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The optimistic multigranulation 𝑇-fuzzy rough set model was established based on multiple granulations under 𝑇-fuzzy
approximation space by Xu et al., 2012. From the reference, a natural idea is to consider pessimistic multigranulation model in
𝑇-fuzzy approximation space. So, in this paper, the main objective is to make further studies according to Xu et al., 2012. The
optimistic multigranulation 𝑇-fuzzy rough set model is improved deeply by investigating some further properties. And a complete
multigranulation 𝑇-fuzzy rough set model is constituted by addressing the pessimistic multigranulation 𝑇-fuzzy rough set. The
full important properties of multigranulation 𝑇-fuzzy lower and upper approximation operators are also presented. Moreover,
relationships between multigranulation and classical 𝑇-fuzzy rough sets have been studied carefully. From the relationships, we
can find that the 𝑇-fuzzy rough set model is a special instance of the two new types of models. In order to interpret and illustrate
optimistic and pessimistic multigranulation 𝑇-fuzzy rough set models, a case is considered, which is helpful for applying these
theories to practical issues.

1. Introduction

Rough set theory, proposed by Pawlak [1], is an extension of
the classical set theory and could be regarded as amathemati-
cal and soft computing tool to handle imprecision, vagueness,
and uncertainty in data analysis.This relatively new soft com-
puting methodology has received great attention in recent
years, and its effectiveness has been confirmed successful in
applications in many science and engineering fields, such
as pattern recognition, data mining, image processing, and
medical diagnosis. Rough set theory is built on the basis of
the classificationmechanism; it is classified as the equivalence
relation in a specific universe, and the equivalence relation
constitutes a partition of the universe. A concept, or more
precisely the extension of a concept, is represented by a subset
of a universe of objects and is approximated by a pair of
definable concepts of a logic language.Themain idea of rough
set theory is the use of a known knowledge in knowledge base
to approximate the inaccurate and uncertain knowledge.

In recent years, the generalization of the rough set model
is one of the most important research directions. On one
hand, rough set theory is generalized by combining with
other theories that deal with uncertain knowledge such
as fuzzy set theory [2]. It has been acknowledged by

different studies that fuzzy set theory and rough set theory
are complementary in terms of handling different kinds
of uncertainty. Fuzzy set theory deals with probabilistic
uncertainty, connected with imprecision of stated percep-
tions and preferences. Rough set theory, in turn, deals with
uncertainty following from ambiguity of information. The
two types of uncertainty can be encountered together in
real-life problems. For this reason, many approaches have
been proposed to combine fuzzy set theory with rough set
theory. Dübois and Prade [3] proposed concepts of rough
fuzzy sets and fuzzy rough sets. A rough fuzzy set is a pair
of fuzzy sets resulting from the approximation of a crisp
set in a fuzzy approximation space, and a fuzzy rough set
is a pair of fuzzy sets resulting from the approximation
of a fuzzy set in a crisp approximation space. Some other
researches about fuzzy rough set and rough fuzzy set from
other directions have been discussed [4–10]. What is more,
generalizations of fuzzy rough sets were defined by using
a residual implication and a triangular norm on [0, 1] to
define the lower and upper approximation operators. Several
authors also have proposed a kind of implication 4, weak
fuzzy partitions on the universe. Wu et al. [11] characterized
the (𝐼, 𝑇)-fuzzy rough approximation operators. Morsi
and Yakout researched axiomatics for fuzzy rough sets by
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a triangular norm [12]. Mi et al. generalized fuzzy rough sets
determined by a triangular norm [13].

On the other hand, rough set theory was discussed from
the view of granular computing. In 1985, Hobbs proposed the
concept of granularity [14], and Zadeh first explored the con-
cept of granular computing between 1996 and 1997 [15].They
all think that information granules refer to pieces, classes,
and groups into which complex information is divided in
accordance with the characteristics and processes of the
understanding and decision-making. Among the existing
possibilities offered by granular computing, we may refer to
fuzzy sets [16], rough sets [1], and vague sets [17], just to name
some of the well-established alternatives. From the point of
view of granular computing, Pawlak’s rough set is based on a
single granulation induced from an indiscernibility relation.

Actually, an attribute subset induces an equivalence
relation; the partition formed by an equivalence relation can
be regarded as a granulation. By using a finer granulation
formed through combining two known granulations induced
from two-attribute subsets to describe the target concept, the
combination destroys the original granulation structure. In
general, the above assumption cannot always be satisfied or
required in practice. In order to apply the rough set theory,
Qian and Liang extended Pawlak’s single-granulation rough
set model to a multiple granulation rough set model [18].
Since the multigranulation rough set was initially proposed
by Qian et al. [19], later, many researchers have extended the
multigranulation rough sets to the generalized multigranula-
tion rough sets. Xu et al. developed a multigranulation fuzzy
rough set model [20], a generalized multigranulation rough
set approach [21], multigranulation rough sets based on tol-
erance relations [22], and amultigranulation rough set model
in ordered information systems [23]; Yang et al. proposed
the hierarchical structure properties of the multigranulation
rough sets [24] andmultigranulation rough set in incomplete
information system [25] and presented a test cost sensitive
multigranulation rough set model [26]; Lin et al. presented
a neighborhood-based multigranulation rough set [27]; She
andHe explored the topological structures and the properties
of multigranulation rough sets [28].

From the thought of multigranulation, optimistic multi-
granulation and pessimistic multigranulation are two of the
most basic ways of research. In [29], authors only presented
concepts of optimistic multigranulation fuzzy rough sets
based on triangular norms. By analyzing the proposed
definition in [29], there exists another perspective which
is called pessimistic multigranulation. Authors in [29] did
not investigate the pessimistic multigranulation fuzzy rough
sets based on triangular norms, and relationships between
optimistic multigranulation and single granulation fuzzy
rough sets based on triangular norms were not presented
either. Accordingly, from both optimistic multigranulation
and pessimistic multigranulation perspectives, we generalize
the multigranulation 𝑇-fuzzy rough set theory by using the
concepts of a residual implication and a triangular norm on
[0, 1]. In this paper, we mainly improve the model proposed
in [29] by discussing the further properties of optimistic
multigranulation 𝑇-fuzzy rough sets, propose the multigran-
ulation 𝑇-fuzzy rough set model from the perspective of

pessimistic multigranulation and study its properties, and
research relationships betweenmultigranulation and classical
𝑇-fuzzy rough sets. These contents are not yet completed in
[29], so this paper is an extended vision of [29]. The rest
of this paper is organized as follows. In Section 2, we recall
some concepts and properties to be used in this paper. In
Sections 3 and 4, we presented the definition of the optimistic
multigranulation 𝑇-fuzzy lower and upper approximation
operators and proposed the pessimistic multigranulation 𝑇-
fuzzy lower and upper approximation operators; basic prop-
erties about these two models are also studied. In Section 5,
we get the relationship among these 𝑇-fuzzy approximation
operators. We give the examples about the evaluation of fund
projects in Section 6. Finally, Section 7 gets the conclusions.

2. Preliminaries

In this section, we review some basic concepts and properties
about𝑇-fuzzy rough sets.Thenotion of optimisticmultigran-
ulation 𝑇-fuzzy rough set is also introduced. The Cartesian
product of 𝑈 with 𝑈 is denoted by 𝑈 × 𝑈. The classes of all
fuzzy subsets of 𝑈 are denoted by 𝐹(𝑈). Following, a binary
operator 𝑇 on the unit interval 𝐼 = [0, 1] is said to be a
triangular norm [30] if for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐼, we have

(i) 𝑇(𝑎, 𝑏) = 𝑇(𝑏, 𝑎);
(ii) 𝑇(𝑎, 1) = 𝑎;
(iii) 𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑 ⇒ 𝑇(𝑎, 𝑏) ≤ 𝑇(𝑐, 𝑑);
(iv) 𝑇(𝑇(𝑎, 𝑏), 𝑐) = 𝑇(𝑎, 𝑇(𝑏, 𝑐)).

A fuzzy relation 𝑅 from 𝑈 to 𝑈 is a fuzzy subset of 𝑈 ×

𝑈; that is, 𝑅 ∈ 𝐹(𝑈 × 𝑈), and 𝑅(𝑥, 𝑦) is called the degree of
relation between 𝑥 and 𝑦. Consider the following:

(1) 𝑅 is said to be reflexive on 𝑈 × 𝑈 ⇔ for all 𝑥 ∈ 𝑈,
𝑅(𝑥, 𝑥) = 1;

(2) 𝑅 is said to be symmetric on 𝑈 × 𝑈 ⇔ for all 𝑥 ∈ 𝑈,
𝑅(𝑥, 𝑦) = 𝑅(𝑦, 𝑥);

(3) 𝑅 is said to be 𝑇 transitive on𝑈×𝑈 ⇔ for all 𝑥, 𝑦, 𝑧 ∈
𝑈, 𝑅(𝑥, 𝑧) ≥ 𝑇(𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑧)).

If 𝑅 is reflexive, symmetric, and 𝑇 transitive on𝑈×𝑈, we
then say that 𝑅 is a 𝑇-fuzzy equivalence relation on 𝑈; if 𝑅 is
reflexive and symmetric on 𝑈 × 𝑈, we say that 𝑅 is a 𝑇-fuzzy
similarity relation on 𝑈.

A binary operator on 𝐼 is given in the following

𝜃 (𝑎, 𝑏) = sup {𝑐 ∈ 𝐼 | 𝑇 (𝑎, 𝑐) ≤ 𝑏} , (1)

where 𝜃 is called the residual implication based on a triangu-
lar norm 𝑇.

For the sake of convenience, for any 𝑋,𝑌 ∈ 𝐹(𝑈), 𝑥 ∈ 𝑈,
we will define several fuzzy sets as follows:

(1) 𝑇(𝑋, 𝑌)(𝑥) = 𝑇(𝑋(𝑥), 𝑌(𝑥));
(2) 𝜃(𝑋, 𝑌)(𝑥) = 𝜃(𝑋(𝑥), 𝑌(𝑥));
(3) 𝜃(𝑋, 𝑌) = ⋀

𝑢∈𝑈
𝜃(𝑋(𝑢), 𝑌(𝑢));

(4) 𝜃(1
𝑥
, 𝑎) = 1

𝑈\{𝑥}
∨ 𝑎;
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(5)

1
𝑥
(𝑦) = {

1, if 𝑦 = 𝑥;
0, 𝑦 ̸= 𝑥;

(2)

(6)

1
𝑍
(𝑥) = {

1, if 𝑥 ∈ 𝑍;
0, 𝑥 ∉ 𝑍,

(3)

where 𝑎
=

is a constant fuzzy set and 𝑍 ⊆ 𝑈.
Consider a lower semicontinuous triangular norm 𝑇, for

all 𝑎, 𝑏, 𝑐 ∈ 𝐼; the residual implication based on the triangular
norm 𝑇 satisfies the following important properties:

(𝜃1) 𝜃(𝑎, 1) = 1, 𝜃(1, 𝑎) = 𝑎;
(𝜃2) 𝑎 ≤ 𝑏 ⇒ 𝜃(𝑐, 𝑎) ≤ 𝜃(𝑐, 𝑏);
(𝜃3) 𝑎 ≤ 𝑏 ⇒ 𝜃(𝑎, 𝑐) ≥ 𝜃(𝑏, 𝑐);
(𝜃4) 𝑇(𝜃(𝑎, 𝑐), 𝜃(𝑐, 𝑏)) ≤ 𝜃(𝑎, 𝑏);
(𝜃5) 𝜃(𝑎 ∨ 𝑏, 𝑐) = 𝜃(𝑎, 𝑐) ∧ 𝜃(𝑏, 𝑐);
(𝜃6) 𝜃(𝑎, 𝑏 ∧ 𝑐) = 𝜃(𝑎, 𝑏) ∧ 𝜃(𝑎, 𝑐);
(𝜃7) 𝑎 ≤ 𝑏 ⇔ 𝜃(𝑎, 𝑏) = 1;
(𝜃8) 𝜃(𝑎, 𝜃(𝑏, 𝑐)) = 𝜃(𝑏, 𝜃(𝑎, 𝑐));
(𝜃9) 𝜃(𝑇(𝑎, 𝑏), 𝑐) = 𝜃(𝑎, 𝜃(𝑏, 𝑐));
(𝜃10) 𝑇(𝜃(𝑇(𝑎, 𝑏), 𝑐), 𝑎) ≤ 𝜃(𝑏, 𝑐);
(𝜃11) ⋀

