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a b s t r a c t

In order to conduct classification analysis in inconsistent ordered information systems, notions on possi-
ble and compatible distribution reductions are proposed in this paper. The judgement theorems and dis-
cernibility matrices associated with the two reductions are examined, from which we can obtain an
approach to the two reductions in rough set theory. Furthermore, the dominance matrix, possible and
compatible decision distribution matrices are also considered for approach to these two forms of reduc-
tions in inconsistent ordered information systems. Algorithms of matrix computation for possible and
compatible distribution reductions are constructed, by which we can provide another efficient approach
to these two forms of distribution reductions. To interpret and help understand the algorithm, an exper-
imental computing program is designed and two cases are employed as case study. Results of the small-
scale case are calculated and compared by the discernibility matrix and the matrix computation to verify
the new method we study in this paper. The large-scale case are calculated by the experimental comput-
ing program and validated by the definition of the reductions.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Rough set theory, which was first proposed by Pawlak in the
early 1980s [20], can describe knowledge via set-theoretic analysis
based on equivalence classification to the universe of discourse. It
provides a theoretical foundation for inference about data analysis
and has extensive applications in areas of artificial intelligence and
knowledge acquisition.

A primary use of rough set theory is to process the concepts
with vagueness and uncertainty. The attribute reduction is one of
the much important research spotlights in database and informa-
tion systems. For a data set with discrete attribute values, the
course of attribute reduction can be done by reducing the number
of redundant attributes and find a subset of the original attributes
that are the most informative. As is well known that an informa-
tion system may usually have more than one reduct. This means
the set of rules derives from knowledge reduction is not unique.
In practice, it is always expected to obtain the set of the most con-
cise rules. Therefore, people have been attempting to find the min-
imal reduct of information systems, which means that the number
of attributes contained in the reduction is minimal. Unfortunately,

it has been proved that finding the minimal reduct of an informa-
tion system is a NP-hard problem [11].

Recently, some new theories and reduction methods have been
developed. Many types of knowledge reduction have been pro-
posed in the area of rough sets [1,4,13,14,18,20,23,24,29,30,35].
Possible rules and possible reducts have been proposed as a means
to deal with inconsistence in an inconsistent decision table [15,16].
Approximation rules [28] are also used as an alternative to possible
rules. On the other hand, generalized decision rules and general-
ized decision reducts [12,16] provide a decision maker with
more flexible selection of decision behavior. In [14], the notions
of a-reduct and a-relative reduct for decision tables are defined.
The a-reduct allows occurrence of additional inconsistency that
is controlled by means of a parameter. In [28], Slezak presented a
new concept of attribute reduction that keeps the class member-
ship distribution unchanging for all objects in the information sys-
tem. It was shown by Slezak [27] that the knowledge reduction
preserving the membership distribution is equivalent to the
knowledge reduction preserving the value of generalized inference
measure function. A generalized knowledge reduction was also
introduced in [27] that allows the value of generalized inference
measure function after the attribute reduction to be different from
the original one by user-specified threshold. By eliminating the rig-
orous conditions required by distribution reduct, maximum distri-
bution reduct was introduced by Zhang et al. in [41].
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Partition or equivalence (indiscernibility) relation is an impor-
tant and primitive concept in Pawlak’s original rough set theory.
However, partition or equivalence relation is much restrictive in
many applications. To overcome this limitation, classical rough sets
have been extended to several interesting and meaningful general
models in recent years by proposing other binary relations and
operators, such as tolerance relations [26], neighborhood operators
[39], and others [17,21,22,32–36,40]. Moreover, the original rough
set theory does not consider attributes with preference ordered do-
main, that is criteria. Particularly, in many concrete situations, we
often meet and deal with many problems in which the ranking of
the values corresponding to the employed attributes plays a signif-
icant and crucial role. One such type of problem is the ordering of
objects. To adapt and deal with these cases, Greco, Matarazzo,
and Słowinski [5–10] proposed an extension to rough set theory,
called the dominance-based rough set approach (DRSA) to take into
account the ordering properties of criteria. This innovation is
mainly based on substitution of the indiscernibility relation by a
dominance relation. In DRSA, condition attributes are criteria and
classes are preference ordered, the approximation of knowledge is
a collection of upward and downward unions of classes and the
dominance classes are sets of objects defined via dominance rela-
tions. As applications being developed consulting with DRSA, sev-
eral further studies have been made about properties and
algorithmic implementations of DRSA in recent years[2,3,31,37,38].

Nevertheless, only a limited number of methods using DRSA to
acquire knowledge in inconsistent ordered information systems
has been proposed and studied. Pioneering work on inconsistent
ordered information systems with the DRSA has been proposed
by Greco, Matarazzo, and Słowinski [17–22], but they did not
clearly point out the semantic explanation of unknown values.
Shao and Zhang [25] further proposed an extension of the domi-
nance relation in incomplete ordered information systems. Their
work was established on the basis of the assumption that all un-
known values are lost. Despite this, they did not mention the
underlying concept of attribute reduction in inconsistent ordered
decision system but an approach to attribute reduction in consis-
tent ordered information systems. Therefore, the purpose of this
paper is to develop approaches to attribute reductions in inconsis-
tent ordered information systems. The main contribution of this
work is to define two new types of reductions called, respectively,
possible and compatible distribution reductions and study the
methods to acquire them. On the basis of the definitions, the judge-
ment theorems and discernibility matrices associated with the two
reductions are listed to develop several equivalent conditions with
the possible and compatible distribution consistent sets. The ma-
trix computing approach and the corresponding algorithm are
investigated to extract the above two types of reductions. An
small-scale inconsistent information system is employed as an
example to interpret what we study in every section and studied
by the approaches which is a powerful demonstration of the valid-
ity of the algorithm. Furthermore, two cases are employed to verify
the feasibility and validity of the matrix algorithm approached in
this paper.

The rest of this paper is organized as follows. To facilitate our
discussion, some preliminary concepts are briefly recalled in
Section 2. In Section 3, theories and approaches on possible and
compatible distribution reductions are investigated in inconsistent
ordered information systems. The judgement theorems and
discernibility matrices associated with the two reductions are
examined, from which we can obtain a further approach to these
two reductions in rough set theory. In Section 4, we introduce con-
cepts of dominance matrix, possible and compatible decision dis-
tribution matrices in inconsistent ordered information systems.
Furthermore, algorithm of matrix computation on possible and
compatible distribution reductions is designed, from which we

can developed another approach to attribute reduction in inconsis-
tent ordered information systems. Moreover, two cases, a small-
scale for convenience to compute and a large-scale on Concrete
Slump, are employed to verify the feasibility and validity of the
matrix algorithm, and still show that the method is effective and
efficient in this complicated information system in Section 5. Final-
ly, We then conclude the paper with a summary and outlook for
further research.

2. Rough sets and ordered information systems

The following recalls necessary concepts and preliminaries re-
quired in the sequel of our work. Detailed descriptions on rough
set theory can be found in the source papers [5–10]. A comprehen-
sive description has also been made in [41] and readers who need
can look back into the reference.

The notion of information system (sometimes also called data
table, information table attribute-value system, knowledge repre-
sentation system etc.) provides a convenient tool for the represen-
tation of objects in terms of their attribute values.

An information system is an ordered quadruple I ¼ ðU;AT;V ; f Þ,

� U = {x1,x2, . . . ,xn} is a non-empty finite set of objects, called the
universe;
� AT = {a1,a2, . . . ,ap} is a non-empty finite set of attributes, called

the attribute set;
� V =

S
a2ATVa and Va is a domain of attribute a;

� f :U � AT ? V is a function such that f(x,a) 2 Va, for every a 2 AT,
x 2 U, called an information function.

An information system with decision is a special case of an
information systems in which, among the attributes, we distin-
guish on called a decision attribute. The other attributes are called
condition attributes. Therefore, I ¼ ðU;C [ fdg;V ; f Þ and C \
{d} = ;, where attribute sets C and {d} are condition attributes
and the decision attribute respectively.

In an information system, if the domain of an attribute is or-
dered according to a decreasing or increasing preference, then
the attribute is a criterion.

Definition 2.1 (see [5–10]). An information system is called an
ordered information system (OIS) if all attributes are criteria.

Assume that the domain of a criterion a 2 AT is completely pre-
ordered by an outranking relation �a, then x � ay means that x is at
least as good as y with respect to criterion a. And we can say that x
dominates y. In the following, for convenience to study, we
suppose that criteria have a numerical domain, that is, Va # R (R
denotes the set of real numbers). Being of type gain, that is
x � ay, f(x,a) P f(y,a) (according to increasing preference) or
x � ay, f(x,a) 6 f(y,a) (according to decreasing preference), where
a 2 AT, x,y 2 U.

Without any loss of generality and for simplicity, we only
consider condition attributes with increasing preference in the
following.

For a subset of attributes B # AT, we define x � By, "a 2 B,
f(x,a) P f(y,a), and that is to say x dominates y with respect to all
attributes in B.

In general, we denote an ordered information system by
I� ¼ ðU;AT;V ; f Þ, and denote an ordered information system with
decision by I�d ¼ ðU;C [ fdg;V ; f Þ, in which the decision attribute is
a single one d.

