8, 0.7).

We can find that the ten students are good at least at the
degree 0.6, 0.7, 0.6, 0.9, 0.5, 0.4, 0.7, 0.5, 0.6, 0.7,
respectively, if we only evaluate the students by either A

or B; and the ten students are good at most at the degree
0.8, 0.7, 0.8, 0.9, 0.7, 0.4, 0.7, 0.7, 0.8, 0.7, respec-
tively, if we evaluate the students by both A and B.

Obviously, the following can be found

ORA+B(D) = RA(D) ∪ RB(D),

ORA+B(D) = RA(D) ∩ RB(D),

ORA+B(D) ⊆ RA∪B(D) ⊆ D ⊆ RA∪B(D)

⊆ ORA+B(D).

Just from Definition 3.1, we can obtain some properties
of the OGFRS in an information system.

Proposition 3.1. Let I = (U, AT, F ) be an information
system, B, A ⊆ AT and X ∈ F (U). Then the following
properties hold.

(1) ORA+B(X) ⊆ X,

(2) ORA+B(X) ⊇ X;
(3) ORA+B(∼ X) =∼ ORA+B(X),
(4) ORA+B(∼ X) =∼ ORA+B(X);
(5) ORA+B(U) = ORA+B(U) = U,

(6) ORA+B(∅) = ORA+B(∅) = ∅.

Proof. It is obvious that all terms hold when A = B,
since OGFRS degenerates into Pawlak fuzzy rough set.
When A /= B, the proposition can be proved as follows.

(1) For any x ∈ U and A, B ⊆ AT , since RA(X) ⊆
X, we know

∧{X(y) | y ∈ [x]A} ≤ X(y)

and
∧{X(y) | y ∈ [x]B} ≤ X(y)

Therefore,

{∧{X(y) | y ∈ [x]A}} ∨ {∧{X(y) | y ∈ [x]B}} ≤ X(y).

i.e., ORA+B(X) ⊆ X.

(2) For any x ∈ U and A, B ⊆ AT , since X ⊆
RA(X), we know

X(y) ≤ ∨{X(y) | y ∈ [x]A}
and

X(y) ≤ ∨{X(y) | y ∈ [x]B}.
Therefore,

X(y) ≤ {∨{X(y) | y ∈ [x]A}} ∧ {∨{X(y) | y ∈ [x]B}}.
i.e., X ⊆ ORA+B(X).

(3) For any x ∈ U and A, B ⊆ AT , since RA(∼
X) =∼ RA(X) and RB(∼ X) =∼ RB(X), then
we have

ORA+B(∼ X)(x) = {∧{1 − X(y) | y ∈ [x]A}} ∨
{∧{1 − X(y) | y ∈ [x]B}}

= {1 − ∨{X(y) | y ∈ [x]A}} ∨
{1 − ∨{X(y) | y ∈ [x]B}}

= 1 − {∨{X(y) | y ∈ [x]A}} ∧
{∨{X(y) | y ∈ [x]B}}

= ∼ ORA+B(X)(x).

(4) By ORA+B(∼ X) =∼ ORA+B(X), we have
ORA+B(X) =∼ ORA+B(∼ X). So it can be
found that ORA+B(∼ X) =∼ ORA+B(X).

(5) Since for any x ∈ U, U(x) = 1, then for any
A, B ⊆ U,

ORA+B(U)(x) = {∧{U(y) | y ∈ [x]A}} ∨
{∧{U(y) | y ∈ [x]B}} = 1 = U(x)

and

ORA+B(U)(x) = {∨{U(y) | y ∈ [x]A}} ∧
{∨{U(y) | y ∈ [x]B}} = 1 = U(x).

So ORA+B(U) = ORA+B(U) = U.

(6) From the duality of the approximation operators
in (3) and (4), it is easy to prove ORA+B(∅) =
ORA+B(∅) = ∅ by property (5). �

Proposition 3.2. Let I = (U, AT, F ) be an information
system, B, A ⊆ AT, X, Y ∈ F (U). Then the following
properties hold.



A
U

TH
O

R
 C

O
P

Y

W. Xu et al. / Multi-granulation fuzzy rough sets 1329

(1) ORA+B(X ∩ Y ) ⊆ ORA+B(X) ∩ ORA+B(Y ),
(2) ORA+B(X ∪ Y ) ⊇ ORA+B(X) ∪ ORA+B(Y );
(3) X ⊆ Y ⇒ ORA+B(X) ⊆ ORA+B(Y ),
(4) X ⊆ Y ⇒ ORA+B(X) ⊆ ORA+B(Y );
(5) ORA+B(X ∪ Y ) ⊇ ORA+B(X) ∪ ORA+B(Y ),
(6) ORA+B(X ∩ Y ) ⊆ ORA+B(X) ∩ ORA+B(Y ).

Proof. All terms hold when A = B or X = Y as they
will degenerate into single granulation fuzzy rough set.
If A /= B and X /= Y , the proposition can be proved as
follows.

(1) For any x ∈ U, A, B ⊆ AT and X, Y ∈ F (U),

ORA+B(X ∩ Y )(x)

= {∧{(X ∩ Y )(y) | y ∈ [x]A}} ∨
{∧{(X ∩ Y )(y) | y ∈ [x]B}}

= {∧{X(y) ∧ Y (y) | y ∈ [x]A}} ∨
{∧{X(y) ∧ Y (y) | y ∈ [x]B}}

= {RA(X)(x) ∧ RA(Y )(x)} ∨ {RB(X)(x) ∧ RB(Y )(x)}
≤ {RA(X)(x) ∨ RB(X)(x)} ∧ {RA(Y )(x)

∨RB(Y )(x)}
= ORA+B(X)(x) ∧ ORA+B(Y )(x).

Then ORA+B(X ∩ Y ) ⊆ ORA+B(X) ∩ ORA+B(Y ).

(2) Similarly, for any x ∈ U, A, B ⊆ AT and X, Y ∈
F (U),

ORA+B(X ∪ Y )(x)

= {∨{(X ∪ Y )(y) | y ∈ [x]A}} ∧
{∨{(X ∪ Y )(y) | y ∈ [x]B}}

= {∨{X(y) ∨ Y (y) | y ∈ [x]A}} ∧
{∨{X(y) ∨ Y (y) | y ∈ [x]B}}

= {RA(X)(x) ∨ RA(Y )(x)} ∧ {RB(X)(x) ∨ RB(Y )(x)}
≥ {RA(X)(x) ∧ RB(X)(x)} ∨ {RA(Y )(x)

∧RB(Y )(x)}
= ORA+B(X)(x) ∨ ORA+B(Y )(x).

Then ORA+B(X ∪ Y ) ⊇ ORA+B(X) ∪ ORA+B(Y ).

(3) Since for any x ∈ U, we have X(y) ≤ Y (y). Then
the properties hold obviously by Definition 3.1.