𝑎∈𝐼
𝜃(𝑇(𝑏, 𝜃(𝑐, 𝑎)), 𝑎) = 𝜃(𝑏, 𝑐);

(𝜃12) 𝜃(𝜃(𝑎, 𝑏), 𝑏) ≥ 𝑎;
(𝜃13) ⋀

𝑏∈𝐼
𝜃(𝜃(𝑎, 𝑏), 𝑏) = 𝑎;

(𝜃14) 𝑇(𝜃(𝑎, 𝑏), 𝑐) ≤ 𝜃(𝑎, 𝑇(𝑏, 𝑐));
(𝜃15) ⋀

𝑏∈𝐼
𝜃(𝜃(𝑎, 𝑏), 𝜃(𝑐, 𝑏)) = 𝜃(𝑐, 𝑎);

(𝜃16) 𝜃(𝑎, 𝑏) ≤ 𝜃(𝑇(𝑎, 𝑐), 𝑇(𝑏, 𝑐));
(𝜃17) 𝜃(𝑎, 𝑏 ∨ 𝑐) = 𝜃(𝑎, 𝑏) ∨ 𝜃(𝑎, 𝑐);
(𝜃18) 𝑎 ≤ 𝜃(𝑏, 𝑇(𝑎, 𝑏));
(𝜃19) 𝜃(𝑎 ∧ 𝑏, 𝑐) = 𝜃(𝑎, 𝑐) ∨ 𝜃(𝑏, 𝑐);
(𝜃20) 𝜃(𝑎 ∧ 𝑏, 𝑐) ≥ 𝜃(𝑎, 𝑐) ∧ 𝜃(𝑏, 𝑐).

Definition 1 (see [13]). Let 𝑈 be a finite and nonempty set
called the universe, and let 𝑅 be a 𝑇-fuzzy similarity relation
from𝑈 to𝑈.Thepair (𝑈, 𝑅) is called a𝑇-fuzzy approximation
space. For any 𝐴 ∈ 𝐹(𝑈), we define two fuzzy set-theoretic
operators from 𝐹(𝑈) to 𝐹(𝑈) as follows:

𝑅 (𝐴) (𝑥) = ⋀

𝑦∈𝑈

𝜃 (𝑅 (𝑥, 𝑦) , 𝐴 (𝑦)) ,

𝑅 (𝐴) (𝑥) = ⋁

𝑦∈𝑈

𝑇 (𝑅 (𝑥, 𝑦) , 𝐴 (𝑦)) ,

𝑥 ∈ 𝑈,

(4)

where “⋁” means “max,” “⋀” means “min,” and 𝑅 and 𝑅 are
referred to as the 𝑇-fuzzy lower and upper approximation
operators. The pair (𝑅(𝐴), 𝑅(𝐴)) is called the 𝑇-fuzzy rough
set of 𝐴.

Proposition 2 (see [13]). Let (𝑈, 𝑅) be a fuzzy approximation
space, for all 𝐴, 𝐵 ∈ 𝐹(𝑈), (𝑥, 𝑦) ∈ 𝑈 × 𝑈; then, one has the
following:

(1) 𝑅(𝐴) ⊆ 𝐴 ⊆ 𝑅(𝐴);

(2) 𝑅(𝐴 ∩ 𝐵) = 𝑅(𝐴) ∩ 𝑅(𝐵), 𝑅((𝐴) ∪ 𝐵) = 𝑅(𝐴) ∪ 𝑅(𝐵);

(3) 𝑅(𝐴 ∪ 𝐵) ⊇ 𝑅(𝐴) ∪ 𝑅(𝐵), 𝑅(𝐴 ∩ 𝐵) ⊆ 𝑅(𝐴) ∩ 𝑅(𝐵);

(4) 𝐴 ⊆ 𝐵 ⇒ 𝑅(𝐴) ⊆ 𝑅(𝐵), 𝑅(𝐴) ⊆ 𝑅(𝐵);

(5) 𝑅(𝑅(𝐴)) = 𝑅(𝐴), 𝑅(𝑅(𝐴)) = 𝑅(𝐴);

(6) 𝑅(𝑅(𝐴)) = 𝑅(𝐴), 𝑅(𝑅(𝐴)) = 𝑅(𝐴);

(7) 𝑅(𝐴) = 𝐴 ⇔ 𝑅(𝐴) = 𝐴.

The above proposition reflects the relationships between
𝑅 and 𝑅. It is easy to prove that the 𝑇-fuzzy approximation
operators in this section are really extensions of the approx-
imation operators. In particular, if 𝑅 is a crisp equivalence
relation on 𝑈 and 𝐴 ∈ 𝑃(𝑈), then 𝑅(𝐴) and 𝑅(𝐴) coincide
with the classical Pawlak rough set.

Authors in [29] proposed the model on optimistic multi-
granulation 𝑇-fuzzy rough set, which is presented in the
following.

Definition 3 (see [29]). Let 𝐾 = (𝑈,R) be a 𝑇-fuzzy
approximation space, and let R be a family of 𝑇-fuzzy
similarity relations from 𝑈 to 𝑈, 𝑅

𝐴
1

, 𝑅
𝐴
2

, . . . , 𝑅
𝐴
𝑛

∈ R. For
any𝑋 ∈ 𝐹(𝑈), the optimistic multigranulation𝑇-fuzzy lower
and upper approximations of𝑋 are defined as follows:

OM
∑
𝑛

𝑖=1
𝐴
𝑖
(𝑋) (𝑥) =

𝑛

⋁

𝑖=1

(⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
𝑖
(𝑢, 𝑥) , 𝑋 (𝑢))) ,

OM
∑
𝑛

𝑖=1
𝐴
𝑖
(𝑋) (𝑥) =

𝑛

⋀

𝑖=1

(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
𝑖
(𝑢, 𝑥) , 𝑋 (𝑢))) ,

(5)

where 𝜃 and 𝑇 are defined in Section 2. OM
∑
𝑛

𝑖=1
𝐴
𝑖

and

OM
∑
𝑛

𝑖=1
𝐴
𝑖

are referred to as the optimistic multigranulation
𝑇-fuzzy lower and upper approximation operators. The pair
(OM
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋),OM
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋)) is called the optimistic multi-
granulation 𝑇-fuzzy rough set of 𝑋. If OM

∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) =

OM
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), then 𝑋 is referred to as optimistic definable
under the 𝑇-fuzzy approximation space; otherwise, 𝑋 is
referred to as optimistic undefinable or rough.The boundary
of the optimistic multigranulation 𝑇-fuzzy rough set 𝑋 is
defined as

Bnd𝑂
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) = OM
∑
𝑛

𝑖=1
𝐴
𝑖
(𝑋) ∩ (∼ OM

∑
𝑛

𝑖=1
𝐴
𝑖
(𝑋)) . (6)
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Example 4 (see [29]). Let (𝑈, 𝑅
𝐴
, 𝑅
𝐵
) be a 𝑇-fuzzy approxi-

mation space, where 𝑈 = {𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
}; then,

𝑅
𝐴
=(

1 0.4 0.8 0.5 0.5

0.4 1 0.4 0.4 0.4

0.8 0.4 1 0.5 0.5

0.5 0.4 0.5 1 0.6

0.5 0.4 0.5 0.6 1

) ,

𝑅
𝐵
=(

1 0.8 0.8 0.2 0.8

0.8 1 0.85 0.2 0.85

0.8 0.85 1 0.2 0.9

0.2 0.2 0.2 1 0.2

0.8 0.85 0.9 0.2 1

) .

(7)

Given 𝑇(𝑥, 𝑦) = min(𝑥, 𝑦),𝑋 = (0.5, 0.3, 0.3, 0.6, 0.5).
It is not difficult to verify that the fuzzy relations 𝑅

𝐴
and

𝑅
𝐵
are both 𝑇-fuzzy similarity relations. So we can obtain

the optimistic multigranulation 𝑇-fuzzy lower and upper
approximations of𝑋 as follows:

OM
𝐴+𝐵

(𝑋) = (0.3, 0.3, 0.3, 0.6, 0.3) ,

OM
𝐴+𝐵

(𝑋) = (0.5, 0.4, 0.5, 0.6, 0.5) .

(8)

Based on the model in Definition 3, we can conclude the
relevant properties of optimistic multigranulation 𝑇-fuzzy
rough sets accordingly.

3. Properties of Optimistic Multigranulation
𝑇-Fuzzy Rough Sets

In this section, we will study the properties of optimistic
multigranulation 𝑇-fuzzy rough set which is on the rough
approximation problem in a 𝑇-fuzzy approximation space.

Proposition 5. Let (𝑈, 𝑅
𝐴
1

, 𝑅
𝐴
2

, . . . , 𝑅
𝐴
𝑛

) be a 𝑇-fuzzy
approximation space; let𝑅

𝐴
𝑖

, 𝑖 ∈ {1, 2, 3, . . . , 𝑛}, be the different
𝑇-fuzzy similarity relations, for all 𝑥, 𝑦 ∈ 𝑈, 𝑎, 𝑏 ∈ 𝐼, and
𝑋,𝑌 ∈ 𝐹(𝑈). Then, the optimistic multigranulation 𝑇-fuzzy
lower approximation has the following properties:

(1) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ⊆ 𝑋;

(2) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋)) = 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋);

(3) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋 ∩ 𝑌) ⊆ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ∩ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌);

(4) 𝑋 ⊆ 𝑌 ⇒ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ⊆ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌);

(5) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋 ∪ 𝑌) ⊇ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ∪ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌);

(6) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(1
𝑥
, 𝑎))(𝑦) = 𝑂𝑀

∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(1
𝑦
, 𝑎))(𝑥) =

⋁
𝑛

𝑖=1
𝜃(𝑅
𝐴
𝑖

(𝑥, 𝑦), 𝑎);
(7) 𝑂𝑀

∑
𝑛

𝑖=1
𝐴
𝑖

(𝜃(1
𝑥
, 𝑎))(𝑥) = 𝑎;

(8) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(𝑎,𝑋)) = Θ(𝑎, 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋));

(9) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋, 𝑎) ⊆ Θ(𝑋, 𝑎) ⊆ Θ(𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), 𝑎);

(10) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑎) = 𝑎;

(11) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑎 ∨ 1
𝑍
)(𝑥) = ⋁

𝑛

𝑖=1
⋀
𝑢∉𝑍

𝜃(𝑅
𝐴
𝑖

(𝑢, 𝑥), 𝑎);

(12) ∑𝑛
𝑖=1

𝐴
𝑖
((𝜃(𝑎, 𝑏))∨1

𝑍
)(𝑥) = Θ((𝑎), 𝑂𝑀

∑
𝑛

𝑖=1
𝐴
𝑖

(𝑏∨1
𝑍
));

(13) ⋀
𝑎∈𝐼
𝜃(𝑂𝑀

∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(1
𝑥
, 𝑎))(𝑦), 𝑎) = ⋀

𝑛

𝑖=1
𝑅
𝐴
𝑖

(𝑥, 𝑦).

