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In practice, some of information systems are based on dominance relations, and values of decision
attribute are fuzzy. So, it is meaningful to study attribute reductions in ordered decision tables
with fuzzy decision. In this paper, upper and lower approximation reductions are proposed in
this kind of complicated decision table, respectively. Some important properties are discussed.
The judgement theorems and discernibility matrices associated with two reductions are obtained
from which the theory of attribute reductions is provided in ordered decision tables with fuzzy
decision. Moreover, rough set approach to upper and lower approximation reductions is presented
in ordered decision tables with fuzzy decision as well. An example illustrates the validity of the
approach, and results show that it is an efficient tool for knowledge discovery in ordered decision
tables with fuzzy decision.

1. Introduction

Rough set theory, which was first proposed by Pawlak in the early 1980s [1], can describe
knowledge via set-theoretic analysis based on equivalence classification for the universe of
discourse. It provides a theoretical foundation for inference reasoning about data analysis
and has extensive applications in areas of artificial intelligence and knowledge acquisition.

A primary use of rough set theory is to reduce the number of attributes in databases
thereby improving the performance of applications in a number of aspects including speed,
storage, and accuracy. For a data set with discrete attribute values, this can be done by
reducing the number of redundant attributes and find a subset of the original attributes
that are the most informative. As is well known, an information system may usually has
more than one reduct. It means that the set of rules derived from knowledge reduction is not
unique. In practice, it is always hoped to obtain the set of the most concise rules. Therefore,
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people have been attempting to find theminimal reduct of information systems, whichmeans
that the number of attributes contained in the reduction is minimal. Unfortunately, it has been
proven that finding the minimal reduct of an information system is an NP-hard problem.

Recently, some new theories and reductionmethods have been developed.Many types
of knowledge reduction have been proposed in the area of rough sets [2–8]. Possible rules
and reducts have been proposed as a way to deal with inconsistence in an inconsistent
decision table [9]. Approximation rules [10] are also used as an alternative to possible rules.
On the other hand, generalized decision rules and reducts [9] provide a decision with more
flexible selection of decision behavior. In [11], the notions of α-reduct and α-relative reduct for
decision tables are defined. The α-reduct allows occurrence of additional inconsistency that
is controlled by means of a parameter. In [12], Slezak presented a new concept of attribute
reduction that keeps the class membership distribution unchanging for all objects in the
information system. It was shown by Slezak [13] that the knowledge reduction preserving
the membership distribution is equivalent to the knowledge reduction preserving the value
of generalized inference measure function. A generalized knowledge reduction was also
introduced in [13] that allows the value of generalized inference measure function after
the attribute reduction to be different from the original one by user-specified threshold. By
eliminating the rigorous conditions required by distribution reduct, maximum distribution
reduct was introduced by Zhang et al. in [14].

Partition or equivalence (indiscernibility relation) is an important and primitive
concept in Pawlak’s original rough set theory. However, partition or equivalence relation
is still restrictive for many applications. To overcome this limitation, classical rough sets
have been extended to several interesting and meaningful general models in recent years by
proposing other binary relations, like tolerance relations [15], neighborhood operators [16],
and others [17–24]. However, the original rough set theory does not consider attributes with
preference ordered domain, that is, criteria. Particularly, in many real situations, we are often
faced with the problems in which the ordering of properties of the considered attributes plays
a crucial role. One such type of problem is the ordering of objects. For this reason, Greco et
al. [25–31] proposed an extension rough set theory, called the dominance-based rough set
approach (DRSA), to take into account the ordering properties of criteria. This innovation
is mainly based on substitution of the indiscernibility relation by a dominance relation. In
DRSA, condition attributes are criteria and classes are preference ordered; the knowledge
approximated is a collection of upward, and downward unions of classes and the dominance
classed are sets of objects defined by using a dominance relation. In recent years, several
studies have been made about properties and algorithmic implementations of DRSA [23, 32–
35].