For an ordered information system with a single decision
attribute, we say that x dominates y with respect to B # C if x � By,
denoted by xR�B y, and x dominates y with respect to d if x � dy,
denoted by xR�d y. That is
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R�B ¼ fðx; yÞ 2 U � Ujx�Byg ¼ fðx; yÞ 2 U � Ujf ðx; aÞP f ðy; aÞ;8a 2 Bg;
R�d ¼ fðx; yÞ 2 U � Ujx�dyg ¼ fðx; yÞ 2 U � Ujf ðx;dÞP f ðy;dÞg:

R�B and R�d are called dominance relations in ordered information
system I�d .

Denote

½xi��B ¼ xj 2 Ujðxj; xiÞ 2 R�B
� �

¼ fxj 2 Ujf ðxj; aÞP f ðxi; aÞ;8a 2 Bg;
½xi��d ¼ xj 2 Ujðxj; xiÞ 2 R�d

� �
¼ fxj 2 Ujf ðxj;dÞP f ðxi;dÞg:

And the following properties of dominance relations are trivial by
above definitions.

Proposition 2.1 (see[5–10]). Let R�A be a dominance relation. The
following properties hold.

(1) R�A is reflexive, transitive, but not symmetric, so it is not an
equivalence relation.

(2) If B # A, then R�A # R�B .

(3) If B # A, then ½xi��A # ½xi��B .

(4) If xj 2 ½xi��A , then ½xj��A # ½xi��A and ½xi��A ¼ [ ½xj��A jxj 2 ½xi��A
� �

.

(5) ½xj��A ¼ ½xi��A iff f(xi,a) = f(xj,a) for all a 2 A.

(6) ½xi��B
�� ��P 1 for any xi 2 U.

(7) U=R�B constitute a covering of U, i.e., for every x 2 U we have
that ½x��B – ; and

S
x2U ½x�

�
B ¼ U.

where j � j denotes the cardinality of a crisp set.
For any subset X # U and A # AT in I�, the lower and upper

approximation of X with respect to the dominance relation R�A can
be defined as follows (see [5–10]):

R�A ðXÞ ¼ x 2 Uj½x��A # X
� �

; R�A ðXÞ ¼ x 2 Uj½x��A \ X – ;
� �

:

Unlike classical rough set theory, one can easily find that

x 2 Uj½x��A # X
� �

–
[
½x��A j½x�

�
A # X

� �
and

x 2 Uj½x��A \ X – ;
� �

–
[
½x��A j½x�

�
A \ X – ;

� �
:

Definition 2.2 (see[5–10]). Let I�d ¼ ðU;C [ fdg;V ; f Þ be an ordered
information system with decision. If R�C # R�d , i.e., U=R�C 6 U=R�d ,
which is defined by 8xi 2 U; ½xi��C # ½xi��d , then this information
system is consistent. Otherwise, this information system is an
inconsistent ordered information system and denoted shortly as
IOIS.

Example 2.1. An ordered information system with decision is pre-
sented in Table 1 and it is denoted by I�d ¼ ðU;C [ fdg;V ; f Þ, where
U = {x1,x2, . . . ,x6}, C = {a1,a2,a3}, d is the decision attribute.

From the above table, one can calculate the dominance classes
with respect to condition attributes in C and obtain that

½x1��C ¼ fx1; x2; x5; x6g;
½x2��C ¼ fx2; x5; x6g;
½x3��C ¼ fx2; x3; x4; x5; x6g;
½x4��C ¼ fx4; x6g;
½x5��C ¼ fx5g;
½x6��C ¼ fx6g:

Assume X = {x2,x3,x5}, then

R�C ðXÞ ¼ fx5g; R�C ðXÞ ¼ fx1; x2; x3; x5g:

Moreover, we can have the dominance decision classes

½x1��d ¼ ½x5��d ¼ fx1; x5g;
½x2��d ¼ ½x4��d ¼ fx1; x2; x4; x5g;
½x3��d ¼ ½x6��d ¼ fx1; x2; x3; x4; x5; x6g:

Obviously, ½xi��C � ½xi��d for i = 1, 2, 4, i.e., R�C � R�d . So the system in
Table 1 is an inconsistent ordered information system.

3. Possible and compatible distribution reductions based on
rough set in IOIS

3.1. Theories of possible and compatible distribution reductions based
on rough set in IOIS

Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent ordered informa-
tion system. R�C ;R

�
d are dominance relations derived, respectively,

from condition attribute set C and decision attribute set {d}. For
any B # C, denote

U=R�B ¼ ½xi��B jxi 2 U
� �

;

U=R�d ¼ fD1;D2; . . . ;Drg;
r�B ðxÞ ¼ Djj½x��B \ Dj – ;; x 2 U

� �
;

d�B ðxÞ ¼ Djj½x��B # Dj; x 2 U
� �

;

then r�B ðxÞ and d�B ðxÞ are called, respectively, possible distribution
function and compatible distribution function with respect to attri-
bution set B.

From the above, we can have the following properties
immediately.

Proposition 3.1. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent
ordered information system. The following properties hold.

(1) If B # C, then r�C ðxÞ#r�B ðxÞ and d�B ðxÞ# d�C ðxÞ;8x 2 U:
(2) If ½x��B # ½y��B , then r�B ðxÞ#r�B ðyÞ and d�B ðyÞ# d�B ðxÞ;8x; y 2 U:

Definition 3.1. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent
ordered information system. B # C.

(1) If r�B ðxÞ ¼ r�C ðxÞ for all x 2 U, we say that B is a possible distri-
bution consistent set of I�d . If B is a possible distribution consis-
tent set, and no proper subset of B is a possible distribution
consistent set, then B is called a possible distribution consistent
reduction of I�d .

(2) If d�B ðxÞ ¼ d�C ðxÞ for all x 2 U, we say that B is a compatible dis-
tribution consistent set of I�d . If B is a compatible distribution
consistent set, and no proper subset of B is a compatible distri-
bution consistent set, then B is called a compatible distribution
reduction of I�d .

Table 1
I�d : An ordered information system with decision.

U a1 a2 a3 d

x1 1 2 1 3
x2 3 2 2 2
x3 1 1 2 1
x4 2 1 3 2
x5 3 3 2 3
x6 3 2 3 1

80 W. Xu et al. / Knowledge-Based Systems 27 (2012) 78–91
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Example can be more explainable and the inconsistent ordered
information system in Table will be still employed in this section to
illustrate the possible and compatible distribution reductions.

Example 3.1. Continued From Example 2.1For the inconsistent
ordered information system in Table 1, if we denote

D1 ¼ ½x1��d ¼ ½x5��d ;

D2 ¼ ½x2��d ¼ ½x4��d ;

D3 ¼ ½x3��d ¼ ½x6��d ;

then we can have

r�C ðx1Þ ¼ r�C ðx2Þ ¼ r�C ðx3Þ ¼ r�C ðx5Þ ¼ fD1;D2;D3g;
r�C ðx4Þ ¼ fD2;D3g;
r�C ðx6Þ ¼ fD3g:

And

d�C ðx1Þ ¼ d�C ðx2Þ ¼ d�C ðx3Þ ¼ d�C ðx4Þ ¼ d�C ðx6Þ ¼ fD3g;
d�C ðx5Þ ¼ fD1;D2;D3g:

If we take B = {a2,a3}, then it can be easily checked that ½x��C ¼ ½x�
�
B

holds for all x 2 U. That is to say, r�B ðxÞ ¼ r�C ðxÞ and d�B ðxÞ ¼ d�C ðxÞ
hold for all x 2 U. Thus B = {a2,a3} is a possible and compatible dis-
tribution consistent set of I�d . Moreover, we can have that {a3} is
neither a possible nor a compatible distribution consistent set and
{a2} is a compatible but not a possible distribution consistent set
of I�d . Thereupon, we know that {a2,a3} is a possible distribution
reduction and {a2} is a compatible distribution reduction of I�d .

Furthermore, if we take B0 = {a1,a3}, it can be obtained that

½x1��B0 ¼ fx1; x2; x3; x4; x5; x6g;

½x2��B0 ¼ fx2; x5; x6g;

½x3��B0 ¼ fx2; x3; x4; x5; x6g;

½x4��B0 ¼ fx4; x6g;

½x5��B0 ¼ fx2; x5; x6g;

½x6��B0 ¼ fx6g;

and

r�B0 ðx1Þ ¼ r�B0 ðx2Þ ¼ r�B0 ðx3Þ ¼ r�B0 ðx5Þ ¼ fD1;D2;D3g;
r�B0 ðx4Þ ¼ fD2;D3g;
r�B0 ðx6Þ ¼ fD3g;
d�B0 ðxiÞ ¼ fD3g; i ¼ 1;2; . . . ;6:

We can easily verify that r�B0 ðxÞ ¼ r�C ðxÞ for all x 2 U. So B0 = {a1,a3} is
also a possible distribution consistent set of I�d . However, we can
find and verify that d�B0 ðx5Þ– d�C ðx5Þ. Thus, B00 = {a1,a3} is not a com-
patible distribution consistent set of I�d . Besides, it can be directly
calculated that {a1} is neither a possible distribution consistent
set nor a compatible distribution consistent set of I�d . Hence,
B00 = {a1,a3} is also a possible distribution reduction of I�d .