Proof. We only need to prove the proposition in a 𝑇-fuzzy
approximation space (𝑈, 𝑅

𝐴
, 𝑅
𝐵
) for convenience. All items

hold when 𝑅
𝐴
= 𝑅
𝐵
. When 𝑅

𝐴
̸= 𝑅
𝐵
, (1)–(5) can be found in

[29].
(6) Firstly, we can obtain

OM
𝐴+𝐵

(Θ (1
𝑥
, 𝑎)) (𝑦)

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , Θ (1

𝑥
, 𝑎) (𝑢))

∨ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , Θ (1

𝑥
, 𝑎) (𝑢))

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , Θ (1

𝑥
(𝑢) , 𝑎))

∨ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , Θ (1

𝑥
(𝑢) , 𝑎))

= [𝜃 (𝑅
𝐴
(𝑥, 𝑦) , 𝑎) ∧ (⋀

𝑢 ̸=𝑥

𝜃 (𝑅
𝐴
(𝑢, 𝑦) , 𝜃 (0, 𝑎)))]

∨ [𝜃 (𝑅
𝐵
(𝑥, 𝑦) , 𝑎) ∧ (⋀

𝑢 ̸=𝑥

𝜃 (𝑅
𝐵
(𝑢, 𝑦) , 𝜃 (0, 𝑎)))]

= [𝜃 (𝑅
𝐴
(𝑥, 𝑦) , 𝑎) ∧ (⋀

𝑢 ̸=𝑥

𝜃 (𝑅
𝐴
(𝑢, 𝑦) , 1))]

∨ [𝜃 (𝑅
𝐵
(𝑥, 𝑦) , 𝑎) ∧ (⋀

𝑢 ̸=𝑥

𝜃 (𝑅
𝐵
(𝑢, 𝑦) , 1))]

= (𝜃 (𝑅
𝐴
(𝑥, 𝑦) , 𝑎) ∧ 1) ∨ (𝜃 (𝑅

𝐵
(𝑥, 𝑦) , 𝑎) ∧ 1)

= 𝜃 (𝑅
𝐴
(𝑥, 𝑦) , 𝑎) ∨ 𝜃 (𝑅

𝐵
(𝑥, 𝑦) , 𝑎) .

(9)

The proposition can be obtained by the symmetric and the
above equation.

(7) It is easy to prove according to item (6).
(8) For any 𝑥 ∈ 𝑋,

OM
𝐴+𝐵

(Θ (𝑎,𝑋)) (𝑥)

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , Θ (𝑎,𝑋) (𝑢))

∨ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , Θ (𝑎,𝑋) (𝑢))

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑎, 𝑋 (𝑢)))

∨ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑎, 𝑋 (𝑢)))
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= ⋀

𝑢∈𝑈

𝜃 (𝑎, 𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)))

∨ ⋀

𝑢∈𝑈

𝜃 (𝑎, 𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)))

= 𝜃(𝑎, ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)))

∨ 𝜃(𝑎, ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)))

= 𝜃(𝑎, ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢))

∨⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)))

= 𝜃 (𝑎,OM
𝐴+𝐵

(𝑋) (𝑥)) = Θ (𝑎,OM
𝐴+𝐵

(𝑋)) (𝑥) .

(10)

(9) This item follows immediately from item (1) and 𝜃(3).
(10) For any 𝑥 ∈ 𝑋, we have

OM
𝐴+𝐵

(𝑎) (𝑥)

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑎) ∨ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑎)

= 𝜃(⋁

𝑢∈𝑈

𝑅
𝐴
(𝑢, 𝑥) , 𝑎) ∨ 𝜃(⋁

𝑢∈𝑈

𝑅
𝐵
(𝑢, 𝑥) , 𝑎)

= 𝜃 (1, 𝑎) = 𝑎.

(11)

(11) For any 𝑥 ∈ 𝑈, we can know

OM
𝐴+𝐵

((𝑎) ∨ 1
𝑍
) (𝑥)

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑎 ∨ 1

𝑍
(𝑢))

∨ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑎 ∨ 1

𝑍
(𝑢))

= [⋀

𝑢∈𝑍

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 1) ∧ ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑎)]

∨ [⋀

𝑢∈𝑍

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 1) ∧ ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑎)]

= ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑎) ∨ ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑎) .

(12)

(12) For any 𝑥 ∈ 𝑈, we have

OM
𝐴+𝐵

((𝜃 (𝑎, 𝑏)) ∨ 1
𝑍
) (𝑥)

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , (𝜃 (𝑎, 𝑏) ∨ 1

𝑍
) (𝑢))

∨ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , (𝜃 (𝑎, 𝑏) ∨ 1

𝑍
) (𝑢))

= [⋀

𝑢∈𝑍

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 1) ∧ ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑎, 𝑏))]

∨ [⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 1) ∧ ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑎, 𝑏))]

= ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑎, 𝑏)) ∨ ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐵
(𝑢, x) , 𝜃 (𝑎, 𝑏))

= 𝜃(𝑎, ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑏)) ∨ 𝜃(𝑎, ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑏))

= 𝜃(𝑎, ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑏) ∨ ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑏))

= 𝜃 (𝑎,OM
𝐴+𝐵

((𝑏) ∨ 1
𝑍
) (𝑥)) .

(13)

(13) According to item (6), we can have

⋀

𝑎∈𝐼

𝜃 (OM
𝐴+𝐵

(Θ (1
𝑥
, 𝑎) (𝑦) , 𝑎))

= ⋀

𝑎∈𝐼

𝜃 (𝜃 (𝑅
𝐴
(𝑥, 𝑦) , 𝑎) ∨ 𝜃 (𝑅

𝐵
(𝑥, 𝑦) , 𝑎) , 𝑎)

= ⋀

𝑎∈𝐼

[𝜃 (𝜃 (𝑅
𝐴
(𝑥, 𝑦) , 𝑎) , 𝑎) ∧ 𝜃 (𝜃 (𝑅

𝐵
(𝑥, 𝑦) , 𝑎) , 𝑎)]

= [⋀

𝑎∈𝐼

𝜃 (𝜃 (𝑅
𝐴
(𝑥, 𝑦) , 𝑎) , 𝑎)]

∧ [⋀

𝑎∈𝐼

𝜃 (𝜃 (𝑅
𝐵
(𝑥, 𝑦) , 𝑎) , 𝑎)]

= 𝑅
𝐴
(𝑥, 𝑦) ∧ 𝑅

𝐵
(𝑥, 𝑦) .

(14)

Proposition 6. Let (𝑈, 𝑅
𝐴
1

, 𝑅
𝐴
2

, . . . , 𝑅
𝐴
𝑛

) be a 𝑇-fuzzy
approximation space; let𝑅

𝐴
𝑖

, 𝑖 ∈ {1, 2, 3, . . . , 𝑛}, be the different
𝑇-fuzzy similarity relations. For all 𝑥, 𝑦 ∈ 𝑈, 𝑎, 𝑏 ∈ 𝐼, and
𝑋,𝑌 ∈ 𝐹(𝑈), the optimistic multigranulation 𝑇-fuzzy upper
approximation has the following properties:

(1) 𝑋 ⊆ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋);

(2) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋)) = 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋);

(3) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋 ∪ 𝑌) ⊇ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ∪ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌);

(4) 𝑋 ⊆ 𝑌 ⇒ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ⊆ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌);

(5) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋 ∩ 𝑌) ⊆ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ∩ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌);

(6) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(1
𝑥
)(𝑦) = 𝑂𝑀

∑
𝑛

𝑖=1
𝐴
𝑖

(1
𝑦
)(𝑥) =

⋁
𝑛

𝑖=1
𝑅
𝐴
𝑖

(𝑥, 𝑦);

(7) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑇(𝑎, 𝑋)) = 𝑇(𝑎, 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋));

(8) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(𝑋, 𝑎)) ⊇ Θ(𝑋, 𝑎) ⊇ Θ(𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), 𝑎);
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(9) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑎) = 𝑎;

(10) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(1
𝑍
)(𝑥) = ⋀

𝑛

𝑖=1
⋁
𝑢∈𝑍

𝑅
𝐴
𝑖

(𝑢, 𝑥);

(11) ‖𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋)‖ = ‖𝑋‖, where ‖𝑋‖ = sup
𝑢∈𝑈

𝑋(𝑢).

Proof. We only need to prove the proposition in a 𝑇-fuzzy
approximation space (𝑈, 𝑅

𝐴
, 𝑅
𝐵
) for convenience. All items

hold when 𝑅
𝐴
= 𝑅
𝐵
. When 𝑅

𝐴
̸= 𝑅
𝐵
, (1)–(5) can be found in

[29].

(6) For any 𝑥 ∈ 𝑈,

OM
𝐴+𝐵

(1
𝑥
) (𝑦)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑦) , 1

𝑥
(𝑢)) ∧ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑦) , 1

𝑥
(𝑢))

= 𝑅
𝐴
(𝑥, 𝑦) ∧ 𝑅

𝐵
(𝑥, 𝑦) .

(15)

Therefore, (6) can hold by the symmetric.

(7) For any 𝑥 ∈ 𝑋,

OM
𝐴+𝐵

(𝑇 (𝑎,𝑋)) (𝑥)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑦) , 𝑇 (𝑎,𝑋) (𝑢))

∧ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑦) , 𝑇 (𝑎,𝑋) (𝑢))

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑦) , 𝑇 (𝑎, 𝑋 (𝑢)))

∧ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑦) , 𝑇 (𝑎, 𝑋 (𝑢)))

= ⋁

𝑢∈𝑈

𝑇 (𝑎, 𝑇 (𝑅
𝐴
(𝑢, 𝑦) , 𝑋 (𝑢)))

∧ ⋁

𝑢∈𝑈

𝑇 (𝑎, 𝑇 (𝑅
𝐵
(𝑢, 𝑦) , 𝑋 (𝑢)))

= 𝑇(𝑎, ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑦) , 𝑋 (𝑢)))

∧ 𝑇(𝑎, ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑦) , 𝑋 (𝑢)))

= 𝑇(𝑎, ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑦) , 𝑋 (𝑢))

∧⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑦) , 𝑋 (𝑢)))

= 𝑇 (𝑎,OM
𝐴+𝐵

(𝑋)) (𝑥) .

(16)

(8) It can be easily proved by item (1) and 𝜃(2).

(9) For any 𝑥 ∈ 𝑈,

OM
𝐴+𝐵

(𝑎) (𝑥)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑎) ∧ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑎)

= 𝑇(⋁

𝑢∈𝑈

𝑅
𝐴
(𝑢, 𝑥) , 𝑎) ∧ 𝑇(⋁

𝑢∈𝑈

𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢))

= 𝑇 (1, 𝑎)

= 𝑎.

(17)

(10) For any 𝑍 ⊆ 𝑈,

OM
𝐴+𝐵

(1
𝑍
) (𝑥)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , (1

𝑍
) (𝑢)) ∧ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , (1

𝑍
) (𝑢))

= ⋁

𝑢∈𝑍

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 1) ∧ ⋁

𝑢∈𝑍

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 1)

= ⋁

𝑢∈𝑍

𝑅
𝐴
(𝑢, 𝑥) ∧ ⋁

𝑢∈𝑍

𝑅
𝐵
(𝑢, 𝑥) .

(18)

(11) Let 𝑎 = ‖𝑋‖, so𝑋 ⊆ 𝑎. According to items (1) and (9),
we can have

𝑋 ⊆ OM
𝐴+𝐵

(𝑋) ⊆ OM
𝐴+𝐵

(𝑎) . (19)

Therefore, 𝑎 = ‖𝑋‖ ≤ ‖OM
𝐴+𝐵

(𝑋)‖ ≤ 𝑎.