(4) The properties can be proved similarly to (3).

(5) Since X ⊆ X ∪ Y , and Y ⊆ X ∪ Y , then
ORA+B(X) ⊆ ORA+B(X ∪ Y ) and ORA+B(Y )
⊆ ORA+B(X ∪ Y ). So the property
ORA+B(X ∪ Y ) ⊇ ORA+B(X) ∪ ORA+B(Y )
obviously holds.

(6) This item can be proved similarly to (5) by (4).

The proposition was proved. �

The lower and upper approximation in Definition 3.1
are a pair of fuzzy sets. If we associate the cut set of a
fuzzy set, we can make a description of a fuzzy set X

by a classical set in an information system.

Definition 3.2. Let I = (U, AT, F ) be an information
system, A, B ⊆ AT and X ∈ F (U). For any 0 < β ≤
α ≤ 1, the lower approximation ORA+B(X) and upper
approximation ORA+B(X) of X about the α, β cut sets
are defined, respectively, as follows

ORA+B(X)α = {x | ORA+B(X)(x) ≥ α},
ORA+B(X)β = {x | ORA+B(X)(x) ≥ β}.

ORA+B(X)α can be explained as the set of objects in
U which possibly belong to X and the memberships of
which are more than α, while ORA+B(X)β is the set
of objects in U which possibly belong to X and the
memberships of which are more than β.

Proposition 3.3. Let I = (U, AT, F ) be an informa-
tion system, A, B ⊆ AT and X, Y ∈ F (U). For any
0 < β ≤ α ≤ 1, we have

(1) ORA+B(X ∩ Y )α ⊆ ORA+B(X)α ∩
ORA+B(Y )α,

(2) ORA+B(X ∪ Y )β ⊇ ORA+B(X)β ∪
ORA+B(Y )β;

(3) X ⊆ Y ⇒ ORA+B(X)α ⊆ ORA+B(Y )α,

(4) X ⊆ Y ⇒ ORA+B(X)β ⊆ ORA+B(Y )β;
(5) ORA+B(X ∪ Y )α ⊇ ORA+B(X)α ∪

ORA+B(Y )α,

(6) ORA+B(X ∩ Y )β ⊆ ORA+B(X)β ∩
ORA+B(Y )β.

Proof. It is easy to prove by Definition 3.2 and
Proposition 3.2. �

In the following, we will introduce the optimistic
multi-granulation fuzzy rough set (in brief OMGFRS)
and its corresponding properties by extending the opti-
mistic two-granulation fuzzy rough set.
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Definition 3.3. Let I = (U, AT, F ) be an information
system, Ai ⊆ AT . For the fuzzy set X ∈ F (U), denote

OR m∑
i=1

Ai

(X)(x) =
m∨

i=1

{
∧

{X(y) | y ∈ [x]Ai}},

OR m∑
i=1

Ai

(X)(x) =
m∧

i=1

{
∨

{X(y) | y ∈ [x]Ai}},

where “
∨

" means “max” and “
∧

" means “min”, then
FR m∑

i=1

Ai

(X) and OR m∑
i=1

Ai

(X) are respectively called the

optimistic multi-granulation lower approximation and
upper approximation of X with respect to the subsets of
attributes Ai, 1 ≤ i ≤ m. X is a multi-granulation fuzzy
rough set if and only if OR m∑

i=1

Ai

(X) /= OR m∑
i=1

Ai

(X).

Otherwise, X is a multi-granulation fuzzy definable set.
The boundary of the fuzzy rough set X is defined as

BndO
R m∑

i=1

Ai

(X) = OR m∑
i=1

Ai

(X) ∩ (∼ OR m∑
i=1

Ai

(X)).

It can be found that the OMGFRS will be degenerated
into fuzzy rough set when Ai = Aj, i /= j. That is to
say, a fuzzy rough set is a special instance of OMGFRS.
Besides, this model can also been turned the OMGRS
if the considered set is a crisp one. What’s more, the
OMGFRS will be degenerated into Pawlak rough set if
Ai = Aj, i /= j and the considered concept X is a crisp
set.

The properties about OMGFRS are listed in the
following which can be extended from the OTGFRS
model.

Proposition 3.4. Let I = (U, AT, F ) be an information
system, Ai ⊆ AT, 1 ≤ i ≤ m and X ∈ F (U). Then the
following properties hold.

(1) OR m∑
i=1

Ai

(X) ⊆ X,

(2) OR m∑
i=1

Ai

(X) ⊇ X;

(3) OR m∑
i=1

Ai

(∼ X) =∼ R m∑
i=1

Ai

(X),

(4) OR m∑
i=1

Ai

(∼ X) =∼ OR m∑
i=1

Ai

(X);

(5) OR m∑
i=1

Ai

(U) = OR m∑
i=1

Ai

(U) = U,

(6) OR m∑
i=1

Ai

(∅) = OR m∑
i=1

Ai

(∅) = ∅.

Proof. The proof of this proposition is similar to Propo-
sition 3.1. �

Proposition 3.5. Let I = (U, AT, F ) be an information
system, Ai ⊆ AT, 1 ≤ i ≤ m, X, Y ∈ F (U). Then the
following properties hold.

(1) OR m∑
i=1

Ai

(X ∩ Y ) ⊆ OR m∑
i=1

Ai

(X) ∩ OR m∑
i=1

Ai

(Y ),

(2) OR m∑
i=1

Ai

(X ∪ Y ) ⊇ OR m∑
i=1

Ai

(X) ∪ OR m∑
i=1

Ai

(Y );

(3) X ⊆ Y ⇒ OR m∑
i=1

Ai

(X) ⊆ OR m∑
i=1

Ai

(Y ),

(4) X ⊆ Y ⇒ OR m∑
i=1

Ai

(X) ⊆ OR m∑
i=1

Ai

(Y );

(5) OR m∑
i=1

Ai

(X ∪ Y ) ⊇ OR m∑
i=1

Ai

(X) ∪ OR m∑
i=1

Ai

(Y );

(6) OR m∑
i=1

Ai

(X ∩ Y ) ⊆ OR m∑
i=1

Ai

(X) ∩ OR m∑
i=1

Ai

(Y ).

Proof. The proof of this proposition is similar to Propo-
sition 3.2. �

Definition 3.4. Let I = (U, AT, F ) be an information
system, Ai ⊆ AT, 1 ≤ i ≤ m, and X ⊆ U. For any 0 <

β ≤ α ≤ 1, the lower approximation OR m∑
i=1

Ai

(X) and

upper approximation OR m∑
i=1

Ai

(X) of X about the α, β

cut sets are defined, respectively, as follows

OR m∑
i=1

Ai

(X)α = {x | OR m∑
i=1

Ai

(X)(x) ≥ α},

OR m∑
i=1

Ai

(X)β = {x | OR m∑
i=1

Ai

(X)(x) ≥ β}.