In addition, if take B00 = {a1,a2}, we have

½x1��B00 ¼ fx1; x2; x5; x6g;

½x2��B00 ¼ fx2; x5; x6g;

½x3��B00 ¼ fx1; x2; x3; x4; x5; x6g;

½x4��B00 ¼ fx2; x4; x5; x6g;

½x5��B00 ¼ fx5g;

½x6��B00 ¼ fx2; x5; x6g;

and

d�B00 ðx1Þ ¼ d�B00 ðx2Þ ¼ d�B00 ðx3Þ ¼ d�B00 ðx4Þ ¼ d�B00 ðx6Þ ¼ fD3g;
d�B00 ðx5Þ ¼ fD1;D2;D3g;
r�B00 ðxiÞ ¼ fD1;D2;D3g; i ¼ 1;2; . . . 6:

It can be easily known that d�B00 ðxÞ ¼ d�C ðxÞ for all x 2 U. So B00 = {a1,a2}
is also a compatible distribution consistent set of I�d . However, we
can find and check that r�B00 ðx4Þ– r�C ðx4Þ and r�B00 ðx6Þ – r�C ðx6Þ. Thus,
B00 = {a1,a2} is not a possible distribution consistent set of I�d .

From the above, one can obtain that there exist two possible
distribution reductions of I�d of the system, which are {a1,a3} and
{a2,a3}, and there exists only one compatible distribution of the
system, which is {a2}.

Detailed judgment theorems of possible and compatible distri-
bution reductions will be proposed in the following.

Theorem 3.1. Let I�d ¼ ðU;C [ fdg; F;GÞ be an inconsistent ordered
information system with decision and B # C. B is a possible
distribution consistent set of I�d if and only if r�C ðxÞ \ r�C ðyÞ –
r�C ðyÞ ) ½x�

�
B \ ½y�

�
B – ½y��B holds for any x,y 2 U.

Proof. ‘‘) ’’ Assume that r�C ðxÞ \ r�C ðyÞ – r�C ðyÞ ) ½x�
�
B\ ½y�

�
B – ½y��B

doesn’t hold, that implies ½x��B \ ½y�
�
B ¼ ½y�

�
B . Then ½x��B � ½y�

�
B and

r�B ðxÞ � r�B ðyÞ can be obtained by Proposition 3.1(3). On the other
hand, since B is a possible distribution consistent set of I�d , we have
r�C ðxÞ � r�C ðyÞ, which is in contradiction with r�C ðxÞ \ r�C ðyÞ –
r�C ðyÞ.

‘‘ � ’’ We only prove r�B ðxÞ#r�C ðxÞ by Proposition 3.1(1).
For any x; y 2 U;r�C ðxÞ \ r�C ðyÞ– r�C ðyÞ ) ½x�

�
B \ ½y�

�
B – ½y��B

means that ½x��B \ ½y�
�
B ¼ ½y�

�
B ) r�C ðxÞ \ r�C ðyÞ ¼ r�C ðyÞ, and that is

to say ½x��B � ½y�
�
B implies r�C ðxÞ � r�C ðyÞ.

On the other hand, suppose Dk 2 r�B ðxÞ, that is ½x��B \ Dk – ;.
Assume that y 2 ½x��B \ Dk, then y 2 ½x��B and y 2 Dk. We can obtain
that ½x��B � ½y�

�
B is true, which implies r�C ðxÞ � r�C ðyÞ. Since y 2 ½y��A ,

we have y 2 ½y��A \ Dk, which means ½y��A \ Dk – ;. So we observe
Dk 2 r�C ðyÞ#r�C ðxÞ, that is Dk 2 r�C ðxÞ. Thus, we conclude that
r�B ðxÞ# r�C ðxÞ, i.e., B is a possible distribution consistent set of I�d .

The prove is completed. h

Theorem 3.2. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent ordered
information system with decision and B # C. B is a compatible distri-
bution consistent set of I�d if and only if d�C ðxÞ \ d�C ðyÞ– d�C ðxÞ )
½x��B \ ½y�

�
B – ½y��B holds for any x,y 2 U.

Proof. ‘‘)’’ Assume that d�C ðxÞ \ d�C ðyÞ – d�C ðxÞ ) ½x�
�
B \ ½y�

�
B – ½y��B

doesn’t hold, which implies that there exist x0,y0 2 U such that
d�C ðx0Þ \ d�C ðy0Þ – d�C ðx0Þ but ½x0��B \ ½y0�

�
B ¼ ½y0�

�
B . That is to say

½y0�
�
B # ½x0��B . Then we can obtain d�B ðx0Þ# d�B ðy0Þ by Proposition

3.1(2). On the other hand, since B is a compatible distribution con-
sistent set of I�d , we have d�B ðx0Þ ¼ d�C ðx0Þ and d�B ðy0Þ ¼ d�C ðy0Þ.
Hence we can get d�C ðx0Þ# d�C ðy0Þ. That is to say dCðx0Þ�\
d�C ðy0Þ ¼ d�C ðx0Þ, which is a contradiction.‘‘)’’ We only prove
d�C ðxÞ# d�B ðxÞ by Proposition 3.1(1).

For any Dk 2 dC(x) and any y0 2 ½x�
�
B , we have ½y0�

�
B # ½x��B .

From the fact that ½x��B \ ½y�
�
B – ½y��B always holds while

d�C ðxÞ \ d�C ðyÞ– d�C ðxÞ, we can have the result that d�C ðxÞ \ d�C ðyÞ ¼
d�C ðxÞ always holds when ½x��B \ ½y�

�
B ¼ ½y�

�
B for x, y 2 U. That is to say

that if ½y��B # ½x��B , then d�C ðxÞ# d�C ðyÞ holds.
So we can obtain d�C ðxÞ# d�C ðy0Þ. Therefore Dk 2 d�C ðy0Þ, in other

words, ½y0�
�
C # Dk. Thus we can receive y0 2 Dk, and that is to say

½x��B # Dk.
Hence, d�C ðxÞ# d�B ðxÞ.
This theorem is proved. h

W. Xu et al. / Knowledge-Based Systems 27 (2012) 78–91 81



Author's personal copy

3.2. Approach to possible and compatible distribution reductions in
IOIS

This section provides the approach to possible and compatible
distribution reductions in inconsistent ordered information sys-
tems. Firstly, we present the following notions.

Definition 3.2. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent
ordered information system with decision. For xi, xj 2 U, we denote,

D�r� ¼ ðxi; xjÞjr�C ðxiÞ 	 r�C ðxjÞ
� �

;

D�d� ¼ ðxi; xjÞjd�C ðxiÞ 
 d�C ðxjÞ
� �

;

Dr� ðxi; xjÞ ¼
fa 2 Cjf ðxi; aÞ > f ðxj; aÞg; ðxi; xjÞ 2 D�r�
C; ðxi; xjÞ R D�r�

�
;

Dd� ðxi; xjÞ ¼
fa 2 Cjf ðxi; aÞ > f ðxj; aÞg; ðxi; xjÞ 2 D�d�

C; ðxi; xjÞ R D�d�

�
;

and

Mr� ¼ ðuijÞn�n; where uij ¼ Dr� ðxi; xjÞ;
Md� ¼ ðv ijÞn�n; where v ij ¼ Dd� ðxi; xjÞ:

Then, Dr� ðxi; xjÞ and Dd� ðxi; xjÞ are called, respectively, possible and
compatible distribution discernibility attributes sets. And matrices
Mr� and Md� are referred as possible and compatible distribution
discernibility matrix of I�d respectively.

Theorem 3.3. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent ordered
information system with decision and B # C. B is a compatible distri-
bution consistent set if and only if B \ Dd� ðx; yÞ– ; holds for any
ðx; yÞ 2 D�d� .

Proof. ‘‘)’’ Assume that B is a compatible distribution consistent
set of I�d . For any ðx; yÞ 2 D�d� , we can obtain d�C ðxÞ 
 d�C ðyÞ. From
Theorem 3.1, we have ½x��B \ ½y�

�
B – ½y��B . Thus there exist the follow-

ing three cases between ½x��B and ½y��B , which are (1) ½x��B 	 ½y�
�
B , (2)

½x��B \ ½y�
�
B ¼ ;, (3) both ½x��B \ ½y�

�
B 	 ½x�

�
B and ½x��B \ ½y�

�
B 	 ½y�

�
B . We

will prove that B \ Dd� ðx; yÞ – ; always holds in every case.

Case 1. If ½x��B 	 ½y�
�
B , then there necessarily exists an element

z 2 ½y��B , but z R ½x��B . From z R ½x��B , we can certainly find
an element a 2 B such that f(x,a) > f(z,a). On the other
hand, the fact f(y,a) P f(z,a) is true according to
z 2 ½y��B . From the above, we can obtain f(x,a) > f(y,a).
Hence, we have a 2 Dd� ðx; yÞ, i.e., B \ Dd� ðx; yÞ – ;.

Case 2. If ½x��B \ ½y�
�
B ¼ ;, then there exists necessarily an element

a 2 B such that f(x,a) > f(y,a), i.e. B \ Dd� ðx; yÞ – ;. Other-
wise, if for all a 2 B, f(x,a) P f(y,a) always holds, then we
consider y 2 ½x��B . This is contradiction.