Proposition 7. Let (𝑈, 𝑅
𝐴
1

, 𝑅
𝐴
2

, . . . , 𝑅
𝐴
𝑛

) be a 𝑇-fuzzy
approximation space; let𝑅

𝐴
𝑖

, 𝑖 ∈ {1, 2, 3, . . . , 𝑛}, be the different
𝑇-fuzzy similarity relations. For all 𝑥, 𝑦 ∈ 𝑈, 𝑎, 𝑏 ∈ 𝐼,
and 𝑋,𝑌 ∈ 𝐹(𝑈), the optimistic multigranulation 𝑇-fuzzy
lower and upper approximation operators have the following
properties:

(1) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) = ⋀
𝑎∈𝐼
Θ(𝑂𝑀

∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(𝑋, 𝑎)), 𝑎);

(2) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) = ⋀
𝑎∈𝐼
Θ(𝑂𝑀

∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(𝑋, 𝑎)), 𝑎);

(3) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(𝑋, 𝑎)) = Θ(𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), 𝑎);

(4) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

Θ(𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), 𝑎) = Θ(𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), 𝑎);

(5) 𝜃(𝑋,𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌)) = 𝜃(𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), 𝑌).

Proof. We only need to prove the proposition in a 𝑇-fuzzy
approximation space (𝑈, 𝑅

𝐴
, 𝑅
𝐵
) for convenience. All items
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hold when 𝑅
𝐴
= 𝑅
𝐵
. When 𝑅

𝐴
̸= 𝑅
𝐵
, the proposition can be

proved as follows.

(1) For any 𝑥 ∈ 𝑈,

⋀

𝑎∈𝐼

Θ(OM
𝐴+𝐵

(Θ (𝑋, 𝑎)) , 𝑎) (𝑥)

= ⋀

𝑎∈𝐼

𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎))

∧⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎)) , 𝑎)

= ⋀

𝑎∈𝐼

𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎)) , 𝑎)

∨⋀

𝑎∈𝐼

𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎)) , 𝑎)

= ⋀

𝑎∈𝐼

⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝜃 (𝑋 (𝑢) , 𝑎) , 𝑎))

∨ ⋀

𝑎∈𝐼

⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝜃 (𝑋 (𝑢) , 𝑎) , 𝑎))

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) ∨ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢))

= OM
𝐴+𝐵

(𝑋) (𝑥) .

(20)

(2) For any 𝑥 ∈ 𝑈,

⋀

𝑎∈𝐼

Θ(OM
𝐴+𝐵

(Θ (𝑋, 𝑎)) , 𝑎)

= ⋀

𝑎∈𝐼

𝜃(⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎))

∨⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎)) , 𝑎)

= ⋀

𝑎∈𝐼

𝜃(⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎)) , 𝑎)

∧⋀

𝑎∈𝐼

𝜃(⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎)) , 𝑎)

= ⋀

𝑎∈𝐼

𝜃(⋀

𝑢∈𝑈

𝜃 (𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎) , 𝑎)

∧⋀

𝑎∈𝐼

𝜃(⋀

𝑢∈𝑈

𝜃 (𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎) , 𝑎)

= ⋀

𝑎∈𝐼

𝜃(𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎) , 𝑎)

∧⋀

𝑎∈𝐼

𝜃(𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎) , 𝑎)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) ∧ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢))

= OM
𝐴+𝐵

(𝑋) (𝑥) .

(21)

(3) For any 𝑥 ∈ 𝑈,

OM
𝐴+𝐵

(Θ (𝑋, 𝑎)) (𝑥)

= ⋀

𝑎∈𝐼

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎))

∨ ⋀

𝑎∈𝐼

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎))

= ⋀

𝑎∈𝐼

𝜃 (𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎)

∨⋀

𝑎∈𝐼

𝜃 (𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎)

= 𝜃(⋁

𝑎∈𝐼

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎)

∨ 𝜃(⋁

𝑎∈𝐼

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎)

= 𝜃(⋁

𝑎∈𝐼

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢))

∧⋁

𝑎∈𝐼

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎)

= 𝜃 (OM
𝐴+𝐵

(𝑋) (𝑥) , 𝑎) .

(22)

(4) We can have, by item (3) in Proposition 7 and item (2)
in Proposition 6,

OM
𝐴+𝐵

(Θ (OM
𝐴+𝐵

(𝑋) , 𝑎))

= Θ (OM
𝐴+𝐵

(OM
𝐴+𝐵

(𝑋)) , 𝑎) = Θ (OM
𝐴+𝐵

(𝑋) , 𝑎) .

(23)

(5) According to 𝜃6 and 𝜃9, we can have

𝜃 (𝑋,OM
𝐴+𝐵

(𝑌))

= ⋀

𝑢∈𝑈

𝜃 (𝑋 (𝑢) ,OM
𝐴+𝐵

(𝑌) (𝑢))
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= ⋀

𝑢∈𝑈

𝜃(𝑋 (𝑢) , ⋀

V∈𝑈
𝜃 (𝑅
𝐴
(V, 𝑢) , 𝑌 (V))

∨⋀

V∈𝑈
𝜃 (𝑅
𝐵
(V, 𝑢) , 𝑌 (V)))

= ⋀

𝑢∈𝑈

𝜃(𝑋 (𝑢) , ⋀

V∈𝑈
𝜃 (𝑅
𝐴
(V, 𝑢) , 𝑌 (V)))

∨ ⋀

𝑢∈𝑈

𝜃(𝑋 (𝑢) , ⋀

V∈𝑈
𝜃 (𝑅
𝐵
(V, 𝑢) , 𝑌 (V)))

= ⋀

𝑢∈𝑈

⋀

V∈𝑈
𝜃 (𝑇 (𝑅

𝐴
(V, 𝑢) , 𝑋 (𝑢)) , 𝑌 (V))

∨ ⋀

𝑢∈𝑈

⋀

V∈𝑈
𝜃 (𝑇 (𝑅

𝐵
(V, 𝑢) , 𝑋 (𝑢)) , 𝑌 (V))

= ⋀

V∈𝑈
𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(V, 𝑢) , 𝑋 (𝑢)) , 𝑌 (V))

∨ ⋀

V∈𝑈
𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(V, 𝑢) , 𝑋 (𝑢)) , 𝑌 (V))

= ⋀

V∈𝑈
𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(V, 𝑢) , 𝑋 (𝑢))

∧⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(V, 𝑢) , 𝑋 (𝑢)) , 𝑌 (V))

= ⋀

V∈𝑈
𝜃 (OM

𝐴+𝐵
(𝑋) (V) , 𝑌 (V)) .

(24)

4. Model and Properties of Pessimistic
Multigranulation 𝑇-Fuzzy Rough Sets

In Sections 2 and 3, we introduced the model and properties
of optimistic multigranulation 𝑇-fuzzy rough sets. Now, we
begin to study a new kind of multigranulation 𝑇-fuzzy rough
sets called the pessimistic multigranulation rough set in the
𝑇-fuzzy approximation space.

Definition 8. Let (𝑈, 𝑅
𝐴
1

, 𝑅
𝐴
2

, . . . , 𝑅
𝐴
𝑛

) be a 𝑇-fuzzy approx-
imation space. For any 𝑋 ∈ 𝐹(𝑈), we can define the pes-
simistic multigranulation 𝑇-fuzzy lower and upper approx-
imations of𝑋 as follows:

PM
∑
𝑛

𝑖=1
𝐴
𝑖
(𝑋) (𝑥) =

𝑛

⋀

𝑖=1

(⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
𝑖
(𝑢, 𝑥) , 𝑋 (𝑢))) ,

PM
∑
𝑛

𝑖=1
𝐴
𝑖
(𝑋) (𝑥) =

𝑛

⋁

𝑖=1

(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
𝑖
(𝑢, 𝑥) , 𝑋 (𝑢))) ,

(25)

where “⋁” means “max,” “⋀” means “min,” and 𝜃 and
𝑇 are defined in Section 2. PM

∑
𝑛

𝑖=1
𝐴
𝑖

and PM
∑
𝑛

𝑖=1
𝐴
𝑖

are
referred to as the pessimistic multigranulation 𝑇-fuzzy

lower and 𝑇 upper approximation operators. The pair
(PM
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋),PM
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋)) is called the pessimistic multi-
granulation 𝑇-fuzzy rough set of 𝑋. If PM

∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) =

PM
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), then 𝑋 is referred to as pessimistic definable
under the 𝑇-fuzzy approximation space; otherwise, 𝑋 is
referred to as pessimistic undefinable. The boundary of the
pessimistic multigranulation 𝑇-fuzzy rough set 𝑋 is defined
as

Bnd𝑃
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) = PM
∑
𝑛

𝑖=1
𝐴
𝑖
(𝑋) ∩ (∼ PM

∑
𝑛

𝑖=1
𝐴
𝑖
(𝑋)) . (26)

Example 9 (continued from Example 4). From Definition 8,
we can compute pessimistic multigranulation lower and
upper approximations of𝑋 over the 𝑇-fuzzy similar relations
𝑅
𝐴
and 𝑅

𝐵
as

PM
𝐴+𝐵

= {0.3, 0.3, 0.3, 0.3, 0.3} ,

PM
𝐴+𝐵

= {0.5, 0.5, 0.5, 0.6, 0.6} .

(27)

From the definition of the pessimistic multigranulation
𝑇-fuzzy lower and upper approximations, it is possible to
deduce the following properties of the pessimistic multigran-
ulation 𝑇-fuzzy lower and upper approximation operators.

Proposition 10. Let (𝑈, 𝑅
𝐴
1

, 𝑅
𝐴
2

, . . . , 𝑅
𝐴
𝑛

) be a 𝑇-fuzzy
approximation space; let 𝑅

𝐴
𝑖

(𝑖 ∈ {1, 2, 3, . . . , 𝑛}) be the
different 𝑇-fuzzy similarity relations. For all 𝑥, 𝑦 ∈ 𝑈, 𝑎, 𝑏 ∈ 𝐼,
and 𝑋,𝑌 ∈ 𝐹(𝑈), the pessimistic multigranulation 𝑇-fuzzy
lower approximation has the following properties:

(1) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ⊆ 𝑋;

(2) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋)) ⊆ 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋);

(3) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋 ∩ 𝑌) = 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ∩ 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌);

(4) 𝑋 ⊆ 𝑌 ⇒ 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ⊆ 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌);

(5) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋 ∪ 𝑌) ⊇ 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ∪ 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌);

(6) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(1
𝑥
, 𝑎))(𝑦) = 𝑃𝑀

∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(1
𝑦
, 𝑎))(𝑥) =

⋁
𝑛

𝑖=1
𝜃(𝑅
𝐴
𝑖

(𝑥, 𝑦), 𝑎);
(7) 𝑃𝑀

∑
𝑛

𝑖=1
𝐴
𝑖

(𝜃(1
𝑥
, 𝑎))(𝑥) = 𝑎;

(8) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(𝑎,𝑋)) = Θ(𝑎, 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋));

(9) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋, 𝑎) ⊆ Θ(𝑋, 𝑎) ⊆ Θ(𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), 𝑎);

(10) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑎) = 𝑎;

(11) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

((𝑎) ∨ 1
𝑍
)(𝑥) = ⋁

𝑛

𝑖=1
⋀
𝑢∉𝑍

𝜃(𝑅
𝐴
𝑖

(𝑢, 𝑥), 𝑎);

(12) ∑𝑛
𝑖=1

𝐴
𝑖
((𝜃(𝑎, 𝑏))∨1

𝑍
)(𝑥) = Θ((𝑎), 𝑃𝑀

∑
𝑛

𝑖=1
𝐴
𝑖

(𝑏∨1
𝑍
));

(13) ⋀
𝑎∈𝐼
𝜃(𝑃𝑀

∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(1
𝑥
, 𝑎))(𝑦), 𝑎) = ⋀

𝑛

𝑖=1
𝑅
𝐴
𝑖

(𝑥, 𝑦).

Proof. We only need to prove the proposition in a 𝑇-fuzzy
approximation space (𝑈, 𝑅

𝐴
, 𝑅
𝐵
) for convenience. All items
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hold when 𝑅
𝐴
= 𝑅
𝐵
. When 𝑅

𝐴
̸= 𝑅
𝐵
, the proposition can be

proved as follows.