Nevertheless, only a limited number of methods using DRSA to acquire knowledge
from in inconsistent ordered information systems have been proposed. Pioneering work
on inconsistent ordered information systems with the DRSA has been proposed by Greco,
Matarazzo, and Slowinski [1, 4–6, 17, 18], but they did not clearly point out the semantic
explanation of unknown values. Shao and Zhang [36] further proposed an extension of
the dominance relation in the IOIS. Yao [37] introduced the notion of high-order decision
rules. While a standard decision rule expresses connections between attribute values of the
same object, a high-order decision rule expresses connections of different objects in terms of
their attribute values. Various types of relationships can be used, such as ordering relations,
closeness relations, similarity relations, and neighborhood systems on attribute values. The
introduction of semantics information on attribute values leads to information tables with
added semantics. Depending on the decision rules to bemined, one can transform the original
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table into another information table. Yao et al. [38] provided a granular computing-based
interpretation of rules representing two levels of knowledge, which was done by adopting
and adapting the decision logic language for granular computing. The language provided a
formal method for describing and interpreting conditions in rules as granules and rules as
relationships between granules. As examples, they examined rules in the standard rough set
analysis and dominance-based rough set analysis. For the modeling of ordering problems,
Sai et al. [39] generalized the notion of information tables to ordered information tables by
adding order relations on attribute values. For mining ordering rules, they first transformed
an ordered information table into binary information.

Despite this, these contributions did not mention the underlying concept of attribute
reduction in ordered decision table with fuzzy decision and only proposed an approach to
attribute reduction in consistent ordered information systems. Therefore, the purpose of this
paper is to study approaches to attribute reductions in ordered decision tables with fuzzy
decision.

The rest of this paper is organized as follows. To facilitate our discussion, some
preliminary concepts are briefly recalled in Section 2. In Section 3, the concept of ordered
decision table with fuzzy decision are introduced, and some important properties are
discussed. In Section 4, upper approximation reduction and lower approximation are
proposed for the complicated decision table. Moreover, the judgement theorems and
discernibility matrices associated with two reductions are obtained, from which we can
provide an approach to attributes reductions in ordered decision tables with fuzzy decision.
In Section 5, the practical approaches to upper and lower approximation reduction are
provided in ordered decision tables with fuzzy decision. Finally, we conclude the paper with
a summary and outlook for further research.

2. Preliminaries

The following recalls necessary concepts and preliminaries required in the sequel of our
work. Detailed description of the theory can be found in the source papers [25–31, 34]. A
description has also been made in [14].

The notion of information system (sometimes called data tables, attribute-value
systems, knowledge representation systems, etc.) provides a convenient tool for the
representation of objects in terms of their attribute values.

An information system is an quadruple I = (U,AT, V, f), where

(i) U = {u1, u2, . . . , un} is a nonempty finite set of objects,

(ii) AT = {a1, a2, . . . , ap} is a nonempty finite set of attributes,

(iii) V =
⋃

a∈AT Va and Va is a domain of attribute a,

(iv) f : U × AT → V is a function such that f(x, a) ∈ Va, for every a ∈ AT, u ∈ U,
called an information function.

An information system with decision, which is also called to a decision table (DT), is a
special case of an information system I = (U,C ∪ {d}, V, f) and C ∩ {d} = φ, where set C and
{d} be condition attributes set and the decision attribute set, respectively.

In an information system, if the domain of an attribute is ordered according to a
decreasing or increasing preference, then the attribute is a criterion.
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An information system is called an ordered information system (OIS) if all condition
attributes are criteria. Moreover, a decision table (ODT) is called an ordered decision table if
all attributes are criteria (See [25–31]).

In general, we denote an ordered information system by I� = (U,AT, V, f) and denote
an ordered decision table by T�

d
= (U,C ∪ {d}, V, f).

Assumed that the domain of a criterion a ∈ AT is complete preordered by an
outranking relation �a, then u�av means that u is at least as good as v with respect to
criterion a for a ∈ AT, u, v ∈ U. And we can say that u dominates v. In the following, without
any loss of generality, we consider criterions having a numerical domain; that is, Va ⊆ R
(R denotes the set of real numbers). Being of type gain; that is, u�a v ⇔ f(u, a) ≥ f(v, a)
(according to increasing preference) or u�a v ⇔ f(u, a) ≤ f(v, a) (according to decreasing
preference).

Without any loss of generality and for simplicity, in the following, we only consider
condition attributes with increasing preference.

For a subset of attributes B ⊆ AT , we define u�B v ⇔ for all a ∈ B, f(u, a) ≥ f(v, a),
and that is to say that u dominates v with respect to all attributes in B.