Case 3. The proof is similar to Case 1, because it can also be cer-
tainly found an element z 2 ½y��B , but z R ½x��B in the case.

Thus we can conclude that B \ Dd� ðx; yÞ – ; for any ðx; yÞ 2 D�d� .
Hence, if B is a compatible distribution consistent set, then

B \ Dd� ðx; yÞ– ;, for all ðx; yÞ 2 D�d� .
‘‘(’’ If every ðx; yÞ 2 D�d� satisfies B \ Dd� ðx; yÞ– ;, then we can

select an a 2 B such that a 2 Dd� ðx; yÞ. That is f(x,a) > f(y,a), further
y R ½x��B . Since y 2 ½y��B is true, we can obtain ½x��B \ ½y�

�
B – ½y��B . On

the other hand, since ðx; yÞ 2 D�d� , we have d�C ðxÞ 
 d�C ðyÞ, which
means d�C ðxÞ \ d�C ðyÞ – d�C ðxÞ. Hence, we find that d�C ðxÞ \ d�C ðyÞ–
d�C ðxÞ ) ½x�

�
B \ ½y�

�
B – ½y��B holds. Thus we develop that B is a com-

patible distribution consistent set of I�d in term of Theorem 3.1.
The prove is completed. h

Theorem 3.4. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent ordered
information system with decision ans B # C. B is a possible distribu-
tion consistent set if and only if B \ Dr� ðx; yÞ – ; holds for any
ðx; yÞ 2 D�r� .

Proof. It is similar to Theorem 3.3. h

Definition 3.3. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent
ordered information system with decision,Mr� andMd� be possi-
ble and compatible distribution discernibility matrices of I�d
respectively. Denote

Fr� ¼ ^ _fakjak 2 Dr� ðxi; xjÞg; xi; xj 2 U
� �

¼ ^ _ akjak 2 Dr� ðxi; xjÞ
� �

; xi; xj 2 D�r�
� �

;

Fd� ¼ ^ _ akjak 2 Dd� ðxi; xjÞ
� �

; xi; xj 2 U
� �

¼ ^ _ akjak 2 Dd� ðxi; xjÞ
� �

; xi; xj 2 D�d�
� �

:

Then Fr� and Fd� are called, respectively, discernibility formulas of
possible and compatible distribution.

Theorem 3.5. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent ordered
information system with decision. The minimal disjunctive normal
form of discernibility formula of possible distribution is

Fr� ¼
_p
k¼1

q̂k

s¼1

 !
as:

Denote Bk
r� ¼ fasjs ¼ 1;2; . . . ; qkg, then Bk

r� jk ¼ 1;2; . . . ; p
n o

is the set
of all possible distribution reductions of I�d .

Proof. It follows directly from Theorem 3.4 and the minimal dis-
junctive normal to the discernibility formula of compatible distri-
bution. h

Theorem 3.6. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent ordered
information system with decision. The minimal disjunctive normal
form of discernibility formula of compatible distribution is

Fd� ¼
_p
k¼1

q̂k

s¼1

 !
a0s:

Denote Bk
d� ¼ a0sjs ¼ 1;2; . . . ; qk

� �
, then fBk

d� jk ¼ 1;2; . . . ;pg is the set
of all compatible distribution reductions of I�d .

Proof. It is similar to Theorem 3.5. h

Theorems 3.5 and 3.6 provide a practical and effective approach
to possible and compatible distribution reductions of inconsistent
ordered information systems. The following example will be em-
ployed to illustrate the validity of the approach.

Example 3.2. Continued From Example 2.1). Considering the
inconsistent ordered information system showed in Example 2.1,
calculate the possible and compatible reductions of the system by
the above approach.

We have got the functions of possible and compatible distribu-
tion in Example 3.1. Moreover, we can calculate the possible and
compatible distribution discernibility matrices of the system and
list them in Tables 2 and 3.

Consequently, we have

Fr� ¼ ða1 _ a2 _ a3_Þ ^ ða1 _ a3Þ ^ ða1 _ a2Þ ^ a3

¼ ða1 ^ a3Þ _ ða2 ^ a3Þ;
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Fd� ¼ a2 ^ ða1 _ a2Þ ^ ða1 _ a2 _ a3Þ ¼ a2:

Therefore, we acquire that {a1,a3}, {a2,a3} are all possible distribu-
tion reductions and {a2} is the noly compatible distribution reduc-
tions of the inconsistent ordered information system in Table 1,
which accord with the results in Example 3.1.

4. Algorithm to acquire possible and compatible reductions in
IOIS based on matrix computation

4.1. Dominance matrices, possible and compatible distribution
decision matrices

In this section, the dominance matrix, possible and compatible
distribution decision matrices are proposed, and some important
properties are obtained in further.

Definition 4.1. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent
ordered information system with decision and B # C. Denote

MB ¼ ðmijÞn�n;

where

mij ¼
1; xj 2 ½xi��B ;
0; otherwise:

(

The matrix MB is called dominance matrix of attribute set B # C. If
jBj = l, we say that MB is a lth order dominance matrix.

Definition 4.2. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent
ordered information system with decision and MB1 ;MB2 be domi-
nance matrices of attribute sets B1,B2 # C. The intersection of
MB1 and MB2 is defined by

MB1 \MB2 ¼ ðmijÞn�n \ ðm0ijÞn�n ¼ ðminfmij;m0ijgÞn�n:

From the above definitions, the following properties are obviously.

Proposition 4.1. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent
ordered information system with decision and MB1 ;MB2 be dominance
matrices of attributes sets B1,B2 # C. The following results always
hold.

(1) mii = 1.
(2) MB1[B2 ¼ MB1 \MB2 .

Definition 4.3. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent
ordered information system with decision. Denote

Mr
d ¼ sr

ij

� �
n�n

; Md
d ¼ rd

ij

� �
n�n

;

where

sr
ij ¼

1; r�C ðxjÞ#r�C ðxiÞ;
0; otherwise:

(

rd
ij ¼

1; d�C ðxiÞ# d�C ðxjÞ;
0; otherwise:

(

The matrix Mr
d and Md

d are called, respectively, possible and compat-
ible distribution decision matrices of I�d .

From the above, we can see that the dominance relation of
objects is decided by dominance matrix, and different decision of
objects are decided by possible and compatible distribution
decision matrices.

Definition 4.4. Let a = (a1,a2, . . . ,an) and b = (b1,b2, . . . ,bn) be two n
dimension vectors. If ai 6 bi, (i = 1,2, . . . ,n), we say vector a is less
than or equal to vector b, denoted by a 6 b.

Definition 4.5. Let MA = (a1,a2, . . . ,an)T and MB = (b1,b2, . . . ,bn)T, be
two matrices, ai and bi be row vectors respectively. If ai 6 bi, we
say MA is less than or equal to MB, denoted by MA 6MB.

According to the above two definitions, one can easily find that
dominance matrices have the following properties.

Proposition 4.2. Let I�d ¼ ðU; C [ fdg;V ; f Þ be an inconsistent
ordered information system with decision and B # C. MC and MB

are the dominance matrices, then MC 6MB.

4.2. Algorithm based on matrix computation

In the following, we develop the method of matrix computation
for the acquisition of possible and compatible distribution reduc-
tions in inconsistent ordered information systems.

Theorem 4.1. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an inconsistent ordered
information system with decision and B # C. B is a possible distribu-
tion consistent set if and only if MB 6 Mr

d , where MB = (mij)n�n and
Mr

d ¼ srij
� �

n�n
.

Proof. ‘‘)’’ We need to prove that r�B ðxÞ ¼ r�C ðxÞ for any x 2 U
implies MB 6 Mr

d . Since mij ¼ 0 6 sr
ij is obvious, we only prove

mij ¼ 1) sr
ij ¼ 1. In fact, we can have that

mij ¼ 1) xj 2 ½xi��B ) ½xj��B # ½xi��B ) r�B ðxjÞ#r�B ðxiÞ
) r�C ðxjÞ#r�C ðxiÞ ) sr

ij ¼ 1

‘‘(’’ From Proposition 3.1, we have known that r�C ðxiÞ#r�B ðxiÞ for
any xi 2 U and B # C. So,we only prove r�B ðxiÞ#r�C ðxiÞ holds for
any xi 2 U in the following.

For any Dk 2 r�B ðxiÞ, we have Dk \ ½xi��B – ;. Take xj 2 Dk \ ½xi��B ,
then xj 2 Dk and xj 2 ½xi��B . From xj 2 ½xi��B , we can obtain mij = 1.
Since MB 6 Mr

d , we have mij 6 sr
ij . Thus, sr

ij ¼ 1 holds, which can im-
plies r�C ðxjÞ#r�C ðxiÞ.

On the other hand, it is obvious that xj 2 ½xj��C . By xj 2 Dk, we can
observe that xj 2 Dk \ ½xj��C . Therefore, Dk \ ½xj��C – ; holds, that is to
say Dk 2 r�C ðxjÞ.

From the above, we have that Dk 2 r�C ðxiÞ. Hence, r�B ðxiÞ#r�C ðxiÞ
holds for any xi 2 U.