(1) For any 𝑥 ∈ 𝑈,

PM
𝐴+𝐵

(𝑋) (𝑥)

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) ∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢))

≤ 𝜃 (𝑅
𝐴
(𝑥, 𝑥) , 𝑋 (𝑥)) ∧ 𝜃 (𝑅

𝐵
(𝑥, 𝑥) , 𝑋 (𝑥)) = 𝑋 (𝑥) .

(28)

(2) According to item (1), it obviously holds.
(3) For any 𝑥 ∈ 𝑈,

PM
𝐴+𝐵

(𝑋 ∩ 𝑌) (𝑥)

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢) ∧ 𝑌 (𝑢))

∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢) ∧ 𝑌 (𝑢))

= [⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) ∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑌 (𝑢))]

∧ [⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)) ∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑌 (𝑢))]

= [⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) ∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢))]

∧ [⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑌 (𝑢)) ∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑌 (𝑢))]

= PM
𝐴+𝐵

(𝑋) (𝑥) ∩ PM
𝐴+𝐵

(𝑌) (𝑥) .

(29)

(4) For any 𝑥 ∈ 𝑈, we have𝑋(𝑥) ≤ 𝑌(𝑥) by𝑋 ⊆ 𝑌. So

PM
𝐴+𝐵

(𝑋) (𝑥)

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) ∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢))

≤ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑌 (𝑢)) ∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑌 (𝑢))

= PM
𝐴+𝐵

(𝑌) (𝑥) .

(30)

(5) It is easy to prove according to item (4).
(6) First of all, we have

PM
𝐴+𝐵

(Θ (1
𝑥
, 𝑎)) (𝑦)

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑦) , (Θ (1

𝑥
, 𝑎) (𝑢)))

∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑦) , (Θ (1

𝑥
, 𝑎) (𝑢)))

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑦) , (𝜃 (1

𝑥
(𝑢) , 𝑎)))

∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑦) , (𝜃 (1

𝑥
(𝑢) , 𝑎)))

= ⋀

𝑢=𝑥

𝜃 (𝑅
𝐴
(𝑥, 𝑦) , (𝜃 (1, 𝑎)))

∧ ⋀

𝑢=𝑥

𝜃 (𝑅
𝐵
(𝑥, 𝑦) , (𝜃 (1, 𝑎)))

= 𝜃 (𝑅
𝐴
(𝑥, 𝑦) , 𝑎) ∧ 𝜃 (𝑅

𝐵
(𝑥, 𝑦) , 𝑎) .

(31)

By the symmetric and the above equation, item (6) can be
proved.

(7) It can be verified by item (6).

(8) For any 𝑥 ∈ 𝑈,

PM
𝐴+𝐵

(Θ (𝑎,𝑋)) (𝑥)

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , Θ (𝑎,𝑋) (𝑢))

∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , Θ (𝑎,𝑋) (𝑢))

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑎, 𝑋 (𝑢)))

∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑎, 𝑋 (𝑢)))

= ⋀

𝑢∈𝑈

𝜃 (𝑎, 𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)))

∧ ⋀

𝑢∈𝑈

𝜃 (𝑎, 𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)))

= 𝜃(𝑎, ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)))

∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢))

= Θ (𝑎,PM
𝐴+𝐵

(𝑋)) (𝑥) .

(32)

(9) It is easy to prove by item (1) and 𝜃3.

(10) For any 𝑥 ∈ 𝑈,

PM
𝐴+𝐵

(𝑎) (𝑥) = ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑎) ∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑎)

= 𝜃(⋁

𝑢∈𝑈

𝑅
𝐴
(𝑢, 𝑥) , 𝑎) ∧ 𝜃(⋁

𝑢∈𝑈

𝑅
𝐵
(𝑢, 𝑥) , 𝑎)

= 𝜃 (1, 𝑎) = 𝑎.

(33)
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(11) For any 𝑥 ∈ 𝑈,

PM
𝐴+𝐵

((𝑎) ∨ 1
𝑍
) (𝑥)

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , ((𝑎) ∨ 1

𝑍
) (𝑢))

∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , ((𝑎) ∨ 1

𝑍
) (𝑢))

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑎 ∨ 1

𝑍
(𝑢))

∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑎 ∨ 1

𝑍
(𝑢))

= ⋀

𝑢∈𝑍

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 1) ∨ ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑎)

∨ ⋀

𝑢∈𝑍

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 1) ∨ ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑎)

= ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑎) ∨ ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑎) .

(34)

(12) For any 𝑥 ∈ 𝑈,

PM
𝐴+𝐵

((𝜃 (𝑎, 𝑏)) ∨ 1
𝑍
) (𝑥)

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , ((𝜃 (𝑎, 𝑏)) ∨ 1

𝑍
) (𝑢))

∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , ((𝜃 (𝑎, 𝑏)) ∨ 1

𝑍
) (𝑢))

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , (𝜃 (𝑎, 𝑏) ∨ 1

𝑍
(𝑢)))

∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , (𝜃 (𝑎, 𝑏) ∨ 1

𝑍
(𝑢)))

= ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑎, 𝑏)) ∧ ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑎, 𝑏))

= ⋀

𝑢∉𝑍

𝜃 (𝑎, 𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑏)) ∧ ⋀

𝑢∉𝑍

𝜃 (𝑎, 𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑏))

= 𝜃(𝑎, ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑏) ∧ ⋀

𝑢∉𝑍

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑏))

= 𝜃 (𝑎,PM
𝐴+𝐵

((𝑏) ∨ 1
𝑍
)) (𝑥) .

(35)

(13) We can have, by item (6),

⋀

𝑎∈𝐼

𝜃 (PM
𝐴+𝐵

(Θ (1
𝑥
, 𝑎)) (𝑦) , 𝑎)

= ⋀

𝑎∈𝐼

𝜃 (𝜃 (𝑅
𝐴
(𝑥, 𝑦) , 𝑎) ∧ 𝜃 (𝑅

𝐵
(𝑥, 𝑦) , 𝑎) , 𝑎)

≥ ⋀

𝑎∈𝐼

𝜃 (𝜃 (𝑅
𝐴
(𝑥, 𝑦) , 𝑎) , 𝑎) ∧⋀

𝑎∈𝐼

𝜃 (𝜃 (𝑅
𝐵
(𝑥, 𝑦) , 𝑎) , 𝑎)

= 𝑅
𝐴
(𝑥, 𝑦) ∧ 𝑅

𝐵
(𝑥, 𝑦) .

(36)

Proposition 11. Let (𝑈, 𝑅
𝐴
1

, 𝑅
𝐴
2

, . . . , 𝑅
𝐴
𝑛

) be a 𝑇-fuzzy
approximation space; let 𝑅

𝐴
𝑖

(𝑖 ∈ {1, 2, 3, . . . , 𝑛}) be the
different 𝑇-fuzzy similarity relations. For all 𝑥, 𝑦 ∈ 𝑈, 𝑎, 𝑏 ∈ 𝐼,
and 𝑋,𝑌 ∈ 𝐹(𝑈), the pessimistic multigranulation 𝑇-fuzzy
upper approximation has the following properties:

(1) 𝑋 ⊆ 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋);

(2) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋)) ⊇ 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋);

(3) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋 ∪ 𝑌) = 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ∪ 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌);

(4) 𝑋 ⊆ 𝑌 ⇒ 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ⊆ 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌);

(5) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋 ∩ 𝑌) ⊆ 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ∩ 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌);

(6) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(1
𝑥
)(𝑦) = 𝑃𝑀

∑
𝑛

𝑖=1
𝐴
𝑖

(1
𝑦
)(𝑥) =

⋁
𝑛

𝑖=1
𝑅
𝐴
𝑖

(𝑥, 𝑦);

(7) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑇(𝑎, 𝑋)) = 𝑇(𝑎, 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋));

(8) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(𝑋, 𝑎)) ⊇ Θ(𝑋, 𝑎) ⊇ Θ(𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), 𝑎);

(9) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑎) = 𝑎;

(10) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(1
𝑍
)(𝑥) = ⋀

𝑛

𝑖=1
⋁
𝑢∈𝑍

𝑅
𝐴
𝑖

(𝑢, 𝑥);

(11) ‖𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋)‖ = ‖𝑋‖, where ‖𝑋‖ = sup
𝑢∈𝑈

𝑋(𝑢).

Proof. We only need to prove the proposition in a 𝑇-fuzzy
approximation space (𝑈, 𝑅

𝐴
, 𝑅
𝐵
) for convenience. All items

hold when 𝑅
𝐴
= 𝑅
𝐵
. When 𝑅

𝐴
̸= 𝑅
𝐵
, the proposition can be

proved as follows.

(1) For any 𝑥 ∈ 𝑈,

PM
𝐴+𝐵

(𝑋) (𝑥)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) ∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢))

≥ 𝑇 (𝑅
𝐴
(𝑥, 𝑥) , 𝑋 (𝑥)) ∨ 𝑇 (𝑅

𝐵
(𝑥, 𝑥) , 𝑋 (𝑥)) = 𝑋 (𝑥) .

(37)

(2) This item can be proved by item (1).

(3) For any 𝑥 ∈ 𝑈,

PM
𝐴+𝐵

(𝑋 ∪ 𝑌) (𝑥)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢) ∨ 𝑌 (𝑢))

∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢) ∨ 𝑌 (𝑢))
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= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) ∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢))

∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑌 (𝑢)) ∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑌 (𝑢))

= PM
𝐴+𝐵

(𝑋) (𝑥) ∪ PM
𝐴+𝐵

(𝑌) (𝑥) .

(38)

(4) Since𝑋 ⊆ 𝑌, for any 𝑥 ∈ 𝑋, we can have𝑋(𝑥) ≤ 𝑌(𝑥).
Thus,

PM
𝐴+𝐵

(𝑋) (𝑥)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) ∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢))

≤ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑌 (𝑢)) ∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑌 (𝑢))

= PM
𝐴+𝐵

(𝑌) (𝑥) .

(39)

(5) It is easy to prove by item (4).

(6) According to Definition 8, we have

PM
𝐴+𝐵

(1
𝑥
) (𝑦)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑦) , (1

𝑥
) (𝑢)) ∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑦) , (1

𝑥
) (𝑢))

= 𝑇 (𝑅
𝐴
(𝑥, 𝑦) , 1) ∨ 𝑇 (𝑅

𝐵
(𝑥, 𝑦) , 1)

= 𝑅
𝐴
(𝑥, 𝑦) ∨ 𝑅

𝐵
(𝑥, 𝑦) .

(40)

We can conclude that PM
𝐴+𝐵

(1
𝑥
)(𝑦) = PM

𝐴+𝐵
(1
𝑦
)(𝑥) =

𝑅
𝐴
(𝑥, 𝑦)∨𝑅

𝐵
(𝑥, 𝑦) by the symmetric and the above equation.

(7) For any 𝑥 ∈ 𝑈,

PM
𝐴+𝐵

(𝑇 (𝑎,𝑋)) (𝑥)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , (𝑇 (𝑎,𝑋)) (𝑢))

∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , (𝑇 (𝑎,𝑋)) (𝑢))

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑇 (𝑎, 𝑋 (𝑢)))

∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑇 (𝑎, 𝑋 (𝑢)))

= 𝑇(𝑎, ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)))

∨ 𝑇(𝑎, ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)))

= 𝑇(𝑎, ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢))

∨⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)))

= 𝑇 (𝑎,PM
𝐴+𝐵

(𝑋)) (𝑥) .

(41)

(8) It directly follows from item (1) and 𝜃3.
(9) For any 𝑥 ∈ 𝑈,

PM
𝐴+𝐵

(𝑎) (𝑥)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑎) ∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑎)

= 𝑇(⋁

𝑢∈𝑈

𝑅
𝐴
(𝑢, 𝑥) , 𝑎) ∨ 𝑇(⋁

𝑢∈𝑈

𝑅
𝐵
(𝑢, 𝑥) , 𝑎) = 𝑎.