For an ordered information system with decision, we say that u dominates v with
respect to B ⊆ C if u�B v, and denote by uR�

B v. That is

R�
B = {(u, v) ∈ U ×U | u�Bv}

=
{
(u, v) ∈ U ×U | f(u, a) ≥ f(v, a), ∀a ∈ B

}
,

(2.1)

R�
B is called dominance relation of ordered information system I�

d .
If we denote

[ui]
�
B =

{
uj ∈ U |

(
uj , ui

)
∈ R�

B

}

=
{
uj ∈ U | f

(
uj , a

)
≥ f(ui, a), ∀a ∈ B

}
,

(2.2)

then the following properties of a dominance relation are trivial by above definition.
Let R�

A be a dominance relation. The following hold ([25–31]):

(i) R�
A is reflexive, transitive, but not symmetric, so it is not an equivalence relation

(ii) if B ⊆ A, then R�
A ⊆ R�

B ,

(iii) if B ⊆ A, then [ui]
�
A ⊆ [ui]

�
B ,

(iv) if uj ∈ [ui]
�
A , then [uj]

�
A ⊆ [ui]

�
A and [ui]

�
A = ∪{[uj]

�
A |uj ∈ [ui]

�
A},

(v) [uj]
�
A = [ui]

�
A if and only if f(ui, a) = f(uj, a) for all a ∈ A,

(vi) |[ui]
�
B | ≥ 1 for any ui ∈ U,

(vii) U/R�
B constitute a covering ofU, that is, for every u ∈ Uwe have that [u]�B /=φ and

⋃
u∈U[u]

�
B = U,

where | · | denotes cardinality of the set.
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Table 1: A fuzzy decision table about investment projects T�
d̃
.

U a1 a2 a3 d

u1 F M F S
u2 N M M NS
u3 F F M VS
u4 M F N VS
u5 N N M NS
u6 N M N S
F: far; N: near; M: medium; S: suitable; Vs: very suitable; Ns: not suitable.

For any subset X ⊆ U and A ⊆ AT in I�, the lower and upper approximation of X
with respect to a dominance relation R�

A could be defined as following (see [25–31]):

R�
A(X) =

{
u ∈ U | [u]�A ⊆ X

}
,

R�
A(X) =

{
u ∈ U | [u]�A ∩X/=φ

}
.

(2.3)

Unlike classical rough set theory, one can find easily that R�
A(X) =

⋃
{[u]�A | [u]�A ⊆ X}

and R�
A(X) =

⋃
{[u]�A | [u]�A ∩X /=φ} do not hold.

3. Ordered Decision Table with Fuzzy Decision

Traditionally, decision tables (DTs) are crisp, indicating that the conditions are specified in
an exact manner. In many real worlds, crisp decision tables may be stringent. A potential
problem of such DTs is that any measurement error is not taken into account. Fuzzy decision
tables (FDTs) offer a solution to this problem. A fuzzy decision table (FDT) is an extended
version of a crisp DT in order to deal with imprecise and vague decision situations [40, 41].
The extension amounts to the introduction of fuzzy sets in the condition and decision
attributes sets of the crisp DT; the crisp condition and decision states are replaced with fuzzy
conditions and decisions. A membership function need be given, so the decision maker can
judge the extent to which a particular attribute level meets a particular condition by using the
membership function.

A familiar example of a fuzzy decision table is shown in order to illustrate the meaning
in Table 1. This table is a fuzzy decision table which describes the investment program of
a real estate company, where U = {u1, u2, . . . , u6} is the set of projects considered by the
company, C = {a1, a2, a3} is the set of condition attributes, and d is a decision attribute,
which means the suitability of the project. Moreover, a1, a2, and a3 stand for the distance
between site of the project andHospital, School, and Central Business District, respectively. And
interpretations of values of condition and objective attributes are represented as follows.

It is obvious that condition and decision attributes are fuzzy environment in the DT of
Table 1, that is to say that the DT is a fuzzy decision table.

In this contribution, we focus on the DT, in which values of contribution attributes
set is crisp and value of decision attribute set is fuzzy. Moreover, we will consider the
increasing preference of condition and decision attributes. In other words, we will discuss



6 Mathematical Problems in Engineering

approximation reduction of an ordered decision table with fuzzy decision based on the rough
set theory.

Definition 3.1. Let T�
d = (U,C∪{d}, V, f) be an ordered decision table. If the value of decision

attribute is fuzzy, in other words, f(x, d) ∈ [0, 1] for all u ∈ U, then the ordered decision table
is called ordered decision table with fuzzy decision.

From above definition, one can find easily that the set of decision attribute is a fuzzy set
onU, which reflects the degree of fuzzy decision in ordered decision table. So, these systems
are different from the systems in which a decision is numeric value. For convenience, we
denote set of decision attribute by d̃ and denote an ordered decision table with fuzzy decision
byT�

d̃
. Thus, that is to say d̃(x) = f(x, d) for all u ∈ U in an ordered decision table with fuzzy

decision T�
d̃
.