OR m∑
i=1

Ai

(X)α can be explained as the set of objects in

U which surely belong to X and the memberships of
which are more than α, while OR m∑

i=1

Ai

(X)β is the set
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of objects in U which possibly belong to X and the
memberships of which are more than β.

Proposition 3.6. Let I = (U, AT, F ) be an information
system, Ai ⊆ AT, 1 ≤ i ≤ m, and X, Y ⊆ U. For any
0 < β ≤ α ≤ 1, we have

(1) OR m∑
i=1

Ai

(X ∩ Y )α ⊆OR m∑
i=1

Ai

(X)α ∩ OR m∑
i=1

Ai

(Y )α,

(2) OR m∑
i=1

Ai

(X ∪ Y )β ⊇OR m∑
i=1

Ai

(X)β ∪ OR m∑
i=1

Ai

(Y )β;

(3) X ⊆ Y ⇒ OR m∑
i=1

Ai

(X)α ⊆ OR m∑
i=1

Ai

(Y )α,

(4) X ⊆ Y ⇒ OR m∑
i=1

Ai

(X)β ⊆ OR m∑
i=1

Ai

(Y )β;

(5) OR m∑
i=1

Ai

(X ∪ Y )α ⊇OR m∑
i=1

Ai

(X)α ∪ OR m∑
i=1

Ai

(Y )α,

(6) OR m∑
i=1

Ai

(X ∩ Y )β ⊆OR m∑
i=1

Ai

(X)β ∩ OR m∑
i=1

Ai

(Y )β.

Proof. It is easy to prove by Definition 3.4 and Propo-
sition 3.5. �

3.2. The pessimistic multi-granulation fuzzy rough
set

In this subsection, we will propose another type
of MGFRS. We first define the pessimistic two-
granulation fuzzy rough set (in brief the PTGFRS).

Definition 3.5. Let I = (U, AT, F ) be an informa-
tion system, A, B ⊆ AT . For the fuzzy set X ∈ F (U),
denote

PRA+B(X)(x) ={∧{X(y) | y ∈ [x]A}}∧
{∧{X(y) | y ∈ [x]B}},

PRA+B(X)(x) ={∨{X(y) | y ∈ [x]A}}∨
{∨{X(y) | y ∈ [x]B}},

then PRA+B(X) and PRA+B(X) are respectively
called the pessimistic two-granulation lower approx-
imation and upper approximation of X with respect
to the subsets of attributes A and B. X is the
pessimistic two-granulation fuzzy rough set if and
only if PRA+B(X) /= PRA+B(X). Otherwise, X is the
pessimistic two-granulation fuzzy definable set. The
boundary of the fuzzy rough set X is defined as

BndP
RA+B

(X) = PRA+B(X) ∩ (∼ PRA+B(X)).

It can be found that the PTGFRS will be degener-
ated into a fuzzy rough set when A = B. That is to
say, a fuzzy rough set is also a special instance of the
PTGFRS. What’s more, the PTGFRS will be degener-
ated into Pawlak rough set if A = B and the considered
concept X is a crisp set.

In the following, we employ an example to illustrate
the above concepts.

Example 3.2. (Continued from Example 3.1) From
Definition 3.2, we can compute the pessimistic two-
granulation lower and upper approximation of D is

PRA+B(D) = (0.6, 0.7, 0.6, 0.6, 0.4, 0.4, 0.7, 0.4,

0.6, 0.7),

PRA+B(D) = (0.8, 0.7, 0.9, 0.9, 0.7, 0.7, 0.7, 0.7,

0.9, 0.7).

We can find that the ten students are good at most at
the degree 0.6, 0.7, 0.6, 0.6, 0.4, 0.4, 0.7, 0.4, 0.6, 0.7,
respectively, if we evaluate the students by both A

and B; and the ten students are good at least at
the degree 0.8, 0.7, 0.9, 0.9, 0.7, 0.7, 0.7, 0.7, 0.9, 0.7,
respectively, if we evaluate the students only by either
A or B.

Obviously, the following can be found

PRA+B(D) = RA(D) ∩ RB(D),

PRA+B(D) = RA(D) ∪ RB(D),

PRA+B(D) ⊆ RA∪B(D) ⊆ D ⊆ RA∪B(D)

⊆ PRA+B(D).

Proposition 3.7. Let I = (U, AT, F ) be an information
system, B, A ⊆ AT and X ∈ F (U). Then the following
properties hold.

(1) PRA+B(X) ⊆ X,

(2) PRA+B(X) ⊇ X;
(3) PRA+B(∼ X) =∼ PRA+B(X),
(4) PRA+B(∼ X) =∼ PRA+B(X);
(5) PRA+B(U) = PRA+B(U) = U,

(6) PRA+B(∅) = PRA+B(∅) = ∅.

Proof. It is obvious that all terms hold when A = B.
When A /= B, the proposition can be proved as follows.

(1) For any x ∈ U and A, B ⊆ AT , since RA(X) ⊆
X, we know
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∧{X(y) | y ∈ [x]A} ≤ X(y)

and

∧{X(y) | y ∈ [x]B} ≤ X(y)

Therefore,

{∧{X(y) | y ∈ [x]A}} ∧ {∧{X(y) | y ∈ [x]B}} ≤ X(y).

i.e., PRA+B(X) ⊆ X.

(2) For any x ∈ U and A, B ⊆ AT , since X ⊆
RA(X), we know

X(y) ≤ ∨{X(y) | y ∈ [x]A}
and

X(y) ≤ ∨{X(y) | y ∈ [x]B}
Therefore,

X(y) ≤ {∨{X(y) | y ∈ [x]A}} ∨ {∨{X(y) | y ∈ [x]B}}.
i.e., X ⊆ PRA+B(X).

(3) For any x ∈ U and A, B ⊆ AT , since RA(∼
X) =∼ RA(X) and RB(∼ X) =∼ RB(X), then
we have

PRA+B(∼ X)(x) = {∧{1 − X(y) | y ∈ [x]A}}
∧{∧{1 − X(y) | y ∈ [x]B}}

= {1 − ∨{X(y) | y ∈ [x]A}}
∧{1 − ∨{X(y) | y ∈ [x]B}}

= 1 − {∨{X(y) | y ∈ [x]A}}
∨{∨{X(y) | y ∈ [x]B}}

= ∼ PRA+B(X)(x).

(4) By PRA+B(∼ X) =∼ PRA+B(X), we have
PRA+B(X) =∼ PRA+B(∼ X). So it can be
found that PRA+B(∼ X) =∼ PRA+B(X).

(5) Since for any x ∈ U, U(x) = 1, then for any
A, B ⊆ U, we have

PRA+B(U)(x) = {∧{U(y) | y ∈ [x]A}} ∧
{∧{U(y) | y ∈ [x]B}} = 1 = U(x),

PRA+B(U)(x)

= {∨{U(y) | y ∈ [x]A}} ∨
{∨{U(y) | y ∈ [x]B}} = 1 = U(x).