(42)

(10) For any 𝑥 ∈ 𝑈,

PM
𝐴+𝐵

(1
𝑍
) (𝑥)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) ∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢))

= ⋁

𝑢∈𝑍

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) ∨ ⋁

𝑢∈𝑍

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢))

= ⋁

𝑢∈𝑍

𝑅
𝐴
(𝑢, 𝑥) ∨ ⋁

𝑢∈𝑍

𝑅
𝐵
(𝑢, 𝑥) .

(43)

(11) Let 𝑎 = ‖𝑋‖, so𝑋 ⊆ 𝑎. According to items (1) and (9),
we can have

𝑋 ⊆ PM
𝐴+𝐵

(𝑋) ⊆ PM
𝐴+𝐵

(𝑎) . (44)

Therefore, 𝑎 = ‖𝑋‖ ≤ ‖PM
𝐴+𝐵

(𝑋)‖ ≤ 𝑎.

Proposition 12. Let (𝑈, 𝑅
𝐴
1

, 𝑅
𝐴
2

, . . . , 𝑅
𝐴
𝑛

) be a 𝑇-fuzzy
approximation space, and let 𝑅

𝐴
𝑖

(𝑖 ∈ {1, 2, 3, . . . , 𝑛}) be the
different 𝑇-fuzzy similarity relations. For all 𝑥, 𝑦 ∈ 𝑈, 𝑎, 𝑏 ∈ 𝐼,
and 𝑋,𝑌 ∈ 𝐹(𝑈), the pessimistic multigranulation 𝑇-fuzzy
lower and upper approximation operators have the following
properties:

(1) ⋀
𝑎∈𝐼
Θ(𝑃𝑀

∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(𝑋, 𝑎)), 𝑎) = 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋);

(2) ⋀
𝑎∈𝐼
Θ(𝑃𝑀

∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(𝑋, 𝑎)), 𝑎) = 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋);

(3) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(𝑋, 𝑎)) = Θ(𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), 𝑎);

(4) 𝜃(𝑋, 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌)) = 𝜃(𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), 𝑌).

Proof. We only need to prove the proposition in a 𝑇-fuzzy
approximation space (𝑈, 𝑅

𝐴
, 𝑅
𝐵
) for convenience. All items
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hold when 𝑅
𝐴
= 𝑅
𝐵
. When 𝑅

𝐴
̸= 𝑅
𝐵
, the proposition can be

proved as follows.
(1) For any 𝑥 ∈ 𝑈,

⋀

𝑎∈𝐼

Θ(PM
𝐴+𝐵

(Θ (𝑋, 𝑎)) , 𝑎) (𝑥)

= ⋀

𝑎∈𝐼

𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎))

∨⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎)) , 𝑎)

= ⋀

𝑎∈𝐼

𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎)) , 𝑎)

∧⋀

𝑎∈𝐼

𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎)) , 𝑎)

= ⋀

𝑎∈𝐼

⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝜃 (𝑋 (𝑢) , 𝑎) , 𝑎))

∧ ⋀

𝑎∈𝐼

⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝜃 (𝑋 (𝑢) , 𝑎) , 𝑎))

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) ∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢))

= PM
𝐴+𝐵

(𝑋) (𝑥) .

(45)

(2) For any 𝑥 ∈ 𝑈,

⋀

𝑎∈𝐼

Θ(PM
𝐴+𝐵

(Θ (𝑋, 𝑎)) , 𝑎)

= ⋀

𝑎∈𝐼

𝜃(⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎)))

∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎)) , 𝑎

= ⋀

𝑎∈𝐼

𝜃(⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎)) , 𝑎)

∨⋀

𝑎∈𝐼

𝜃(⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎)) , 𝑎)

= ⋀

𝑎∈𝐼

𝜃(⋀

𝑢∈𝑈

𝜃 (𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎) , 𝑎)

∨⋀

𝑎∈𝐼

𝜃(⋀

𝑢∈𝑈

𝜃 (𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎) , 𝑎)

= ⋀

𝑎∈𝐼

𝜃(𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎) , 𝑎)

∨⋀

𝑎∈𝐼

𝜃(𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎) , 𝑎)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) ∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢))

= PM
𝐴+𝐵

(𝑋) (𝑥) .

(46)

(3) For any 𝑥 ∈ 𝑈,

PM
𝐴+𝐵

(Θ (𝑋, 𝑎)) (𝑥)

= ⋀

𝑎∈𝐼

𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎))

∧ ⋀

𝑎∈𝐼

𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑋 (𝑢) , 𝑎))

= ⋀

𝑎∈𝐼

𝜃 (𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎)

∧⋀

𝑎∈𝐼

𝜃 (𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎)

= 𝜃(⋁

𝑎∈𝐼

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎)

∧ 𝜃(⋁

𝑎∈𝐼

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎)

= 𝜃(⋁

𝑎∈𝐼

𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝑋 (𝑢)) ∨⋁

𝑎∈𝐼

𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝑋 (𝑢)) , 𝑎)

= 𝜃 (PM
𝐴+𝐵

(𝑋) (𝑥) , 𝑎) .

(47)

(4) According to 𝜃6 and 𝜃9, we can obtain

𝜃 (𝑋,PM
𝐴+𝐵

(𝑌))

= ⋀

𝑢∈𝑈

𝜃 (𝑋 (𝑢) ,PM
𝐴+𝐵

(𝑌) (𝑢))

= ⋀

𝑢∈𝑈

𝜃(𝑋 (𝑢) , ⋀

V∈𝑈
𝜃 (𝑅
𝐴
(V, 𝑢) , 𝑌 (V))

∧⋀

V∈𝑈
𝜃 (𝑅
𝐵
(V, 𝑢) , 𝑌 (V)))

= ⋀

𝑢∈𝑈

𝜃(𝑋 (𝑢) , ⋀

V∈𝑈
𝜃 (𝑅
𝐴
(V, 𝑢) , 𝑌 (V)))

∧ ⋀

𝑢∈𝑈

𝜃(𝑋 (𝑢) , ⋀

V∈𝑈
𝜃 (𝑅
𝐵
(V, 𝑢) , 𝑌 (V)))

= ⋀

𝑢∈𝑈

⋀

V∈𝑈
𝜃 (𝑇 (𝑅

𝐴
(V, 𝑢) , 𝑋 (𝑢)) , 𝑌 (V))

∧ ⋀

𝑢∈𝑈

⋀

V∈𝑈
𝜃 (𝑇 (𝑅

𝐵
(V, 𝑢) , 𝑋 (𝑢)) , 𝑌 (V))
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= ⋀

V∈𝑈
𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(V, 𝑢) , 𝑋 (𝑢)) , 𝑌 (V))

∧ ⋀

V∈𝑈
𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(V, 𝑢) , 𝑋 (𝑢)) , 𝑌 (V))

= ⋀

V∈𝑈
𝜃(⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(V, 𝑢) , 𝑋 (𝑢)))

∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(V, 𝑢) , 𝑋 (𝑢)) , 𝑌 (V)

= ⋀

V∈𝑈
𝜃 (PM

𝐴+𝐵
(𝑋) (V)) , 𝑌 (V) .

(48)

Then, this proposition is proved.

5. Relationships between Multigranulation
and Classical 𝑇-Fuzzy Rough Sets

Based on the 𝑇-fuzzy similarity relation, after the discus-
sion about the properties of the optimistic and pessimistic
multigranulation 𝑇-fuzzy rough sets, we will investigate the
relationships among the two types of multigranulation 𝑇-
fuzzy rough sets and the classical 𝑇-fuzzy rough set in this
section.

By the definitions of the optimistic and pessimistic
multigranulation 𝑇-fuzzy rough set operators, for all 𝑋 ∈

𝐹(𝑈), the relationship can be easily obtained as

PM
∑
𝑛

𝑖=1
𝐴
𝑖
(𝑋) ⊆ OM

∑
𝑛

𝑖=1
𝐴
𝑖
(𝑋) ⊆ 𝑋

⊆ OM
∑
𝑛

𝑖=1
𝐴
𝑖
(𝑋) ⊆ PM

∑
𝑛

𝑖=1
𝐴
𝑖
(𝑋) .

(49)

Note that if (𝑈, 𝑅) is a 𝑇-fuzzy approximation space, then
PM
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) = OM
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) = 𝑅(𝑋) and OM
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) =

PM
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) = 𝑅(𝑋). So in the special case of a 𝑇-fuzzy
approximation space, both optimistic and pessimistic 𝑇-
fuzzy lower and upper approximations can degenerate into
the standard 𝑇-fuzzy lower and upper approximations.

Proposition 13. Let (𝑈, 𝑅
𝐴
1

, 𝑅
𝐴
2

, . . . , 𝑅
𝐴
𝑛

) be 𝑇-fuzzy
approximation space, and let 𝑅

𝐴
𝑖

(𝑖 ∈ {1, 2, 3, . . . , 𝑛}) be the
different 𝑇 fuzzy similarity relations. For all 𝑥, 𝑦 ∈ 𝑈, 𝑎, 𝑏 ∈ 𝐼,
and 𝑋,𝑌 ∈ 𝐹(𝑈), one has the following:

(1) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋)) = 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋);

(2) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋)) = 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋);

(3) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋)) ⊆ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋);

(4) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋)) ⊇ 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋);

(5) 𝜃(𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌)) = 𝜃(𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), 𝑌);

(6) 𝜃(𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋), 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌)) = 𝜃(𝑋, 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑌));

(7) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(Θ(𝑎, 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋))) = Θ(𝑎, 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋)).

Proof. We only need to prove the proposition in a 𝑇-fuzzy
approximation space (𝑈, 𝑅

𝐴
, 𝑅
𝐵
) for convenience. All items

hold when 𝑅
𝐴
= 𝑅
𝐵
. When 𝑅

𝐴
̸= 𝑅
𝐵
, the proposition can be

proved as follows.
(1) For any 𝑥 ∈ 𝑈,

OM
𝐴+𝐵

(PM
𝐴+𝐵

(𝑋)) (𝑥)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) ,PM

𝐴+𝐵
𝑋 (𝑢))

∧ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) ,PM

𝐴+𝐵
𝑋 (𝑢))

= [⋁

𝑢∈𝑈

𝑇(𝑅
𝐴
(𝑢, 𝑥) , ⋀

V∈𝑈
𝜃 (𝑅
𝐴
(V, 𝑢) , 𝑋 (V))

∧⋀

V∈𝑈
𝜃 (𝑅
𝐵
(V, 𝑢) , 𝑋 (V)))]

∧ [⋁

𝑢∈𝑈

𝑇(𝑅
𝐵
(𝑢, 𝑥) , ⋀

V∈𝑈
𝜃 (𝑅
𝐴
(V, 𝑢) , 𝑋 (V))

∧⋀

V∈𝑈
𝜃 (𝑅
𝐵
(V, 𝑢) , 𝑋 (V)))]

≤ ⋁

𝑢∈𝑈

𝑇(𝑅
𝐴
(𝑢, 𝑥) , ⋀

V∈𝑈
𝜃 (𝑅
𝐴
(V, 𝑢) , 𝑋 (V)))

∧ ⋁

𝑢∈𝑈

𝑇(𝑅
𝐵
(𝑢, 𝑥) , ⋀

V∈𝑈
𝜃 (𝑅
𝐵
(V, 𝑢) , 𝑋 (V)))

= ⋁

𝑢∈𝑈

⋀

V∈𝑈
𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑅

𝐴
(V, 𝑢) , 𝑋 (V)))

∧ ⋁

𝑢∈𝑈

⋀

V∈𝑈
𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑅

𝐵
(V, 𝑢) , 𝑋 (V)))

≤ ⋁

𝑢∈𝑈

⋀

V∈𝑈
𝑇 (𝑅
𝐴
(𝑢, 𝑥) ,

𝜃 (𝑇 (𝑅
𝐴
(V, 𝑥) , 𝑅

𝐴
(𝑥, 𝑢)) , 𝑋 (V)))

∧ ⋁

𝑢∈𝑈

⋀

V∈𝑈
𝑇 (𝑅
𝐵
(𝑢, 𝑥) ,

𝜃 (𝑇 (𝑅
𝐵
(V, 𝑥) , 𝑅

𝐵
(𝑥, 𝑢)) , 𝑋 (V)))

≤ ⋀

V∈𝑈
𝜃 (𝑅
𝐴
(V, 𝑥) , 𝑋 (V)) ∧ ⋀

V∈𝑈
𝜃 (𝑅
𝐵
(V, 𝑥) , 𝑋 (V))

= PM
𝐴+𝐵

(𝑋) (𝑥) .