Let T�
d̃
= (U,C ∪ {d}, V, f) be an ordered decision table and B ⊆ C, then the lower and

lower approximation sets of d̃ with respect to B, which are fuzzy sets, are denoted by R�
B (d̃)

and R�
B (d̃), respectively. And their membership functions are defined as follows:

R�
B

(
d̃
)
(ui) = min

{
d̃
(
uj

)
| uj ∈ [ui]

�
B

}
,

R�
B

(
d̃
)
(ui) = max

{
d̃
(
uj

)
| uj ∈ [ui]

�
B

}
.

(3.1)

It is obvious that these two approximation sets are fuzzy set.
Moreover, by the above definition and rough set theory, one can easily consider that

the upper and lower approximation of d̃ have the following properties in an ordered decision
table with fuzzy decision.

Proposition 3.2. Let T�
d̃
= (U,C ∪ {d}, V, f) be an ordered decision table with fuzzy decision, then

the following propositions hold:

(i) if B ⊆ C, then R�
C (d̃)(u) ≤ R�

B (d̃)(u),

(ii) if B ⊆ C, then R�
B (d̃)(u) ≤ R�

C (d̃)(u),

(iii) if uj ∈ [ui]
�
B , then R�

B (d̃)(uj) ≤ R�
B (d̃)(ui), where ui, uj ∈ U and B ⊆ C,

(iv) if uj ∈ [ui]
�
B , then R�

B (d̃)(ui) ≤ R�
B (d̃)(uj), where ui, uj ∈ U and B ⊆ C.

Example 3.3. We still consider the fuzzy DT in Table 1. To depict the degree of decision
attribute, we take the values as Table 2 according to opinions of some experts.

Naturally, the increasing preference of condition attribute ai is

N�ai M�ai F. (3.2)
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Table 2: An ordered DT with fuzzy decision about investment projects T�
d̃
.

U a1 a2 a3 d

u1 F M F 0.5
u2 N M M 0.3
u3 F F M 0.7
u4 M F N 0.9
u5 N N M 0.1
u6 N M N 0.6

So, from the table, one can find that

[u1]
�
C = {u1, u2, u5, u6},

[u2]
�
C = {u2, u5, u6},

[u3]
�
C = {u2, u3, u4, u5, u6},

[u4]
�
C = {u4, u6},

[u5]
�
C = {u5},

[u6]
�
C = {u6}.

(3.3)

If take X = {u2, u3, u5}, then

R�
C (X) = {u5},

R�
C (X) = {u1, u2, u3, u5}.

(3.4)

Moreover, we can have that

R�
C

(
d̃
)
=

0.1
u1

+
0.1
u2

+
0.1
u3

+
0.6
u4

+
0.1
u5

+
0.6
u6

,

R�
C

(
d̃
)
=

0.6
u1

+
0.6
u2

+
0.9
u3

+
0.9
u4

+
0.1
u5

+
0.6
u6

.

(3.5)

4. Theory of Approximation Reduction of ODT with Fuzzy Decision

The approximation reduction proposed byMi et al. is an important attribute reduction, which
can be used to simplify an inconsistent classical decision table [4]. So far, however, there is not
any practical approach to attribute reduction in ordered decision tables with fuzzy decision.
In this section, we present the notions of a lower approximation reduction and an upper
approximation reduction in an ordered decision table with fuzzy decision and then deduce
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their some important properties, from which we introduce the theory of approximation
reductions to this complicated decision table.

Definition 4.1. Let T�
d̃

= (U,C ∪ {d}, V, f) be an ordered decision table with fuzzy decision
and B ⊆ C.

(i) If R�
B (d̃)(ui) = R�

C (d̃)(ui) for any ui ∈ U, then we say that B is upper approximation
consistent set of this information system. Moreover, if any proper subset of B is not
the upper approximation set, then B is called to one upper approximation reduction
of this information system.

(ii) If R�
B (d̃)(ui) = R�

C (d̃)(ui) for any ui ∈ U, then we say that B is lower approximation
consistent set of this information system. Moreover, if any proper subset of B is not
a lower approximation consistent set, then B is called to one lower approximation
reduction of this information system.

From above definition, one can find that upper and lower approximation consistent
sets preserve the upper and lower approximations of the fuzzy decision, respectively.