So PRA+B(U) = PRA+B(U) = U.

(6) From the duality of the approximation operators in
(6), it is easy to prove PRA+B(∅) = PRA+B(∅) =
∅. �

Proposition 3.8. Let I = (U, AT, F ) be an information
system, B, A ⊆ AT, X, Y ∈ F (U). Then the following
properties hold.

(1) PRA+B(X ∩ Y ) = PRA+B(X) ∩ PRA+B(Y ),
(2) PRA+B(X ∪ Y ) = PRA+B(X) ∪ PRA+B(Y );
(3) X ⊆ Y ⇒ PRA+B(X) ⊆ PRA+B(Y ),
(4) X ⊆ Y ⇒ PRA+B(X) ⊆ PRA+B(Y );
(5) PRA+B(X ∪ Y ) ⊇ PRA+B(X) ∪ PRA+B(Y );
(6) PRA+B(X ∩ Y ) ⊆ PRA+B(X) ∩ PRA+B(Y ).

Proof. All terms hold when A = B or X = Y as they
will degenerate into single granulation fuzzy rough set.
If A /= B and X /= Y , the proposition can be proved as
follows.

(1) For any x ∈ U, A, B ⊆ AT and X, Y ∈ F (U),

PRA+B(X ∩ Y )(x) = {∧{(X ∩ Y )(y) | y ∈ [x]A}} ∧
{∧{(X ∩ Y )(y) | y ∈ [x]B}}

= {∧{X(y) ∧ Y (y) | y ∈ [x]A}} ∧
{∧{X(y) ∧ Y (y) | y ∈ [x]B}}

= {RA(X)(x) ∧ RA(Y )(x)} ∧
{RB(X)(x) ∧ RB(Y )(x)}

= {RA(X)(x) ∧ RB(X)(x)} ∧
{RA(Y )(x) ∧ RB(Y )(x)}

= RA+B(X)(x) ∧ RA+B(Y )(x).

Then PRA+B(X ∩ Y ) = PRA+B(X) ∩ PRA+B(Y ).

(2) Similarly, for any x ∈ U, A, B ⊆ AT and X, Y ∈
F (U),

PRA+B(X ∪ Y )(x) = {∨{(X ∪ Y )(y) | y ∈ [x]A}} ∨
{∨{(X ∪ Y )(y) | y ∈ [x]B}}

= {∨{X(y) ∨ Y (y) | y ∈ [x]A}} ∨
{∨{X(y) ∨ Y (y) | y ∈ [x]B}}

= {RA(X)(x) ∨ RA(Y )(x)} ∨
{RB(X)(x) ∨ RB(Y )(x)}

= {RA(X)(x) ∨ RB(X)(x)} ∨
{RA(Y )(x) ∨ RB(Y )(x)}

= PRA+B(X)(x) ∨ PRA+B(Y )(x).
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Then PRA+B(X ∪ Y ) = PRA+B(X) ∪ PRA+B(Y ).

(3) Since for any x ∈ U, we have X(y) ≤ Y (y). Then
the properties hold obviously by Definition 3.5.

(4) The properties can be proved as (3).
(5) Since X ⊆ X ∪ Y , and Y ⊆ X ∪ Y , then

PRA+B(X) ⊆ PRA+B(X ∪ Y ) and PRA+B(Y )
⊆ PRA+B(X ∪ Y ). So the property
PRA+B(X ∪ Y ) ⊇ PRA+B(X) ∪ PRA+B(Y )
obviously holds.

(6) This item can be proved similarly to (5) by (4).

The proposition was proved.

Definition 3.6. Let I = (U, AT, F ) be an information
system, A, B ⊆ AT and X ∈ F (U). For any 0 < β ≤
α ≤ 1, the lower approximation PRA+B(X) and upper
approximation PRA+B(X) of X about the α, β cut sets
are defined, respectively, as follows

PRA+B(X)α = {x | PRA+B(X)(x) ≥ α},
PRA+B(X)β = {x | PRA+B(X)(x) ≥ β}.

PRA+B(X)α can be explained as the set of objects in
U which possibly belong to X and the memberships of
which are more than α, while PRA+B(X)β is the set
of objects in U which possibly belong to X and the
memberships of which are more than β.

Proposition 3.9. Let I = (U, AT, F ) be an informa-
tion system, A, B ⊆ AT and X, Y ∈ F (U). For any
0 < β ≤ α ≤ 1, we have

(1) PRA+B(X ∩ Y )α = PRA+B(X)α ∩ PRA+B(Y )α,

(2) PRA+B(X ∪ Y )β = PRA+B(X)β ∪ PRA+B(Y )β;
(3) X ⊆ Y ⇒ PRA+B(X)α ⊆ PRA+B(Y )α,

(4) X ⊆ Y ⇒ PRA+B(X)β ⊆ PRA+B(Y )β;
(5) PRA+B(X ∪ Y )α ⊇ PRA+B(X)α ∪ PRA+B(Y )α,

(6) PRA+B(X ∩ Y )β ⊆ PRA+B(X)β ∩ PRA+B(Y )β.

Proof. It is easy to prove by Definition 3.6 and Propo-
sition 3.8. �

In the following, we will introduce the pes-
simistic multi-granulation fuzzy rough set (in brief the
PMGFRS) and its corresponding properties by extend-
ing the pessimistic two-granulation fuzzy rough set.

Definition 3.7. Let I = (U, AT, F ) be an informa-
tion system, A, B ⊆ AT . For the fuzzy set X ∈ F (U),
denote

PR m∑
i=1

Ai

(X)(x) =
m∧

i=1

{
∧

{X(y) | y ∈ [x]Ai}},

PR m∑
i=1

Ai

(X)(x) =
m∨

i=1

{
∨

{X(y) | y ∈ [x]Ai}},

where “
∨

" means “max” and “
∧

" means “min”, then
PR m∑

i=1

Ai

(X) and PR m∑
i=1

Ai

(X) are respectively called

the pessimistic multi-granulation lower approxima-
tion and upper approximation of X with respect to
the subsets of attributes Ai(1 ≤ i ≤ m). X is the pes-
simistic multi-granulation fuzzy rough set if and only
if PR m∑

i=1

Ai

(X) /= PR m∑
i=1

Ai

(X). Otherwise, X is the pes-

simistic multi-granulation fuzzy definable set. The
boundary of the fuzzy rough set X is defined as

BndP
R m∑

i=1

Ai

(X) = PR m∑
i=1

Ai

(X) ∩ (∼ PR m∑
i=1

Ai

(X)).