The theorem is proved. h

Table 2
Possible distribution discernibility matrix Mr� .

xi, xj x1 x2 x3 x4 x5 x6

x1 C C C C C C
x2 C C C C C C
x3 C C C C C C
x4 a1, a3 a3 a1, a3 C a3 C
x5 C C C C C C
x6 a1, a3 a3 C a1, a2 a3 C

Table 3
Compatible distribution discernibility matrix Md� .

xi, xj x1 x2 x3 x4 x5 x6

x1 C C C C C C
x2 C C C C C C
x3 C C C C C C
x4 C C C C C C
x5 a1, a2, a3 a2 a1, a2 a1, a2 ; a2

x6 C C C C C C
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Corollary 4.1. Let I�d ¼ ðU;C [ fdg;V ; f Þ be an ordered information
system with decision and B # C. B is a possible distribution reduction
if and only if MB 6 Mr

d holds but MB0 6 Mr
d does not hold for any

proper subset B00 of B.

Theorem 4.2. Let I�d ¼ ðU; C [ fdg;V ; f Þ be an inconsistent informa-
tion system with decision and B # C. B is a compatible distribution
consistent set if and only if MB 6 Md

d, where MB = (mij)n�n and
Md

d ¼ ðrd
ijÞn�n.

Proof. ‘‘) ’’ It similar to the proof of Theorem 4.1.
‘‘ � ’’ From Proposition 3.1, we have known that d�B ðxiÞ# d�C ðxiÞ

for any xi 2 U and B # C. So, in the following, we only prove
d�C ðxiÞ# d�B ðxiÞ for any xi 2 U. For 8 Dk 2 d�C ðxiÞ and 8 xj 2 ½xi��B , we
have

xj 2 ½xi��B ) mij ¼ 1) rij ¼ 1) d�C ðxiÞ# d�C ðxjÞ ) Dk 2 d�C ðxjÞ
) ½xj�� # Dk ) xj 2 Dk ) ½xi��B # Dk ) Dk 2 d�B ðxiÞ
) d�C ðxiÞ# d�B ðxiÞ

The theorem is proved. h

Corollary 4.2. Let I�d ¼ ðU; C [ fdg;V ; f Þ be an ordered information
system with decision and B # C. B is a compatible distribution reduc-
tion if and only if MB 6 Md

d holds but MB0 6 Md
d does not hold for any

proper subset B00 of B.
From the above theorem and propositions, we can acquire the

following algorithm.

Algorithm 1. Algorithm of matrix computation for acquisition
of possible and compatible distribution reductions in
inconsistent ordered information systems is described as
follows:

Input: An inconsistent ordered information system

I�d ¼ ðU;C [ fdg;V ; f Þ;

where U = {x1,x2, . . . ,xn} and C = {a1,a2, . . . ,ap}.
Output: All possible and compatible distribution reduc-
tions of I�d .
Step 1 Simplify the system by combining the objects with
same values of every attribute. Check the consistence of
I�d . If it is inconsistent, calculate r, d and continue; else,
terminate the algorithm.
Step 2 Calculate possible and compatible distribution
decision matrices of I�d and denoted as follows,

Mr
d ¼ ðk1; k2; . . . ; knÞT ;

Md
d ¼ ðc1; c2; . . . ; cnÞ

T :

Step 3 For any al 2 C, (1 6 l 6 p), compute 1st order dom-
inance matrix

Mfalg ¼ Mð1Þ
falg ¼ sð1Þ1 ; sð1Þ2 ; . . . ; sð1Þn

� �T
:

For i = 1 to n.
If 0 – sð1Þi 6 ki, let sð1Þi ¼ 0. Denote the new matrix by FMrð1Þ

falg
.

If 0 – sð1Þi 6 ci, let sð1Þi ¼ 0. Denote the new matrix by FMdð1Þ
falg

.
Turn into next step.

Step 4 Call matrix FMrð1Þ
falg

and FMdð1Þ
falg

al 2 C; ð1 6 l 6 pÞ to be
1st order possible and compatible distribution matrices,
respectively.

Algorithm 1 (continued)

(1) If FMrð1Þ
falg ¼ 0, then obtain a 1st order possible distribu-

tion reduction: {al}. Otherwise, turn into item (2).
(2) If FMdð1Þ

falg ¼ 0, then obtain a 1st order compatible dis-
tribution reduction: {al}. Otherwise, turn into next step.
Step 5 Compute the intersection of two nonzero 1st order
possible (or compatible) matrices obtained in Step 3. The
new matrices are called 2nd order possible (or compatible)

dominance matrices, denoted by Mrð2Þ
falasg ¼ FMrð1Þ

falg
\ FMrð1Þ

fasg

(Correspondingly, Mdð2Þ
falasg ¼ FMdð1Þ

falg \ FMdð1Þ
fasg). Let B = {al,as}

and k = jBj.
Step 6 Denote kth (k 6 jCj) order possible and compatible
dominance matrices by MrðkÞ

B and MdðkÞ
B .

MrðkÞ
B ¼ srðkÞ

1 ; srðkÞ
2 ; . . . ; srðkÞ

n

� �T
;

MdðkÞ
B ¼ sdðkÞ

1 ; sdðkÞ
2 ; . . . ; sdðkÞ

n

� �T
:

For i = 1 to n.
(1) If qth (q = 1,2, . . . ,k � 1) order possible reduction is
included in B, turn into the next item (2); else, continue.
For 0 – srðkÞ

i 6 ki, let srðkÞ
i ¼ 0. Denote the new matrix by

FMrðkÞ
B . If FMrðkÞ

B ¼ 0, then obtain a kth order possible distri-
bution reduction: B.
(2) If qth (q = 1,2, . . . ,k � 1) order compatible reduction is
included in B, turn into the next step; else, continue.
For 0 – sdðkÞ

i 6 ci, let sdðkÞ
i ¼ 0. Denote the new matrix by

FMdðkÞ
B . If FMdðkÞ

B ¼ 0, we acquire a kth order compatible dis-
tribution reduction: B.
Step 7 For any jB0j = jBj = k and B0 – B, let B = B0 (if any). Go
back to Step 6 and calculate all kth order possible and
compatible distribution reductions. If k < jCj, compute the
intersection of a nonzero kth order possible (or compati-
ble) matrix and a nonzero 1st order possible (or
compatible) matrix; else, go to the next step. The new
matrices are called (k + 1)th order possible (or compatible)

dominance matrices, denoted by Mrðkþ1Þ
B00 ¼ Mrðkþ1Þ

B[fatg ¼
FMrðkÞ

B \ FMrð1Þ
fatg (Correspondingly, Mdðkþ1Þ

B00 ¼ Mdðkþ1Þ
B[fatg ¼

FMdðkÞ
B \ FMdð1Þ

fatg. Let B = B00 and k = k + 1 = jB00j 6 jCj. Go back

to Step 6 and compute all kth possible and compatible
distribution reductions.
Step 8 Collect and output all possible and compatible dis-
tribution reductions. Terminate the algorithm. h

Analysis to time complexity of Algorithm 1
Let I�d ¼ ðU;C [ fdg;V ; f Þ be an ordered information system.

U = {x1,x2, . . . ,xn} is the simplified universe. The number of objects
in original information system not being simplified is denoted by
n1. There are m condition attributes in C, i.e., jCj = m. The number
of compressed decision classes is r. We take a variable ti to stand
for the time complexity in an implementation. In the next, we
can analyze the time complexity of Algorithm 1 step by step.

The time complexity to simplify the original information system
is n2

1 for any two objects being compared and denoted by t1 ¼ n2
1.

Since jUj = n, jCj = m and j{d}j = 1, the time complexity to classify
by condition attributes and decision {d} are, respectively,
t2 = jUj2 � jCj and t3 = jUj2. For decision classes being merged by
comparing classes of any two objects, the time complexity is
t4 = jUj2. Now the consistence of the information system need to
be checked by compare the condition class and decision class of
any object. If the information system is consistent, the time
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complexity to check consistence is jUj. If the information system is
inconsistent, the time complexity to check consistence is less than
jUj. Thus, the time complexity to check consistence is no more than
jUj, i.e., it is presented as t5 6 jUj. Then, the possible and compatible
distribution functions can be calculated and the time complexity is
t6 = 2r � jUj. The time complexity to calculate each of these two
functions is r � jUj and denoted by tr6 ¼ td

6 ¼ r � jUj. The analysis
to Step 1 is finished.

For Step 2, the time complexity to calculate possible and com-
patible distribution decision matrices respectively is denoted by
tr7 ¼ td

7 ¼ jUj
2. Thus, the time complexity to calculate distribution

decision matrices is t7 = 2jU2j. The time complexity of Step 2 is
completed.