Example 4.2 (Continued from Example 3.3). Let us consider the upper and under approxima-
tion reductions of the ordered decision table with fuzzy decision in Table 2.

If take A = {a2, a3}, it can be easily checked that [ui]
�
A = [ui]

�
C , for ui ∈ U. Hence,

R�
A(d̃)(ui) = R�

C (d̃)(ui) and R�
A(d̃)(ui) = R�

C (d̃)(ui), that is to say that {a2, a3} is one upper
approximation consistent set, and it is also one under approximation consistent set.

Moreover, if take B = {a1, a2}, then we have

[u1]
�
B = {u1, u2, u5, u6},

[u2]
�
B = {u2, u5, u6},

[u3]
�
B = {u1, u2, u3, u4, u5, u6},

[u4]
�
B = {u2, u4, u5, u6},

[u5]
�
B = {u5},

[u6]
�
B = {u2, u5, u6},

R�
B

(
d̃
)
=

0.6
u1

+
0.6
u2

+
0.9
u3

+
0.9
u4

+
0.1
u5

+
0.6
u6

.

(4.1)

Hence, R�
B (d̃) = R�

C (d̃).
Thus, {a1, a2} is also one upper approximation consistent set of the system.
Moreover, we can examine that {a1} and {a3} are not the upper approximation

consistent sets by computing and {a2} is the upper approximation consistent set of the
system. Hence, we conclude that this decision table has unique upper approximation
reduction {a2}.
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Furthermore, if we take B′ = {a1, a3}, by computing, we have

[u1]
�
B′ = {u1, u2, u3, u4, u5, u6},

[u2]
�
B′ = {u2, u5, u6},

[u3]
�
B′ = {u2, u3, u4, u5, u6},

[u4]
�
B′ = {u4, u6},

[u5]
�
B′ = {u2, u5, u6},

[u6]
�
B′ = {u6},

R�
B′

(
d̃
)
=

0.1
u1

+
0.1
u2

+
0.1
u3

+
0.6
u4

+
0.1
u5

+
0.6
u6

.

(4.2)

Hence, R�
B′(d̃) = R�

C (d̃). Therefore, {a1, a3} is also another lower approximation consistent set
of the decision table. Moreover, we can find that {a3} is lower approximation consistent sets
by computing. Hence, we conclude that {a3} is unique lower approximation reduction of this
ordered decision table.

Detailed judgment theorems of upper approximation reductions will be proposed in
the following.

Theorem 4.3. Let T�
d̃

= (U,C ∪ {d}, V, f) be an ordered decision table with fuzzy decision and
B ⊆ C. Attribute set B is an upper approximation consistent set if and only if if ui, uj ∈ U such that

R�
C (d̃)(ui) < R�

C (d̃)(uj), then there must exist a ∈ B such that f(ui, a) > f(uj, a).

Proof. “⇒” Suppose that the conclusion does not holds, that is to say that if ui, uj ∈ U such

that R�
C (d̃)(ui) < R�

C (d̃)(uj), then f(ui, a) ≤ f(uj, a) for any a ∈ B. So, we can obtain uj ∈
[ui]

�
B , which implies that [uj]

�
B ⊆ [ui]

�
B . And by the upper approximation definition, we have

known that

R�
B

(
d̃
)
(ui) = max

{
d̃(u) | u ∈ [ui]

�
B

}
,

R�
B

(
d̃
)(

uj

)
= max

{
d̃(u) | u ∈

[
uj

]�
B

}
.

(4.3)

Therefore, one can get R�
B (d̃)(ui) ≥ R�

B (d̃)(uj).
On the other hand, B is an upper approximation consistent set, then we have that

R�
C

(
d̃
)(

uj

)
= R�

B

(
d̃
)(

uj

)
,

R�
C

(
d̃
)
(ui) = R�

B

(
d̃
)
(ui).

(4.4)

Hence, we can obtain R�
C (d̃)(ui) ≥ R�

C (d̃)(uj). Obviously, this is a contradiction.
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“⇐” Suppose that B is not an upper approximation consistent set, then there exist

certainly one ui0 ∈ U such that R�
C (d̃)(ui0)/=R�

B (d̃)(ui0). So, we have that R�
C (d̃)(ui0) <

R�
B (d̃)(ui0) according to Proposition 3.2.