(50)

On the other hand, PM
𝐴+𝐵

(𝑋) ⊆ OM
𝐴+𝐵

(PM
𝐴+𝐵

(𝑋)).
Therefore, PM

𝐴+𝐵
(𝑋) = OM

𝐴+𝐵
(PM
𝐴+𝐵

(𝑋)).

(2) For any 𝑥 ∈ 𝑈,

OM
𝐴+𝐵

(PM
𝐴+𝐵

(𝑋)) (𝑥)

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) ,PM

𝐴+𝐵
𝑋 (𝑢))

∨ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) ,PM

𝐴+𝐵
𝑋 (𝑢))
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= ⋀

𝑢∈𝑈

𝜃(𝑅
𝐴
(𝑢, 𝑥) , ⋁

V∈𝑈
𝑇 (𝑅
𝐴
(V, 𝑢) , 𝑋 (V))

∨⋁

V∈𝑈
𝑇 (𝑅
𝐵
(V, 𝑢) , 𝑋 (V)))

∨ ⋀

𝑢∈𝑈

𝜃(𝑅
𝐵
(𝑢, 𝑥) , ⋁

V∈𝑈
𝑇 (𝑅
𝐴
(V, 𝑢) , 𝑋 (V))

∨⋁

V∈𝑈
𝑇 (𝑅
𝐵
(V, 𝑢) , 𝑋 (V)))

≥ ⋀

𝑢∈𝑈

𝜃(𝑅
𝐴
(𝑢, 𝑥) , ⋁

V∈𝑈
𝑇 (𝑅
𝐴
(V, 𝑢) , 𝑋 (V)))

∨ ⋀

𝑢∈𝑈

𝜃(𝑅
𝐵
(𝑢, 𝑥) , ⋁

V∈𝑈
𝑇 (𝑅
𝐵
(V, 𝑢) , 𝑋 (V)))

= ⋀

𝑢∈𝑈

⋁

V∈𝑈
𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑇 (𝑅

𝐴
(V, 𝑢) , 𝑋 (V)))

∨ ⋀

𝑢∈𝑈

⋁

V∈𝑈
𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑇 (𝑅

𝐵
(V, 𝑢) , 𝑋 (V)))

≥ ⋁

𝑢∈𝑈

⋀

V∈𝑈
𝜃 (𝑅
𝐴
(𝑢, 𝑥) ,

𝑇 (𝑇 (𝑅
𝐴
(V, 𝑥) , 𝑅

𝐴
(𝑥, 𝑢)) , 𝑋 (V)))

∨ ⋁

𝑢∈𝑈

⋀

V∈𝑈
𝜃 (𝑅
𝐵
(𝑢, 𝑥) ,

𝑇 (𝑇 (𝑅
𝐵
(V, 𝑥) , 𝑅

𝐵
(𝑥, 𝑢)) , 𝑋 (V)))

≥ ⋁

V∈𝑈
𝑇 (𝑅
𝐴
(V, 𝑥) , 𝑋 (V)) ∨ ⋁

V∈𝑈
𝑇 (𝑅
𝐵
(V, 𝑥) , 𝑋 (V))

= PM
𝐴+𝐵

(𝑋) (𝑥) .

(51)

On the other hand,OM
𝐴+𝐵

(PM
𝐴+𝐵

(𝑋)) ⊆ PM
𝐴+𝐵

(𝑋).There-
fore, OM

𝐴+𝐵
(PM
𝐴+𝐵

(𝑋)) = PM
𝐴+𝐵

(𝑋).

(3) For any 𝑥 ∈ 𝑈,

PM
𝐴+𝐵

(PM
𝐴+𝐵

(𝑋)) (𝑥)

= ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐴
(𝑢, 𝑥) ,PM

𝐴+𝐵
𝑋 (𝑢))

∨ ⋁

𝑢∈𝑈

𝑇 (𝑅
𝐵
(𝑢, 𝑥) ,PM

𝐴+𝐵
𝑋(𝑢))

= ⋁

𝑢∈𝑈

𝑇(𝑅
𝐴
(𝑢, 𝑥) , ⋀

V∈𝑈
𝜃 (𝑅
𝐴
(V, 𝑢) , 𝑋 (V))

∧⋀

V∈𝑈
𝜃 (𝑅
𝐵
(V, 𝑢) , 𝑋 (V)))

∨ ⋁

𝑢∈𝑈

𝑇(𝑅
𝐵
(𝑢, 𝑥) , ⋀

V∈𝑈
𝜃 (𝑅
𝐴
(V, 𝑢) , 𝑋 (V))

∧⋀

V∈𝑈
𝜃 (𝑅
𝐵
(V, 𝑢) , 𝑋 (V)))

≤ ⋁

𝑢∈𝑈

𝑇(𝑅
𝐴
(𝑢, 𝑥) , ⋀

V∈𝑈
𝜃 (𝑅
𝐴
(V, 𝑢) , 𝑋 (V)))

∨ ⋁

𝑢∈𝑈

𝑇(𝑅
𝐵
(𝑢, 𝑥) , ⋀

V∈𝑈
𝜃 (𝑅
𝐵
(V, 𝑢) , 𝑋 (V)))

= ⋁

𝑢∈𝑈

⋀

V∈𝑈
𝑇 (𝑅
𝐴
(𝑢, 𝑥) , 𝜃 (𝑅

𝐴
(V, 𝑢) , 𝑋 (V)))

∨ ⋁

𝑢∈𝑈

⋀

V∈𝑈
𝑇 (𝑅
𝐵
(𝑢, 𝑥) , 𝜃 (𝑅

𝐵
(V, 𝑢) , 𝑋 (V)))

≤ ⋁

𝑢∈𝑈

⋀

V∈𝑈
𝑇 (𝑅
𝐴
(𝑢, 𝑥) ,

𝜃 (𝑇 (𝑅
𝐴
(V, 𝑥) , 𝑅

𝐴
(𝑥, 𝑢)) , 𝑋 (V)))

∨ ⋁

𝑢∈𝑈

⋀

V∈𝑈
𝑇 (𝑅
𝐵
(𝑢, 𝑥) ,

𝜃 (𝑇 (𝑅
𝐵
(V, 𝑥) , 𝑅

𝐵
(𝑥, 𝑢)) , 𝑋 (V)))

≤ ⋀

V∈𝑈
𝜃 (𝑅
𝐴
(V, 𝑥) , 𝑋 (V)) ∨ ⋀

V∈𝑈
𝜃 (𝑅
𝐵
(V, 𝑥) , 𝑋 (V))

= OM
𝐴+𝐵

(𝑋) (𝑥) .

(52)

(4) For any 𝑥 ∈ 𝑈,

PM
𝐴+𝐵

(PM
𝐴+𝐵

(𝑋)) (𝑥)

= ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐴
(𝑢, 𝑥) ,PM

𝐴+𝐵
(𝑋) (𝑢))

∧ ⋀

𝑢∈𝑈

𝜃 (𝑅
𝐵
(𝑢, 𝑥) ,PM

𝐴+𝐵
(𝑋) (𝑢))

= ⋀

𝑢∈𝑈

𝜃(𝑅
𝐴
(𝑢, 𝑥) , ⋁

V∈𝑈
𝑇 (𝑅
𝐴
(V, 𝑢) , 𝑋 (V))

∨⋁

V∈𝑈
𝑇 (𝑅
𝐵
(V, 𝑢) , 𝑋 (V)))

∧ ⋀

𝑢∈𝑈

𝜃(𝑅
𝐵
(𝑢, 𝑥) , ⋁

V∈𝑈
𝑇 (𝑅
𝐴
(V, 𝑢) , 𝑋 (V))

∨⋁

V∈𝑈
𝑇 (𝑅
𝐵
(V, 𝑢) , 𝑋 (V)))

≥ ⋀

𝑢∈𝑈

𝜃(𝑅
𝐴
(𝑢, 𝑥) , ⋁

V∈𝑈
𝑇 (𝑅
𝐴
(V, 𝑢) , 𝑋 (V)))
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∧ ⋀

𝑢∈𝑈

𝜃(𝑅
𝐵
(𝑢, 𝑥) , ⋁

V∈𝑈
𝑇 (𝑅
𝐵
(V, 𝑢) , 𝑋 (V)))

= ⋀

𝑢∈𝑈

⋁

V∈𝑈
𝜃 (𝑅
𝐴
(𝑢, 𝑥) , 𝑇 (𝑅

𝐴
(V, 𝑢) , 𝑋 (V)))

∧ ⋀

𝑢∈𝑈

⋁

V∈𝑈
𝜃 (𝑅
𝐵
(𝑢, 𝑥) , 𝑇 (𝑅

𝐵
(V, 𝑢) , 𝑋 (V)))

≥ ⋁

𝑢∈𝑈

⋀

V∈𝑈
𝜃 (𝑅
𝐴
(𝑢, 𝑥) ,

𝑇 (𝑇 (𝑅
𝐴
(V, 𝑥) , 𝑅

𝐴
(𝑥, 𝑢)) , 𝑋 (V)))

∧ ⋁

𝑢∈𝑈

⋀

V∈𝑈
𝜃 (𝑅
𝐵
(𝑢, 𝑥) ,

𝑇 (𝑇 (𝑅
𝐵
(V, 𝑥) , 𝑅

𝐵
(𝑥, 𝑢)) , 𝑋 (V)))

≥ ⋁

V∈𝑈
𝑇 (𝑅
𝐴
(V, 𝑥) , 𝑋 (V)) ∧ ⋁

V∈𝑈
𝑇 (𝑅
𝐵
(V, 𝑥) , 𝑋 (V))

= OM
𝐴+𝐵

(𝑋) (𝑥) .

(53)

(5) According to item (5) in Proposition 7 and item (2) in
Proposition 13, we can obtain

𝜃 (PM
𝐴+𝐵

(𝑋) ,OM
𝐴+𝐵

(𝑌)) = 𝜃 (OM
𝐴+𝐵

PM
𝐴+𝐵

(𝑋) , 𝑌)

= 𝜃 (PM
𝐴+𝐵

(𝑋) , 𝑌) .

(54)

(6) This property can be proved by item (5).
(7) According to item (8) in Proposition 5 and item (2) in

Proposition 13, we can have

OM
𝐴+𝐵

Θ(𝑎,PM
𝐴+𝐵

(𝑋)) = Θ (𝑎,OM
𝐴+𝐵

PM
𝐴+𝐵

(𝑋))

= Θ (𝑎,PM
𝐴+𝐵

(𝑋)) .

(55)

According to the properties, we can get the relation as follows:

PM (𝑋) ⊆ PM (PM (𝑋)) ⊆ OM (𝑋) ⊆ 𝑋

⊆ OM (𝑋) ⊆ PM (PM (𝑋)) ⊆ PM (𝑋) .