The first two steps are preparations to calculate reductions. The
next Step 3 to Step 7 are the steps which run the operations. There
are C1

m ¼ m subsets {al} and the dominance matrices are with
dimensions n � n. In addition, the representation Ci

m is the combi-
natorial number which means the number of selections to chose i
elements from m ones. We consider that the judgement of a vector
if it is zero runs one operation and the comparison of two vectors
runs according to the dimension of the vectors. Therefore, the time
complexities to compare Mr

d and Md
d with Mfalg respectively are

jUj2. And the time complexity to compare every line vector of
Mfalg with zero is jUj. The possible and compatible distribution
matrices are obtained by reassignment values n times. And the
time complexities to process possible and compatible distribution
matrices respectively are both n. Then, we have that the total time
complexity of Step 3 is t8 ¼ C1

m � ð3jUj
2 þ 3jUjÞ. The judgement in

Step 4 just need to run according to the number of {al} and the time
complexity is t9 ¼ 2C1

m.
Since we just need to compute the intersection of nonzero 1st

order possible (or compatible) distribution matrices, the maximum
time complexities can be analyzed in the next steps but not the
true ones in computing. Therefore, the maximum time complexity
relies on the number of attribute subsets 2jCj. The worst case is that
no minimum reduction exists in the information system and all 2jCj

subsets are calculated in the algorithm. Thus, the maximum time
complexity of Step 5 is t10 ¼ 2C2

m � jUj
2.

The time complexities of separate functions in Step 6, Step 7 can
be analyzed similarly as the above and they rely on the cardinality
of attribute subset k = jBj in the kth loop. For Step 6, the operations
are judgement if a reduction is included in B and calculation to the
new kth order distribution matrices. Assume that k = jBj(k =
2,3, . . . , jCj) and it is used as superscript to mark the kth order.
The judgement is briefly treated as a function run one operation
since it can be implemented easily by judging if subset. Therefore,
the maximum time complexity of Step 6 is tk

11 ¼ 2Ck
m�

ðjUj2 þ 2jUj þ 2Þ. Similarly as Step 5, the time complexity of Step
7 is tkþ1

12 ¼ 2Ckþ1
m � jUj2. The time complexity of Step 8 will be not

considered since the output runs fast and direct.
From the above analysis, we can know that the maximum time

complexity of the main part in the algorithm (Step 3 to Step 7) is

tmain ¼ t8 þ t9 þ t10 þ
XjCj
k¼2

tk
11 þ tkþ1

12

� 	
¼ ðjUj2 þ 2jUj þ 3Þ � 2jCjþ2 � jCj � ðjUj2 þ jUj þ 2Þ:

Hence, the maximum time complexity of the main algorithm is
approximately O((jUj2 + jUj + 1) � 2jCj+2).

If we just compute possible or compatible distribution
reductions, the maximum time complexity of the main part is

trmain ¼ td
main ¼ ðjUj

2 þ jUj þ 1Þ � 2jCjþ1 þ jCj � ðjUj þ 1Þ2:

Then, the time complexity to compute one form of the distribution
reductions is approximately O((jUj2 + jUj + 1) � 2jCj+1). h

In the following, we will calculate the possible and compatible
distribution reductions manually and illustrate the algorithm by
the inconsistent ordered information system showed in Table 1.

Example 4.1 (Continued From Example 2.1). Calculate all possible
and compatible distribution reductions of the inconsistent ordered
information system in Example 2.1.

From Table 1, we can compute all dominance matrices and the
distribution decision matrix as follows,

Mfa1g ¼

1 1 1 1 1 1

0 1 0 0 1 1

1 1 1 1 1 1

0 1 0 1 1 1

0 1 0 0 1 1

0 1 0 0 1 1

2
6666666664

3
7777777775

;

Mfa2g ¼

1 1 0 0 1 1

1 1 0 0 1 1

1 1 1 1 1 1

1 1 1 1 1 1

0 0 0 0 1 0

1 1 0 0 1 1

2
6666666664

3
7777777775

;

Mfa3g ¼

1 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

0 0 0 1 0 1

0 1 1 1 1 1

0 0 0 1 0 1

2
6666666664

3
7777777775

;

Mr
d ¼

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

0 1 1 1 0 1

1 1 1 1 1 1

0 0 1 0 0 1

2
6666666664

3
7777777775

;

Md
d ¼

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

0 0 0 0 1 0

1 1 1 1 1 1

2
6666666664

3
7777777775
:

By comparing matrices Mfa1g;Mfa2g;Mfa3g with Mr
d , we can find that

vectors of 1st, 2nd, 3rd, and 5th rows in matrices Mfa1g;Mfa2g;Mfa3g
are less than those in matrix Mr

d respectively but it is not not satis-
fied for 4th and 6th rows. So this ordered information system
doesn’t have 1st order possible distribution reduction. And the first
order possible distribution matrices are as follows:

FMrð1Þ
fa1g ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 1 1 1

0 0 0 0 0 0

0 1 0 0 1 1

2
66666666664

3
77777777775

;
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FMrð1Þ
fa2g ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0
1 1 0 0 1 1

2
666666664

3
777777775

;

FMrð1Þ
fa3g ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 1

2
666666664

3
777777775
:

Furthermore, 2nd order possible distribution matrices are

Mrð2Þ
fa1a2g ¼ FMrð1Þ

fa1g \ FMrð1Þ
fa2g ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 1 1 1
0 0 0 0 0 0
0 1 0 0 1 1

2
666666664

3
777777775

;

Mrð2Þ
fa1a3g ¼ FMrð1Þ

fa1g \ FMrð1Þ
fa3g ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

2
66666664

3
77777775

;

Mrð2Þ
fa2a3g ¼ FMrð1Þ

fa2g \ FMrð1Þ
fa3g ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

2
666666664

3
777777775
:

Therefore, we can see that Mrð2Þ
fa1a3g ¼ Mrð2Þ

fa2a3g, and all row vectors of

them are less than those of Mr
d respectively, by comparing

Mrð2Þ
fa1a2g;M

rð2Þ
fa1a3g;M

rð2Þ
fa2a3g and Mr

d . Hence, we can obtain all the second

order possible distribution reductions, which are {a1,a2},{a2,a3}.
From the above, we have

FMrð2Þ
fa1a3g ¼ FMrð2Þ

fa2a3g ¼

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2
666666664

3
777777775
:

Since k = 2 < 3 and k + 1 = 3, the algorithm is terminated.
Thus, all possible distribution reductions are {a1,a3}, {a2,a3} in

this example.
Similarly, by the above algorithm, we can have that there is only

one compatible distribution reduction {a2} in this inconsistent
ordered information system.

From this example, we can find that the results are same as
those calculated by discernibility matrices in Example 3.2. It can be
easily and intuitively concluded that the matrix computation
algorithm is not only valid but also easily operated for large-scale
information systems since matrix is a very useful and handy tool in
computing.

5. Experimental computing program and case study

Experimental computing program can be designed and carried
out so as to apply the matrix computation algorithm studied in this
paper more directly and applicable. The main design process of the
program will be introduced by the flow chart in this section and
cases are employed to verify the program. The algorithm can be ex-
plained and certified by the cases. The small-scale case will be cal-
culated manually by discernibility matrices to compare and verify
the results with those calculated by the program. The large-scale
case will be used to certified the effective and applicable of the
algorithm we discussed in this paper. From Algorithm 1 the above
section, the process of the program can be designed and listed in
the following Fig. 1: The flow chart of the program.

The small-scale example used in front sections is firstly calcu-
lated by the program and the results are same to those calculated
manually by discernibility matrices. In the following of this section,
the small-scale and large-scale cases will be illustrated and calcu-
lated. Results can explain and certify the matrix algorithm we dis-
cussed in this paper.

This experimental computing program is running on a personal
computer with the following hardware and software configuration.

Names Model Parameters
CPU Intel i5–2410 2.3 GHz
Memory Samsung DDR3 SDRAM 2 � 2 GB 1333 MHz
Hard disk West Data 640 GB
System Windows 7 32bit
Platform Matlab Leasehold

The following small-scale case is used to test and verify the
experimental computing program. The possible and compatible
distribution reductions will be calculated manually by discernibil-
ity matrices and the program. Results will be compared to verify
that the algorithm we studied in this paper is correct and effectivt.

Case 5.1. A small-scale inconsistent ordered information system is
presented in the following Table 4. Calculate possible and com-
patible distribution reductions of Table 4.