It can be found that the PMGFRS will be degenerated
into fuzzy rough set when Ai = Aj, i /= j. That is to
say, a fuzzy rough set is also a special instance of the
PMGFRS. Besides, this model can also been turned
the pessimistic MGRS if the considered set is a crisp
one. What’s more, the MGFRS will be degenerated into
Pawlak rough set if Ai = Aj, i /= j and the considered
concept X is a crisp set.

The properties about the PMGFRS are listed in the
following which can be extended from the PTGFRS
model.

Proposition 3.10. Let I = (U, AT, F ) be an informa-
tion system, Ai ⊆ AT, 1 ≤ i ≤ m and X ∈ F (U). Then
the following properties hold.

(1) PR m∑
i=1

Ai

(X) ⊆ X,

(2) PR m∑
i=1

Ai

(X) ⊇ X;

(3) PR m∑
i=1

Ai

(∼ X) =∼ PR m∑
i=1

Ai

(X),

(4) PR m∑
i=1

Ai

(∼ X) =∼ PR m∑
i=1

Ai

(X);

(5) PR m∑
i=1

Ai

(U) = PR m∑
i=1

Ai

(U) = U,
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(6) PR m∑
i=1

Ai

(∅) = PR m∑
i=1

Ai

(∅) = ∅.

Proof. The proof of this proposition is similar to Propo-
sition 3.7. �

Proposition 3.11. Let I = (U, AT, F ) be an informa-
tion system, Ai ⊆ AT, 1 ≤ i ≤ m, X, Y ∈ F (U). Then
the following properties hold.

(1) PR m∑
i=1

Ai

(X ∩ Y ) = PR m∑
i=1

Ai

(X) ∩ PR m∑
i=1

Ai

(Y ),

(2) PR m∑
i=1

Ai

(X ∪ Y ) = PR m∑
i=1

Ai

(X) ∪ PR m∑
i=1

Ai

(Y );

(3) X ⊆ Y ⇒ PR m∑
i=1

Ai

(X) ⊆ PR m∑
i=1

Ai

(Y ),

(4) X ⊆ Y ⇒ PR m∑
i=1

Ai

(X) ⊆ PR m∑
i=1

Ai

(Y );

(5) PR m∑
i=1

Ai

(X ∪ Y ) ⊇ PR m∑
i=1

Ai

(X) ∪ PR m∑
i=1

Ai

(Y ),

(6) PR m∑
i=1

Ai

(X ∩ Y ) ⊆ PR m∑
i=1

Ai

(X) ∩ PR m∑
i=1

Ai

(Y ).

Proof. The proof of this proposition is similar to
Proposition 3.8. �

Definition 3.8. Let I = (U, AT, F ) be an information
system, Ai ⊆ AT, 1 ≤ i ≤ m, and X ∈ F (U). For any
0 < β ≤ α ≤ 1, the lower approximation PR m∑

i=1

Ai

(X)

and upper approximation PR m∑
i=1

Ai

(X) of X about the α,

β cut sets are defined, respectively, as follows

PR m∑
i=1

Ai

(X)α = {x | PR m∑
i=1

Ai

(X)(x) ≥ α},

PR m∑
i=1

Ai

(X)β = {x | PR m∑
i=1

Ai

(X)(x) ≥ β}.

PR m∑
i=1

Ai

(X)α can be explained as the set of objects in

U which surely belong to X and the memberships of
which are more than α, while PR m∑

i=1

Ai

(X)β is the set

of objects in U which possibly belong to X and the
memberships of which are more than β.

Proposition 3.12. Let I = (U, AT, F ) be an informa-
tion system, Ai ⊆ AT, 1 ≤ i ≤ m, and X, Y ∈ F (U).
For any 0 < β ≤ α ≤ 1, we have

(1) PR m∑
i=1

Ai

(X ∩ Y )α =PR m∑
i=1

Ai

(X)α∩PR m∑
i=1

Ai

(Y )α,

(2) PR m∑
i=1

Ai

(X ∪ Y )β =PR m∑
i=1

Ai

(X)β∪PR m∑
i=1

Ai

(Y )β;

(3) X ⊆ Y ⇒ PR m∑
i=1

Ai

(X)α ⊆ PR m∑
i=1

Ai

(Y )α,

(4) X ⊆ Y ⇒ PR m∑
i=1

Ai

(X)β ⊆ PR m∑
i=1

Ai

(Y )β;

(5) PR m∑
i=1

Ai

(X ∪ Y )α ⊇PR m∑
i=1

Ai

(X)α∪PR m∑
i=1

Ai

(Y )α,

(6) PR m∑
i=1

Ai

(X ∩ Y )β ⊆ SR m∑
i=1

Ai

(X)β∩PR m∑
i=1

Ai

(Y )β.

Proof. It is easy to prove by Definition 3.8 and Propo-
sition 3.11. �

4. The interrelationship among SGFRS, the
OMGFRS and the PMGFRS

After the discussion of the properties of the
OMGFRS and the PMGFRS, we will investigate the
interrelationship among SGFRS, the OMGFRS and the
PMGFRS in this section.

Proposition 4.1. Let I = (U, AT, F ) be an informa-
tion system, B, A ⊆ AT,X ∈ F (U). Then the following
properties hold.

(1) ORA+B(X) = RA(X) ∪ RB(X),
(2) ORA+B(X) = RA(X) ∩ RB(X);
(3) ORA+B(X) ⊆ RA∪B(X),
(4) ORA+B(X) ⊇ RA∪B(X).

Proof. (1) For any x ∈ U, A, B ⊆ AT and X ∈ F (U),

ORA+B(X)(x) = {∧{X(y) | y ∈ [x]A}}∨
{∧{X(y) | y ∈ [x]B}}

= RA(X)(x) ∨ RB(X)(x).

That is to say ORA+B(X) = RA(X) ∪ RB(X) is true.

(2) For any x ∈ U, A, B ⊆ AT and X ∈ F (U),
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ORA+B(X)(x) = {∨{X(y) | y ∈ [x]A}}∧
{∨{X(y) | y ∈ [x]B}}

= RA(X)(x) ∧ RB(X)(x).

So ORA+B(X) = RA(X) ∩ RB(X) holds.

(3) Since [x]A∪B ⊆ [x]A and [x]A∪B ⊆ [x]B, then we
have

∧{X(y) | y ∈ [x]A} ≤ ∧{X(y) | y ∈ [x]A∪B}
and

∧{X(y) | y ∈ [x]B} ≤ ∧{X(y) | y ∈ [x]A∪B}.
Therefore, we have {∧{X(y) | y ∈ [x]A}} ∨
{∧{X(y) | y ∈ [x]B}} ≤ ∧{X(y) | y ∈ [x]A∪B}.
That is to say, ORA+B(X) ⊆ RA∪B(X) holds.

(4) This item can be proved similarly as (3).

Proposition 4.2. Let I = (U, AT, F ) be an informa-
tion system, Ai ⊆ AT, 1 ≤ i ≤ m, X ∈ F (U). Then the
following properties hold.