Since R�
B (d̃)(ui0) = max{d̃(u) | u ∈ [ui0]

�
B }, we take uj0 ∈ [ui0]

�
B such that d̃(uj0) =

R�
B (d̃)(ui0) = max{d̃(u) | u ∈ [ui0]

�
B }. At the same time, we easily observe that uj0 ∈ [uj0]

�
C ,

then we can obtain max{d̃(u) | u ∈ [uj0]
�
C } ≥ d̃(uj0). That is to say R�

C (d̃)(uj0) ≥ d̃(uj0).
Therefore, from the above, the following inequality holds:

R�
C

(
d̃
)(

uj0

)
≥ d̃
(
uj0

)
= R�

B

(
d̃
)
(ui0) > R�

C

(
d̃
)
(ui0). (4.5)

Thus, there exist certainly a ∈ B such that f(ui0 , a) > f(uj0 , a), which is a contradiction
with uj0 ∈ [ui0]

�
B .

The theorem is proved.

In the following, judgment theorems of lower approximation reductions will be
presented.

Theorem 4.4. Let T�
d̃

= (U,C ∪ {d}, V, f) be an ordered decision table with fuzzy decision and
B ⊆ C. Attribute set B is a lower approximation consistent set if and only if if ui,uj ∈ U such that
R�

C (d̃)(ui) < R�
C (d̃)(uj), then there exist certainly a ∈ B such that f(ui, a) < f(uj, a).

Proof. “⇒” Suppose that the conclusion does not holds, that is to say that if ui, uj ∈ U such
that R�

C (d̃)(ui) < R�
C (d̃)(uj), then f(ui, a) ≥ f(uj, a) for any a ∈ B. So we can obtain ui ∈

[uj]
�
B , which implies that [ui]

�
B ⊆ [uj]

�
B . And, by the lower approximation definition, we

have known that

R�
B

(
d̃
)
(ui) = min

{
d̃(u) | u ∈ [ui]

�
B

}
,

R�
B

(
d̃
)(

uj

)
= min

{
d̃(u) | u ∈

[
uj

]�
B

}
.

(4.6)

Therefore, one can get R�
B (d̃)(ui) ≥ R�

B (d̃)(uj).
On the other hand, B is an lower approximation consistent set, then we have that

R�
C

(
d̃
)(

uj

)
= R�

B

(
d̃
)(

uj

)

R�
C

(
d̃
)
(ui) = R�

B

(
d̃
)
(ui).

(4.7)

Hence, we can obtain R�
C (d̃)(ui) ≥ R�

C (d̃)(uj). Obviously, this is a contradiction.
“⇐” Suppose that B is not an lower approximation consistent set, then there exist

certainly one ui0 ∈ U such that R�
C (d̃)(ui0)/=R�

B (d̃)(ui0). So we have that R�
C (d̃)(ui0) >

R�
B (d̃)(ui0) according to Proposition 3.2.
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Since R�
B (d̃)(ui0) = min{d̃(u) | u ∈ [ui0]

�
B }, we take uj0 ∈ [ui0]

�
B such that d̃(uj0) =

R�
B (d̃)(ui0) = min{d̃(u) | u ∈ [ui0]

�
B }. At the same time, we easily observe that uj0 ∈ [uj0]

�
C ,

then we can obtain min{d̃(u) | u ∈ [uj0]
�
C } ≤ d̃(uj0). That is to say R�

C (d̃)(uj0) ≤ d̃(uj0).
Therefore, from the above, the following inequality holds:

R�
C

(
d̃
)(

uj0

)
≤ d̃
(
uj0

)
= R�

B

(
d̃
)
(ui0) < R�

C

(
d̃
)
(ui0). (4.8)

Thus, there exist certainly a ∈ B such that f(ui0 , a) > f(uj0 , a), which is a contradiction
with uj0 ∈ [ui0]

�
B .

The theorem is proved.

Theorems 4.3 and 4.4 provide an approach to judge whether a subset of condition
attributes is a lower and upper approximation consistent set or not, respectively.

5. Approach to Approximation Reduction of ODT with Fuzzy Decision

In this section, we can further obtain practical approaches to upper and lower reductions in
ordered decision tables with fuzzy decision, and an illustrative example is also employed to
show their mechanisms. We first give the following notions.