The condition classes and decision classes are listed, respec-
tively, as follows:

½x1��C ¼ fx1g; ½x2��C ¼ fx1; x2; x3; x4; x5; x6; x7; x8g;
½x3��C ¼ fx1; x3; x4; x5; x8g; ½x4��C ¼ fx1; x4; x5; x8g;
½x5��C ¼ fx5; x8g; ½x6��C ¼ fx6g;
½x7��C ¼ fx1; x3; x4; x5; x7; x8g; ½x8��C ¼ fx8gg:

D1 ¼ fx1; x2; x3; x4; x5; x6; x7; x8g ¼ ½x1��d ¼ ½x3��d ¼ ½x5��d ;

D2 ¼ fx2; x4; x6; x7; x8g ¼ ½x2��d ¼ ½x4��d ¼ ½x7��d ;

D3 ¼ fx6; x8g ¼ ½x6��d ¼ ½x8��d :

Distribution functions are the inception of computation and the
foundation to define distribution reductions. From Section 3, the
possible distribution function and compatible distribution function
can be calculated according to the definition and presented in the
following.

r�C ðx1Þ ¼ fD1g;
r�C ðx2Þ ¼ r�C ðx3Þ ¼ r�C ðx4Þ ¼ r�C ðx5Þ ¼ r�C ðx6Þ ¼ r�C ðx7Þ ¼ r�C ðx8Þ

¼ fD1;D2;D3g;
d�C ðx1Þ ¼ d�C ðx2Þ ¼ d�C ðx3Þ ¼ d�C ðx4Þ ¼ d�C ðx5Þ ¼ d�C ðx7Þ ¼ fD1g;
d�C ðx6Þ ¼ d�C ðx8Þ ¼ fD1;D2;D3g:
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Moreover, according to Definition 3.2, we can obtain that

D�r� ¼ fðx1; x2Þ; ðx1; x3Þ; ðx1; x4Þ; ðx1; x5Þ; ðx1; x6Þ; ðx1; x7Þ; ðx1; x8Þg;
D�d� ¼ fðx6; x1Þ; ðx6; x2Þ; ðx6; x3Þ; ðx6; x4Þ; ðx6; x5Þ; ðx6; x7Þ;
ðx8; x1Þ; ðx8; x2Þ; ðx8; x3Þ; ðx8; x4Þ; ðx8; x5Þ; ðx8; x7Þg:

The distribution discernibility matrices rely on D�r� and D�d�. Then,
according to what we have discussed in Section 3, the possible

and compatible distribution discernibility matrices of this inconsis-
tent ordered information system can be calculated from Definition
3.2. These two matrices are showed, respectively, in the following
Tables 5 and 6.

From the above two matrices, the discernibility formulas
FrP and FdP can be calculated. Furthermore, the possible and
compatible distribution reductions can be obtained.

Fr� ¼ ða1 _a2 _a3 _a4 _a5Þ ^ ða2 _a3 _a5Þ ^ ða2 _a3Þ ^ ða3 _a5Þ ^a2

¼ ða3 _a5Þ ^a2 ¼ ða2 ^a3Þ _ ða2 ^a5Þ;

Fd� ¼ ða1 _ a2 _ a3 _ a4 _ a5Þ ^ ða1 _ a2 _ a3 _ a4Þ
^ ða1 _ a3 _ a4 _ a5Þ ^ ða2 _ a4Þ ^ a2 ^ a3 ^ a4

¼ a2 ^ a3 ^ a4:

We calculate the distribution reduction by the experimental
computing program and the results are the same to the above ones
obtained by discernibility matrices. We acquire that {a2,a3},{a2,a5}
are possible distribution reductions and {a2,a3,a4} is the only com-
patible distribution reduction. The total operating time to compute
this case is 0.653156 s.

During the computing of the above case, we can conclude that
the algorithm we proposed in this paper is more easily computing
than the discernibility matrix method by computers. The only
numbers 0 and 1 in the matrix algorithm can be presented and
computed more easily and faster than the discernibility matrix
method. This is obvious from the binary data representation in
computer internal operating.

In the next case, we employ a large-scale ordered information
system to verify the effective of the algorithm we studied in this
paper.

Case 5.2. An inconsistent ordered information system on animals
sleep is presented in Table 7.

The information system is denoted by I�d ¼ ðU;C [ fdg;V ; f Þ,
where C is the condition attribute set and d is the single dominance
decision. There are 42 objects which represent the species of
animals and 10 attributes with numerical values in the ordered
information system. The animals’ names are showed in Table 7 and
the interpretations of the attributes will be listed following. The

Fig. 1. The flow chart of the program.

Table 4
I�d : An ordered information system with decision d.

(U,C [ {d}) a1 a2 a3 a4 a5 d

x1 2 3 3 2 3 0
x2 1 1 1 1 1 1
x3 2 2 1 2 2 0
x4 2 2 2 2 2 1
x5 3 2 2 3 3 0
x6 2 3 2 3 1 2
x7 1 1 1 1 2 1
x8 3 2 3 3 3 2

Table 5
Possible distribution discernibility matrix Mr� of Table 4.

Dr� ðxi; xjÞ x1 x2 x3 x4 x5 x6 x7 x8

x1 C C C C C C C C
x2 C C C C C C C C
x3 x2, x3, x5 C C C C C C C
x4 x2, x3, x5 C C C C C C C
x5 x2, x3 C C C C C C C
x6 x3, x5 C C C C C C C
x7 C C C C C C C C
x8 x2 C C C C C C C

Table 6
Compatible distribution discernibility matrix Md� of Table 4.

Dr� ðxi; xjÞ x1 x2 x3 x4 x5 x6 x7 x8

x1 C C C C C x4 C x1, x4

x2 C C C C C x1, x2, x3, x4 C C
x3 C C C C C x2, x3, x4 C x1, x3, x4, x5

x4 C C C C C x2, x4 C x1, x3, x4, x5

x5 C C C C C x2 C x3

x6 C C C C C C C C
x7 C C C C C x1, x2, x3, x4 C C
x8 C C C C C C C C
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interpretations and the units of attributes are represented as
follows:

a1—Bodyweight in kg a6—Maximum life span
(years)

a2—Brain weight in g a7—Gestation time
(days)

a3—Show wave (‘‘non-dreaming’’)
sleep (hrs/day)

a8—Predation index
(1–5)

a4—Paradoxical (‘‘dreaming’’) sleep
(hrs/day)

a9—Sleep exposure
index (1–5)

a5—Total sleep (hrs/day) d—Overall danger
index (1–5)

By the experimental computing program, the possible and
compatible distribution reductions can be calculated and they
are represented in the following. The operating time to compute
this case is 11.529617 seconds.

The possible distribution reductions are {x3,x4,x6,x7} and
{x4,x5,x6,x7}.

The compatible distribution reductions are {x6,x8,x9} and
{x1,x2,x8,x9}.

Denote one of the reductions by B. Then, the distribution
reductions can be verified by computing the possible distribution
functions r�C ðxÞ;r

�
B ðxÞ and the compatible distribution functions

d�C ðxÞ; d
�
B ðxÞ. There are 42 condition classes and 5 decision classes in

this ordered information system. Therefore, the distribution func-
tions can be calculated by computers and the results are presented
in the following Table 8.

The subsets in Table 8 are, respectively, B1 = {x3,x4,x6,x7},
B2 = {x4,x5,x6,x7}, B3 = {x6,x8,x9} and B4 = {x1,x2,x8,x9}. From
Table 8, one can compare the distribution functions and obtain
that B1,B2 are sets keep possible distribution functions invariant
and B3, B4 are sets keep compatible distribution functions
invariant. That is, for any xi 2 U;r�B1

ðxiÞ ¼ r�C ðxiÞ;r�B2
ðxiÞ ¼

r�C ðxiÞ; d�B3
ðxiÞ ¼ d�C ðxiÞ, and d�B4

ðxiÞ ¼ d�C ðxiÞ. Furthermore, we can
conclude that all proper subset of these sets, correspondingly, are
not possible and compatible distribution consistent sets. Hence,
B1, B2 are possible distribution reductions and B3, B4 are
compatible distribution reductions. The verifying on the results
is completed.

By the experimental computing program, we can control the
codes to output the possible distribution matrices and the com-
patible distribution matrices. From the output results, we can
obtain that FMrðjB1 jÞ

B1
¼ 0; FMrðjB2 jÞ

B2
¼ 0; FMdðjB3 jÞ

B3
¼ 0 and FMdðjB4 jÞ

B4
¼ 0.

Thus, the algorithm presented in the last section is correct and
effective.

The computing time of the algorithm to different information
systems may be different. And the time relies on the scale of the
information system and how to deal with the matrices with only 0
and 1, sometimes with large amount of 0 in this algorithm.

Table 7
I�d : An inconsistent ordered information system on animals sleep.