(1) OR m∑
i=1

Ai

(X) =
m⋃

i=1
RAi (X),

(2) OR m∑
i=1

Ai

(X) =
m⋂

i=1
RAi (X);

(3) OR m∑
i=1

Ai

(X) ⊆ R m⋃
i=1

Ai

(X),

(4) OR m∑
i=1

Ai

(X) ⊇ R m⋃
i=1

Ai

(X).

Proof. The proof of this proposition is similar to
Proposition 4.1. �

Proposition 4.3. Let I = (U, AT, F ) be an informa-
tion system, B, A ⊆ AT,X ∈ F (U). Then the following
properties hold.

(1) PRA+B(X) = RA(X) ∩ RB(X),
(2) PRA+B(X) = RA(X) ∪ RB(X);
(3) PRA+B(X) ⊆ RA∪B(X),
(4) PRA+B(X) ⊇ RA∪B(X).

Proof. (1) For any x ∈ U, A, B ⊆ AT and X ∈ F (U),

PRA+B(X)(x) = {∧{X(y) | y ∈ [x]A}}∧
{∧{X(y) | y ∈ [x]B}}

= RA(X)(x) ∧ RB(X)(x).

That is to say, PRA+B(X) = RA(X) ∩ RB(X) is true.

(2) For any x ∈ U, A, B ⊆ AT and X ∈ F (U),

PRA+B(X)(x) = {∨{X(y) | y ∈ [x]A}}∨
{∨{X(y) | y ∈ [x]B}}

= RA(X)(x) ∨ RB(X)(x).

So PRA+B(X) = RA(X) ∪ RB(X) holds.

(3) Since [x]A∪B ⊆ [x]A and [x]A∪B ⊆ [x]B, then we
have

∧{X(y) | y ∈ [x]A} ≤ ∧{X(y) | y ∈ [x]A∪B}
and

∧{X(y) | y ∈ [x]B} ≤ ∧{X(y) | y ∈ [x]A∪B}.
Therefore, we have{∧{X(y) | y ∈ [x]A}} ∧
{∧{X(y) | y ∈ [x]B}} ≤ ∧{X(y) | y ∈ [x]A∪B}.
That is to say, PRA+B(X) ⊆ RA∪B(X) holds.

(4) This item can be proved similarly to (3).

Proposition 4.4. Let I = (U, AT, F ) be an informa-
tion system, Ai ⊆ AT, 1 ≤ i ≤ m, X ∈ F (U). Then the
following properties hold.

(1) PR m∑
i=1

Ai

(X) =
m⋂

i=1
RAi (X),

(2) PR m∑
i=1

Ai

(X) =
m⋃

i=1
RAi (X);

(3) PR m∑
i=1

Ai

(X) ⊆ R m⋃
i=1

Ai

(X),

(4) PR m∑
i=1

Ai

(X) ⊇ R m⋃
i=1

Ai

(X).

Proof. The proof of this proposition is similar to Propo-
sition 4.3. �

Proposition 4.5. Let I = (U, AT, F ) be an informa-
tion system, B, A ⊆ AT,X ∈ F (U). Then the following
properties hold.

(1) PRA+B(X) ⊆ ORA+B(X) ⊆ RA∪B(X);
(2) PRA+B(X) ⊇ ORA+B(X) ⊇ RA∪B(X).

Proof. It can be obtained by Definition 3.1, 3.3 and
Proposition 4.1. �
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Proposition 4.6. Let I = (U, AT, F ) be an informa-
tion system, Ai ⊆ AT, 1 ≤ i ≤ m, X ∈ F (U). Then the
following properties hold.

(1) PR m∑
i=1

Ai

(X) ⊆ OR m∑
i=1

Ai

(X) ⊆ R m⋃
i=1

Ai

(X);

(2) PR m∑
i=1

Ai

(X) ⊇ OR m∑
i=1

Ai

(X) ⊇ R m⋃
i=1

Ai

(X).

Proof. It can be obtained easily by Proposition 4.5. �
Proposition 4.7. Let I = (U, AT, F ) be an informa-
tion system, B, A ⊆ AT,X ∈ F (U). Then the following
properties hold.

(1) PRA+B(X) ⊆ RA(X)( or RB(X)) ⊆ ORA+B(X);
(2) PRA+B(X) ⊇ RA(X)( or RB(X)) ⊇ ORA+B(X).

Proof. It can be obtained by the former two terms in
Propositions 4.1, 4.3. �
Proposition 4.8. Let I = (U, AT, F ) be an informa-
tion system, Ai ⊆ AT, 1 ≤ i ≤ m, X ∈ F (U). Then the
following properties hold.

(1) PR m∑
i=1

Ai

(X) ⊆ RAi (X) ⊆ OR m∑
i=1

Ai

(X);

(2) PR m∑
i=1

Ai

(X) ⊇ RAi (X) ⊇ OR m∑
i=1

Ai

(X).

Proof. It can be obtained directly by Proposition 4.7.�

5. Measures of the OMGFRS and PMGFRS

The uncertainty of a set is due to the existence of the
borderline region. The wider the borderline region of a
set is, the lower the accuracy of the set is. To express
this idea more precisely, some elementary measures are
usually defined to describe the accuracy of a set. For the
above discussed MGFRS, we introduce the accuracy
measure of them in the following.

Definition 5.1. Let I = (U, AT, F ) be an information
system, Ai ⊆ AT, 1 ≤ i ≤ m. The optimistic and the

pessimistic rough measure of the fuzzy set X by
m∑

i=1
Ai

are defined as

ρF
m∑

i=1

Ai

(X) = 1 −

∣∣∣OR m∑
i=1

Ai

(X)
∣∣∣

∣∣∣OR m∑
i=1

Ai

(X)
∣∣∣ ,

ρS
m∑

i=1

Ai

(X) = 1 −

∣∣∣PR m∑
i=1

Ai

(X)
∣∣∣

∣∣∣PR m∑
i=1

Ai

(X)
∣∣∣ ,

where | . | means the cardinality of fuzzy set. If∣∣∣OR m∑
i=1

Ai

(X)
∣∣∣ = 0 or

∣∣∣PR m∑
i=1

Ai

(X)
∣∣∣ = 0, we prescribe

ρO
m∑

i=1

Ai

(X) = 0 or ρP
m∑

i=1

Ai

(X) = 0.

It is obvious that 0 ≤ ρO
m∑

i=1

Ai

(X) ≤ 1 and 0 ≤

ρP
m∑

i=1

Ai

(X) ≤ 1. If the fuzzy set X is the optimistic

or the pessimistic multi-granulation definable, then
ρO

m∑
i=1

Ai

(X) = 0 or ρP
m∑

i=1

Ai

(X) = 0.