Definition 5.1. Let T�
d̃

= (U,C ∪ {d}, V, f) be an ordered decision table with fuzzy decision
and B ⊆ C. If we denote, for xi, xj ∈ U,

UD∗
d̃
=
{
(
ui, uj

)
| R�

C

(
d̃
)
(ui) < R�

C

(
d̃
)(

uj

)
}

,

LD∗
d̃
=
{
(
ui, uj

)
| R�

C

(
d̃
)
(ui) < R�

C

(
d̃
)(

uj

)
}

,

UDd̃

(
xi, xj

)
=

⎧
⎨

⎩

{
a ∈ C | f(xi, a) > f

(
xj , a

)}
,
(
xi, xj

)
∈ UD∗

d̃
,

∅,
(
xi, xj

)
/∈ UD∗

d̃
,

LDd̃

(
xi, xj

)
=

⎧
⎨

⎩

{
a ∈ C | f(xi, a) < f

(
xj , a

)}
,
(
xi, xj

)
∈ LD∗

d̃
,

∅,
(
xi, xj

)
/∈ LD∗

d̃
,

UMd̃ =
(
uij

)
n×n,

LMd̃ =
(
vij

)
n×n,

(5.1)

where uij = UDd̃(xi, xj), vij = LDd̃(xi, xj), then UDd̃(xi, xj) and LDd̃(xi, xj) are said to
be upper and lower approximation discernibility attributes set between objects xi and xj ,
respectively. And matricesUMd̃ and LMd̃ are referred as to upper and lower approximation
discernibility matrix of the decision table T�

d̃
, respectively.
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Theorem 5.2. Let T�
d̃

= (U,C ∪ {d}, V, f) be an ordered decision table with fuzzy decision and
B ⊆ C. Subset B is upper approximation consistent set if and only if B ∩ UDd̃(ui, uj)/= ∅ for all
(ui, uj) ∈ UD∗

d̃
.

Proof. “⇒” From (ui, uj) ∈ UD∗
d̃
, we have R�

C (d̃)(ui) < R�
C (d̃)(uj). By Theorem 4.3, we can

know that there exist certainly a ∈ B such that f(ui, a) > f(uj, a). So, a ∈ UDd̃(ui, uj)
according to the above definition. Hence, B ∩UDd̃(ui, uj)(ui, uj)/= ∅.

“⇐” For (ui, uj) ∈ UD∗
d̃
, if B∩UDd̃(ui, uj)/= ∅, then there exist certainly a ∈ B such that

a ∈ UDd̃(ui, uj), which implies that f(ui, a) > f(uj, a). By Theorem 4.3, we can obtain that B
is an upper approximation consistent set of the decision table T�

d̃
.

Theorem 5.3. Let T�
d̃

= (U,C ∪ {d}, V, f) be an ordered decision table with fuzzy decision and
B ⊆ C. Subset B is lower approximation consistent set if and only if B ∩ LDd̃(ui, uj)/= ∅ for all
(ui, uj) ∈ LD∗

d̃
.

Proof. It is similar to Theorem 5.2.

Definition 5.4. LetT�
d̃
= (U,C∪{d}, V, f) be an ordered decision table with fuzzy decision and

UMd̃ and LMd̃ upper and lower approximation discernibility matrices of T�
d̃
, respectively.

If denote

UFd̃ = ∧
{
∨
{
a | a ∈ UDd̃

(
xi, xj

)}
, xi, xj ∈ U

}

= ∧
{
∨
{
a | a ∈ UDd̃

(
xi, xj

)}
,
(
xi, xj

)
∈ UD∗

d̃

}
,

LFd̃ = ∧
{
∨
{
a | a ∈ LDd̃

(
xi, xj

)}
, xi, xj ∈ U

}

= ∧
{
∨
{
a | a ∈ LDd̃

(
xi, xj

)}
,
(
xi, xj

)
∈ LD∗

d̃

}
,

(5.2)

thenUFd̃ and LFd̃ are called discernibility formulas of upper and lower approximation of the
decision table T�

d̃
, respectively.

Theorem 5.5. Let T�
d̃

= (U,C ∪ {d}, V, f) be an ordered decision table with fuzzy decision. The
minimal disjunctive normal form of discernibility formula of upper approximation is

UFd̃ =
p∨

k=1

(
qk∧

s=1

)

as. (5.3)

Denote UBk

d̃
= {as | s = 1, 2, . . . , qk}, then {UBk

d̃
| k = 1, 2, . . . , p} is just set of all upper

approximation reductions of T�
d̃
.