(U,C [ {d}) a1 a2 a3 a4 a5 a6 a7 a8 a9 d

x1: African giant pouched rat 1 6.6 6.3 2 8.3 4.5 42 3 1 3
x2: Asian elephant 2547 4603 2.1 1.8 3.9 69 624 3 5 4
x3: Baboon 10.55 179.5 9.1 0.7 9.8 27 180 4 4 4
x4: Big brown bat 0.023 0.3 15.8 3.9 19.7 19 35 1 1 1
x5: Brazilian tapir 160 169 5.2 1 6.2 30.4 392 4 5 4
x6: Cat 3.3 25.6 10.9 3.6 14.5 28 63 1 2 1
x7: Chimpanzee 52.16 440 8.3 1.4 9.7 50 230 1 1 1
x8: Chinchilla 0.425 6.4 11 1.5 12.5 7 112 5 4 4
x9: Cow 465 423 3.2 0.7 3.9 30 281 5 5 5
x10: Eastern American mole 0.075 1.2 6.3 2.1 8.4 3.5 42 1 1 1
x11: Echidna 3 25 8.6 0 8.6 50 28 2 2 2
x12: European hedgehog 0.785 3.5 6.6 4.1 10.7 6 42 2 2 2
x13: Galago 0.2 5 9.5 1.2 10.7 10.4 120 2 2 2
x14: Goat 27.66 115 3.3 0.5 3.8 20 148 5 5 5
x15: Golden hamster 0.12 1 11 3.4 14.4 3.9 16 3 1 2
x16: Gray seal 85 325 4.7 1.5 6.2 41 310 1 3 1
x17: Ground squirrel 0.101 4 10.4 3.4 13.8 9 28 5 1 3
x18: Guinea pig 1.04 5.5 7.4 0.8 8.2 7.6 68 5 3 4
x19: Horse 521 655 2.1 0.8 2.9 46 336 5 5 5
x20: Lesser short-tailed shrew 0.005 0.14 7.7 1.4 9.1 2.6 21.5 5 2 4
x21: Little brown bat 0.01 0.25 17.9 2 19.9 24 50 1 1 1
x22: Man 62 1320 6.1 1.9 8 100 267 1 1 1
x23: Mouse 0.023 0.4 11.9 1.3 13.2 3.2 19 4 1 3
x24: Musk shrew 0.048 0.33 10.8 2 12.8 2 30 4 1 3
x25: N. American opossum 1.7 6.3 13.8 5.6 19.4 5 12 2 1 1
x26: Nine-banded armadillo 3.5 10.8 14.3 3.1 17.4 6.5 120 2 1 1
x27: Owl monkey 0.48 15.5 15.2 1.8 17 12 140 2 2 2
x28: Patas monkey 10 115 10 0.9 10.9 20.2 170 4 4 4
x29: Phanlanger 1.62 11.4 11.9 1.8 13.7 13 17 2 1 2
x30: Pig 192 180 6.5 1.9 8.4 27 115 4 4 4
x31: Rabbit 2.5 12.1 7.5 0.9 8.4 18 31 5 5 5
x32: Rat 0.28 1.9 10.6 2.6 13.2 4.7 21 3 1 3
x33: Red fox 4.235 50.4 7.4 2.4 9.8 9.8 52 1 1 1
x34: Rhesus monkey 6.8 179 8.4 1.2 9.6 29 164 2 3 2
x35: Rock hyrax (Hetero.b) 0.75 12.3 5.7 0.9 6.6 7 225 2 2 2
x36: Rock hyrax (Procavia hab) 3.6 21 4.9 0.5 5.4 6 225 3 2 3
x37: Sheep 55.5 175 3.2 0.6 3.8 20 151 5 5 5
x38: Tenrec 0.9 2.6 11 2.3 13.3 4.5 60 2 1 2
x39: Tree hyrax 2 12.3 4.9 0.5 5.4 7.5 200 3 1 3
x40: Tree shrew 0.104 2.5 13.2 2.6 15.8 2.3 46 3 2 2
x41: Vervet 4.19 58 9.7 0.6 10.3 24 210 4 3 4
x42: Water opossum 3.5 3.9 12.8 6.6 19.4 3 14 2 1 1
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Probable mathematical and computing method can reduce com-
puting time. Then, fast computing programs can be designed and
programmed further.

In this section, experimental computing program is designed
and the flow chart is presented. Cases are employed to interpret
the algorithm we proposed in this paper. A small-scale case is

Table 8
Distribution functions of animals sleep ordered information system.

r�C ðxiÞ d�C ðxiÞ r�B1
ðxiÞ d�B1

ðxiÞ r�B2
ðxiÞ d�B2

ðxiÞ r�B3
ðxiÞ d�B3

ðxiÞ r�B4
ðxiÞ d�B4

ðxiÞ

{D1,D3,D5} {D1,D3,D5} {D1,D3,D5} {D3} {D1,D3,D5} {D3} {D1,D2,D3,D4,D5} {D1,D3,D5} {D1,D2,D3,D4,D5} {D1,D3,D5}
{D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D5}
{D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D4,D5} {D1, D2,D3,D5} {D1,D2,D3,D4,D5} {D1,D2,D3, D5}
{D3} {D3} {D3} {D3} {D3} {D3} {D1,D2,D3,D4,D5} {D3} {D1,

D2,D3,D4,D5}
{D3}

{D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2, D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2,D3,D4,D5} {D1, D2,D3,D5} {D1,D2,D3,D4,D5} {D1,D2,D3, D5}
{D3} {D3} {D3} {D3} {D3} {D3} {D1,D2,D3,D4,D5} {D3} {D1,

D2,D3,D4,D5}
{D3}

{D3} {D3} {D3} {D3} {D3} {D3} {D1,D2,D3,D5} {D3} {D1,D2,
D3,D4,D5}

{D3}

{D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2, D3,D5} {D3,D5} {D1,D2,D3,D5} {D3, D5} {D1,D2,D3,D4,D5} {D1,D2,D3,D5} {D1,D2,D3,D4,D5} {D1,D2,D3,D5}
{D1,D2,D3,D4,D5} {D1,D2,D3,D4,D5} {D1,D2,D3,D4,D5} {D3} {D1,D2,D3,D4,

D5}
{D3} {D1,D2,D3,D4,D5} {D1,D2,

D3,D4,D5}
{D1,D2,D3,D4,D5} {D1,D2,D3,

D4,D5}
{D3,D5} {D3} {D3,D5} {D3} {D3,D5} {D3} {D1,D2,D3,D4,D5} {D3} {D1,D2,D3,D4,D5} {D3}
{D3,D5} {D3,D5} {D3,D5} {D3, D5} {D3,D5} {D3} {D1,D2,D3,D5} {D3,D5} {D1,D2,D3,D4,D5} {D3,D5}
{D3,D5} {D3,D5} {D3,D5} {D3, D5} {D3,D5} {D3,D5} {D1,D2,D3,D4,

D5}
{D3,D5} {D1,D2,D3,D4,D5} {D3, D5}

{D3,D5} {D3,D5} {D3,D5} {D3, D5} {D3,D5} {D3,D5} {D1,D2,D3,D4,
D5}

{D3,D5} {D1,D2,D3,D4,D5} {D3, D5}

{D1,D2,D3,D4,D5} {D1,D2,D3,D4,D5} {D1,D2,D3,D4,D5} {D3} {D1,D2,D3,D4,
D5}

{D3} {D1,D2,D3,D4,D5} {D1,D2,
D3,D4,D5}

{D1,D2,D3,D4,D5} {D1,D2,D3,
D4,D5}

{D3,D5} {D3,D5} {D3,D5} {D3} {D3,D5} {D3} {D1,D2,D3,D4,D5} {D3,D5} {D1,D2,D3,D4,D5} {D3,D5}
{D3} {D3} {D3} {D3} {D3} {D3} {D1,D2,D3,D4,D5} {D3} {D1,

D2,D3,D4,D5}
{D3}

{D1,D3,D5} {D1,D3,D5} {D1,D3,D5} {D3} {D1,D3,D5} {D3} {D1,D2,D3,
D4,D5}

{D1,D3,D5} {D1,D2,D3,D4,D5} {D1,D3,D5}

{D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2, D3,D5} {D3} {D1,D2,D3,D5} {D3} {D1,D2,D3,D4,D5} {D1,D2,D3,D5} {D1,
D2,D3,D4,D5}

{D1,D2,D3,D5}

{D1,D2,D3,D4,D5} {D1,D2,D3,D4,D5} {D1,D2,D3,D4,D5} {D1,D2,D3,D5} {D1,
D2,D3,D4,D5}

{D1,D2,D3,D5} {D1,D2,D3,
D4,D5}

{D1,D2,D3,D4,D5} {D1,D2,D3,D4,
D5}

{D1,D2,D3,D4,D5}

{D1,D2,D3,D5} {D1,D2,D3,D5} {D1,D2, D3,D5} {D3} {D1,D2,D3,D5} {D3} {D1,D2,D3,D4,D5} {D1,D2,D3,D5} {D1,
D2,D3,D4,D5}

{D1,D2,D3,D5}

{D3} {D3} {D3} {D3} {D3} {D3} {D1,D2,D3,D4,D5} {D3} {D1,
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calculated manually by discernibility matrices and the experimen-
tal computing program. Results are compared to verify the
correction of the algorithm. A large-scale case is calculated by
the program and the results are verified through the definitions of
possible and compatible distribution reductions. Through these
discussion, the algorithm is certified by examples and cases. It is a
correct and effective algorithm to acquire possible and compatible
distribution reductions in inconsistent ordered information
systems.

6. Conclusions

To acquire brief decision rules from inconsistent information
systems, knowledge reductions are needed. Many types of attri-
bute reductions have been proposed based on the Rough Set The-
ory, each of them aimed at a different requirement. It is well
known that most of information systems are based on dominance
relations because of various factors in practise. Therefore, it is
meaningful to study the attribute reductions in inconsistent or-
dered information systems (IOIS). In this paper, possible distribu-
tion reduction and compatible distribution reduction were
proposed in IOIS. The properties and relationships between them
were further discussed. The dominance matrix and decision distri-
bution matrix were proposed in IOIS. Algorithm of matrix compu-
tation to acquire possible and compatible distribution reductions
were introduced and studied, from which we could provide an-
other approach to attributes reductions in IOIS except discernibil-
ity matrix method. An experimental computing program was
designed and the flow chart was pictured in this paper. Examples
and cases were employed to help interpret and understand what
we have studied.

Though ordered information systems we discussed are inconsis-
tent, they are all complete. Since incomplete information systems
are more complicated than complete information systems, further
research of attribute reductions for different requirements in
incomplete ordered information systems are needed. In further re-
search, we will develop the proposed approaches to more general-
ized and more complicated ordered information systems such as
incomplete ordered information systems and fuzzy ordered infor-
mation systems.
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