Definition 5.2. Let I = (U, AT, F ) be an information
system, Ai ⊆ AT, 1 ≤ i ≤ m. For any 0 < β ≤ α ≤ 1,
the optimistic α, β rough measure and the pessimistic

α, β rough measure of the fuzzy set X by
m∑

i=1
Ai are

defined respectively as

ρO
m∑

i=1

Ai

(X)(α,β) = 1 −

∣∣∣OR m∑
i=1

Ai

(X)α
∣∣∣

∣∣∣OR m∑
i=1

Ai

(X)β
∣∣∣ ,

ρP
m∑

i=1

Ai

(X)(α,β) = 1 −

∣∣∣PR m∑
i=1

Ai

(X)α
∣∣∣

∣∣∣PR m∑
i=1

Ai

(X)β
∣∣∣ .

If
∣∣∣OR m∑

i=1

Ai

(X)β
∣∣∣ = 0 or

∣∣∣PR m∑
i=1

Ai

(X)β
∣∣∣ = 0, we pre-

scribe ρO
m∑

i=1

Ai

(X)(α,β) = 0 or ρP
m∑

i=1

Ai

(X)(α,β) = 0.

To describe conveniently in the following context,
we express the optimistic α, β rough measure and the
pessimistic α, β rough measure of the fuzzy set X by
m∑

i=1
Ai by using ρ

O,P
m∑

i=1

Ai

(X)(α,β).
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For the information system I = (U, AT, F ), denote

U/AT = {X1, X2, · · · , Xr}.

Proposition 5.1. For any 0 < β ≤ α ≤ 1, the optimistic
α, β rough measure and the pessimisticα, β rough mea-

sure of the fuzzy set X by
m∑

i=1
Ai satisfy the following

properties.

(1) 0 ≤ ρ
O,P
m∑

i=1

Ai

(X)(α,β) ≤ 1;

(2) ρ
O,P
m∑

i=1

Ai

(X)(α,β) is non-decreasing for α and non-

increasing for β;

(3) If
r∨

i=1

∧
x∈Xi

X(x) < α, then ρ
O,P
m∑

i=1

Ai

(X)(α,β) = 1;

(4) If α = β, X(x) = ci (∀x ∈ Xi, i ≤ r), i.e., if X is
a constant fuzzy set in every equivalence class of
U/AT , then ρ

O,P
m∑

i=1

Ai

(X)(α,β) = 0.

Proof. (1) Since 0 < β ≤ α ≤ 1, then OR m∑
i=1

Ai

(X)α ⊆

OR m∑
i=1

Ai

(X)β and PR m∑
i=1

Ai

(X)α ⊆ PR m∑
i=1

Ai

(X)β. It is

easy to obtain that 0 ≤ ρ
O,P
m∑

i=1

Ai

(X)(α,β) ≤ 1.

(2) If α1 < α2, then OR m∑
i=1

Ai

(X)α2 ⊆OR m∑
i=1

Ai

(X)α1 .

So we have

∣∣OR m∑
i=1

Ai

(X)α2

∣∣ ≤ ∣∣OR m∑
i=1

Ai

(X)α1

∣∣.

And so is for the pessimistic multi-granulation
fuzzy rough lower approximations. Therefore,
ρ

O,P
m∑

i=1

Ai

(X)(α1, β) ≤ ρ
O,P
m∑

i=1

Ai

(X)(α2, β). When β1 < β2,

we have OR m∑
i=1

Ai

(X)β2 ⊆ OR m∑
i=1

Ai

(X)β1 . Then

∣∣OR m∑
i=1

Ai

(X)β2

∣∣ ≤ ∣∣OR m∑
i=1

Ai

(X)β1

∣∣.

And so is for the pessimistic multi-granulation fuzzy
rough upper approximations. So ρ

O,P
m∑

i=1

Ai

(X)(α, β1) ≥

ρ
O,P
m∑

i=1

Ai

(X)(α, β2).

(3) When
r∨

i=1

∧
x∈Xi

X(x) < α, we have

OR m∑
i=1

Ai

(X)α = ∅ and PR m∑
i=1

Ai

(X)α = ∅. Then

∣∣OR m∑
i=1

Ai

(X)α
∣∣ = 0 and

∣∣PR m∑
i=1

Ai

(X)α
∣∣ = 0. So

ρ
O,P
m∑

i=1

Ai

(X)(α,β) = 1.

(4) If α = β and X(x) = ci (∀x ∈ Xi, i ≤ r),
then OR m∑

i=1

Ai

(X) ≡ OR m∑
i=1

Ai

(X). Thus

OR m∑
i=1

Ai

(X)α ≡ OR m∑
i=1

Ai

(X)α. That is,

ρ
O,P
m∑

i=1

Ai

(X)(α,β) = 0. �

Proposition 5.2. For any 0 < β ≤ α ≤ 1, X is a con-
stant fuzzy set on U, i.e., X(x) = δ(∀x ∈ U), then

ρ
O,P
m∑

i=1

Ai

(X)(α,β) =
{

1, β < δ < α,

0, otherwise.

Proof. When β < δ < α, we have OR m∑
i=1

Ai

(X)α,

PR m∑
i=1

Ai

(X)α = ∅, and OR m∑
i=1

Ai

(X)β, PR m∑
i=1

Ai

(X)β =

U. Thus ρ
O,P
m∑

i=1

Ai

(X)(α,β) = 1.

If δ < β ≤ α, then OR m∑
i=1

Ai

(X)α = OR m∑
i=1

Ai

(X)β =

∅ and PR m∑
i=1

Ai

(X)α = PR m∑
i=1

Ai

(X)β = ∅. Thus

ρ
O,P
m∑

i=1

Ai

(X)(α,β) = 0 from the prescript.
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If β ≤ α ≤ δ, then OR m∑
i=1

Ai

(X)α = OR m∑
i=1

Ai

(X)β =

U and PR m∑
i=1

Ai

(X)α = PR m∑
i=1

Ai

(X)β = U. Thus

ρ
O,P
m∑

i=1

Ai

(X)(α,β) = 0. �

Proposition 5.3. Let X, Y ∈ F (U). If X ⊆ Y ,
OR m∑

i=1

Ai

(X)β = OR m∑
i=1

Ai

(Y )β and PR m∑
i=1

Ai

(X)β =

PR m∑
i=1

Ai

(Y )β, then

ρ
O,P
m∑

i=1

Ai

(X)(α,β) ≤ ρ
O,P
m∑

i=1

Ai

(Y )(α,β).

Proof. For X ⊆ Y , we have OR m∑
i=1

Ai

(X)α ⊆

OR m∑
i=1

Ai

(Y )α and OR m∑
i=1

Ai

(X)β = OR m∑
i=1

Ai

(Y )β.