Proof. For any (ui, uj) ∈ UD∗
d̃
, by the definition of minimum alternative normal form, we

have that UBk

d̃
is upper approximation consistent set. If one element of UBk

d̃
is reduced in

UFd̃ = ∨p

k=1(UBk

d̃
), without loss of generality and the result denoted by UBk′

d̃
, then there
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Table 3: Upper approximation discernibility matrixUMd̃ of the ODT.

ui, uj u1 u2 u3 u4 u5 u6

u1 ∅ ∅ a2 a2 ∅ ∅
u2 ∅ ∅ a1, a2 a2 ∅ ∅
u3 ∅ ∅ ∅ ∅ ∅ ∅
u4 ∅ ∅ ∅ ∅ ∅ ∅
u5 a1, a2, a3 a2 a1, a2 a1, a2 ∅ a2

u6 ∅ ∅ a1, a2 a1, a2 ∅ ∅

Table 4: Lower approximation discernibility matrix UMd̃ of the ODT.

ui, uj u1 u2 u3 u4 u5 u6

u1 ∅ ∅ ∅ a1, a3 ∅ a1, a3

u2 ∅ ∅ ∅ a3 ∅ a3

u3 ∅ ∅ ∅ a1, a3 ∅ a1, a2, a3

u4 ∅ ∅ ∅ ∅ ∅ ∅
u5 ∅ ∅ ∅ a3 ∅ a3

u6 ∅ ∅ ∅ ∅ ∅ ∅

exist certainly (ui0 , uj0) ∈ UD∗
d̃
such that UBk′

d̃
∩ UDd̃(ui0 , uj0) = ∅. So, UBk′

d̃
is not an upper

approximation consistent set. So, UBk

d̃
is an upper approximation reduction of the ordered

decision table T�
d̃
.

On the other hand, we have known that the discernibility formula of upper
approximation includes all UDd̃(ui, uj). Thus, there is not other upper approximation
reduction besides of UBk

d̃
.

The proof is completed.

Theorem 5.6. Let T�
d̃

= (U,C ∪ {d}, V, f) be an ordered decision table with fuzzy decision. The
minimal disjunctive normal form of discernibility formula of lower approximation is

LFd̃ =
p∨

k=1

(
qk∧

s=1

)

a′
s. (5.4)

Denote LBk

d̃
= {a′

s | s = 1, 2, . . . , qk}, then {LBk

d̃
| k = 1, 2, . . . , p} is just set of all lower

approximation reductions of T�
d̃
.

Proof. It is similar to Theorem 5.5.

Example 5.7 (Continued from Example 3.3). Compute the upper approximation reduction
and lower approximation reduction of the ordered decision table with fuzzy decision in
Table 2.

By computing, we can easily obtain the upper and lower approximation discernibility
matrices in Tables 3 and 4.
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Therefore, by Theorems 5.5 and 5.6, we have

UFd̃ = (a1 ∨ a2 ∨ a3) ∧ (a1 ∨ a2) ∧ a2 = a2,

LFd̃ = (a1 ∨ a2 ∨ a3) ∧ (a1 ∨ a3) ∧ a3 = a3.
(5.5)

Thus, we can conclude that {a2} is the unique upper approximation reduction and
{a3} is the unique lower approximation reduction of the ordered decision table with fuzzy
decision, which accord with the result of Example 4.2.

Remark 5.8. By the example, one can easily find that {a2} is the upper approximation
consistent set, but it is not a lower approximation consistent set, and {a3} is the lower
approximation consistent set, but it is not a upper approximation consistent set. Hence,
there is no static relationship between upper approximation consistent sets and lower
approximation consistent set.

6. Conclusions

Attributes reduction, as one research problem, has played an important role in rough set
theory. Many types of attribute reductions have been proposed based on the rough set theory,
each of them aimed at a different requirement. In practise, some of information systems
are based on dominance relations, and values of decision attribute are fuzzy. Therefore,
it is meaningful to study the attribute reductions in ordered decision table with fuzzy
decision. In this paper, upper approximation reduction and lower approximation reduction
were proposed for this kind of complicated decision table. Some important properties
were discussed. The judgement theorems and discernibility matrices associated with the
two reductions have been obtained, from which we can provide an approach to attribute
reductions in ordered decision tables with fuzzy decision. Then, the practical approaches to
upper and lower approximation reduction in ordered decision tables with fuzzy decision
have been provided as well. Finally, an illustrative example has been employed to explain
the mechanism of this method.

Though ordered decision table with fuzzy decision are discussed here, they are all
complete. Because incomplete decision table are more complicated than complete one, we
will develop the proposed approaches to more generalized andmore complicated ODTs such
as incomplete ODTs with fuzzy decision and ordered decision tables with interval values or
intuitionistic fuzzy values.
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