(56)

Proposition 14. Let (𝑈, 𝑅
𝐴
1

, 𝑅
𝐴
2

, . . . , 𝑅
𝐴
𝑛

) be 𝑇-fuzzy
approximation space; let 𝑅

𝐴
𝑖

(𝑖 ∈ {1, 2, 3, . . . , 𝑛}) be the
different 𝑇 fuzzy similarity relations, for all 𝑥, 𝑦 ∈ 𝑈, 𝑎, 𝑏 ∈ 𝐼,
and 𝑋,𝑌 ∈ 𝐹(𝑈). Then, consider the following:

(1) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) = ⋃
𝑛

𝑖=1
𝑅
𝐴
𝑖

(𝑋) 𝑂𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) =

⋂
𝑛

𝑖=1
𝑅
𝐴
𝑖

(𝑋);

(2) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) = ⋂
𝑛

𝑖=1
𝑅
𝐴
𝑖

(𝑋) 𝑃𝑀
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) =

⋃
𝑛

𝑖=1
𝑅
𝐴
𝑖

(𝑋);

(3) 𝑃𝑀≽
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ⊆ 𝑅
≽

𝐴
𝑖

(𝑋) ⊆ 𝑂𝑀
≽

∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋);

(4) 𝑃𝑀≽
∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋) ⊇ 𝑅
≽

𝐴
𝑖

(𝑋) ⊇ 𝑂𝑀
≽

∑
𝑛

𝑖=1
𝐴
𝑖

(𝑋);

Proof. This proposition can be easily proved by Definitions 1,
3, and 8.

6. Case Study

Let us consider a fund investment issue. There are ten fund
projects 𝑥

𝑖
(𝑖 = 1, 2, . . . , 10) that can be considered. They can

be evaluated from the view of profit factors. Profit factors can
be classified into five factors, which are market, technology,
management, environment, and production. Table 1 is an
evaluation information table about fund investment given by
an expert, where 𝑈 = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
, 𝑥
9
, 𝑥
10
},

𝐴𝑇 = {Market, Technology, Management, Environment,
Production}. For convenience, 𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, and 𝑎

5
will

stand for market, technology, management, environment,
and production, respectively.

Now, we can use the following similarity functions to
calculate the similarity relation between the objects 𝑥

𝑖
, 𝑥
𝑗
as

𝑅
𝐴𝑇
(𝑥
𝑖
, 𝑥
𝑗
) =

{{{{{{{{{{

{{{{{{{{{{

{

𝑚

∑

𝑘=1

(1 − 4 ⋅

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑎
𝑘

𝑖
− 𝑥
𝑎
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨max 𝑎

𝑘
−min 𝑎

𝑘

󵄨󵄨󵄨󵄨

) (𝑚)
−1

,

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑎
𝑘

𝑖
− 𝑥
𝑎
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨max 𝑎

𝑘
−min 𝑎

𝑘

󵄨󵄨󵄨󵄨

≤ 0.25;

0, otherwise.
(57)

Let 𝐴
1

= {Market, Technology} = {𝑎
1
, 𝑎
2
}, 𝐴
2

=

{Management, Environment} = {𝑎
3
, 𝑎
4
}, and 𝐴

3
=

{Production} = {𝑎
5
}. So we can get three different 𝑇-fuzzy

similarity relations as follows:

𝑅
𝐴
1

(𝑥
𝑖
, 𝑥
𝑗
)

=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

((1 − 4 ⋅

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑎
1

𝑖
− 𝑥
𝑎
1

𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨max 𝑎

1
−min 𝑎

1

󵄨󵄨󵄨󵄨

)

+(1 − 4 ⋅

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑎
2

𝑖
− 𝑥
𝑎
2

𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨max 𝑎

2
−min 𝑎

2

󵄨󵄨󵄨󵄨

))

× (2)
−1

,

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑎
𝑘

𝑖
− 𝑥
𝑎
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨max 𝑎

𝑘
−min 𝑎

𝑘

󵄨󵄨󵄨󵄨

≤ 0.25 (𝑘 = 1, 2) ;

0, otherwise,
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𝑅
𝐴
2

(𝑥
𝑖
, 𝑥
𝑗
)

=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

((1 − 4 ⋅

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑎
3

𝑖
− 𝑥
𝑎
3

𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨max 𝑎

3
−min 𝑎

3

󵄨󵄨󵄨󵄨

)

+(1 − 4 ⋅

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑎
4

𝑖
− 𝑥
𝑎
4

𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨max 𝑎

4
−min 𝑎

4

󵄨󵄨󵄨󵄨

))

× (2)
−1

,

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑎
𝑘

𝑖
− 𝑥
𝑎
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨max 𝑎

𝑘
−min 𝑎

𝑘

󵄨󵄨󵄨󵄨

≤ 0.25 (𝑘 = 3, 4) ;

0, otherwise,

𝑅
𝐴
3

(𝑥
𝑖
, 𝑥
𝑗
)

=

{{{{

{{{{

{

(1 − 4 ⋅
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑎
5

𝑖
− 𝑥
𝑎
5

𝑗

󵄨󵄨󵄨󵄨󵄨
)

󵄨󵄨󵄨󵄨max 𝑎
5
−min 𝑎

5

󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑎
5

𝑖
− 𝑥
𝑎
5

𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨max 𝑎

5
−min 𝑎

5

󵄨󵄨󵄨󵄨

≤ 0.25;

0, otherwise.
(58)

From Table 1, we can get the 𝑇-fuzzy similarity matrices
as follows:

𝑅
𝐴
1

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0.674 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0.727 0 0 0 0 0 0

0 0 0.727 1 0 0 0 0 0 0

0.674 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0.778

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0.778 0 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑅
𝐴
2

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0.133 0 0 0 0 0 0

0 1 0.471 0 0 0 0 0.479 0 0

0 0.471 1 0.547 0.471 0 0 0 0 0

0.133 0 0.547 1 0.479 0 0 0.094 0 0

0 0 0.471 0.479 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0.479 0 0.094 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0.667

0 0 0 0 0 0 0 0.667 0 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑅
𝐴
3

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0.077 0.282 0 0 0.897 0.179 0

0 1 0.385 0 0 0.179 0 0 0 0.795

0 0.385 1 0.487 0 0.795 0 0 0 0.590

0.077 0 0.487 1 0 0.692 0 0.179 0 0.077

0.282 0 0 0 1 0 0 0.179 0.897 0

0 0179 0.795 0.692 0 1 0 0 0 0.385

0 0 0 0 0 0 1 0 0 0

0.897 0 0 0.179 0.179 0 0 1 0.077 0

0.179 0 0 0 0.897 0 0 0.077 1 0

0 0.795 0.590 0.077 0 0.385 0 0 0 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(59)

Taking 𝑇(𝑥, 𝑦) = min(𝑥, 𝑦), the residual implication of 𝑇 is

𝜃 (𝑥, 𝑦) = {
1, 𝑥 ≤ 𝑦;

𝑦, 𝑥 > 𝑦.
(60)

Assume that the comprehensive evaluation of a customer
for these fund projects is a fuzzy set𝑋 = (0.5, 0.6, 0.3, 0.8, 0.5,

0.2, 0.4, 0.7, 0.2, 0, 3). Then, the 𝑇-fuzzy lower and upper
approximations of𝑋 are

𝑅 (𝐴
1
) (𝑋)

= (0.5, 0.6, 0.3, 0.3, 0.5, 0.2, 0.4, 0.3, 0.2, 0.3) ,

𝑅 (𝐴
1
) (𝑋)

= (0.5, 0.6, 0.727, 0.8, 0.5, 0.2, 0.4, 0.7, 0.2, 0.7) ,
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Table 1: An information system about fund investment.

𝑈 Market Technology Management Environment Production
𝑥
1

73 88 75 85 74
𝑥
2

86 84 79 60 54
𝑥
3

84 71 81 68 60
𝑥
4

87 69 79 74 65
𝑥
5

68 87 83 76 81
𝑥
6

71 62 80 91 62
𝑥
7

92 52 75 39 43
𝑥
8

55 72 75 62 73
𝑥
9

60 55 65 72 82
𝑥
10

55 68 72 62 56

𝑅 (𝐴
2
) (𝑋)

= (0.5, 0.6, 0.3, 0.3, 0.3, 0.2, 0.4, 0.3, 0.2, 0.3) ,

𝑅 (𝐴
2
) (𝑋)

= (0.5, 0.6, 0.547, 0.8, 0.5, 0.2, 0.4, 0.7, 0.2, 0.667) ,

𝑅 (𝐴
2
) (𝑋)

= (0.5, 0.3, 0.2, 0.2, 0.2, 0.2, 0.4, 0.5, 0.2, 0.2) ,

𝑅 (𝐴
2
) (𝑋)

= (0.7, 0.6, 0.487, 0.8, 0.5, 0.692, 0.4, 0.7, 0.5, 0.6) .

(61)

Furthermore, we can get the optimistic and pessimistic
multigranulation𝑇-fuzzy lower and upper approximations of
𝑋, respectively,

OM
𝐴
1
+𝐴
2
+𝐴
3
(𝑋)

= (0.5, 0.6, 0.3, 0.3, 0.5, 0.2, 0.4, 0.5, 0.2, 0.3) ,

OM
𝐴
1
+𝐴
2
+𝐴
3
(𝑋)

= (0.5, 0.6, 0.487, 0.8, 0.5, 0.2, 0.4, 0.7, 0.2, 0.6) ,

PM
𝐴
1
+𝐴
2
+𝐴
3
(𝑋)

= (0.5, 0.3, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2) ,

PM
𝐴
1
+𝐴
2
+𝐴
3
(𝑋)

= (0.7, 0.6, 0.727, 0.8, 0.5, 0.692, 0.4, 0.7, 0.5, 0.7) .

(62)

From the above three granulations 𝐴
1
, 𝐴
2
, and 𝐴

3
, the

projects must support optimistically the customer’s com-
prehensive evaluation based on the degrees (0.5, 0.6, 0.3,

0.3, 0.5, 0.2, 0.4, 0.5, 0.2, 0.3) and may support optimisti-
cally the customer’s comprehensive evaluation based on
the degrees (0.5, 0.6, 0.487,0.8, 0.5, 0.2, 0.4, 0.7, 0.2, 0.6); the
projects must support pessimistically the customer’s com-
prehensive evaluation based on the degrees (0.5, 0.3,0.2, 0.2,
0.2, 0.2, 0.4, 0.3, 0.2, 0.2) and may support optimistically the
customer’s comprehensive evaluation based on the degrees
(0.7, 0.6, 0.727, 0.8, 0.5, 0.692, 0.4, 0.7, 0.5, 0.7).

7. Conclusions

In this paper, we mainly presented the pessimistic multi-
granulation rough set model from the pessimistic multi-
granulation perspective by using 𝑇-fuzzy similarity relations
in terms of triangular norms and studied the properties of
optimistic and pessimistic multigranulation 𝑇-fuzzy lower
and upper approximation operators. In the 𝑇-fuzzy approxi-
mation space (𝑈, 𝑅

𝐴
1

, 𝑅
𝐴
2

, . . . , 𝑅
𝐴
𝑛

), the definitions of opti-
mistic and pessimistic multigranulation 𝑇-fuzzy lower and
upper approximation operators were recalled and proposed,
respectively. It was obvious that the 𝑇-fuzzy lower and
upper approximation operators which are defined on (𝑈, 𝑅)
were special cases of those of the two types of models.
Furthermore, many interesting properties of the optimistic
and the pessimistic multigranulation 𝑇-fuzzy rough sets
models with respect to triangular norm have been explored.
What is more, we researched the relationships among these
approximation operators.The constructions of two new types
of multigranulation rough set models over 𝑇-fuzzy similarity
relations were meaningful in terms of the generalization of
rough set theory. Finally, themodels were illustrated by a case
study about the evaluation of fund projects.
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