And so is for the pessimistic multi-granulation fuzzy
rough approximations. Thus the proposition holds. �

Proposition 5.4. Let X, Y ∈ F (U). If X ⊆ Y ,
OR m∑

i=1

Ai

(X)α = OR m∑
i=1

Ai

(Y )α and PR m∑
i=1

Ai

(X)α =

PR m∑
i=1

Ai

(Y )α, then ρ
O,P
m∑

i=1

Ai

(X)(α,β) ≤ ρ
O,P
m∑

i=1

Ai

(Y )(α,β).

Proof. The proof is similar to Proposition 5.3. �

Proposition 5.5. Let I = (U, AT, F ) be an information
system, Ai ⊆ AT, 1 ≤ i ≤ m. The optimistic rough
measure, the pessimistic rough measure of the fuzzy

set X by
m∑

i=1
Ai and the rough measure of the fuzzy set

X by Ai have the following relations.

ρP
m∑

i=1

Ai

(X) ≥ ρAi (X) ≥ ρO
m∑

i=1

Ai

(X) ≥ ρ m⋃
i=1

Ai

(X).

Proof. It is easy to prove by Proposition 4.8 and Defi-
nition 5.1. �

Example 5.1. (Continued from Example 3.1 and 3.2)
We can compute the optimistic rough measure, the pes-
simistic rough measure of D by A and B and compare
with the rough measure of D by A or B. It follows that

ρO
A+B(D) = 1 − |ORA+B(D)|

|ORA+B(D)| = 1 − 6.2

7.2
≈ 0.139,

ρP
A+B(D) = 1 − |PRA+B(D)|

|PRA+B(D)| = 1 − 5.7

7.7
≈ 0.260,

ρA(D) = 1 − |RA(D)|
|RA(D)| = 1 − 6

7.3
≈ 0.178,

ρB(D) = 1 − |RB(D)|
|RB(D)| = 1 − 5.9

7.6
≈ 0.223,

ρA∪B(D) = 1 − |RA∪B(D)|
|RA∪B(D)| = 1 − 6.2

6.9
≈ 0.101.

Clearly, we have

ρP
A+B(D) ≥ ρA(D) ≥ ρO

A+B(D) ≥ ρA∪B(D)

and

ρP
A+B(D) ≥ ρB(D) ≥ ρO

A+B(D) ≥ ρA∪B(D).

Proposition 5.6. For any 0 < β ≤ α ≤ 1, the optimistic
α, β rough measure, pessimistic α, β rough measure of

the fuzzy set X by
m∑

i=1
Ai and the α, β rough measure

of the fuzzy set X by Ai have the following rela-
tions. ρP

m∑
i=1

Ai

(X)(α,β) ≥ ρAi (X)(α,β) ≥ ρO
m∑

i=1

Ai

(X)(α,β) ≥

ρ m⋃
i=1

Ai

(X)(α,β). Proof. From Proposition 4.6, 4.8 and

Definition 3.4, 3.8, we can obtain that

PR m∑
i=1

Ai

(X)(α,β) ⊆ RAi (X)(α,β) ⊆ OR m∑
i=1

Ai

(X)(α,β)

⊆ R m⋃
i=1

Ai

(X)(α,β)

and

PR m∑
i=1

Ai

(X)(α,β) ⊇ RA(X)(α,β) ⊇ OR m∑
i=1

Ai

(X)(α,β)

⊇ R m⋃
i=1

Ai

(X)(α,β).
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Then we have∣∣∣PR m∑
i=1

Ai

(X)α
∣∣∣

∣∣∣PR m∑
i=1

Ai

(X)β
∣∣∣ ≤

∣∣∣RAi (X)α
∣∣∣∣∣∣RAi (X)β
∣∣∣ ≤

∣∣∣OR m∑
i=1

Ai

(X)α
∣∣∣

∣∣∣OR m∑
i=1

Ai

(X)β
∣∣∣

≤

∣∣∣R m⋃
i=1

Ai

(X)(α,β)

∣∣∣
∣∣∣R m⋃

i=1

Ai

(X)(α,β)

∣∣∣ .

Thus the proposition hold. �

Example 5.2. (Continued from Example 3.1 and 3.2)
Let α = 0.7, β = 0.6, we can compute the optimistic
α, β rough measure, the pessimisticα, β rough measure
of D by A and B and compare with the α, β rough
measure of D by A or B. It follows that

ρO
A+B(D)(0.7,0.6) = 1 − |FRA+B(D)(0.7,0.6)|

|FRA+B(D)(0.7,0.6)|
= 1 − 4

9
= 5

9
,

ρP
A+B(D)(0.7,0.6) = 1 − |SRA+B(D)(0.7,0.6)|

|SRA+B(D)(0.7,0.6)|
= 1 − 3

10
= 3

10
,

ρA(D)(0.7,0.6) = 1 − |RA(D)(0.7,0.6)|
|RA(D)(0.7,0.6)|

= 1 − 4

10

= 6

10
,

ρB(D)(0.7,0.6) = 1 − |RB(D)(0.7,0.6)|
|RB(D)(0.7,0.6)|

= 1 − 3

9

= 6

9
,

ρA∪B(D)(0.7,0.6) = 1 − |RA∪B(D)(0.7,0.6)|
|RA∪B(D)(0.7,0.6)|

= 1 − 4

9

= 5

9
.

Clearly, we have

ρP
A+B(D)(0.7,0.6) ≥ ρA(D)(0.7,0.6) ≥ ρO

A+B(D)(0.7,0.6)

≥ ρA∪B(D)(0.7,0.6)

and

ρP
A+B(D)(0.7,0.6) ≥ ρB(D)(0.7,0.6) ≥ ρO

A+B(D)(0.7,0.6)

≥ ρA∪B(D)(0.7,0.6).

6. Conclusions

In this paper, we combined multi-granulation rough
sets theory and fuzzy sets theory in order to dealing
with problems of uncertainty and imprecision easily.
The theory of fuzzy set mainly focuses on the fuzzi-
ness of knowledge while the theory of rough set on
the roughness of knowledge. Because of the comple-
ment of the two types of theory, fuzzy rough set models
are investigated to solve practical problem. Besides,
multi-granulation rough sets models have been pro-
posed by Professor Qian which also are studied from
the perspective of granular computing. The contribu-
tion of this paper have constructed two different types
of multi-granulation fuzzy rough set associated with
granular computing, in which the approximation opera-
tors are defined based on multiple equivalence relations.
What’s more, we make conclusions that rough sets,
fuzzy rough set models and multi-granulation rough
set models are special cases of the two types of multi-
granulation fuzzy rough set by analyzing the definitions
of them. More properties of the two types of fuzzy
rough set are discussed and comparison are made with
single-granulation fuzzy rough set(SGFRS). Finally,
we make a description of the accuracy of a set by defin-
ing the rough measure and (α, β)-rough measure and
discussing the corresponding properties. The construc-
tion of the new types of fuzzy rough set models is an
extension in view of granular computing and is mean-
ingful compared with the generalization of rough set
theory.
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